
Wavelet Transform for Large Scale Image Processing
on Modern Microprocessors 1

D. Chaver, C. Tenllado, L. Piñuel, M. Prieto and F. Tirado

Departamento de Arquitectura de Computadores y Automatica
Facultad de Ciencias Fisicas, Universidad Complutense

28040 Madrid, Spain
{dani02, tenllado, lpinuel, mpmatias, ptirado}@dacya.ucm.es

Abstract. In this paper we discuss several issues relevant to the vectorization of
a 2-D Discrete Wavelet Transform on current microprocessors. Our research is
based on previous studies about the efficient exploitation of the memory
hierarchy, due to its tremendous impact on performance. We have extended this
work with a more detailed analysis based on hardware performance counters
and a study of vectorization, in particular, we have used the Intel Pentium SSE
instruction set. Most of our optimizations are performed at source code level to
allow automatic vectorization, though some compiler intrinsic functions have
been introduced to enhance performance. Taking into account the abstraction at
which the optimizations are performed, the results obtained on an Intel Pentium
III microprocessor are quite satisfactory, even though further improvement can
be obtained by a more extensive use of compiler intrinsics.

1. Introduction

Over the last few years, we have witnessed an important development in applications
based on the discrete wavelet transform. The most outstanding success of this
technology has been achieved in image and video coding. In fact, standards such as
MPEG-4 or JPEG-2000 are based on the discrete wavelet transform (DWT).
Nevertheless, it is without doubt a valuable tool for a wide variety of applications in
many different fields [1][2]. This growing importance makes a performance analysis
of this kind of transformation of great interest.

Our study focuses on general-purpose microprocessors. In these particular
systems, the main aspects to be addressed are the efficient exploitation of the memory
hierarchy, especially when handling large images, and how to structure the
computations to take advantage of the SIMD extensions available on modern
microprocessors.

With regard to the memory hierarchy, the main problem of this transform is
caused by the discrepancies between the memory access patterns of two principal
components of the 2-D wavelet transform: the vertical and the horizontal filtering [2].
This difference causes one of these components to exhibit poor data locality in the

1 This work has been supported by the Spanish research grant TIC 99-0474

straightforward implementations of the algorithm. As a consequence, the performance
of this application is highly limited by the memory accesses.

The platform on which we have chosen to study the benefits of the SIMD
extensions is an Intel Pentium-III based PC. However, we should remark that most of
the optimizations that we have performed to take advantage of this kind of parallelism
do not depend on the particular characteristics of the Intel Pentium’s SSE instruction
set [3]. In fact, due to portability reasons, we have avoided the assembly language
programming level. All the optimizations have been performed at the source code
level. Basically, we have introduced some directives which inform the compiler about
pointer disambiguation and data alignment, and some code modifications, such as
changing the scope of the variables in order to allow automatic vectorization.
Furthermore, we have also compared this approach with a hand-tuned vectorization
based on language intrinsics, in order to measure the quality of the compiler.

This paper is organized as follows. The investigated wavelet transform and some
related work are described in sections 2 and 3 respectively. The experimental
environment is covered in section 4. In Section 5 we discuss the memory hierarchy
optimizations, then in section 6 our automatic vectorization technique is explained
and some results are presented. Finally, the paper ends with some conclusions.

2. 2-D Discrete Wavelet Transform

The discrete wavelet transform (DWT) can be efficiently performed using a
pyramidal algorithm based on convolutions with Quadrature Mirror Filters (QMF).
The wavelet representation of a discrete signal S can be computed by convolving S
with the lowpass filter H(z) and highpass filter G(z) and downsampling the output by
2. This process decomposes the original image into two sub-bands, usually denoted as
the coarse scale approximation (lower band) and the detail signal (higher band) [2].

This transform can be easily extended to multiple dimensions by using separable
filters, i.e. by applying separate 1-D transforms along each dimension. In particular,
we have studied the most common approach, commonly known as the square
decomposition. This scheme alternates between operations on rows and columns, i.e.
one stage of the 1-D DWT is applied first to the rows of the image and then to the
columns. This process is applied recursively to the quadrant containing the coarse
scale approximation in both directions. In this way, the data on which computations
are performed is reduced to a quarter in each step (see figure 1) [2].

Square
Transformation

Square
Transformation

Fig. 1. The Square variant of the 2-D DWT.

