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Abstract.

Magnetic form factors from odd-A spherical and deformed nuclei corresponding to elastic
electron scattering are calculated in the plane-wave Born approximation. The nuclear structure
of the target is described within a deformed self-consistent mean-field calculation with effective
interactions of Skyrme type and pairing correlations in the BCS approximation. We focus
our attention to stable nuclei where experimental information is available. It is shown that
the deformed formalism improves the agreement with experiment in deformed nuclei, while
reproducing equally well spherical nuclei by taking properly the spherical limit of the deformed
model. Effects of the collective rotation and nucleon-nucleon correlations are also studied. These
results demonstrate the ability of the method to address electron scattering from unstable nuclei
to be measured in future experiments on electron-ion beam colliders.

1. Introduction

Electron scattering has been shown in the past to be a powerful tool for studying the
electromagnetic properties of nuclei. The elastic, inelastic, and quasielastic regimes have
been explored, providing us with the most accurate measurements on charge distributions and
radii, transition probabilities, as well as momentum distributions and spectroscopic factors
[1, 2, 3]. The main advantages of using electrons as probes are due to the characteristics of
the electromagnetic interaction, which is accurately described by quantum electrodynamics.
The weakness of the interaction allows one to describe the scattering process in first
order perturbation within the one-photon exchange approximation. In addition, the energy
and momentum transferred by the virtual photon exchanged in the process can be varied
independently, mapping out the Fourier transform of the densities.

However, electron scattering is not only sensitive to the nuclear charge distribution. Electrons
also scatter from the nuclear electromagnetic current distributions, giving us information on
the convection and magnetization currents within the nucleus. In particular, elastic magnetic
electron scattering is a source of information on those nuclear ground-state distributions [4, 5].
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Magnetic scattering shares the advantages of the electromagnetic probes, but there are also
significant differences as compared to charge scattering. Because the angular momenta of the
nucleons pair off within the core, the magnetic properties in odd-A nuclei are determined
to a large extent by the unpaired nucleon. Therefore, magnetic electron scattering would
provide information on the single-particle properties of the valence nuclear wave function. Since
the intrinsic magnetic moments of protons and neutrons are similar in magnitude, magnetic
electron scattering will provide information on both nucleons, contrary to the case of charge
scattering which is mostly sensitive to protons. Similarly to the case of charge scattering,
magnetic scattering has been also studied in stable nuclei from different theoretical formalisms
[4], including the shell model [6], relativistic mean field [7], and deformed mean field models
[5, 8, 9, 10, 11].

Electron scattering experiments have been limited so far to stable isotopes, but the advantages
of electron probes mentioned above can be exploited to gain information on unstable nuclei
as well. New interesting and challenging properties like nuclear halos, neutron skins, or the
evolution of the charge distributions in isotopic chains will be addressed at new facilities
[12, 13], such as ELISe (FAIR-GSI) and SCRIT (RIKEN). These experiments will test different
theoretical models. Examples of these studies can be found in Refs. [14, 15, 16, 17, 18]. Electron
scattering experiments are also used as an additional tool to complement the information
obtained by other probes. This is the case of magnetic dipole excitations in nuclei, where it is well
known [19, 20] that complementary information is obtained when using different electromagnetic
(γ, γ′), (e, e′) or hadronic (p, p′) probes.

In this work we analyze the dependence on deformation of the magnetic form factors of odd-
A nuclei and we show the capability of the deformed formalism to describe both spherical and
deformed nuclei. To fulfill this purpose, we compare our results with the available experimental
information on stable nuclei.

