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Understanding the behaviour of topologically ordered lattice systems at finite temperature is a way of assess-
ing their potential as fault-tolerant quantum memories. Wecompute the natural extension of the topological
entanglement entropy forT > 0, namely the subleading correctionItopo to the area law for mutual information.
Its dependence onT can be written, for Abelian Kitaev models, in terms of information-theoretic functions and
readily identifiable scaling behaviour, from which the interplay between volume, temperature, and topological
order, can be read. These arguments are extended to non-Abelian quantum double models, and numerical results
are given for theD(S3) model, showing qualitative agreement with the Abelian case.

PACS numbers:

The notion of topological order was first introduced in the
context of the fractional quantum Hall effect [1]. It aims at
identifying phases that cannot be separated by local order pa-
rameters. Such phases can exhibit exotic phenomena such as
topologically protected ground state degeneracy or quasipar-
ticle excitations, called anyons, with statistical behavior that
is different from bosons or fermions [2]. Besides the fact
that they reveal unusual states of matter, topologically ordered
systems are also interesting because they might allow for in-
trinsically fault-tolerant quantum computation [3, 4]. Insuch
systems, the division of a quantum algorithm as initialisation,
unitary evolution and read-out [5] would translate into creat-
ing anyons, braiding them, and fusing them back to the vac-
uum respectively. While conceptually appealing, the robust-
ness of thistopologicalquantum computation against realistic
noise models is far from being fully assessed.

This paper is devoted to quantifying how temperature af-
fects a topologically ordered medium. For that, we will use
an entropic topological order parameter,Itopo, and focus on
lattice spin systems that are exactly solvable [3] [16]. We will
show that, at any fixed temperature,Itopo is nonzero only if
the size of the system is finite. Importantly, we will exhibit
a scalingrelation describing how a given increase of the sys-
tem size can be compensated by a vanishing decrease of the
temperature. After recalling some notions on the topological
entropy, we will provide a complete analysis for the simple
toric code model. Then, we will turn to more general mod-
els, show how to compute entropic quantities, and provide nu-
merical evidence for scaling laws in the case of the simplest
non-abelian quantum double model, the one based onD(S3)
[3]. We believe that our findings are relevant to topological
quantum computation [4].

We start our discussion by briefly recalling the notion of
topological entropy [7, 8]. It will play a central role in the
following. Let us consider a two-dimensional many-body
quantum system in a pure state of its ground subspace and
let R : Rc denote a bipartition of this system, withR be-
ing connected. Let us further assume that our system satis-
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Figure 1: Division of a torus (or a sphere) into four regions.

fies an ’area’ law. That is, the von Neumann entropy of re-
gion R grows linearly with the size of its boundary,SR =
−trρR ln ρR = α′|∂R| − γ′ + δ(R), whereρR denotes the re-
duced density matrix corresponding to regionR, α′ is a con-
stant, and wherelim|∂R|→∞ δ(R) = 0. As first pointed out
in [6], and further analysed in [7, 8], a non-zero value for the
constant correctionγ′ reveals topological order. Indeed,γ′

is a topological invariant of the system and is related to the
quantum dimensionD of the model at hand asγ′ = lnD.

Let us consider a system defined on a torus or on a sphere,
and divide it into four regionsA, B, C, D (see Fig.1). We will
use

Itopo = IA + IB + IC − IAB − IAC − IBC + IABC . (1)

as a topological order parameter. (IR = SR + SRc − SR∪Rc

denotes the mutual information between a regionR and its
complementRc.) This definition ofItopo amounts to replace
von Neumann entropies by mutual informations in the defini-
tion of topological entropy introduced in [8]. At zero temper-
ature,Itopo = −2γ′. Our choice is motivated by the fact that,
at finite temperature, the mutual information between a region
R is a measure of the correlations of this region with its envi-
ronment. The lattice systems we are going to study obey an
area law:

IR = α|∂R| − γ, (2)

and have a finite correlation lengthξ [9]. Therefore,Itopo is
a quantity where correlations due to a finiteξ cancel out, and
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that reveals correlations due to topological order only, asthe
topological entropy,γ′, at zero temperature [7]. Direct substi-
tution of Eq. (2) into Eq.(1) shows thatItopo = γ [17].