 From a performance point of view, the main bottleneck of this transformation is
caused by the vertical filtering (the processing of image columns) or the horizontal
one (the processing of image rows), depending on whether we assume a row-major or

a column-major layout for the images. In particular, all the measurements taken in our
research have been obtained performing the whole wavelet decomposition using a
(9,7) tap biorthogonal filter [2]. Nevertheless, qualitatively our results are filter-
independent.

3. Related Work

A significant amount of work on the efficient implementation of the 2-D DWT has
already been done for all sorts of computer systems. However, most previous research
has concentrated on special purpose hardware for mass-market consumer products
[4][5][6]. Focusing on general purpose microprocessors, S. Chatterjee et al. [7] and
P. Meerwald et al. [8] proposed several optimizations aimed at improving cache
performance. Basically, [8] investigates the benefits of traditional loop-tiling
techniques, while [7] investigates the use of specific array layouts as an additional
means of improving data locality.

tr

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

tc n

m

tr

tc

tr

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

tc n

m

tr

tc

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

tc n

m

tr

tc

Fig. 2. 4-D layout.

The thesis of [7] is that row-major or column-major layouts (canonical layouts)
are not advisable in many applications, since they favor the processing of data in one
direction over the other. As an alternative, they studied the benefits of two non-linear
layouts, known in the literature as 4-D (see fig. 2) and Morton [7]. In these layouts the
original m×n image is conceptually viewed as an m/tr × n/tc array of tr × tc tiles.
Within each block, a canonical (row-major or column-major) layout is employed. For
a benchmark suite composed of different dense matrix kernels and two different
wavelet transforms, both layouts have low implementation costs (2-5% of the total
running time) and high performance benefits. In particular, focusing on the wavelet
transform, the running time improvements achieved on a DEC workstation (equipped
with a 500 MHz Alpha 21164 microprocessor and 2 MB of L3 cache) reached up to
60% compared to a more traditional version of the code [7] (the Morton layout
performance was slightly better).

 The approach investigated in [8] is less aggressive. Nevertheless, they addressed
the memory exploitation problem in the context of a whole application, the JPEG2000
image coding, which is more tedious to optimize than a wavelet kernel. In particular,
they considered the reference implementations of the standard (known as jasper and

jj2000). By default, both implementations use a five-level wavelet decomposition
with (7,9) biorthogonal filters as the intra-component transform of the coding [8]. The
solution investigated by these authors consists in applying a loop-tiling strategy to the
vertical filtering (the reference implementations used a row-major layout), which they
dubbed “aggregation”. In this scheme, instead of processing every image column all
the way down in one step, which produces very low data locality (on a row-major
layout, rows are aligned along cache lines), the algorithm is improved by processing
several columns concurrently so that the spatial locality can be more effectively
exploited.

We have extended these previous studies by assessing the influence of the SIMD
extensions and including a more elaborate analysis based on the Intel PIII’s
performance counters. In this first version of our study we have followed the kernel
approach chosen by S. Chatterjee et al. although, as a future research area, we intend
to introduce the proposed optimizations on a entire well-known application such as
the JPEG-2000.

4. Experimental Environment

The performance analysis presented in this paper has been carried out on a Pentium-
III 866 MHz (0,18microns) based PC running under Linux, the main features of
which are summarized in [20]. The programs have been compiled using the Intel
C/C++ Compiler for Linux (v5.0.1) [9] and the compiler switches (-O3 –tpp6 -xK)
described also in [20].

Our measurements have been made using the performance-monitoring counters
available on the P6 processor family [3]. This micro-architecture provides two 40-bit
performance counters, allowing two types of events to be monitored simultaneously.
In order to avoid assembly language programming and due to portability reasons, we
have employed a high-level application-programming interface, PAPI (v2.0.1 beta)
[10]. This API includes platform-independent procedures for initialising, starting,
stopping, and reading the counters, although it needs some operating system support
for user level access to the counters. In Linux, this tool relies on the perfctr kernel
driver (v2.3.2) [11], which also supplies 64-bit resolution virtual counter support (i.e.
per process counter). We should note that to improve counter accuracy we have
employed native events instead of PAPI predefined ones, and we have avoided
monitoring strategies such as multiplexing and sampling (i.e. only two events are
considered per execution).

