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We develop a computational methodology for the direct measurement of a wetting transition and its
order via the effective interface potential. The method also allows to estimate contact angles in the
nonwet state and to study adsorption isotherms. The proposed methodology is employed in order to
study the wetting behavior of polymers on top of a brush consisting of identical polymers. In the
absence of long-range forces, the system shows a sequence of nonwet, wet, and nonwet states as the
brush density is increased. Including attractive long-range interactions we can make the polymer
liquid wet the bush at all grafting densities, and both first- and second-order wetting transitions are
observed. The latter case is limited to a small interval of grafting densities where the melt wets the
brush in the absence of long-range interactions. Second-order wetting transitions are preceded by a
first-order surface transition from a thin to a thick adsorbed layer. The interval of second-order
wetting transitions is limited at low grafting densities by a surface critical end point and at high
grafting densities by a tricritical wetting point. Our study highlights the rich wetting behavior that
results when competing adsorbent-substrate interactions of different scales are tuned over a broad
range. © 2006 American Institute of Physics. �DOI: 10.1063/1.2172597�

I. INTRODUCTION

As a result of the increased ability to control and modify
surface structure,1 theoretical and computational works on
wetting and adsorption have received abiding interest.2–8

Among the different materials considered, polymers are one
of the most studied, because of their great versatility and
practical interest �e.g., protective coatings�. Moreover, the
vapor pressure is vanishingly small for long chain molecules
and evaporation effects can be neglected. Many properties
such as structure, composition, or chain length may be varied
during the synthesis providing control over the required wet-
ting properties. Furthermore, polymers can also be adsorbed
or irreversibly grafted onto substrates,9–11 and the properties
of the resulting brush may be further modified via the quality
of the surrounding solvent.12

Although grafting polymers on a substrate is expected to
increase the compatibility of polymer films because it adds
attractive interactions to the substrate, it has been found that
the brush’s density plays an important role.13 For too high
grafting densities of the brush �or large crosslink density of
polymer networks�, polymers of the same material as the
brush have been found to be autophobic, i.e., the chemically
identical molecules in the brush and the melt repel each other
and the melt dewets from the brush.9–11,14 For smaller brush
densities, however, suitably prepared brushes are known
to enhance the wetting properties and reduce the contact
angle of polymers that do not wet the bare substrate. In such

cases, a sequence of nonwet, wet, and nonwet states may
be observed as the brush density is increased.11,15 The role
of entropic factors in this wetting sequence has been
emphasized,13 and several self consistent field theoretical
studies have been devoted to the study of the autophobic
regime.15–19

Obviously, the wetting properties of a film will also de-
pend on the nature of the substrate where the brush is
grafted. From an applied or experimental point of view, this
provides further control over the system �e.g., by using a
surface coating or a thin adsorbed layer one can modify the
wetting behavior�. From the theoretical point of view, one
expects an intriguing interplay between forces that act on
different length scales. �i� Short-range interactions that stem
from the distortion of the narrow liquid-vapor or substrate-
liquid interface. The width of these interfaces is dictated by
the correlation length of density fluctuations �, which is on
the order of the statistical segment length for dense polymer
melts. �ii� There are weaker interactions in polymer melts
that extend up to the size of the polymer coil, Re.

20–22 For
long polymer chains these two short-ranged contributions
have well separated length scales, but for the rather short
chains considered in our simulations we do not attempt to
distinguish between the two contributions. �iii� There are
truly long-range interactions that arise from the tails of the
dispersion interactions between the polymer segments and
the constituents of the substrate. The strength of these long-
range power-law interactions is parametrized by the
Hamaker constant A. In the case of a polymer layer on top ofa�Electronic mail:luis@ender.quim.ucm.es
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a polymer brush the distinction between long-range and
short-range forces becomes particularly clear because the
liquid-vapor interface does not come close to the substrate
and difficulties in distinguishing between long- and short-
range forces do not arise.

Interestingly, not only the intensity but also the attractive
or repulsive character of long-range forces can be modified
in some situations. In dewetting studies of polymers, these
interactions could be greatly modified by coating the surface
with an oxide layer of varying thickness. This control of the
surface properties can lead to a new wetting behavior. Stud-
ies of polystyrene films adsorbed on silicon wafers show a
two-stage dewetting process. At a high temperature, mi-
crometer scale droplets are found on top of a uniform ultra-
thin film, a few nanometers thick. Upon cooling, rupture of
the thin film is observed.23–25 This reveals a transition be-
tween two different equilibrium film thickness, none of
which correspond to a fully wet state. A similar two-stage
wetting process due to the interplay of short- and long-range
interactions has been observed in studies of alkanes adsorbed
at the air/water interface. Under suitable conditions, it is
found that these systems exhibit a first-order surface transi-
tion between a thin and a thick film.26,27 This unexpected
transition is then followed by a second-order or critical wet-
ting transition, where the thickness of the film gradually
diverges.28

In this work we employ computer simulations in order to
explore the wetting behavior of polymers on a brush consist-
ing of grafted polymer of the same chemical nature and
length. Interactions between polymer segments are consid-
ered to be strictly short range. The strength of the short-range
interactions between polymer and substrate is modified by
changing the grafting density of the brush. Laterally inte-
grated Lennard-Jones interactions between polymer and sub-
strate and the tails of the dispersive interactions between
polymer segments that have been truncated in the model of
the direct interactions result in long-range interactions. Their
strength is controlled by an effective Hamaker constant A.
Previously, this system was studied using self consistent field
theory and a very rich wetting behavior was observed, ex-
hibiting inter alia a two-stage dewetting process similar to
that observed experimentally for polystyrene on silicon wa-
fers and alkanes at the air/water interface.15

Despite this a priori information, the calculation of a
wetting phase diagram by means of computer simulations is
not a simple matter.29 Even for simple Ising spin models the
growth of the film thickness and the concomitant slow, long-
wavelength fluctuations at weakly first- or second-order wet-
ting transitions pose a challenge for simulations.29,30 In view
of the much longer molecular relaxation times of polymeric
materials we have only been able to investigate the wetting
behavior of rather short chains utilizing advanced simulation
and analysis techniques and a substantial amount of com-
puter time. Here we propose a new technique which allows
us to directly measure the effective interface potential, con-
taining a wealth of information about the surface thermody-
namics. A brief account of this technique was reported
recently.31

Our manuscript is arranged as follows. In the next sec-

tion we introduce our coarse-grained polymer model and
simulation methodology. Then we present our simulation re-
sults for the different regimes of the grafting density and
analyze them within a simple phenomenological expression
for the interface potential. Section IV contains our conclu-
sions.

II. MODEL AND SIMULATION METHODOLOGY

A. Model system

We consider a simple coarse-grained polymer model
which we have utilized previously.32–34 Polymers consist of a
linear string of N beads, which interact with every other bead
in the system by means of a truncated and shifted Lennard-
Jones potential,

VLJ�r� = �4����

r
�12

− ��

r
�6	 +

127�

4096
, r � rc

0, r � rc,

 �1�

where the truncation distance rc is set equal to rc=2�21/6�.
In the following, we will employ the Lennard-Jones diameter
� as unit of length and the Lennard-Jones potential depth �
as unit of energy, unless otherwise stated.