2. Theoretical Formalism

The formalism of electron scattering from deformed nuclei followed in this work was introduced
and discussed in Refs. [5, 8]. The method was already applied to different cases [9, 10, 11, 21, 22],
where the various sensitivities of the results to different approximations concerning nuclear
structure and reaction mechanism were studied. In particular, it was shown that the magnetic
form factors of deformed nuclei may differ considerably from those of spherical nuclei. Here, we
briefly summarize this formalism. Following the notation of Ref. [5], the general cross section
for electron scattering of ultrarelativistic electrons for transitions from the nuclear ground state
(Ii) to final states (If ) is given in the plane-wave Born approximation (PWBA) by

dσ

dΩ

∣

∣

∣

∣

Ii→If

= 4πσMf−1
rec

[

VL|FL|2 + VT |FT |2
]

, (1)

in terms of the Mott cross section σM and a recoil factor frec. The cross section is separated
into longitudinal or Coulomb (L) and transverse (T) contributions, weighted with different
kinematical factors,

VL = (Q2/q2)2 , VT = tan2(θ/2)− (Q2/2q2) , (2)

where the kinematical variables are defined so that an incident electron with four-momentum
kiµ = (ǫi,ki) is scattered through an angle θ to four-momentum kfµ = (ǫf ,kf ) by exchanging a
virtual photon with four-momentum Q = (ω,q).

Because all the charged nucleons contribute equally to the Coulomb (charge) form factors
FL, they scale like Z2 in the cross section. On the other hand, transverse form factors FT

are basically single-particle observables that depend mostly on the properties of the unpaired
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nucleon in the outermost shell. As a consequence, FL dominates at most angles and special
kinematic conditions are needed to maximize magnetic FT contributions. This is why backward
scattering (θ = 180◦) is commonly used to measure FT .

The dependence on the nuclear structure is contained in the q-dependent L and T form
factors, which are written in terms of Coulomb (C), transverse electric (E), and transverse
magnetic (M) multipoles,

|FL|2 =
∑

λ≥0

|FCλ|2 , |FT |2 =
∑

λ≥1

[

|FMλ|2 + |FEλ|2
]

, (3)

which are defined as the reduced matrix elements of the corresponding multipole operators T̂ σλ

between initial and final nuclear states

|F σλ|2 =

∣

∣

∣〈If ||T̂ σλ(q)||Ii〉
∣

∣

∣

2

2Ii + 1
. (4)

For elastic scattering, parity and time reversal invariance imply that only the even Coulomb and
odd transverse magnetic multipoles contribute. Then, at θ = 180◦ only odd magnetic multipoles
will survive in PWBA,

dσ

dΩ

∣

∣

∣

∣

Ii→If

= 4πσMf−1
recVT |FT |2 , |FT (q)|2 =

∑

λ=odd

|FMλ|2 . (5)

The magnetic multipole operators are defined as

T̂Mλ
µ (q) = iλ

∫

dr jλ(qr)Y
µ
λλ(Ωr) · Ĵ(r) , (6)

where Ĵ(r) is the current density operator that contains both convection and magnetization
components arising from the motion and from the intrinsic magnetic moments of the nucleons,
respectively. When we calculate the total form factors, we include standard center of mass and
finite nucleon size corrections [11].

The effects of Coulomb distortion can be quantitatively taken into account within the
distorted-wave Born approximation (DWBA) [23]. Nevertheless, for the analysis of experimental
data on magnetic scattering, PWBA is commonly used. This is because in PWBA the connection
between the data and the underlying physical quantities is more transparent, and calculations
are much simpler. The most important effect of the Coulomb distortion can be accounted for by
using an effective momentum transfer. This procedure was done in the data used in this work
(taken from Ref. [4]), where the experimental form factors were converted into plane-wave form
factors that can be directly compared with PWBA calculations.

The ground state of an axially symmetric deformed nucleus is characterized by its angular
momentum I, projection along the symmetry axis k, and parity π. The magnetic FMλ multipole
form factors can be written in terms of intrinsic form factors FMλ, weighted by angular
momentum dependent coefficients, that depend only on the intrinsic structure of the ground-
state band [5]. The transition multipoles in Eq. (5) for the elastic case If = Ii = k can be
written as

FMλ
∣

∣

∣

def
= 〈kkλ0 |kk〉FMλ

k + 〈k − k λ 2k|kk〉FMλ
2k +

λ(λ+ 1)√
2

〈kkλ0|kk〉FMλ
R , (7)

where FMλ
R are the rotational multipoles that depend on the nuclear rotational model used to

describe the band [5]. The single-particle multipoles FMλ
k and FMλ

2k depend only on the single-
particle intrinsic wave function of the odd nucleon. They are different from zero only for k 6= 0
bands and are given by,
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FMλ
k = 〈φk|T̂Mλ

0 |φk〉 , FMλ
2k = 〈φk|T̂Mλ

2k |φk̄〉+ δk,1/2
a√
2
FMλ
R . (8)

φk and φk̄ are the wave functions of the odd nucleon and its time reverse, respectively, and
a =< φk|j+|φk̄ > is the decoupling parameter for k = 1/2 bands.