5. Cache analysis

As mentioned before, the wavelet transform poses a major hurdle for the memory
hierarchy, due to the discrepancies between the memory access patterns of the two
main components of the 2-D wavelet transform: the vertical and horizontal filterings
[2]. Consequently, the improvement in the memory hierarchy use represents the most

important challenge of this algorithm from a performance perspective. In this section,
we have exhaustively analyzed the cache behavior of the three different approaches
introduced previously, namely the 4-D and Morton layouts (non-linear layouts) and
the row-major layout combined with the aggregation technique (see section 3). We
have divided this section into 3 different parts. First, we describe the different ways to
apply the vertical and horizontal filters and their relation to the image layout. Section
5.2 discusses some implementation issues and the experimental results are presented
in section 5.3.

5.1 Tile layout and block processing type

The following algorithms show four reasonable ways of applying a 1-D filter to a tile
of tr × tc elements, which we have denoted as vertical, horizontal, N and Z element
processing:

* Vertical: foreach column{ foreach row{ foreach coef{ filter }}}
* Horizontal: foreach row{ foreach column{ foreach coef{ filter }}}
* N: foreach column{ foreach coef{ foreach row{ filter }}}
* Z: foreach row{ foreach coef{ foreach column{ filter }}}

Depending on the tile memory layout, some processing types are preferable over
others due to data locality. It is relatively obvious that for the row-major layout the
best access pattern is produced when elements are processed horizontally, for either
vertical or horizontal filtering. On the other hand, for the column-major layout, it is
better to process the elements vertically. The Z and N approaches represent a hybrid
approach that was considered in the previous versions of our codes since they are
easily vectorizable, as will be explained later in section 6.

In order to make a fair comparison of the different alternatives analyzed in this
section, we employed the best processing type for each kind of block layout. Given
that for the 4-D and Morton layouts we have opted to use the same approach as that
followed in [7] (within each block a column-major layout is employed), we have
chosen vertical processing in these cases. For the row-major layout combined with the
aggregation technique we have employed horizontal processing. Nevertheless, we
should remark that due to the symmetry of the problem, these particular choices have
no effect on the overall performance.

Figure 3 graphically describes the processing of the image tiles in the 4-D and
Morton approaches (for simplicity, boundary data have been ignored). The vertical
filtering does not need any special treatment since the image columns are stored
contiguously in memory. In this case, the main problem is due to the horizontal
filtering, since processing the tile row by row does not take advantage of the spatial
locality. In order to remedy this situation, the tile is swept column by column in a
similar way to the aggregation technique proposed in [8].

Figure 4 illustrates both filtering types when a row-major layout is employed for
the whole image. The horizontal filtering does not cause any problem whereas the
vertical one has to be improved by means of aggregation [8].

column(j)

row(i)

row(i+Tc)

column(j)

Tc

Tr

column(j)

row(i)

row(i+Tc)

column(j)

Tc

Tr

column(j)

row(i)

row(i+Tc)

column(j)column(j)

Tc

Tr

row(i+Tc)

row(i)

column(j)

column(j)

Tc

Tr

row(i+Tc)

row(i)

column(j)

column(j)

Tc

Tr

Fig. 3. Horizontal (left-hand chart) and vertical (right-hand) filtering employed in the 4-D and
Morton approaches.

row(i)

column(1) column(size)

row(i)

Size

Size
row(i)

column(1) column(size)

row(i)

Size

Size

row(i)

column(j) column(j+Tc)

ro
w

(i)
Tc

Size

row(i)

column(j) column(j+Tc)

ro
w

(i)
Tc

Size

Fig. 4. Horizontal filtering (left-hand chart) and vertical filtering (right-hand chart) for the row-
major layout.

5.2 Implementation issues

* Filter loop unroll: We have observed that the compiler does not automatically
unroll the filter loop in any components of the transform. Due to its reduced number
of iterations (filter length), this modification can be easily performed by hand. In
addition, this modification allows the compiler to perform further optimizations and,
as section 6.1 explains, also permits automatic vectorization to be employed in the
vertical and horizontal processing.
* Data alignment: Strictly speaking, data alignment [12][13] is not required in our
codes since the SSE instruction set includes instructions that allow unaligned data to
be copied into and out of the vector registers. However, such operations are much
slower than aligned accesses, which may cause a significant overhead. To avoid this
drawback we have employed 16-byte aligned data in all our codes, although for the
scalar versions this optimization has no significant effect.