Contiguous monomers along the same chain additionally
interact via a bonding potential of finite extensible nonlinear
elastic �FENE� type,

VFENE�r� = − kR0
2 ln�1 −

r2

R0
2� . �2�

In the above equation the maximum allowed displacement
between bonded monomers is R0=1.5�, while k, which plays
the role of an elastic constant, takes the value k=15� /�2.

Free polymers of the system are placed within a cuboidal
simulation box, whose sides Lx, Ly, and Lz are such that
Lx=Ly and Lz�Lx. We impose periodic boundary conditions
along the lateral x and y directions, and place perfectly flat
walls at z=0 and z=Lz. Additionally, a number of ng chains
are grafted onto each wall. Their first monomers are located
at z0=1.2 and the grafting points are arranged on a square
lattice with 1/�=ng / �LxLy� being the number of grafted
chains per unit area. The grafting substrate additionally in-
teracts with the chain segments via a long-range potential of
the form,

Vwall�z� = A�sign�A���

z
�9

− ��

z
�3	 , �3�

where z denotes the perpendicular distance of the polymer
site to the closest substrate. A is the effective Hamaker con-
stant characterizing all long-range interactions between sub-
strate and polymer and the residual tails of the polymer-
polymer interactions that are omitted by the truncation of the
Lennard-Jones potential.

In the following grafted and free polymers are identical,
and they are comprised of N=10 segments. The simulations
are all carried out at the reduced temperature kBT /�=1.68. In
terms of the monomer number density 	, the coexistence
liquid and vapor densities are 	l=0.61 and 	
=0.0083, re-
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spectively. The interface tension is � /kBT=0.0953 and the
mean end-to-end distance of the polymers is Re=3.66.32

The optimal size of the simulation box has to meet two
requirements. A large substrate area is needed for simulating
low grafting density due to the small number of grafted
chains. Additionally, Lz must be large enough such that the
interfaces at z=0 and z=Lz do not interact. Obviously, a too
large system makes the simulations computationally infea-
sible and density fluctuations in the vapor might significantly
contribute to the total density fluctuations. Typically we con-
sidered system sizes with Lx between 14� for the low graft-
ing densities and 8� for the highest grafting densities. In
order to avoid interaction of the two interfaces, we typically
employed Lz=90�, but occasionally Lz=180� was required
for simulating very thick films. The number of grafted chains
on a wall varied between ng=16 for the lowest grafting den-
sities and ng=36 for the highest grafting densities.

A symmetric simulation box with two identical sub-
strates allows to gather statistics from both halves of the
simulation. In practice, however, having two brush-covered
substrates results in very large relaxation times, in particular,
when thick liquid films form. Therefore, we often use a
purely repulsive substrate at z=Lz to sample the fluctuation
of a single liquid-vapor interface, to reduce possible correla-
tions, and to obtain better statistics.

B. Simulation methodology

Locating a wetting transition by computer simulation
poses a challenge because of the divergence of the thickness
of the liquid film at the transition. Both, protracted long
equilibration times as well as significant finite size effects,
have to be accounted for.

An accurate method to locate first-order wetting transi-
tions consists in calculating the surface free energy differ-
ence of the liquid and vapor in contact with the substrate and
the liquid-vapor interface tension in separate simulations.
Then, the Young equation is utilized to calculate the macro-
scopic contact angle and to locate the wetting transition. This
method is particularly advantageous at strong first-order tran-
sitions because the thickness of the fluid layer at the nonwet
substrate virtually vanishes which strongly reduces finite size
effects.32

This method, however, gradually becomes more difficult
as the strength of the wetting transition decreases. Although
the liquid layer in the nonwet state remains microscopic it
comprises several molecular diameters and the relaxation
times of long-wavelength fluctuations of the film thickness
are protracted long. Moreover it is difficult to estimate the
strength of the first-order transition from the analysis of the
surface and interface tensions that enter Young’s equations.

An alternative is to directly measure the interface poten-
tial in the simulations. The interface potential g�l� measures
the free energy of a liquid film per unit area as a function of
its thickness l or another suitably defined measure of the
substrate adsorption. This interface potential or the concomi-
tant disjoining pressure can also be measured experimentally,
but the experiments are only able to probe a limited region
corresponding to rather large film thickness.35,36 If we nor-

malize g such that g�l→��→0, the knowledge of the film
thickness where the interface potential exhibits its global
minimum lmin allows us to measure the contact angles, be-
cause then

�LV�1 − cos � = g�� = �� − g��min� = − g��min� , �4�

where �min is the adsorption at the minimum of g. Further-
more, g contains information on the order of the transition
and the stability of thin films.

In order to measure free energy differences we perform
Monte Carlo simulations in the grand canonical ensemble. In
this way, we are able to monitor the probability of finding a
given number of polymers within the system. Since the
grand potential of a state with n particles is directly propor-
tional to −kBT ln P�n�, the probability distribution allows us
to directly calculate the free energy differences. To be more
specific, we would like to estimate the interface potential by
monitoring the probability P1/2�n� of finding n polymers in-
side the half of the simulation box that contains the brush-
covered substrate. We can then define a surface adsorption �
as the total number of monomers in that half box n1/2 less the
amount found in an equal bulk volume, i.e.,

� = �Nn1/2 −
1

2
	vV�/LxLy . �5�

In this way, we can determine the interface potential as

g��� = −
kBT

LxLy
ln P1/2��� . �6�

To a crude approximation the interface excess is related to
the thickness l of a uniform liquid film via �=�	l with
�	=	l−	v. This approximation assumes a sharp, rectangu-
lar density profile at the substrate and the liquid-gas interface
and it neglects that density fluctuations in the bulklike re-
gions of the profile. Thus, plotting the interface profile versus
� /�	Re yields an approximation for the interface potentials
as a function of the film thickness in units of the end-to-end
distance, Re.

This procedure poses both conceptual and technical
challenges. If we fix the lateral system dimensions, Lx and
Ly, of our cuboidal simulation cell, and increase the perpen-
dicular distance Lz, the interface of a thick film at coexist-
ence will not be bound to the substrate and will wander
around as to explore the whole volume. In the limit Lz→�
there is no stationary probability distribution even if g�l� has
a finite minimum binding the interface to the substrate. In
order to obtain a meaningful normalizable probability distri-
bution one first has to consider the limit Lx ,Ly→� and then
can consider the limit of large film thickness, Lz→�. The
fact that the interface explores the whole volume of the sys-
tem is also a technical problem because it imparts extremely
long correlation times of interface fluctuations and the simu-
lation spends a lot of time exploring regions where the inter-
face and the substrate do not interact and the interface po-
tential is flat.

A simple remedy is to simulate at slight under-
saturation,30 ��=�−�coex. In this case the effective inter-
face potential g�� is exactly obtained as described above but
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large film thicknesses are suppressed and the interface al-
ways returns to the substrate. The interface potential at co-
existence as defined in Eq. �6� is simply recovered by means
of a Legendre transformation,

g0��� = g����� − � f�� , �7�

where � f is the adsorption of free chains �as opposed to �,
the adsorption of both grafted and free chains�.

