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1. Motivation and introduction

For a long time, Lie algebras and superalgebras have been the main group-theoretical

tool for the description of physical phenomena, leading to the belief that binary

structures are the only adequate algebraic tool capable of reflecting a realistic description

of processes in physics. However, evolution of the theoretical background and more

recent formal developments and, in particular, efforts towards a unified and effective

description of interactions has shown that it is convenient, if not unavoidable, to consider

algebras beyond the binary structures. Examples of this generalized algebraic approach

are given e.g. by the n-linear algebras in Quantum Mechanics [1], ternary algebras in

the description of multiple M2−branes [2, 3] or higher order extensions of the Poincaré

algebra [4].

Among these possibilities, the F -ary extensions (F > 2) of Lie superalgebras (called

Lie algebras of order F ) introduced and analysed in [4, 5, 6, 7], offered the possibility

of defining higher order extensions of the Poincaré algebra based on solid physical

arguments. In particular, a specific cubic extension in arbitrary space-time dimensions

was shown to be of interest in the frame of Quantum Field Theory [8, 9, 10]. In addition,

it was possible to conceive and construct the notions of group [6] and adapted superspace

associated to these structures [11].

In this work we show that certain graded Lie superalgebras might induce specific

quartic extensions of Lie algebras. This construction is then applied to show that we

can associate naturally a quartic extension of the Poincaré algebra to the standard

N = 2 supersymmetric extensions (with central charges). In this construction, the

central charges turn out to play a key role, as they constitute the essential ingredient

to introduce the notion of a hidden quartic symmetry. It follows that massive invariant

N = 2 Lagrangians are also invariant with respect to these hidden symmetries. We

finally conclude that the quartic extensions obtained by this method give rise to a

hierarchy of representations that emerges from the standard representation of the

corresponding supersymmetric theory.

2. Quartic structures induced by quadratic algebras

The F−order structures were introduced mainly with the purpose of providing new non-

trivial higher order (order greater that two) extensions of the Poincaré algebra involving

generators Q which can be seen as “an F−root” of the space-time translations (see e.g.

(2.4) or (2.5) when F = 4) [4]. In this work we are mainly interested in the quartic case.

Consequently, we briefly recall the salient properties of these structures.
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2.1. Quartic extensions of the Poincaré algebra

The vector space g = g0⊕g1 = 〈Xi, i = 1, · · · , dim g0〉⊕〈Ya, a = 1, · · · , dim g1〉‡ is called

an elementary Lie algebra of order four if it satisfies the following brackets

[Xi, Xj] = fij
kXk, [Xi, Ya] = Ria

bYb,

{Yai, Ya2 , Ya3, Ya4} =
∑

σ∈S4

Yσ(a1)Yσ(a2)Yσ(a3)Yσ(a4) = Qa1a2a3a4
iXi, (2.1)

S4 being the permutation group with four elements. In addition, we have also the

following generalised Jacobi identities:

[Ya1 , {Ya2 , Ya3 , Ya4, Ya5}] + [Ya2 , {Ya3 , Ya4 , Ya5, Ya1}] + [Ya3 , {Ya4 , Ya5 , Ya1, Ya2}] +

[Ya4 , {Ya5 , Ya1 , Ya2, Ya3}] + [Ya5 , {Ya1 , Ya2 , Ya3, Ya4}] = 0. (2.2)

Along the lines of the algebraic structure (2.1), there is the possibility of

constructing quartic extensions of the Poincaré algebra in arbitrary space-time

dimensions. Within this frame, two quartic extensions of the Poincaré algebra will

be considered in detail: that in D = 4 for obvious physical reasons, as well as D = 10,

which will be shown later (Section 3) to constitute an exceptional case.

The quartic extensions of the Poincaré algebra in D = 4 dimensions are constructed

by considering two Majorana spinors§. In the sl(2,C) ∼= so(1, 3) notations of dotted

and undotted indices, a left-handed spinor is given by ψL
α and a right-handed spinor

by ψ̄Rα̇. The spinor conventions to raise/lower indices are as follows ψLα = εαβψL
β,

ψL
α = εαβψLβ, ψ̄Rα̇ = εα̇β̇ψ̄R

β̇, ψ̄R
α̇ = εα̇β̇ψ̄Rβ̇ with (ψα)

⋆ = ψ̄α̇, ε12 = ε1̇2̇ = 1,

ε12 = ε1̇2̇ = −1. The 4D Dirac matrices, in the Weyl representation, are

Γµ =

(

0 σµ

σ̄µ 0

)

, (2.3)

with σµ
αα̇ = (1, σi), σ̄µα̇α = (1,−σi), σi (i = 1, 2, 3) being the Pauli matrices. With

these notations, we introduce two series of Majorana spinors QI
α, Q̄I α̇ satisfying the

relation (QI
α)

† = Q̄I α̇. The Lie algebra of order four with g0 = Iso(1, 3) (the Poincaré

algebra) and g1 = 〈QI
α, Q̄Iα̇〉 define the following quartic extension of the Poincaré

algebra‖

{

QI1
α1 , Q

I2
α2 , Q

I3
α3 , Q

I4
α4

}

= 0,
{

QI1
α1 , Q

I2
α2 , Q

I3
α3 , Q̄I4 α̇4

}

= 2i
(

δI1I4ε
I2I3εα2α3σ

µ
α1α̇4 + δI2I4ε

I1I3εα1α3σ
µ
α2α̇4 (2.4)

‡ We would like to point out that the symbol ⊕ here and in the sequel can be understood as a direct

sum of vector spaces.
§ For a brief summary of the properties of spinors, see section 3.1.
‖ For shortness, we only give the quartic brackets explicitly.