5.3 Experimental results

The results reported in this section have been obtained using the experimental
framework explained in section 4. Before analyzing them, we should briefly explain
the metrics involved. The execution time measurements have been obtained using the
PAPI virtual time routines [10], which are context-switch independent. The memory
hierarchy behavior has been monitored through the “DCU LINES IN” and “L2
LINES IN” events, which represent the number of lines that have been allocated in
the L1 data cache, and the number of L2 allocated lines respectively. These events are
strongly related with the number of L1 and L2 cache misses.

Figures 5 and 6 represent memory hierarchy behavior and the execution time for
an image size of 81922 pixels. When employing horizontal filtering all the approaches
obtain, for the optimal block size, comparable results in execution time and in both L1
and L2 allocated lines. However, with vertical filtering, Morton and 4-D produce a
significantly lower number of misses than the row-major layout in both levels of the
memory hierarchy, as well as a slower running time.

This relatively bad row-major layout behavior is due to the poor spatial locality of
its memory access pattern. Furthermore, for the L2 cache, elements belonging to the
same wavelet coefficient computation are using the same block set, resulting in a high
number of conflicts (we use a 9-coefficient filter, and the Pentium-III has only 8
blocks per set). In [8], this problem is overcome using array padding (dubbed “row
extensions technique” by the authors) to force the image width not to be a power of
two. However, as the authors themselves suggest, this simple technique has the
disadvantage that the original input image has to be modified. In an application such
as the JPEG-2000, inserting dummy data changes the final coded bitstream [8]. Using
4-D or Morton, array padding is not necessary, since in these cases conflict misses are
not a function of the image size but of the tile size.

Regarding the L1 data cache behavior we should mention that, although less
influential on performance, the improvements of both the 4-D and Morton layouts on
the row-major layout are also significant. We should also remark that the similarity of
the curves for the execution time and L2 allocated lines suggests a strong relationship
between performance and L2 behavior. As a result, the 4-D and Morton approaches
produce a speedup gain of about 2.25 over the row-major layout. Comparing the two
non-linear approaches, we observe that the results are almost the same (1.3% of
difference), especially for the optimum tile sizes.

Fig. 5. L1 data cache and L2 cache behavior for an 81922 pixels image.

Fig. 6. Execution time for an 81922 pixels image (left chart) and for a 40962 pixels image (right
chart).

Figure 6 (right chart) shows the execution time for an 40962 pixel image.
Performance is strongly related to the L2 behavior, although differences in the L1
behavior now translate as small variations in execution time (with a 81922 image they
were almost inappreciable in terms of time). The benefits of non-linear layouts are
less significant in this case, since the stride of the row-major layout in the vertical
filtering is lower, resulting in a smaller number of L2 cache conflicts (only half of the
elements of wavelet coefficient computation are competing for the same block set).
Comparing the behavior of the Morton and 4-D layouts, we remark once again that
they are very similar (4% of difference).

From the previous results we can conclude that, in general, Morton and 4-D are
preferable to the row-major layout, since their memory access patterns exhibit more
locality. The memory hierarchy is therefore more efficiently exploited and thus the
execution time is significantly reduced. The running time benefits of these approaches
are higher for image sizes of 81922 pixels and above, mainly due to the L2 behavior
explained earlier. Taking into account that the 4-D layout is simpler to implement (it
does not need a lookup table to handle blocks [7]) and achieves a similar performance
to the Morton, we have chosen this method to study the vectorization.

6. SIMD Optimization

Most previous research on parallel wavelet transforms has concentrated on special
purpose hardware (as mentioned in section 3) and out-of-date SIMD architectures,
such as the Connection Machine [14]. Work on general purpose multiprocessor
systems includes [15] and [16], where different parallel strategies for the 2-D wavelet
transform were compared on the SGI Origin 2000, the IBM SP2 and the Fujitsu
VPP3000 systems respectively. In [17] a highly-parallel wavelet transform is
presented but at the cost of changing the wavelet transform semantic. Other work
includes [18], where several strategies for the wavelet-packet decomposition are
studied.

We have focused our research on the potential benefits of Single Instruction
Multiple Data (SIMD) extensions. Among related work, we can mention [19], where

an assembly language vectorization of real and complex FIR filters is introduced
based on Intel SSE. Our main interest is to assess whether it is possible to take
advantage of such extensions to exploit the data parallelism available in the wavelet
transform, though in a filter-independent way and avoiding low level programming.