This procedure works well if g0 exhibits only a shallow
minimum �wet, small contact angle or weakly first-oder tran-
sition�. In the opposite case, g0 showing a deep well �large
contact angle or strongly first-order transition�, the simula-
tion explores only the narrow region where the interface is
bound to the substrate and it is difficult to extract the limit
l→� from the simulation data. In order to avoid this prob-
lem we utilize successive sampling,37 a variant of the well
known umbrella sampling technique.38

In our simple implementation of successive sampling,
we perform standard grand canonical simulations but rather
than sampling over the actual grand canonical probability
distribution P�n� for a given temperature T and chemical
potential �, we subdivide the interesting interval of the num-
ber of chains into overlapping subintervals, �ni−1 ,ni�. Monte
Carlo moves that try to leave the interval are rejected as to
fulfill detailed balance at the boundaries. Performing differ-
ent simulations in the subintervals we obtain an estimate of
the distribution Pi�n� in the ith subinterval. Then, the results
of the subintervals are matched at their boundaries to provide
an estimate for the grand canonical distribution function over
the entire range of the number of chains. Let n be in the
interval �ni

− ,ni
+� and n� be in the the neighboring interval

�ni−1
− ,ni−1

+ � which overlap at n̄, then

P�n�
P�n��

�
Pi�n�
Pi�n̄�

Pi−1�n̄�
Pi−1�n��

. �8�

Successively we construct an estimate for the unnormalized
distribution, P�n�, for all the considered n relative to some
arbitrarily chosen probability, P�n0�.

Actually, P�n� contains information on two interfaces,
that at z=0 and that at z=Lz. The interface potential of one
such substrate is determined from P1/2�n�, the probability of
obtaining n particles in the corresponding half box. This in-
formation may be recovered by monitoring P1/2�n �k�, the
probability of finding n particles in a half box, given that the
total number of polymers within the box is k. This condi-
tional probability is independent of the chemical potential
and may be measured during the simulations. At the end of
the simulation, we calculate the information as

P1/2�n� = 
k=n

�

P�k�P1/2�n�k� . �9�

In principle, all states of the system with more than n mol-
ecules will contribute to the summation. In practice, obtain-
ing meaningful probabilities for very large n is not feasible.
Fortunately, it was found that the sum converges fairly fast
�cf. Fig. 1� and could be truncated, provided the convergence
is carefully monitored. Typically, we studied a range of 250
molecules divided in about five subintervals with 50 particles

each, but the number of subintervals required can be in-
creased as needed.

Figure 1 illustrates the methodology proposed for the
calculation of interface potentials. The top left panel shows
the partial distributions Pi obtained within each window.
Shifting the logarithms of the piecewise probability distribu-
tions according to Eq. �8� as to match them in the overlap-
ping windows we obtain a continuous function P�n�, inde-
pendent of the specific choice of subintervals employed �top
right�. For each of the windows, we also monitor the condi-
tional probabilities which, using Eq. �9�, allow us to estimate
P1/2�n�. A distribution obtained in this way from i successive
windows shows a spurious increase close to the maximum
number of particles allowed in the system, i.e., ni, due to
truncation effects in Eq. �9�. However, increasing the number
of windows employed allows to shift the spurious feature to
larger particle numbers as desired �bottom left�, and the re-
sulting distributions differ by a simple additive normalization
constant within the unperturbed interval �bottom right�.

From the knowledge of the interface potentials, we can
determine several interface properties, including the value of
the effective Hamaker constant Awet at which the liquid wets
the brush. We estimate the location of first-order wetting
transitions using two different methods. First, we plot P1/2�n�
for a system slightly above a first-order wetting transition.
The probability distribution is bimodal and by decreasing the
bulk chemical potential, ��pw=�pw−�coex�0, into under-
saturation the area below the two peaks can be made equal.
The equal weight rule of phase coexistence39 asserts that at
this undersaturation and substrate interaction, A, a thin and a
thick film thickness coexist with each other. In contrast to the
wetting transition itself, only finite layer thickness is in-
volved and finite size effects can be controlled. This prewet-
ting coexistence is the hallmark of a first-order wetting tran-

FIG. 1. Calculation of interface potentials. Top figures show the probability
of finding n molecules inside the whole simulation box at kBT /�=1.68 and
the coexistence value of the chemical potential. Top left panel presents the
piecewise distributions obtained within each window. Top right panel is the
resulting distribution obtained after matching the piecewise functions. Bot-
tom figures show the probability distribution of finding n molecules a dis-
tance less than Lz /2 away from the substrate. Left panel illustrates the cu-
mulative distributions that are obtained as an increasing number of windows
is considered. Right panel shows how the cumulative distributions in the left
collapse into a single master curve, the interface potential.

1-4 L. G. MacDowell and M. Müller J. Chem. Phys. 124, 1 �2006�



sition. Once the line of prewetting points �A ,�pw� has been
determined we estimate the location of the wetting transition
by extrapolating the prewetting line back towards the coex-
istence chemical potential according to32,40

�� � �A − Awet�3/2. �10�

Thus, a fit to the available data for the prewetting line allows
us to accurately estimate Awet.

The calculation of the prewetting line as described above
becomes difficult for systems with small lateral size because
the tail of the peak that corresponds to a thick film decays as
exp�−LxLy��� /kBT�. For small system sizes this tail decays
very slowly and acquires a large weight. In large systems, the
states between fully developed thin and large systems consist
of coexisting thin and thick films, with an extra energy pen-
alty arising from the line tension �. The line between the
films will run across the smallest lateral dimension, either Lx

or Lz, and will have a total cost � min�Lx ,Ly�. For small
systems, however, this contribution is relatively small, and
the minimum of the probability distribution between the two
stable peaks is not very well developed. In such cases, we
determine the wetting transition by direct inspection of the
interface potential, i.e., by estimating the substrate interac-
tion at which g��min�=0, where �min is the adsorption at the
minimum of the interface potential. This procedure is remi-
niscent of locating the prewetting via the equal height rule
�instead of the equal weight rule�, and we expect stronger
finite size effects.

Since the calculation of full interface potentials is rather
time consuming, it is desirable to exploit the data obtained
during a simulation as much as possible. In the course of this
study, extrapolation of one calculated interface potential in
order to predict interface potentials for other values of A and
T is very useful. The expressions required for this histogram
extrapolation 41 are obtained by writing the grand canonical
probability of observing a given number of particles as fol-
lows:

P�VT
A �n� � exp��n/kBT�QnVT

A , �11�

where QnVT
A is the canonical partition function of a system

with Hamaker constant A. The probability distribution for
another value of the Hamaker constant A� can be expressed
by the previous distribution,

P�VT
A� �n� � P�VT

A �n�
QnVT

A�

QnVT
A . �12�

Noting that the wall energy of a given microcanonical con-
figuration differs in both systems by a multiplicative factor
A /A� only, the ratio of canonical partition functions may be
written as

QnVT
A�

QnVT
A =

� e−��A�/A−1��e−��U+��drn

� e−��U+��drn , �13�

where U is the sum of all pair interactions, while � is the
sum of all wall-monomer interactions. The equation above
has been arranged in a manner such that its resemblance with
perturbative free energy calculations is made explicit. Noting

that exp�−��U+��� may be considered as a probability den-
sity, we obtain32

P�VT
A� �n� � P�VT

A �n��exp�− �A�/A − 1��/kBT��A, �14�

where the average is performed over a canonical distribution
with Hamaker constant A. This expression means that aver-
ages corresponding to the thermodynamic states �, V, T, and
A� can be constructed from a sample of microstates gener-
ated �according to the Boltzmann weight� at the states �,
V, T, and A by assigning each microstate the weight
exp�−�A� /A−1�� /kBT�.