We now want to computeItopo at finite temperature for the
toric code [3]. Consider a torusT tiled intoL×L square pla-
quettes. Let us associate a two-level system (’spin’) with each
edge of this tiling and let us assume that these spins interact
through the hamiltonian

H = −
∑

p

Bp −
∑

s

As, (3)

where the indexp (resp.s) runs over all plaquettes (resp. ver-
tices) of the tiling. The operatorsBp andAs are defined as
Bp =

∏

i∈p σz
i andAs =

∏

i∈s σx
i . The hamiltonianH is

made of local terms, all commuting with each other and, as it
turns out, its eigenstates can have arbitrary values for theop-
eratorsBp andAs, up to the constraint

∏

p Bp =
∏

s As = 1.
Therefore, these eigenstates are labelled by a triple of quan-
tum numbers:|φ, c, w〉. A patternφ denotes the position of
all plaquette or “flux-type” excitations, a patternc indicates
the position of all vertex or “charge-type” excitations, and w
indexes the topological degeneracy of the state for a fixed con-
figuration of defects. The latter quantum number is made of
two bits (w1 andw2) that label the values of the integrals of
motion of z-operators around non-contractible loops on the
torus (Wilson loops) [3] . We have

H |φ, c, w〉 = (E0 + 2|φ| + 2|c|) |φ, c, w〉, (4)

where E0 = −2L2 is the ground state energy, and|φ|
(resp. |c|) denotes the number of flux excitations (resp.
charge excitations) of the patternφ (resp. c). If Pi de-
notes the projector onto the sector of energyEi = E0 + 4i
and di = trPi denotes its dimension, we have thatdi =

4
∑

nφ,nc≤L2/2

∑

nφ+nc=i

(

L2

2nφ

)(

L2

2nc

)

.

We now compute all the thermodynamical quantities we
need, assuming that our system is at thermal equilibrium at
inverse temperatureβ. Some details of our calculations will
be presented elsewhere [10]. The partition function reads

Z(β, L) = tre−βH =
∑L2

i=0 e−βEidi = ((2 coshβ)L2

+

(2 sinhβ)L2

)2, and the von Neumann entropy of the state
ρ = e−βH/Z(β, L) of the whole torus is derived from the
identity

Stot = lnZ − (β/Z)∂Z/∂β. (5)

In order to compute the von Neumann entropy of a region
R, and eventuallyItopo, we first observe thatρR(φ, c, w) =
trRc

|φ, c, w〉〈φ, c, w| (Rc = T \R) depends onw only if R
contains non-contractible loops (w cannot be measured lo-
cally). Also, up to total charge conservation,ρR(φ, c, w)
will only depend on the excitations located on plaquettes and
crosses insideR. Therefore, we distinguish between three
types of flux excitations: those located on plaquettes with sup-
port onR, φR, those located on plaquettes with support on
Rc, φRc

, and those located on plaquettes with support par-
tially on R and partially onRc, φ∂R. Similarly, we divide the

charge excitations intocR, cRc
, c∂R. The crucial observation

that helps to computeρR = trRc
e−βH/Z(β, L) and eventu-

ally S(ρR) is that∂R-fluxes and∂R-charges can be driven
insideRc by application of Pauli operators acting on links of
Rc, that is: |φ, c, w〉 is of the formURc

|φR, φRc
, cR, cRc

, w〉,
for some unitary operatorURc

. To lighten the notations, let
us denote byqR andqRc

the patterns of excitations (both flux
and charge) inR and inRc respectively. All excitations in
R (resp. Rc) can be fused into a single excitationq1

R (resp.
q1
Rc

) through a unitary operatorU ′
R(qR, q1

R)⊗U ′
Rc

(qRc
, q1

Rc
)

that relates|qR,qRc
, w〉 and a state|q1

R, q1
Rc

, w〉, such that
R and Rc contain at most one excited plaquette (vertex).
As in [3], we will call site a plaquette and an adjacent ver-
tex. The possibly excited plaquette and the possibly ex-
cited vertex withinR (resp. Rc) can always be chosen to
form a site. The state|q1

R, q1
Rc

, w〉 can be obtained, from a
ground state|ξ, w〉, by a product of unitary operators along
a string connecting the site whereq1

R is located to the site
whereq1

Rc
is located. In summary,|qw〉 can be written as

UR(qR) ⊗ URc
(qRc

,q∂R)|ξ, w〉 for some unitary operators
UR(qR) andURc

(qRc
,q∂R). (q∂R refer to the charges which

are neither fully inR, nor fully in Rc.)
We are now in a position to computeSR. The thermal state

of the toric code reads

ρ =
∑

w,q

e−β(E0+∆E|q|)