Most of the results reported in this work have been obtained by using automatic
vectorization. As expected, the compiler was not able to vectorize any loop by itself,
so both code modifications and guided compilation were necessary. However, it
should be noted that the analysis of the vectorization inhibitors provided by the Intel
compiler has been a considerable aid. We have also optimized the code using the
intrinsic functions that the Intel compiler offers. This technique involves additional
improvements at the expense of a greater coding effort, although it is more portable
than coding at the assembly level since most compilers provide similar functions.

This section is divided into two parts. In the first, we have studied how to
vectorize the horizontal filtering. In the second, we have extended the vectorization
method to the whole transform. For the sake of simplicity, we have only considered
the 4-D column-major layout, although analogous results can be obtained for the
Morton approach (see [20]).

6.1 Horizontal filtering vectorization

Depending on the memory layout, either column-major or row-major, we can
vectorize either the horizontal or vertical filtering using the methodology presented
below. In particular, we have applied this technique to the horizontal filtering since
we are focusing on the 4-D column-major layout.

6.1.1 Methodology
Loops must fulfill some requirements in order to be automatically vectorized.
Primarily, only loops with simple array index manipulation (i.e. unit increment) and
which iterate over contiguous memory locations are considered (thus avoiding non-
contiguous accesses to vector elements). Obviously, only inner loops can be
vectorized. In addition, global variables must be avoided since they inhibit
vectorization. Finally, if pointers are employed inside the loop, pointer
disambiguation is mandatory (this must be done by hand using compiler directives).

Considering these restrictions, it is obvious that not all the processing types and
filtering components can be vectorized automatically. In particular, for a Row-major
Layout only the Vertical Filtering using Horizontal or Z Processing can be
automatically vectorized, while for a Column-major Layout only the Horizontal
Filtering using Vertical or N Processing do. Nevertheless, we should remark that
when using either assembly language or function intrinsics these limitations can be
overcome at the expense of more coding effort.

6.1.2 Vectorization
This technique consists in calculating the wavelet coefficients following the element
layout in the memory. We shall suppose that to evaluate a certain wavelet coefficient
we must center the filter on element j of row i in one of the 4-D layout tiles. The

optimum processing consists in moving the filter downwards, from row to row, to
calculate all the wavelet coefficients of column j. From figure 7 (left chart) it seen
that, in this particular case (a 7-tap filter), each coefficient requires 7 floating point
multiplications and 6 floating point additions. Consequently, to calculate 4
coefficients, 28 floating point multiplications and 24 floating point additions are
necessary. However, if vectorization is enabled (figure 7, right chart) the calculations
of every 4 coefficients can be performed concurrently. Since the elements of each
column are stored contiguously, the compiler is able to load the matrix elements into
the SSE registers in groups of four (thus using less instructions).

Filter Coeficients

row(i)

row(i+3)

row(i+1)

row(i+2)

column(j)

*

+
scalar ops

* * * * * * *
+

* * * * * * *
+

* * * * * * *
+

* * * * * * *
+

W
avelet C

o
eficien

ts

Filter Coeficients

row(i)

row(i+3)

row(i+1)

row(i+2)

column(j)

*

+
scalar ops

**

++
scalar ops

* * * * * * *
+

** ** ** ** ** ** **
+

* * * * * * *
+

** ** ** ** ** ** **
+

* * * * * * *
+

** ** ** ** ** ** **
+

* * * * * * *
+

** ** ** ** ** ** **
+

W
avelet C

o
eficien

ts

* * * * * * *

+

Filter Coeficients

*

+
vector ops

row(i)

row(i+3)

row(i+1)

row(i+2)

column(j)

W
avelet C

o
eficien

ts* * * * * * *

+

Filter Coeficients

*

+
vector ops

row(i)

row(i+3)

row(i+1)

row(i+2)

column(j)

** ** ** ** ** ** **

++

Filter Coeficients

*

+
vector ops

**

++
vector ops

row(i)

row(i+3)

row(i+1)

row(i+2)

column(j)

W
avelet C

o
eficien

ts

Fig. 7. Horizontal filtering using vertical sweep for the scalar version (left chart) and
Horizontal filtering using vertical sweep for the vector version (right chart).

6.1.3 Experimental Results

A) Vectorized vs. Non-vectorized horizontal Filtering
Figure 8 shows the execution time for 81922 and 40962 pixel images using both
vectorized and non-vectorized versions of the code. We observed that for every
configuration and image size under study, the vectorized horizontal filtering beats the
scalar running time. In particular, for the optimum block size it achieves a speedup of
about 2 (for both image sizes), which translates to a speedup of about 1.4 for the
whole transform. Obviously, the vertical filtering behavior has not changed since this
part of the program has not been modified. Considering the entire transform, we
should note that the optimum block size for each version of the code is different,
because the contribution of the vectorized horizontal component is lower than that of
the scalar component.