An important point regards our order parameter, the ad-
sorption �. This corresponds to the integral criterion for lo-
cating the position of the liquid-vapor interface, but other
schemes based on the detailed knowledge of the profiles
�crossing criteria� can also be utilized to determine the film
thickness l.42,43 Moreover, monitoring the adsorption we can-
not distinguish between the formation of a uniform layer and
a droplet. At a fixed adsorption the system will adopt the
configuration that minimizes the free energy—be it a uni-
form film, two coexisting films of different thickness, or a
droplet. This can be verified explicitly via configurational
snapshots. The configurations that a system adopts at fixed
excess number of particles and their dependence on the sys-
tem size have been discussed both for thin films on sub-
strates 44 as well as for the periodic simulation cells �i.e.,
bulk simulations�.45,46 In the latter cases �coexistence be-
tween two different film thicknesses or a droplet�, the mea-
sured probabilities will not be simply related to the interface
potential but contain additional information about the line
tension.44,47 Importantly, states that correspond to the minima
of the interface potential �i.e., the configurations that are per-
tinent to the equilibrium wetting behavior� will correspond to
laterally uniform configurations and free energy differences
between these states have the usual meaning.

III. RESULTS

Figure 2 shows the interface potentials for brushes of
increasing grafting density in the absence of long-range
forces, i.e., A=0. As expected, for low grafting densities the
interface potential shows a rather deep minimum at low ad-
sorption. Due to steric reasons, the almost bare surface
greatly reduces the configurational entropy of chains close to
the substrate, and a thick film is not stable. Actually, for a
bare hard surface, previous results for the same model sug-
gest a drying transition at A=0.32 Gradually increasing the
brush density we decrease the depth of the minimum. As a
result of attractive interactions, grafting chains on the sub-
strate somewhat compensate for the loss of entropy. Eventu-
ally, at intermediate grafting densities the interface potential
becomes a monotonically decreasing function of the adsorp-
tion, and no trace of a minimum remains. This shows that the
attraction provided by the grafted chains can lead to wetting
even in the absence of long-range forces. However, upon
further increasing the grafting density, the brush becomes so
dense that penetration of the chains is at a great cost and the
system dewets. The dewetting of a fluid on top of a substrate
made of the same kind of molecules is known as autopho-
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bicity, a phenomenon which has been studied both ex-
perimentally10,11,14 and theoretically.16–19

It would be interesting to relate the equilibrium adsorp-
tion �i.e., minimum of the interface potentials� to the well
known properties of the system, such as end-to-end distance,
grafting density, and wall strength. For extremely simplified
models—assuming incompressible brushes, no enthalpic in-
teractions, and Gaussian distribution of polymers—analytic
expressions may be obtained.13 However, for the short poly-
mers considered here, typical polymer scaling laws are only
qualitatively obeyed. Both short-range and long-range inter-
actions must be considered, and packing effects on the
monomer length scale are relevant. A simple relation be-
tween equilibrium film thickness and fluid polymers is there-
fore not available, but self consistent field theories may be
employed to obtain numerical estimates of the interface
potential.15–19

The interface potential in the absence of long-range
forces allows us to classify the behavior into three regimes:
sparsely grafted brushes, ranging from Re

2 /�=0 to 1.34,
show a behavior similar to that of a bare substrate. The at-
traction provided by the grafted chains is not enough to sta-
bilize a thick polymer film and the system remains nonwet.
Brushes with intermediate grafting density, ranging from
Re

2 /�=1.34 to about Re
2 /�=5.36, show a monotonically de-

creasing interface potential, i.e., the polymer melt wets the
brush. Finally, for high grafting densities, beyond Re

2 /�
=5.36, the brush is so dense that liquid films become again
unstable and autophobic dewetting occurs.

The existence of different regimes and their behavior
may be intuitively explained and rationalized by inspecting
the polymer density profiles of the system. Figures 3–5 show
the density profiles for brushes in each of the three regimes.
Each of the plots includes the results for three different film
thicknesses: �1� a bare brush ��=�g�, �2� a thin film that
corresponds to the equilibrium adsorbed amount �i.e., the
minimum of the interface potential, �=�min�, and �3� a thick

liquidlike adsorbed film, corresponding to the asymptotic
part of the interface potential ��=���. For each situation, we
consider the density profile of grafted polymers �g�z� �full
lines�, that of free chains � f�z� �dashed lines�, and the result-
ing total density profile �t�z� �symbols�. The contribution of
the first monomer of grafted chains is a sharp peak at
z0=1.2 which is not included but marked by an arrow on the
horizontal axis.

Figure 3 shows the density profiles for a brush with
Re

2 /�=1.09 in the low density regime. The density profile for
the bare brush vanishes at the substrate and exhibits a maxi-
mum around z�0.6Re. For the short chain length considered,
however, the different length scales—segment size �, that

FIG. 2. Interface potentials g��� as a function of the total adsorption � for
several brush densities and A=0. From left to right, g��� of increasing
grafting densities, and Re

2 /�=1.09 �full line�, 1.23 �long dashed�, 1.31 �short
dashed�, 2.68 �full�, 5.63 �long dashed�, and 6.70 � short dashed�.

FIG. 3. Density profiles for a brush of low grafting density, 1 /�=0.0816,
with three different adsorptions, corresponding to a bare brush, a brush at
the minimum of the interface potential, and a brush at a �large� plateau value
of the interface potential. The lines are the density profiles of grafted chains
�full, bare brush; long dashed, brush at minimum; dotted, brush at plateau�.
The empty symbols correspond to the free chains �circles, brush at mini-
mum; squares, brush at plateau�. The filled symbols correspond to the total
�graft+free� density profiles �circles, brush at minimum; squares, brush at
plateau�. The arrow on the z axis marks the position of the first monomers of
the grafted chains which have been excluded from the density profiles. The
inset shows the detail of density profiles for the grafted chains.

FIG. 4. Density profiles for an intermediate grafting density brush,
1 /�=2.68. Symbols as in Fig. 3. The density of the grafted chains for �min

and �� looks equal on the scale of the graph.

1-6 L. G. MacDowell and M. Müller J. Chem. Phys. 124, 1 �2006�



determines the packing, excluded volume screening length �,
that characterizes density correlations, and the molecular size
Re—are not well separated. The maximal density is much
lower than the liquid density 	l. The profile results from a
balance between attractive interactions, promoting the col-
lapse of chains, and conformational entropy, penalizing the
compression of chains into an ultrathin film.