Z(β, L)
|q, w〉〈q, w|, (6)

where∆E = 2 is the energy associated with a single excita-
tion, and whereq = qR ∪ qRc

∪ q∂R. Therefore the reduced
density matrix of the systemR readsρR =

∑

w

∑

qR,qRc ,q∂R

e−β(E0+∆E|q|)

Z(β,L) trRc
[UR(qR)|ξ, w〉〈ξ, w|UR(qR)†]. To sim-

plify further this expression, we observe that two reduced
statesρR(φ, c, w) andρR(φ′, c′, w′) are orthogonal whenever
(φR, cR) 6= (φ′

R, c′R). Indeed two such states can be perfectly
distinguished through a measurement ofAs or Bp operators
having support onR. Therefore, the sum

∑

qR
is actually a di-

rect sum. If we assume thatR is contractible in neither of both
directions on the torus, then the values of the Wilson loopsw
can be revealed by measurements having support fully onR
and the sum

∑

w also turns to be a direct sum. So,ρR can be
written as

ρR =
⊕

w,qR

C(qR)trRc
UR(qR, x)|ξ, w〉〈ξ, w|U †

R(qR, x),

(7)
where4C(qR) = 4e−2β|qR|)

Z(β,L)

∑

q∂R,qRc
e−β(E0+2|q∂R|+2|qRc |)

is the marginal probability of a configuration of defectsqR.
It is the decomposition (7) that allows to computeSR exactly.
From it, we find thatSR separates into a ground state area
contribution and a finiteβ contribution

SR = S
gs
R + V (β, Np(R), L) + V (β, N∗(R), L), (8)

where S
gs
R = S(trRc

|ξ, w〉〈ξ, w|) = (|∂R| − 1) ln 2 [6],
and whereNp(R) (N∗(R)) denotes the number of plaquettes
(crosses) fully contained inR. The functionV can be com-
puted exactly using elementary combinatorial identities [10].
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WhenρR is fully contractible, the direct sum overw appear-
ing in (7) should be replaced by a simple sum. As a result, the
expression forSR picks a− ln 4 additive correction.

We have used Eq.(8) to computeItopo. We have found that
at any finiteβ, Itopo vanishes in the limit whereL → ∞, a
result that is consistent with those of Ref.[11], and indicates
that (i) the toric code exhibits no temperature-driven phase
transition forItopo, and that (ii) the toric code is likely not a
scalable quantum memory in the strictest sense [5] as far as
temperature-induced errors are considered [18]. Our compu-
tations also reveal that the mutual information between a re-
gion R and its complement satisfies an area law of the form
Eq.(2). ComputingItopo from it in the limit L → ∞, and
considering|∂R| = 4νL, with ν < 1, we have found a re-
markably simple expression:

Itopo = 2 ln 2 − h2(p
even
p ) − h2(p

even
∗ ), (9)

whereh2(x) = −x ln(x)−(1−x) ln(1−x) denotes the Shan-
non entropy of a binary outcome random variables,peven

p ≃

peven
∗ ≃ (1 + θν2L2

)(1 + θ(1−ν2)L2

)/2(1 + θL2

) is the prob-
ability that the regionR contains an even number of excited
plaquettes (crosses), withθ = tanhβ. Eq.(9) allows to un-
derstand simply whyItopo vanishes at finite temperature when
L → ∞: in this limit, peven

p ≃ peven
∗ ≃ 1/2. This equation also

reveals a scaling law: at fixed value ofν, Itopo only depends on
β andL through the parametert = θL2

. In particular, a fixed
value of t (and thus a fixed value of the topological mutual
information), corresponds to the following relations between
size and temperature:

β(t, L) = lnL −
1

2
ln(

1

2
ln

1

t
) + O(L−2), (10)

∂T (t, L)

∂L
=

−1

L(lnL − 1
2 ln(1

2 ln 1
t ) + O(L−2))2

+ O(L−3).

(11)
This last relation tells us how an increase of the size of the
system should be compensated by a decrease of temperature
in order to maintain a fixed value of the topological entropy.
We understand it as an important nuance over the fact that
Itopo vanishes whenL → ∞, at finite temperature. In partic-
ular, it shows that therateat which the temperature should be
decreased, in order to maintain a fixed value ofγ, decreases
with the size of the system.