We have not included memory event counts, since the vectorization does not
affect the number of L1 and L2 allocated lines but only reduces the number of
memory accesses. In other words, the hierarchy memory exploitation remains the
same.

Fig. 8. Execution time for 8192x8192 (left chart) and for 4096x4096 (right chart).

Fig. 9. Execution time for 8192x8192 (left chart) and for 4096x4096 (right chart).

B) Automatically vs. hand-coded (intrinsic) vectorization
We have also attempted to evaluate the efficiency of the compiler-generated

vectorial code. To do this, we have written an optimal hand-tuned code using the
compiler intrinsics (the interested reader can find more information in [20]). Figure 9
shows the results for these two versions of the code. The initial comparison of these
codes was a little surprising since the automatic version turned out to be faster than
our best manual code. After a detailed analysis at the assembly level, we realized that
this difference is caused by the prefetching introduced by the compiler when
automatic vectorization is enabled. We have verified this conclusion by removing the
prefetch instructions from the assembler code, the results of which are also shown in
figure 9. As can be seen, with regard to vectorization the automatic code is worse than
the manual (about 21% worse).

We should remark that the compiler does not perform automatic prefetching in the
hand-tuned code. In addition, introducing manual prefetching is a tough task and the
resulting code is highly platform-dependent, which makes the automatic vectorization
preferable since it produces a higher speedup with a minor programming effort.
Thus, returning to our original comparison (automatic vectorizable vs. scalar), the
speedup of the automatic version (about 2) over the scalar code is due not only to
vectorial operations but also to pre-fetching, each with the same contribution to the
overall gain in speedup.

6.2 Full vectorization

We have obtained excellent results from horizontal filtering vectorization due to the
matrix elements being stored contiguously in columns. In order to apply the same
technique to the vertical filtering, we needed the elements to be stored contiguously in
rows. One possible solution was to apply the horizontal filtering followed by a
transposition of the resulting wavelet coefficients. This then allowed us to use the
same vectorization technique vertically. To carry out the transposition efficiently we
could not work with the whole matrix at the same time. Therefore, this transform was
performed tile by tile taking advantage of the 4-D layout, which required the use of an
auxiliary buffer of tile size. Note that this kind of transposition is not feasible when
using the row-major layout since the image is not divided into tiles.

A D

A

Origin Destination

Store buffer

D

A D

A

Origin Destination

Store buffer

D

Fig. 10. Block transposition.

As can be seen in figure 10, first we performed the horizontal filtering and stored
the resulting coefficients in the auxiliary buffer. Then we transposed the buffer,
storing the coefficients in the destination matrix in rows to be consequently subjected
to vectorized vertical filtering.

Fig. 11. Execution time for the whole wavelet transform for 8192x8192 (left chart) and for
4096x4096 (right chart).

The block transposition is divided into a 4x4 matrix transposition, which is
implemented by using the Intel _MM_TRANSPOSE4_PS intrinsic function [9]. Obviously
the transpose computation implies a cost in time since it is necessary to use extra load
and store instructions. However, the smaller the tile size the more efficiently all these
extra memory accesses exploit the time and spatial locality. For images of 40962 the
speedup achieved with this full vectorization compared to the scalar is 1.7 and for

images of 81922 it is 1.6. Therefore, as we can see in figure 11 the cost of the tile
transposition is by far compensated by the improvement obtained through the
vectorization of the vertical filtering.

7. Conclusions

In this paper we have introduced a novel approach to optimize the computation of the
2D DWT for large scale image processing based on non-linear data layouts, and
automatic prefetching and vectorization. The main conclusions can be summarized as
follows:

1. As shown by previous research [7], an increase in speedup is obtained
through non-linear accesses, such as the 4-D or Morton layouts, which
exploit spatial locality more effectively. The difference in speedup between
the 4-D and Morton layouts is insignificant. Due to the simplicity of the 4-D
compared to Morton, we recommend the former.

2. We have introduced a novel approach to structure the computation of the
wavelet coefficients that allows automatic vectorization and pre-fetching,
which is independent of the filter size and the computing platforms
(assuming that similar SIMD extensions are available).

