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Understanding the behaviour of topologically ordereddatsystems at finite temperature is a way of assess-
ing their potential as fault-tolerant quantum memories. ddmpute the natural extension of the topological
entanglement entropy fa > 0, namely the subleading correctidp, to the area law for mutual information.
Its dependence dfi can be written, for Abelian Kitaev models, in terms of infation-theoretic functions and
readily identifiable scaling behaviour, from which the iplay between volume, temperature, and topological
order, can be read. These arguments are extended to noia\gehntum double models, and numerical results
are given for theD(S3) model, showing qualitative agreement with the Abelian case

PACS numbers:

The notion of topological order was first introduced in the o
context of the fractional quantum Hall effect [1]. It aims at A c
identifying phases that cannot be separated by local o@er p
rameters. Such phases can exhibit exotic phenomena such as B
topologically protected ground state degeneracy or gaasip
ticle excitations, called anyons, with statistical beloathat
is different from bosons or fermion5! [2]. Besides the fact
that they reveal unusual states of matter, topologicatheoed Figure 1: Division of a torus (or a sphere) into four regions.
systems are also interesting because they might allow for in
trinsically fault-tolerant quantum computation [3, 4]. dach
systems, the division of a quantum algorithm as initialisat
unitary evolution and read-out [5] would translate intoatre
ing anyons, braiding them, and fusing them back to the va
uum respectively. While conceptually appealing, the rbbus

ness of thigopologicalqguantum computation against realistic 4 wherd i inted

noise models is far from being fully assessed. ;Sr:a[lgi[' 22 d ;,L\Jlrtﬁreﬁlglnagl‘yzéodai R[ :8]0;31 ﬁsnlrzse:rg?/lgltje f(()lgtth
This paper is devoted to quantifying how temperature af- ' : L )

fects a thop?ologically orderec?medifgmg For that F\)/ve will useponstant correct}ory’ lreveals topological ord_er. Indee!,

an entropic topological order parame.tégp and, focus on 1S @ topological invariant of the system and is related to the

0 H H .

lattice spin systems that are exactly solvable([3] [16]. Vile w quantum dlme_n5|o@ of the mod_el athand ag = InD.

show that, at any fixed temperatuti,, is nonzero only if Let_u_s C(_)n_3|der a syst_em defined on a torgs orona sphere,

the size of the system is finite. Importantly, we will exhibit @"d divide itinto four regionsl, B, C, D (see Fid.I). We will

ascalingrelation describing how a given increase of the sys-use

tem size can be compensated by a vanishing decrease of they,,,, = 74 + Iy + Ic — Iap — Iac — Ipc + Iapc. (1)

temperature. After recalling some notions on the topolalgic )

entropy, we will provide a complete analysis for the simple@S @ topological order parametefz(= Sk + Ske — Sruge

toric code model. Then, we will turn to more general mod-dénotes the mutual information between a reglomand its

els, show how to compute entropic quantities, and provide nucOmplement®.) This definition of/iop, amounts to replace

merical evidence for scaling laws in the case of the simplesy®n Neumann entropies by mutual informations in the defini-

non-abelian quantum double model, the one baseB o%;) tion of topological entropy introduced inl[8]. At zero termpe

[3]. We believe that our findings are relevant to topological@Ur€:lpo = —27'. Our choice is motivated by the fact that,
quantum computatiohl[4]. at finite temperature, the mutual information between aoregi

R is a measure of the correlations of this region with its envi-
ronment. The lattice systems we are going to study obey an
area law:

fies an 'area’ law. That is, the von Neumann entropy of re-
cgion R grows linearly with the size of its boundaryz =
—trprlnpr = o’|OR| — v+ 6(R), wherep denotes the re-
duced density matrix corresponding to regi@na’ is a con-