Adding a small amount of free chains to this brush de-
creases the free energy, for the free chains help building a
uniform layer and thus reduce the stretching of the grafted
chains. As can be observed from the profile, the laterally
averaged surface to the vapor sharpens and gradually adopts
the shape of a narrow liquid-vapor interface.

In Fig. 4 we show the density profiles observed for a
brush Re

2 /�=2.68 characteristic of the intermediate density
regime. The brush is now considerably more dense and some
density oscillations �packing� in �g�z� already occur in the
bare brush. However, the density is not so large as to prevent
free polymers to penetrate the brush. Therefore, increasing
the adsorption decreases the overall free energy, and the
maximum possible penetration occurs for �→�. There is an
extremely shallow minimum in the interface potential which
is beyond the statistical accuracy of our simulations and its is
therefore disregarded in the following discussion.48

The autophobic dewetting at high grafting densities may
be understood from the resulting density profiles shown in
Fig. 5 �left� for a brush with Re

2 /�=6.70. In this case, the
very dense brush results in a highly packed and structured
brush, as revealed by �g�z� for the bare brush. The brush is
stretched and the density of brush segments is typically
higher than that of the liquid at coexistence. Thus, only a
very limited amount of the free polymers can penetrate the
brush and the adsorption �min is very small. It is just suffi-
cient to make the surface of the bare brush adopt the shape of
a narrow liquid-vapor interface. When more chains are
added, they are confined to the top of the brush. Since the
penetration is so small, they do not sufficiently benefit from
attractive interactions with the brush, but suffer a rather large
entropy loss due to the steep density gradient at the brush-
melt interface.

The previous discussion is based on the analysis of the

density profiles as a function of perpendicular distance to the
substrate. Therefore, the in-plane structure is averaged out.
In bad solvents both simulations 49,50 and experiments 51 ob-
serve that sparsely grafted brushes do not form a laterally
homogeneous dense layer but rather form dimples whose
characteristic lateral size is dictated by Re. This effect has not
been observed in our self consistent field theory �SCFT�
calculations,15 which assumed a laterally homogeneous pro-
file from the outset.

In our simulations we find that for very low grafting
density at each instant in time large patches of the substrate
are not covered by the brush, i.e., there are strong density
fluctuations. The assumption of a spatially homogeneous
density in the lateral direction is only a very crude descrip-
tion of the system. As we increase the grafting density, how-
ever, the spatial inhomogeneity decreases. Note that our
chain length is rather short and that the temperature is not
very far below the � point, T /��0.51. For brushes with
Re

2 /��1.09, the lateral structure of density profiles is mainly
due to the first two monomers of the grafted chains, the
remainder of the chain producing a rather uniform back-
ground.

In order to relate the structure of the brushes and the
adsorbed films with the wetting behavior, it is also important
to consider the effect of changing the Hamaker constant.
Clearly, the long-range wall potential may influence the wet-
ting behavior as a result of interactions with the adsorbed
film, but also indirectly via the influence on the brush struc-
ture. For dense brushes, however, the effect is fairly small,
because the brush is so compact anyway. Figure 5 �right�
shows the density profiles for a brush with Re

2 /�=6.70 and
A=1.2. Comparison with results for A=0 shows that the
structure remains rather similar. Actually, the only significant
difference results from the z−9 repulsive part of the long-
range potential �cf. Eq. �3��, which expels the first few brush
monomers away from the neighborhood of z=0. The much
longer range contribution, z−3 has almost no effect and does
not produce qualitative changes of the in plane structure.

The limit of a dry, dilute brush is more rich and has been
investigated for a similar model both below50,52 and above
the theta temperature.52 In such cases, the resulting structure
is laterally inhomogeneous and density profiles as a function
of the perpendicular distance to the wall do not provide a
complete description of the brush.

After this qualitative discussion of the density profiles,
we now study the nature of the wetting transitions that occur
in each of the three regimes, and the effect of long-range
forces.

A. Low grafting densities

Previously, we have studied the wetting behavior of our
model polymer on a flat surface without brush.32 We found
that the polymer fluid will wet the substrate if the Hamaker
constant is larger than the wetting value Awet=3.22. We ex-
pect that grafting chains on the substrate will increase the
extent of attractive interactions, i.e., a wetting transition be-
low Awet=3.22 can be anticipated.

In Fig. 6 we show the interface potentials obtained for a

FIG. 5. Density profiles for a dense brush, Re
2 /�=6.70 at A=0 �left� and

A=1.2 �right�. Symbols as in Fig. 3, except for total density profiles, which
are shown in the inset: long dashed line, brush at the minimum; short dashed
line, brush at the plateau. The grafted chain density profile �full line� is also
included in the inset for comparison. The arrow on the z axis marks the
position of the first monomers of the grafted chains which have been ex-
cluded from the density profiles.
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grafting density Re
2 /�=1.09 and increasing values of the Ha-

maker constant. For small Hamaker constants, g��� exhibits
a rather deep minimum at low adsorption. The depth of the
minimum gradually decreases as we increase the Hamaker
constant. Eventually, the minimum becomes metastable, i.e.,
a film of infinitely large adsorption is stabilized and the melt
of free chains wets the brush. From the interface potential we
infer the location of the wetting transition at about Awet

=0.7, well below Awet=3.22. Furthermore, the structure of
the interface potentials, with a well developed maximum
separating thin and thick films, shows that the wetting tran-
sition is of first order.

As we increase the grafting density, the value of
Awet�Re

2 /�� gradually decreases. Indeed, from Fig. 2 we ex-
pect that for large enough Re

2 /� the brush becomes wet for
A=0. Therefore, the line of first-order wetting transitions
eventually intersects the A=0 axis. Figure 7 shows a se-
quence of interface potentials calculated in the absence of
long-range forces as the wetting transition is brought about
by increasing Re

2 /�. In order to assess how close these three
systems are from the wetting transition, we calculate the cor-
responding contact angles according to Eq. �4�.

The values obtained for the three brushes of Fig. 7 are
16°, 12°, and 6°, for grafting densities Re

2 /�=1.23, 1.28, and
1.31, respectively, i.e., these brushes are very close to the
wetting transition. Unfortunately, the statistical accuracy of
our simulation data is not sufficient to decide whether or not
a maximum that separates the nonwet state at �min and a
macroscopic thick film persists as we increase the grafting
density. Such a maximum would indicate that the wetting
transitions remain first order.

Despite this difficulty, we point out two strong features
in favor of a first-order phase transition. First, if a second-
order wetting transition occurred, we would expect the
minima to gradually shift towards macroscopic adsorption.
For this reason we mark the location of the minima �min with
an X in Fig. 7. For short-range forces �min logarithmically

diverges upon approaching a second-order wetting
transition40 but this is not at all what we observe in our
simulations.