In the HF+BCS method for axially symmetric deformed nuclei [24], the wave functions are
expanded into the eigenfunctions of an axially deformed harmonic oscillator potential, using
11 major shells. In the present work, the mean field of the odd-A nucleus is generated within
the equal filling approximation, a prescription used in self-consistent mean-field calculations
that preserves time-reversal invariance. The odd nucleon orbital is chosen according to the
experimental spin and parity values. All the results presented in this work correspond to the
Skyrme interaction SLy4 [25].

The explicit expressions for the intrinsic single-particle and rotational form factors in Eqs.(8)
in terms of the intrinsic wave functions can be found in Refs. [5, 8], where the multipoles FMλ

R
are given for different microscopic (Projected Hartree-Fock and cranking), as well as macroscopic
(rigid rotor and irrotational flow) models.

In the spherical limit, the single-particle wave functions contain a single angular momentum
component. In this limit there are no collective magnetic multipoles (FMλ

R = 0). The deformed
form factor and its spherical limit are related with Clebsh-Gordan geometrical factors [11],

FMλ
∣

∣

∣

sph limit
=

FMλ
∣

∣

∣

def

〈jjλ0|jj〉2
[

1 + δλ,2j
〈j −j λ 2j|jj〉2

〈jjλ0|jj〉2

] . (9)

It is also well known [26, 27] that many experimental data of scattering and reactions on nuclei
show the existence of sizable nucleon-nucleon (NN) correlation effects on nuclear properties that
cannot be described correctly within the mean-field approximation. But it is still possible to
restore the single-particle picture in more general methods that include NN correlations by
using the so-called natural orbitals (NOs) and natural occupation probabilities, associated to
the one-body density matrix (OBDM) that corresponds to the correlated ground state of the
system. The NOs and the natural occupation numbers are obtained by diagonalizing the OBDM,
which in the present work, is obtained within the Coherent Density Fluctuation Model (CDFM)
[26, 27]. They are used in the calculations of the magnetic form factors.

3. Results

We have chosen for this study several nuclei 17O, 25Mg, 41Ca, and 59Co for which experimental
information on elastic magnetic electron scattering form factors is available. Therefore, we can
test the reliability of the theoretical models. First, we study two spherical nuclei, 17O and 41Ca.

In Figures 1 and 2 we show in the top panels the magnetic form factors from the deformed
model in the spherical limit defined by Eq. (9). The bottom panels show a comparison between
the results in the spherical limit (sph limit) with the results obtained from a standard spherical
calculation (st sph) based on the code by H. P. Blok and J. H. Heisenberg [28]. This comparison
helps us to check the reliability of the spherical limit. We also study the role of NN correlations
(st sph + CDFM) by including these effects and comparing the results. We can see from the
figures that correlations beyond the mean-field picture are needed to account for the behavior
at high momentum transfer and that the NO representation is a convenient way to deal with
these correlations. Data are taken from the compilation made in Ref. [4].

Figure 1 for 17O (Iπ = 5/2+) shows the first example of this comparison. The first peak is
due to the M1 multipole, while the second peak and the tail at large q are determined by the
M5 multipole. The contribution from the M3 multipole appears in the middle part at around
1 fm−1. The agreement between the results from the spherical limit and the results from the
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Figure 1. Magnetic form factors of 17O
decomposed into M1, M3, and M5 multi-
poles in the spherical limit (top). Com-
parison between the spherical limit and
the standard spherical calculation alone
and together with CDFM (bottom).
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Figure 2. Same as in Figure 1, but for
the spherical nucleus 41Ca decomposed
into M1, M3, M5, and M7 multipoles.

standard spherical calculation [28] is remarkable and this is the general result observed in all
cases studied. The main effect of the NN correlations calculated with natural orbits within the
CDFM [27] is to modify the tails by shifting the form factors to higher q-values, thus improving
the agreement with experiment. This feature is also observed in all cases studied. In Figure 2
we show the results for 41Ca (Iπ = 7/2−). M1 (M7) determines the low (high) q behavior, while
M3 and M5 fill the region between 0.5 < q < 1.5 fm−1. The tails are again improved when NN
correlations are included.