We start our discussion by briefly recalling the notion of
topological entropy![7,18]. It will play a central role in the
following. Let us consider a two-dimensional many-body
guantum system in a pure state of its ground subspace and Ir = a|OR| — 7, (2)
let R : R. denote a bipartition of this system, witk be-

ing connected. Let us further assume that our system satié‘—nd have a finite correlation lenggh(d]. Therefore,liopo is

a quantity where correlations due to a finfteancel out, and
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that reveals correlations due to topological order onlythes charge excitations intog, cr, , cor. The crucial observation
topological entropyy’, at zero temperaturg [7]. Direct substi- that helps to computgr = trr e " /Z(3, L) and eventu-
tution of Eq. [2) into Eq[{1) shows th#, = v (7. ally S(pr) is thatoR-fluxes anddR-charges can be driven
We now want to computéop at finite temperature for the inside R, by application of Pauli operators acting on links of
toric code|[B]. Consider a toru&tiled into L x L square pla- 2, thatis:[¢, c,w) is of the formUr, ¢k, ¢r. , cr, cr., W),
quettes. Let us associate a two-level system ('spin’) waithe ~for some unitary operatdiz.. To lighten the notations, let
edge of this tiling and let us assume that these spins irttera&s denote byyr andqr, the patterns of excitations (both flux

through the hamiltonian and charge) inR and in R, respectively. All excitations in
R (resp. R.) can be fused into a single excitatigh (resp.

H—_ Z B, — Z A,, 3) qp,) through a unitary operatéfy, (qr, ¢;) ® U _(qr,, 45, )
> 5 that relatesqr, qr.,w) and a statéqy, g, ,w), such that

R and R. contain at most one excited plaquette (vertex).
where the indey (resp.s) runs over all plaquettes (resp. ver- As in [IE], we will call site a plaquette and an adjacent ver-
tices) of the tiling. The operator8, and A, are defined as tex. The possibly excited plaquette and the possibly ex-
By = [lie,0f and Ay = [[,c,07. The hamiltoniani is  cited vertex withinR (resp. R.) can always be chosen to
made of local terms, all commuting with each other and, as iform a site. The statéyy, ¢, ,w) can be obtained, from a
turns out, its eigenstates can have arbitrary values foopRe ground state¢, w), by a product of unitary operators along
eratorsB,, and A, up to the constrairit], B, = [[, As = 1. a string connecting the site wheig, is located to the site
Therefore, these eigenstates are labelled by a triple diquawhereq}%c is located. In summanjgw) can be written as
tum numbers¢, c,w). A pattern¢ denotes the position of Ug(qr) ® Ur.(qr,,qor)|¢, w) for some unitary operators
all plaquette or “flux-type” excitations, a patteerindicates  Ux(qr) andUg, (qr,,qsr)- (Qor refer to the charges which
the position of all vertex or “charge-type” excitationsdan are neither fully inR, nor fully in R...)
indexes the topological degeneracy of the state for a fixad O \\e are nowin a position to compusg,. The thermal state
figuration of defects. The latter quantum number is made 0ff the toric code reads
two bits (w; andw,) that label the values of the integrals of
motion of z-operators around non-contractible loops on the =3 e~ P(Eo+ABlal)

torus (Wilson loops) 3] . We have Z(3.1) lq, w)(q, w], (6)

w,q

Hl¢, e,w) = (Eo +2[¢| +2|c]) |¢, ¢, w), (4)  whereAE = 2is the energy associated with a single excita-
tion, and wherey = qr U qr, U qor. Therefore the reduced

where B, = —2L? is the ground state energy, and| : : -

(resp. |c|) denotes the number of flux excitations (resp.dﬂiggiﬁ:'x ofthe systedireadspr = 3, ZQR7QRC7QBR
charge excitations) of the patteen (resp. c). If P; de- WII’RC[UR(qR)E,w)<§,w|UR(qR)T]. To sim-
notes the projector onto the sector of enefgy= Ey + 4¢  plify further this expression, we observe that two reduced
andd; = trP; denotes its dzimenzsion, we have that =  statesir(¢, ¢, w) andpr(¢’, ¢/, w') are orthogonal whenever
Ay ne<i22 Domytnemi (26%) (an) (bR, cr) # (¢, k). Indeed two such states can be perfectly