Second, we study the shape of the interface potential as
the wetting transition at A=0 is approached. From theoretical
considerations, we expect that an interface potential for a
system with short-range forces be described approximately
by a sum of exponentials,40

�g��� = 
k=1

�

Cke
−k�/�, �15�

where Ck are coefficients depending on the properties of the
substrate �i.e., the grafting density�, while � is a constant that
only depends on the nature of the fluid. For such a model, the
first few coefficients of the above expansion vary continu-
ously with the system parameters. A minimal model of a
second-order wetting transition requires two coefficients: C1

positive and C2 negative, with the latter exactly changing
sign at the wetting transition. The simplest possible descrip-
tion of a first-order phase transition with the above model
consists of a positive C1, a negative C2, and a third, positive
coefficient C3.

We performed nonlinear regression analysis for the in-
terface potentials using this simple model. A sum of three
exponentials provides an excellent fit to the simulation re-
sults �see Fig. 7�, while a sum of two exponentials yields a
clearly unsatisfactory fit with root-mean-squared deviations
that are about twice as large �fit not shown�. Furthermore,
taking into account that the parameter � is related to the bulk
correlation length via �=��	l−	v�, the fit suggests
�=2.24�=0.61Re which corresponds to the length scale of
density fluctuations in the liquid or the intrinsic width of the
liquid-vapor interface �without capillary waves�.

FIG. 6. Interface potentials as a function of total adsorption for a brush of
density Re

2 /�=1.09 and several values of the Hamaker constant. From bot-
tom up, A=0.3, 0.5, 0.7, and 0.85.

FIG. 7. Interface potentials as a function of the total adsorption for A=0 and
several grafting densities approaching the wetting transition. From bottom
up, Re

2 /�=1.23, 1.28, and 1.31. The symbols show the simulation results.
The full lines are fits to the data �see text�. The symbols “X” mark the
location of the minima. The dashed line connects all such points and shows
no evidence of divergence.
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Furthermore, we can exploit the fit in order to estimate
the actual location of the transition which is dictated by the
condition,

C2
2 = 4C1C3. �16�

Assuming a linear dependence of Ck on the grafting density
�see Table I�, we estimate that the liquid will wet the brush
for grafting densities larger than Re

2 /�=1.334 in the absence
of long-range forces �A=0�.

B. Intermediate grafting densities

Next we consider the behavior for grafting densities
larger than Re

2 /�=1.334, where the brush is wet already in
the absence of long-range forces. Including long-range forces
with a positive Hamaker constant will make the adsorption
of a thick film even more favorable and the melt will wet the
brush. However, including repulsive long-range forces,
A�0, we destabilize thick films. In that case, the interface
potential will exhibit an extra monotonously increasing con-
tribution whose leading term takes the form g�−�−2. Thus,
no macroscopically thick film is stable for A�0. The com-
petition between a monotonously decreasing short-ranged
contribution of the interface potential and the monotonously
increasing negative contribution from the long-range contri-
butions produces a second-order wetting transition as A
changes sign.40

Figure 8 presents the interface potentials for a brush with
grafting density Re

2 /�=2.68 and various Hamaker constants.
For A=0, the interface potential is a monotonically decreas-
ing function of the adsorption. As the Hamaker constant de-
creases, however, a shallow minimum appears and the cor-
responding adsorption �min decreases with A. In order to
illustrate that the appearance of the minimum stems from the
effect of long-range forces, we consider the contribution of
the segment-substrate interaction, Eq. �3�, to the interface
potential within the sharp-kink approximation,

glr�l� = �A��	l − 	v��1

8
��

l
�8

+
1

2
sign�A���

l
�2	 , �17�

where we have assumed a film thickness, l=� / �	l−	v�. The
leading term of order �−2 is plotted in Fig. 8 and compared
with the tails of the computed interface potentials; the con-

tribution in �−8 is extremely small and can be neglected for
� /Re�	�0.5. In all cases, the agreement between the model
and the simulations is good. In the same figure we show
interface potentials obtained by adding the computed g���
for A=0 and Eq. �17� �dashed lines�. In all cases the agree-
ment is again very good, supporting the superposition ap-
proximation employed in previous work.24

At low grafting densities, a sufficiently large A produces
a first-order wetting transition. For intermediate grafting den-
sities, we have shown evidence for a critical, second-order
wetting transition as A changes sign. Both regimes are sepa-
rated by a critical end point located at Re

2 /�=1.334. The
question then arises in which form the first-order transitions
continue beyond Re

2 /�=1.334. Unfortunately, the wetting
transitions observed as the grafting density approaches
Re

2 /�=1.334 are so weakly first order, that a direct monitor-
ing of the interface potential with sufficient accuracy be-
comes very difficult: the possible maximum will be hardly
detectable within the statistical uncertainty of our simula-
tions. Therefore, we exploit the smooth dependence of the
coefficients in the simple model of the interface potential,
Eq. �15�, in order to explore the wetting behavior in the
vicinity of the critical end point. A simple analysis shows
that the interface potential will exhibit a minimum followed
by a maximum as long as C2

2−3C1C3�0. Thus, for an ap-
propriate value of A�0 there is a coexistence between a thin
and a thick liquid layer on op of the brush. Note that this
continuation of the line of first-order wetting transition dif-
fers from prewetting because it occurs at bulk coexistence
and not at undersaturation. The unfavorable long-range inter-
actions play a similar role as the shift of the chemical poten-
tial from the bulk coexistence value in prewetting, i.e., they
limit the growth of a macroscopically thick wetting layer.
Our extrapolation shows that the above condition is fulfilled
for Re

2 /��1.3670, just slightly above the predicted wetting

TABLE I. Results for the fit of interface potentials to Eq. �15�. Top: values
of the coefficients ak and bk obtained from the fit to the linear model
Ck=ak+bkRe

2 /� �a value of �=1.350 263 is obtained for the decay rate of
the exponentials�. Bottom: values of the preexponential terms Ck obtained
for the three interface potentials employed in the fit.

1 2 3

ak −0.021 54 −0.9662 0.7576

bk 0.027 82 0.5977 −0.2255

Re
2 /� C1 C2 C3

1.230 0.012 68 −0.2312 0.4803
1.278 0.014 02 −0.2024 0.4694
1.307 0.014 84 −0.1848 0.4628

FIG. 8. Interface potentials as a function of the total adsorption for a brush
of grafting density Re

2 /�=2.68 and several �negative� values of A as indi-
cated in the figure. Lines with circles: simulation results. Full black lines:
long-range contribution of the interface potential as obtained from the sharp-
kink approximation. Dashed lines: superposition approximation, obtained as
a sum of g��� at A=0 and the calculated long-range contribution.
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transition at Re
2 /�=1.334. Beyond this grafting density the

two minima structure disappears, i.e., the line of thin-thick
transitions at the coexistence ends in a critical point. Fluc-
tuations which are neglected in the mean field type of ex-
trapolation are expected to considerably shorten the line of
thin-thick transitions and the critical point at the end of the
coexistence line will exhibit two-dimensional �2D� Ising
critical behavior with strong finite size effects. In view of the
very limited regime of grafting density where this mean
field-type extrapolation predicts thin-thick transitions at
A�0 the continuation of the first-order wetting transition to
A�0 is virtually unobservable in our simulations.