We now turn to a family of non-abelian models, those based
on a quantum double. From now on, we will consider systems
defined on an oriented lattice with the geometry of a sphere.
A quantum degree of freedom with basis states labelled by
the elements of a finite groupG is associated with each link
of this lattice. These links interact through a hamiltonianof
the form (3), with vertex opertatorsAs and plaquette opera-
torsBp that still commute. One could write down their form
explicitly [3], but it will not be necessary here. A natural way
to deal with such models would be to start by providing a de-
scription of the complete set of eigenstates ofH similar to the
one we have used for the toric code. However, whenG is non-
abelian, diagonalisingH seems to be a difficult problem. Yet,

we can argue that we actually do not need to as far as we are
only interested in the topological mutual information. Theel-
ementary excitations ofH live on sites (a site is a combination
of a vertex and an adjacent plaquette). We will restrict to that
part of the spectrum ofH such that excitations are elemen-
tary and pinned at fixed non-adjacent sites. This restriction
can be thought of as additional error correction, where some
plaquettes and vertices are over-protected so that they never
get excited by thermal fluctuations (or only with vanishing
probability). Therefore, we believe thatItopo for this modified
model can only be larger than for the full spectrum.

The space ofn excitations pinned at fixed sites has the
structure [3]

H[n] =
⊕

q1...qn

Hq1...qn
, (12)

where each indexqi runs over all possible quasiparticle types
for site i. Eq.(12) simply means that different excitation pat-
terns lead to orthogonal states. Each spaceHq1...qn

splits as

Hq1...qn
= Kq1 ⊗ . . . ⊗ Kqn

⊗Mq1...qn
,

where the spacesKqi
correspond to the local degrees of free-

dom of the quasiparticles [3]. The fusion space,Mq1...qn
,

is what makes non-abelian anyonic systems so special. For
abelian models, for which the fusion rules are trivial, the di-
mension of the fusion space is equal to one. A non-trivial fu-
sion space appears when fusing two anyons can yield different
quasiparticles [5]:

qa × qb =
∑

c

N c
ab qc. (13)

The system has to fulfill some neutrality conditions, i.e. its
state should be such that fusing all the particles yields the
trivial particle, denoted1, with certainty [12]. The dimen-
sion ofMq1...qn

depends on the tensorN∗
∗∗ as follows [5]:

dim Mq1...qn
=

∑

b1...bn−2
N b1

q1q2
N b2

b1q3
. . . N1

bn−2qn
. We

observe that computing this quantity amounts to contracting
a (quasi) translationally invariant matrix product state [14].
Likewise dimH[n] can be computed efficiently, as well as the
partition function of the model

Z(β, n) =
∑

q1

. . .
∑

qn

n
∏

i=1

d(qi)dim Mq1...qn
e−βE(q1...qn),

whereE(q1 . . . qn) is the energy associated with a defect con-
figurationq1 . . . qn, and whered(qi) is the dimension of the
spaceKqi

.
To computeItopo, we consider a situation where a pair of

anyons|qq̄〉 is created in such a way that anyonq lies in some
regionR and its anti-quasiparticlēq lies in the complementary
region. The von Neumann entropy of regionR then reads [8]

S(ρR) = S(ρ
g.s.
R ) + ln dq. (14)

The entropy of a region when the system is in a thermal
state can be computed once we are able to calculate the en-
tropy of a region when the system is an arbitrary defect con-
figuration. In turn, just as for the toric code, the latter entropy
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reduces to computing the entropy when there are onlytwo
anyons in the system, and one lies inside the region we are
interested in. LetnR andnRc

denote the number of sites con-
tained in regionR andRc respectively (nR + nRc

≡ n). Let
qR = q1 . . . qnR

label the configurations of types of anyons
living on the sites contained in regionR. The total fusion
space splits as:

MqR,q′
Rc

=
⊕

b

Mb
qR

⊗Mb̄
q
′
Rc

⊗M1
b,b̄, (15)

whereMb
qR

denotes the fusion space associated with event
where allqR quasiparticles fuse to an anyon of typeb.