edistinguished through a measurementfor B, operators
aI?aving supportoti. Therefore, the surﬁ:qR is actually a di-
rect sum. If we assume th&tis contractible in neither of both
girections on the torus, then the values of the Wilson laops
N 2 o 2 can be revealed by measurements having support fulli2 on
Z(B, L) = tre™ P = 3iLge7PPdi = ((2coshB)F +  gnd the sun}_,, also turns to be a direct sum. S0; can be
(2sinh 3)£7)2, and the von Neumann entropy of the statewritten as
p = e PH/7(3, L) of the whole torus is derived from the _
identity pr= P C(ar)trr, Ur(qr, 7)|¢, w) (€, w|U}(qr, o),
w,qr
St =InZ — (8/2)0Z/08. (5) . ( S (7)|)
wheretC(dr) = *ZF7— e AlEot2laor|+2lar,

In order to compute the von Neumann entropy of a regiong ihe ma(rginal pr 2(6.L) anR’qR“

X obability of a configuration of defees.
R, and eventuallyliopo, We first observe thair(¢,c,w) = |tjs the decompositiofil{7) that allows to compiste exactly.
trr. |, c,w)(¢p,c,w| (R. = T\R) depends onv only if R

k ¢ From it, we find thatSr separates into a ground state area
contains non-contractible loops (cannot be measured 10- ~,ntribution and a finitey contribution

cally). Also, up to total charge conservatiopg(¢, ¢, w)

will only depend on the excitations located on plaquettes an Sk = S%SJF V(B,Ny(R),L) + V (B, N.(R),L), (8)
crosses insideR. Therefore, we distinguish between three

types of flux excitations: those located on plaquettes with s where S% = S(trg_|€, w) (¢, w]) = (|OR| — 1)In2 [6],
port on R, ¢r, those located on plaquettes with support onand whereN,(R) (N.(R)) denotes the number of plaquettes
R., ¢r,, and those located on plaquettes with support par{crosses) fully contained i®. The functionV' can be com-
tially on R and partially onR,, ¢sx. Similarly, we divide the  puted exactly using elementary combinatorial identiffe |

We now compute all the thermodynamical quantities w
need, assuming that our system is at thermal equilibrium
inverse temperatur8. Some details of our calculations will
be presented elsewhelle [10]. The partition function read



3

Whenpg is fully contractible, the direct sum ovar appear- we can argue that we actually do not need to as far as we are
ing in (@) should be replaced by a simple sum. As a result, thenly interested in the topological mutual information. Téie
expression folSi picks a— In 4 additive correction. ementary excitations df live on sites (a site is a combination
We have used EG(8) to compuligy,. We have found that  of a vertex and an adjacent plaquette). We will restrict & th
at any finite3, Tiopo vanishes in the limit wheré — oo, a  part of the spectrum off such that excitations are elemen-
result that is consistent with those of Refl[11], and intisa tary and pinned at fixed non-adjacent sites. This restrictio
that (i) the toric code exhibits no temperature-driven phas can be thought of as additional error correction, where some
transition for Ipe, and that (i) the toric code is likely not a Plaquettes and vertices are over-protected so that thegr nev
scalable quantum memory in the strictest sehse [5] as far &€t excited by thermal fluctuations (or only with vanishing
temperature-induced errors are consideret [18]. Our cempuprobability). Therefore, we believe thagy, for this modified
tations also reveal that the mutual information between-a remodel can only be larger than for the full spectrum.
gion R and its complement satisfies an area law of the form The space of: excitations pinned at fixed sites has the
Eq.(2). Computingliopo from it in the limit L — oo, and structurel([B]
consideringdR| = 4vL, with v < 1, we have found a re-
markably simple expression: Hn) = P ¥y a0 (12)
q1---9