C. High grafting densities

As shown previously in Fig. 2, for A=0 and sufficiently
high grafting densities the interface potential developed
again an absolutely stable minimum indicative of autophobic
dewetting of the polymer film on top of the brush consisting
of identical polymers. Figure 9 shows a more detailed view
of the interface potentials close to the onset of autophobicity.
The depth of the minimum increases gradually as the brush
becomes denser. There seems to be no evidence of related
maxima in the interface potentials from visual inspection. In
this case, the wetting transition that would occur as Re

2 /�
varied while keeping A=0 is tricritical. At larger grafting
densities the melt dewets from the brush and an attractive
long-range interaction is required to stabilize a macroscopi-
cally thick liquid film.31 The dependence of the Hamaker
constant Awet on the grafting density in the autophobic re-
gime is much stronger than in the limit of low grafting den-
sity, because the melt is displaced from the substrate and
only the tails of the attractive segment-substrate interactions
stabilize the melt. The inset of Fig. 9 shows a series of in-
terface potentials obtained for a brush of Re

2 /�=6.03 as the
Hamaker constant is increased. As a result of the long-range

forces, the stable minimum is raised, and a maximum ap-
pears leading to a first-order wetting transition at about
Awet=1.1. Since a further increase of the brush density at
A=0 results in deeper nonwet minima and larger contact
angles, we expect that the value of A required to wet a denser
brush will steeply increase.

In order to locate more quantitatively the transition from
critical wetting to autophobic behavior and to determine the
order of the wetting transition, we again perform an analysis
based on the simple model for the interface potential, Eq.
�15�. The difference in this case is that we do not expect the
adsorbed polymers to significantly penetrate into the brush.
Therefore, the adsorption of free polymers, rather than the
total adsorption, is the relevant variable and we consider a
model of the form

�g�� f� = 
k=1

�

Cke
−k�f/�. �18�

We find that a fit with two exponentials produces root-mean-
squared deviations which are a factor of 1.4 larger than those
of a fit to three exponentials, the latter providing a rather
good description of the simulated data �cf. Fig. 9, full lines�.

Studying the coefficients of the fit �see cf. Table II�, we
find that the simple model suggests that first-order wetting
transitions occur for Re

2 /��5.171 while the wetting transi-
tion is second-order for smaller values of the grafting den-
sity. This is in agreement with the previous SCF
calculations.15 The fit of the simulation data does not suggest
that the location of �min on the nonwet side of the first-order
transition increases as one approaches Re

2 /tcp�5.171 from
above. We note, however, that our estimate of the transition
from second- to first-order wetting has substantial uncertain-
ties. �i� The line of first-order wetting transitions Awet���
approaches A=0 with a very small, possibly vanishing slope.
�ii� The prediction of the fit for the location of the wetting
transition does not match very well the location of direct
estimate obtained by the simulations at larger grafting densi-
ties. In view of the statistical accuracies of the simulation it
is again very difficult to accurately locate the point which
marks the end of the second-order wetting transitions and the
onset of autophobicity directly from the simulation.

FIG. 9. Interface potentials slightly beyond the autophobic dewetting tran-
sition. The symbols are the results from simulation �circles, squares, up
triangles, and down triangles correspond to Re

2 /�=5.36, 5.63, 6.03, and
6.70, respectively�. The lines are a fit to the three exponential model,
Eq. �18�. The inset shows a series of interface potentials for a brush
Re

2 /�=6.03 as A is increased, from bottom to top, A=0.6, 0.8, 1.1, 1.4, and
1.6.

TABLE II. Results for the fit of interface potentials to Eq. �18�. Top: values
of the coefficients ai and bi obtained from the fit to the linear model
Ci=ai+biRe

2 /� �a value of �=1.2217 is obtained for the decay rate of the
exponentials�. Bottom: values of the preexponential terms Ci obtained for
the four interface potentials employed in the fit.

1 2 3

ai −0.005 430 0.062 47 0.026 94

bi 0.001 557 −0.016 20 0.003 134

Re
2 /� C1 C2 C3

5.358 0.002 914 −0.024 31 0.043 73
5.626 0.003 332 −0.028 65 0.044 57
6.028 0.003 958 −0.035 16 0.045 83
6.698 0.005 001 −0.046 01 0.047 93
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D. Discussion of the wetting phase diagram

The full wetting phase diagram in the A−Re
2 /� plane

that results from the above discussion is shown in Fig. 10.
The proposed methodology allows us to locate the wetting
transitions directly from our simulations �empty squares�. We
find a direct evidence of first-order wetting transitions at low
�W� and high �D� grafting densities and positive values of
the effective Hamaker constant, as well as wetting of the
melt on top of the brush at an intermediate range of grafting
densities �C�. In the latter case a second-order wetting tran-
sition occurs at Awet=0.

It is difficult to accurately locate the grafting densities at
which the wetting behavior changes and to determine the
type of the wetting transition at those points. To this end we
have fitted the simulation data with a simple model for the
interface potential, Eqs. �15� and �18�, at both ends of the
line of critical wetting transitions. For finite values of A the
effect of long-range interactions is accounted for by a super-
position approximation. Assuming a continuous dependence
of the fit parameters on the grafting density, we obtain ex-
trapolations and we have interpreted them in a mean field
style.

The superposition approximation allows us to discuss
the qualitative effect of long-range interactions,

g��� = gsr��� +
�A

�2 , �19�

where gsr is the short-range part of the interface potential, as
obtained from Eq. �15�, �= 1

2 �	l−	v�3 is a constant, and we
have neglected the �−8 contribution. Let �0 be the adsorption
at the minimum of gsr���. Then, taking the derivatives of
g��� and expanding in a Taylor series about �0, we can ob-
tain a first approximation for the shift of �min due to long-
range interactions,

�min�A� = �0 +
2�A�0

g0��0
4 + 6�A

, �20�

where g0� is the curvature of gsr at �0. Given the new location
of the minimum, the value of the interface potential at that
point is given by

g��min� = g0 +
�A

��0 + �2�A/g0��0
3��2 . �21�

Considering that a wetting transition occurs for g��min�=0,
we find, to the first approximation,

Awet � −
g0�0

2

��1 + �4g0/g0��0
2��

. �22�

This simple result qualitatively illustrates the effect of long-
range forces in the neighborhood of a first-order short-range
wetting transition. Below the short-range wetting transition
g0 is negative, and long-range forces with positive A are
required to wet the brush. Above the short-range wetting
transition, and as long as gsr exhibits a metastable minimum,
long-range forces with a negative A can pull the minimum g0

down and stabilize it.
In order to get a quantitative description of the transi-

tions discussed above, we solve Eq. �19� numerically, using
the fit to the interface potentials to interpolate or extrapolate
the results as required. Included as dashed lines, Fig. 10
shows the results obtained for the wetting transitions close to
the intersections of the first-order and second-order lines.