In Figures 3 and 4, we compare in the top panels calculations from the deformed and spherical
formalisms in the case of the deformed nuclei 25Mg and 59Co. In this case, to calculate the
spherical limit, a HF+BCS calculation constrained to zero deformation has been performed for
each nucleus. The bottom panels show the total magnetic form factor from the deformed model
decomposed into multipolarities with both single-particle and rotational collective contributions
from the core FMλ

R , calculated in the cranking model.
Figure 3 shows the results for 25Mg (Iπ = 5/2+). In the top panel we show the deformed

calculations compared with the spherical limit, as well as with the standard spherical calculation
with CDFM correlations. We observe in the deformed case a clear improvement of the agreement
with experiment. The first peak is due to M1, whereas the second is due to M5, with a negligible
contribution from M3. The contribution of the core rotational currents appears mainly in the
first peak, due to the effect on M1 at low q. This contribution improves the agreement in the first
peak. The high q behavior is determined by the M5 multipole, which is practically unaffected by
FM5
R . Figure 4 displays the results for the nucleus 59Co (Iπ = 7/2−). The data are somewhat

better reproduced by the spherical case at low and high q values, but the deformed calculations
reproduce better the whole structure of the first peak including the fall of the curve. This could
be an indication that we are dealing in this case with small deformations. However, the filling
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25Mg in the deformed formalism and
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decomposition of the deformed form
factor including collective contributions
(bottom).
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Figure 4. Same as in Figure 3, but for
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of the form factors in the range 1 < q < 2 fm−1 produced by the spherical calculation is not
observed experimentally, thus favoring the deformed picture.

4. Conclusions

In this work we have calculated magnetic form factors in elastic electron scattering from odd-A
nuclei within PWBA and within a deformed formalism for the nuclear structure, using wave
functions obtained from self-consistent HF+BCS calculations with Skyrme forces.

We have recovered the spherical limit of these calculations and have compared the results
with those obtained from purely spherical codes, finding a perfect agreement. The spherical
formalism reproduces quite reasonably the main features of the elastic magnetic form factors
measured in spherical nuclei. NN correlations are included with natural orbits within the CDFM
and are found to shift the tails of the form factors to higher momentum transfer, improving the
agreement with experiment.

Then, we proceed to calculate deformed nuclei and compare both spherical and deformed
calculations with experiment. The deformed picture improves the agreement with the data. It
is found that in odd-A deformed nuclei, the main contribution to the magnetic form factor comes
from the odd particle. This result is in contrast to the case of charge form factors, where all
the nucleons contribute significantly. The collective effects in the deformed formulation show up
through changes in the single-particle wave functions, in the explicit contribution of rotational
multipoles FMλ

R , as well as in the geometrical factors that reduce the multipoles with respect to
the spherical ones and help to improve the agreement with experiment in all the deformed cases
studied. The effect of the rotational multipoles is more important in the low-q region (q < 1
fm−1), where they interfere with the single-particle contributions.

We have shown that we can deal with spherical and deformed isotopes in a unified way
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using the same methods and codes. It is also worth noting that, at variance with the approach
followed in other works [16, 7], in this paper there is no fit of the coefficients weighting the
various multipoles contributing to the total magnetic form factors. In the present formalism,
the weights of the multipoles are directly given by the geometrical factors relating the intrinsic
with the transition multipoles and therefore we do not introduce any adjustable parameter.
Once the capability of the model has been tested against data on magnetic form factors on
spherical and deformed stable nuclei, we have a trustable formalism to explore the predictions
on unstable nuclei.
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