_ _ even, eve

fiopo = 22 — ha(p"™) — ha (™), ) where each index; runs over all possible quasiparticle types

wherehs(z) = —z In(z)— (1—z) In(1—z) denotes the Shan- for sitei. Eq.[I2) simply means that different excit_ation pat-
non entropy of a binary outcome random variabjgss" ~  ternslead to orthogonal states. Each spidge. 4, splits as

pEen e (146727 (1 + 60~ /2(1 + 617) s the prob- Hopoqn =Koy .. @ Ky, ® Moy,
ability that the regionk contains an even number of excited
plaquettes (crosses), with= tanh 3. Eq.[3) allows to un- where the spacek,, correspond to the local degrees of free-

derstand simply whyopo Vanishes at finite temperature when dom of the quasiparticles[3]. The fusion spacet,, .,

L — oo: in this limit, pe¥en~ peven~ 1 /2. This equation also 1S what makes non-abelian anyonic systems so special. For
: y P pYe = 1/2.

reveals a scaling law: at fixed valuefl,,po only depends on abeliqn models, fo_r which the_z fusion rules are trivial, tme d
2 . . mension of the fusion space is equal to one. A non-trivial fu-
§ and L through the parameteér= 6*". In particular, a fixed . . : .
| . sion space appears when fusing two anyons can yield differen
value oft (and thus a fixed value of the topological mutual

information), corresponds to the following relations beén quasiparticles []:
size and temperature: o X @ =Y NG e (13)
c

B 11,1 L
Bt L) =InL - 2 ln(i In ;) +O(L7), 10) e system has to fulfill some neutrality conditions, i.es it

state should be such that fusing all the particles yields the
aT(t, L) 1 , trivial particle, denoted, with certainty [12]. The dirrlﬁ$en—
- = +O(L™7).  sion of M depends on the tensdr;, as follows [5]:
oL _ 1 1 1 —2))2 q1---dn ok
L(lnL 2 111(2 hl t) + O(L )) (11) dlm Mqlqu — Zbl...bn Nb1 sz .Nl We

) ,—2 7 q1q2" "biqz " bn—2qn" .
This last relation tells us how an increase of the size of th@bserve that computing this quantity amounts to contrgctin

system should be compensated by a decrease of temperat@dduasi) translationally invariant matrix product statd][

in order to maintain a fixed value of the topological entropy.Likewise dinf[n] can be computed efficiently, as well as the
We understand it as an important nuance over the fact th&artition function of the model

Iiopo Vanishes whetl, — oo, at finite temperature. In partic- n
ular, it shows that theate at which the temperature should be  Z(3,n) = Z e Z H d(g;)dim My, g, e PF(0-a),
decreased, in order to maintain a fixed valueypflecreases @

with the size of the system.

qn =1
. . hereE(q¢; ... g») is the energy associated with a defect con-
We now turn to a family of non-abelian models,.those base igurationg, . .. ¢, and wherel(q;) is the dimension of the
on a quantum double. From now on, we will consider SyStem§paceJ<
qi -

defined on an oriented lattice with the geometry of a sphere. . o .
To computeliop,, We consider a situation where a pair of

A quantum degree of freedom with basis states labelled bgnyonqq@ is created in such a way that anyphies in some

the elements of a finite grou@ is associated with each link : : ; ST
regionk and its anti-quasiparticlglies in the complementary

of this lattice. These links interact through a hamiltonédn ion. Th N  reqigrh d<(s
the form [3), with vertex opertatord, and plaguette opera- €9/0N- The von Neumann entropy of regiarthen rea ]

tors By, that still commute. One could write down their form S(pr) = S(p%>) + Ind,. (14)
explicitly [3], but it will not be necessary here. A naturahyv

to deal with such models would be to start by providing a de- The entropy of a region when the system is in a thermal
scription of the complete set of eigenstategio$imilar to the  state can be computed once we are able to calculate the en-
one we have used for the toric code. However, widanon-  tropy of a region when the system is an arbitrary defect con-
abelian, diagonalisingl seems to be a difficult problem. Yet, figuration. In turn, just as for the toric code, the latterepy



reduces to computing the entropy when there are onty
anyons in the system, and one lies inside the region we are |0
interested in. Letz andn, denote the number of sites con- -1
tained in region? and R, respectively ¢tz + nr, = n). Let

dr = ¢1-...qny, label the configurations of types of anyons
living on the sites contained in regiaR. The total fusion -3
space splits as:

— 64 sites
— 144 sites
— 256 sites
—576 sites

b b 1
’ = ! T 15 . . . . .
MqR"ch GBM“R © Mch © My (15) Figure 2: Topological quantum mutual information as a fiorcof
b the inverse temperaturefor the D(S3) model. (Color online.)