The inset of Fig. 10 magnifies the scale of the phase
diagram in the region where line W meets line C. The point
of intersection is a critical end point, because the second-
order wetting transitions along C terminate. Below that
point, at negative A, we find the continuation of line W. The
transitions remain first-order, but they occur between a thin
and a mesoscopic film, the latter gradually diverging as
A→0−. As we decrease A, eventually, the two states become
identical and the line of transitions ends in a critical point
�CP� in accord with the predictions of the SCF theory.15

From an experimental point of view, the interface poten-
tials are usually not available and one measures either the
adsorption or the contact angle. What would be the experi-
mental signature of this complex wetting behavior? This
question can be answered by employing our interface poten-
tials along with Eqs. �4� and �7�. In principle, the adsorption
may be obtained as an average over a distribution of the form
P����exp�−�LxLyg�. In practice, for the systems studied the
expected isotherms are rounded off, because of the small
lateral size and the concomitant small free energy differ-
ences. It is therefore more convenient to employ our super-
position model with coefficients as obtained from the fit, Eq.
�15�, and determine adsorptions in the mean field sense, i.e.,
as the extrema of g���. From Fig. 10, we have seen that the
superposition model works rather well so we expect our re-
sults to be at least semiquantitative.

Figure 11 �top� shows the adsorption isotherms for three
different brushes and several values of the Hamaker con-
stant. The left panel displays the adsorption isotherms for a
brush below the critical end point �CEP� for several values of

FIG. 10. Wetting phase diagram as a function of Hamaker constant A and
grafting density Re

2 /�. The symbols are the wetting transitions as calculated
from the results of this work. The full lines are a guide to the eyes. Labels
W, C, and D indicate the first-order wetting transitions, second-order wetting
transitions, and autophobic dewetting transitions, respectively. The dashed
lines are predictions from the superposition model, Eq. �19�. The inset is the
phase diagram magnified in the region inside the circle.
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the Hamaker constant, from A=0, where the brush is not wet,
to A above the wetting transition. These isotherms clearly
reveal the first-order nature of the transition. A similar set of
results is displayed for a brush to the right of the CP. In this
case, the Hamaker constant is increased from negative values
towards A=0, and the behavior observed is typical of a
second-order wetting transition. The peculiarity of the behav-
ior described above is seen when we study brushes in be-
tween the CEP and the CP. This is displayed in the top
middle panel. The isotherms obtained in this case show fea-
tures common to the left and right panels. For large negative
values of A, the system is not wet, and the adsorption re-
mains small up to coexistence. However, when the continu-
ation of the W line at negative A is crossed, a discontinuous
jump is observed in the adsorption. This is very similar to a
first-order wetting transition, as in the right panel. However,
the adsorption does not actually diverge at coexistence, but
rather remains finite, though large compared to that typical of
adsorbed thin films. As A→0, the adsorption increases con-
tinuously and diverges at A=0, in very much the same way
as the right panel. The wetting isotherm at A=0 may show a
discontinuity, if the brush is close to the CEP, or be continu-
ous all the way up to coexistence, for brushes beyond the
CEP but yet below the CP. In the figure, we show the latter
case, where the wetting isotherm at A=0 still displays an
inflexion reminiscent of the discontinuity than can be ob-
served for brushes of smaller grafting density.

It is important to note that the salient features described
in Fig. 11 occur within an extremely small range of chemical
potentials very close to coexistence. For this reason, it would
be very difficult to observe them directly, either in an experi-
ment or in our simulations. In practice, it has been found
more convenient to focus either on the measurement of
contact angles or on the study of adsorption at co-
existence.23,26,28,53 In Fig. 11 �bottom�, we show the calcu-

lated adsorption at coexistence as a function of Hamaker
constant for the three brushes discussed previously. Again,
the left and right panels show the well known behavior char-
acteristic of first- and second-order wetting transitions. For
the brush in between the CEP and the CP, however, the con-
tinuous divergence of the adsorption �second order� is pre-
ceded by a discontinuous but a finite increase �first order�, a
behavior known from experiments of the air/water/oil
interface.26 Since adsorption is related to the derivative of
contact angles, the discontinuity is revealed as a change of
slope in contact angle measurements. The expected values of
the contact angles are displayed as dashed lines in the right
ordinate axis of Fig. 11—bottom �right ordinate axis�.54,55

Indeed, a change of slope in the contact angle is observed in
the middle panel. However, the change occurs for very small
contact angles of about 2°. Experimentally, the transition be-
tween the scenarios depicted in the left and middle panels,
and the discontinuity in the contact angle was only measured
recently.53 The transition between isotherms in the middle
and right panels has not yet been found, however.

The nature of the intersection between line D and line C
cannot be fully elucidated by our simulations. From the ex-
trapolation of the fit, cf. Eq. �18�, a continuation of the first-
order autophobic dewetting line also occurs at negative A. In
that case, the intersection point would also be a critical end
point. However, as noted previously, it is unlikely that the
extrapolation is reliable. We rather expect that the line D
ends at A=0 in a tricritical point.

IV. CONCLUSION

In this work we have proposed a powerful simulation
technique to study wetting properties. The method deter-
mines the effective interface potential containing all thermo-
dynamic information. From the interface potential one can
determine whether the system is wet or nonwet, estimate
contact angles, and infer the order of the wetting transitions.
Furthermore, combining the technique with histogram re-
weighting one can compute adsorption isotherms and locate
wetting transitions.31

The proposed methodology has been employed in order
to study the wetting behavior of brushes varying the grafting
density and strength of long-range forces. We have found
that the interplay of these two control variables results in an
interesting and rich wetting phase diagram, in qualitative
agreement with the previous predictions of self consistent
field theory.15 In the absence of long-range forces, we find
transitions from nonwet to wet and back to nonwet with
increasing brush density, in agreement with recent experi-
mental observations.11 The first transition is short-range first-
order wetting, while the second is long-range critical wet-
ting. Within a very small interval of brush densities beyond
the short-range first-order wetting transition, the adsorption
isotherm at bulk coexistence exhibits a transition from a thin
to a thick layer. Increasing the grafting density further the
difference between the thin and the thick state vanishes and
the adsorption increases continuously as we approach the
second-order wetting transition at A=0.

Long-range forces lead to a line of first-order wetting

FIG. 11. Typical adsorption isotherms and contact angles in the neighbor-
hood of the critical end point �CEP�. Top: plot of adsorption vs chemical
potential for three grafting densities: below the CEP �Re

2 /�=1.206, left�,
between the CEP and the CP �Re

2 /�=1.393, middle�, and above the CP
�Re

2 /�=1.741, right�. The results are shown for several values of the
Hamaker constant. From top to bottom A=0, and 0.1, 0.244, and 0.32 �left�;
A=−0.5, −0.2, −8.106�102, and −6.012�103 �middle�; A=−0.5, −0.35,
−0.2, and −2.0�103 �left�. Bottom: Contact angles and adsorption at coex-
istence for the previously studied brushes. Contact angles in the middle
figure are magnified by 10, while those of the left figure are magnified by
100.
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transitions at low brush density, and to a line of autophobic
dewetting transitions at large brush density. At negative
Hamaker constants, the continuation of the former produces
the line of first-order transitions between a microscopic and
mesoscopic thin film discussed above. The coexistence be-
tween nonwet thin and mesoscopic films has also been found
for short alkanes at the air/water interface,26,53 and for poly-
styrene on silicon wafers.23 The very different nature of all
such systems suggests that this behavior could be of a rather
general nature.
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