Due to total anyonic charge conservation, dimM1
b,b̄

= 1.
The decomposition (15) induces the following representation
of the thermal state ofH :

ρth =
⊕

qR,q′
Rc

,b,µ1,µ2,sR,sRc

e−β(E(qR)+E(q′
Rc

))

Z(β, n)

P(qR → b, µ1, sR;q′
Rc

→ b̄, µ2, sRc
), (16)

where the projectorP(qR → b, µ1, sR;q′
Rc

→ b̄, µ2, sRc
)

refers to a pure state where allqR (resp.q′
Rc

) quasiparticles
contained inR (resp. Rc) fuse to b (resp. b̄) through the
channelµ1, 1 ≤ µ1 ≤ dimMb

qR
(resp. µ2, 1 ≤ µ2 ≤

dimMb̄
q
′
Rc

). E(qR) =
∑nR

j=1 E(qj) denotes the energy asso-

ciated with the configurationqR, andsR is a collective index
for the internal degrees of freedom of the quasiparticles con-
tained in regionR, 1 ≤ sR ≤ d(qR) =

∏nR

j=1 d(qj). E(q′
Rc

)
andsRc

are defined likewise for the regionRc. Note that the
ground state energy is now made equal to zero, upon shifting
the hamiltonian by a multiple of the identity [3].

The von Neumann entropy of the reduced state of the region
R now reads

S(ρR) =
∑

b

[
ZR(β, b)ZRc

(β, b̄)

Z(β, n)
(S

gs
R + ln db

−lnZRc
(β, b̄))]+

∑

b

YR(β, b)ZRc
(β, b̄)

Z(β, n)
+lnZ(β, n), (17)

where ZR(β, b) =
∑

qR
d(qR)e−βE(qR)dimMb

qR
, and

whereYR(β, b) = β ∂
∂β ZR(β, b). The von Neumann entropy

of the whole sphere is given by Eq.(5), while the ground state
entropy reads [10]:Sgs

R = ln |G|(|∂R| − 1).
Eq.(17) has allowed us to study numerically how the topo-

logical mutual information behaves as a function ofβ, for
G = S3, the smallest non-abelian finite group. Our results
are shown on Fig.2. The systems we have considered are four
tiled spheres, all with96×96 plaquettes. The first sphere con-
tainsn = 64 sites, the second144, the third256 and the fourth

0 1 2 3 4 5 6
−4

−3

−2

−1

0

 

 

  64 sites
144 sites
256 sites
576 sites

β

I
topo

Figure 2: Topological quantum mutual information as a function of
the inverse temperatureβ for theD(S3) model. (Color online.)

576. Although these systems are small, they are large enough
to show that non-abelian systems are affected by temperature
in the same way as the toric code: (i) For a fixed number of
sites, there exists a finite width topological phase. (ii)Itopo

tends to0 for small values ofβ, and to−3.58352 = −2 ln 6
for sufficiently large values ofβ, as expected since the order
of S3 is six. (iii) The larger the number of sites, the larger
the value ofβ where the topological mutual information van-
ishes. Finally, we have observed that whenItopo is plotted as a
function ofne−2β, the curves collapse whenn becomes large.
We take this observation as strong evidence that the behaviour
of Itopo for theD(S3) model is governed by thesamescaling

variable as the toric code. Indeed,ln(θL2

) ≃ L2e−2β in the
limit where β andL are large (n ∝ L2 for the toric code).
We therefore believe that the discussion held after Eq.(9) also
holds in this case, and more generally for any quantum double
model.

In conclusion, we have shown that the interplay of ther-
mal effects, lattice size, and topological order (as measured
in the subleading correction to the area law) is encoded in
well-defined scaling relations (10)-(11). In particular, the rate
with which the temperature should be decreased to fight the
effect of thermal fluctuations vanishes in the limit of large
lattices. These relations seem to hold for both Abelian and
non-Abelian systems. As a byproduct, we have derived a for-
mula for the entropy of a region for non-abelian quantum dou-
ble models defined on a lattice. This formula depends on the
model only through the fusion tensorN∗

∗∗ and through the en-
ergy associated with each quasiparticle. It is therefore tempt-
ing to believe that it holds in a more general context. Finally,
it is appealing to try to give an operational meaning toItopo,
by connecting its value with the possibility of using a topolog-
ically ordered medium as a robust quantum memory. But to
the best of our knowledge, such a connection is still an open
problem, even at zero temperature. Eq.(9) might contribute
establishing it.
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