WhereMgR denotes the fusion space associated with event
where allqr quasiparticles fuse to an anyon of tyjpe

Due to total anyonic charge conservation, mr@l; = 1.

The decompositioi {15) induces the following represeotati
of the thermpal stateﬂolﬁ:) grep 576. Although these systems are small, they are large enough

to show that non-abelian systems are affected by temperatur
in the same way as the toric code: (i) For a fixed number of
e—B(E(ar)+E(dk,)) sites, there exists a finite width topological phase. K)o
Z0.m) tends th for small values of3, and t0—3.58352 = —2In6
’ for sufficiently large values of, as expected since the order
of S3 is six. (iii) The larger the number of sites, the larger
- the value of3 where the topological mutual information van-
P(ar — b, 11, Sr; quc — b, p2, SR.), (16)  ishes. Finally, we have observed that whigp, is plotted as a
B function ofne=20, the curves collapse wherbecomes large.
where the projecto®(qr — b, u1,8r;d, — b,p2,5r.)  We take this observation as strong evidence that the belravio
refers to a pure state where alk (respq ) quasiparticles  of Iy, for the D(S3) model is governed by theamescaling

contained inft (resp. &) fuse tob (resp. b) through the  variable as the toric code. Indedd(6%") ~ L2e~27 in the
channelu;, 1 < pyp < dimM(, (resp. p2, 1 < p2 < Jimit where 3 and L are large ¢ o L? for the toric code).
dim/\/lg, ). E(ar) = >_7%, E(g;) denotes the energy asso- We therefore believe that the discussion held after[Eq$8) a

R

ciated with the configuratioqr, andsx is a collective index holds in this case, and more generally for any quantum double
for the internal degrees of freedom of the quasiparticles co Model.

tained in regionk, 1 < sg < d(qgr) = ]‘[?jl d(g;). E(dR,) In conclusion, we have shown that the interplay of ther-
andsp, are defined likewise for the regidR.. Note that the mal effects, lattice size, and topological order (as mesbur
ground state energy is now made equal to zero, upon shiftingp the subleading correction to the area law) is encoded in

Pth = @

qRr, AR, b:11,02,5R SR

the hamiltonian by a multiple of the identityl [3]. well-defined scaling relations (ILd)-{11). In particulte trate
The von Neumann entropy of the reduced state of the regioWith which the temperature should be decreased to fight the
R now reads effect of thermal fluctuations vanishes in the limit of large
- lattices. These relations seem to hold for both Abelian and
S B Zr(B,0)Zr, (5,b) G954 1nd non-Abelian systems. As a byproduct, we have derived a for-
(or) = Z[ Z(B,n) (Sg +Inds mula for the entropy of a region for non-abelian quantum dou-

b ble models defined on a lattice. This formula depends on the

model only through the fusion tensai;, and through the en-
7 b ergy associated with each quasiparticle. It is therefargte

—InZg (8,0)]+) YR(ﬁ’Zb()BZ%(ﬁ’ 2 +InZ(B8,n), (17)  ing to believe that it holds in a more general context. Fipall
b ’ it is appealing to try to give an operational meaning/tgo,

. by connecting its value with the possibility of using a taggpl
where Zp(8,0) = Y, d(ar)e”?FadimMg, , and ically ordered medium as a robust quantum memory. But to
whereYr(8,b) = 845 Zr(8,b). The von Neumann entropy the best of our knowledge, such a connection is still an open
of the whole sphere is given by Hd.(5), while the ground stateoroblem, even at zero temperature. Eq.(9) might contribute
entropy reads [10]S%, = In |G|(|OR| — 1). establishing it.
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