3. Our hand-tuned code achieves a better exploitation of SIMD parallelism at
the expense of more coding effort. However, the compiler cannot perform
prefetching in this code. In addition, introducing prefetching by hand is a
tough task and it is highly platform-dependent. As a consequence, the
automatic version is strongly preferable since the lower SIMD exploitation is
by far compensated by prefetching.

4. In order to apply the vectorization to both filterings (horizontal and vertical)
a block transposition is required. However, the performance gain achieved
through vectorization by far compensated the transposition overhead.

References

[1] Z. Zhang and R. S. Blum. A Categorization of Multiscale-Decomposition-Based Image
Fusion Schemes with a Performance Study for a Digital Camera Application. Proceeding
of the IEEE, Vol. 87(8):1315-1325, August 1999

[2] E. J. Stollnitz, T. D. DeRose and D. H. Salesin. Wavelets for Computer Graphics: Theory
and Applications. Computer Graphics and Geometric Modeling, Morgan Kaufmann
Publishers, Inc. San Francisco, 1996

[3] Intel Corp. Pentium-III processor. http://developer.intel.com/design/PentiumIII
[4] C. Chakrabarti and C. Mumford. Efficient realizations of encoders and decoders based on

the 2-D discrete wavelet transforms. IEEE Trans. VLSI Syst., pp. 289-298, September
1999

[5] T. Denk and K. Parhi. LSI Architectures for Lattice Structure Based Orthonormal Discrete
Wavelet Transforms. IEEE Trans. Circuits and Systems, vol. 44, pp. 129-132, February
1997

[6] C. Chrysafis and A. Ortega. Line Based Reduced Memory Wavelet Image Compression.
IEEE Trans. on Image Processing, Vol 9, No 3, pp. 378-389, March 2000

[7] S. Chatterjee, V. V. Jain, et al. Nonlinear Array Layouts for Hierarchical Memory
Systems. Proceedings of 1999 ACM International Conference on Supercomputing, pp.
444-453, Rhodes, Greece, June 1999

[8] P. Meerwald, R. Norcen, et al. Cache issues with JPEG2000 wavelet lifting. In C.-C. Jay
Kuo, editor, Visual Communications and Image Processing 2002 (VCIP'02), volume 4671
of SPIE Proceedings, San Jose, CA, USA, January 2002

[9] Intel Corp. C/C++ Compiler. http://www.intel.com/software/products/compilers
[10] K. London, J. Dongarra, et al. End-user Tools for Application Performance Analysis,

Using Hardware Counters. Presented at International Conference on Parallel and
Distributed Computing Systems. August 2001

[11] Perfctr Linux driver. Info. available at http://www.csd.uu.se/~mikpe/linux/perfctr
[12] Intel Corp. Data Alignment and Programming Issues for the Streaming SIMD Extensions

with the Intel C/C++ Compiler. Intel Application Note AP-833. Available at
http://developer.intel.com

[13] Intel Corp. Intel Architecture Optimization. Reference Manual. Available at
http://developer.intel.com

[14] M. Holmström. Parallelizing the fast wavelet transform. Parallel Computing, 11(21):1837-
1848, April 1995

[15] D. Chaver, M. Prieto, L. Piñuel, F. Tirado. Parallel Wavelet Transform for Large Scale
Image Processing. Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS'2002). Florida, USA, April 2002

[16] O.M. Nielsen and M. Hegland. Parallel Performance of Fast Wavelet Transform.
International Journal of High Speed Computing, 11 (1): 55-73, June 2000

[17] L. Yang and M. Misra. Coarse-Grained Parallel Algorithms for Multi-Dimensional
Wavelet Transforms. The journal of Supercomputing 11:1-22 , 1997

[18] M. Feil and A. Uhl. Multicomputer algorithms for wavelet packet image decomposition.
Proceedings of the International Parallel and Distributed Processing Symposium
(IPDPS'2000), pages 793-798, Cancun, Mexico, 2000

[19] Intel Corp. Real and Complex FIR Filter Using Streaming SIMD Extensions. Intel
Application Note AP-809. Available at http://developer.intel.com

[20] D. Chaver, C. Tenllado, L. Piñuel, M. Prieto and F. Tirado. Vectorizing the Wavelet
Transform on the Intel Pentium III Microprocessor. Technical Report 02-001. Dept. of
Computer Architecture. Complutense University, 2002