4

+ δI3I4ε
I1I2εα1α2σ

µ
α3α̇4

)

Pµ,
{

QI1
α1 , Q

I2
α2 , Q̄I3 α̇3 , Q̄I4 α̇4

}

= 0,

the remaining brackets involving three Q̄ and one Q or four Q̄ being obtained

immediately (the tensor εIJ is defined by −ε12 = ε21 = ε12 = −ε21 = 1).

The quartic extension of the Poincaré algebra in D = 10 is constructed by

considering a Majorana spinor QA (g0 = Iso(1, 9) and g1 = 〈QA〉). We denote

A = (a, a′) the spinor indices, with a (resp. a′) representing the indices for the left-

(resp. right-)handed part of the spinor QA. With these conventions, we introduce Q+
a

the left-handed and Q−
a′ the right handed part of Q, so that the quartic part of the

algebra takes the form

{Q+
a1
, Q+

a2
, Q+

a3
, Q+

a4
} = 0,

{Q+
a1 , Q

+
a2 , Q

+
a3 , Q

−
a′4
} = 2i

(

C+−
a1a′4

(ΣµC−+)a2a3 + C+−
a2a′4

(ΣµC−+)a1a3 + C+−
a3a′4

(ΣµC−+)a1a2)Pµ,

{Q+
a1
, Q+

a2
, Q−

a′3
, Q−

a′4
} = 0, (2.5)

with

Γµ =

(

0 Σµ

Σ̃µ 0

)

, C =

(

0 C+−

C−+ 0

)

,

being the 10−dimensional Dirac and the charge conjugation matrices respectively.

It has to be emphasized that the algebraic structure defined in this manner is neither an

algebra nor a 4−algebra in the usual sense, but a kind of hybrid structure. Indeed, some

of the brackets are quadratic [g0, g0] ⊆ g0, [g0, g1] ⊆ g1, while some others are quartic

{g1, g1, g1, g1} ⊆ g0. This feature represents one of the difficulties to handle with these

algebraic structures. Our aim is to analyse to which extent the quartic bracket given

in (2.1) can be obtained by means of appropriate quadratic brackets. It is worthy to

be remarked that various attempts to inspect the same problem for cubic instead of

quartic extensions did not succeed. The obstructions encountered may provide, in some

sense, a structural explanation for the difficulties found in the various constructions of

the cubic extensions of the Poincaré algebra, despite of some interesting results obtained

with such cubic structures.

2.2. Relationship between quartic algebras and Lie superalgebras

The study of relationships between quadratic and higher order algebras is certainly not

a new problem. For instance, it has already been established in [13] that some ternary

algebras of the Filippov type considered in the Bagger-Lambert-Gustavsson model are

equivalent to certain Lie (super-)algebras [2, 12, 13].

We will prove that a similar result can be obtained in this case and that certain

types of graded-Lie superalgebras actually induce a quartic structure in analogy to those
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given in (2.1), but with slight formal differences. This will enable us to develop a pro-

cedure to associate quartic algebras to binary algebras. There is a natural comparison

of this construction and the induction theorem of the second paper of [4] that allows

to construct higher order Lie algebras starting from arbitrary Lie (super)algebras. The

main difference with respect to this approach is that in the present ansatz higher order

brackets are compatible with quadratic brackets.

The starting point for our construction is a Z2 × Z2−graded Lie superalgebra

g = (g(0,0) ⊕ g(1,1))⊕ (g(1,0) ⊕ g(0,1)), (2.6)

where (a, b) ∈ Z2 × Z2 and g(a,b) is even (resp. odd) when a + b = 0 mod 2 (resp.

a + b = 1 mod 2). In the following g0 = g(0,0) ⊕ g(1,1) (resp. g1 = g(0,1) ⊕ g(1,0)) will

always denote the even (resp. odd) sector of the algebra. Considering the corresponding

bases for the grading blocks:

g(0,0) = 〈Bi, i = 1, · · · , dim g(0,0)〉, g(1,1) = 〈Z〉,

g(1,0) = 〈F+
a , a = 1, · · · , dim g(1,0)〉, g(0,1) = 〈F−

a , a = 1, · · · , dim g(0,1)〉,
(2.7)

the corresponding commutation relations are

[Bi, Bj] = fij
kBk, [Bi, Z] = 0,

[Bi, F
ε
a ] = Rε

i a
bF ε

b , [Z, F ε
a ] = 0,

{F ε
i , F

ε
j } = Qε

ij
aBa, {F+

i , F
−
j } = gijZ,

(2.8)

where ε = ±. Furthermore, the superalgebra defined by (2.8) satisfies also the

appropriate Jacobi identities (that we do not recall here). It is important to notice

that g(1,1) commutes with all remaining factors, in other words, that Z acts like a

central charge. Formally, there is no difficulty to generalise this structure to have a

higher number of central charges Zi, i = 1, · · · , k, so that g(1,1) = 〈Z1, · · · , Zk〉. In

this work, however, we focus on the applications of the construction to the case of

N = 2 supersymmetric extensions of the Poincaré algebra, so that only one central

charge is required. In the following, we only consider the case where g(1,1) is of

dimension one. On the other hand, we could have considered the following grading

blocks: g(0,0) = 〈Z〉, g(1,1) = 〈Bi, i = 1, · · · , dim g(1,1)〉. In this case, the fermionic part of

the brackets reads

{F+
i , F

−
j } = Qij

aBa, {F
ε
i , F

ε
j } = gεijZ, ε = ±. (2.9)

With these preliminary assumptions, we are in situation of establishing the main

result of this section by explicitly constructing a quartic algebra associated to the

superalgebra (2.7). This structure, in the light of equation (2.1), enables us to express

the non-graded part of the algebra in terms of the graded part. In fact, using the obvious

relation,

{A1, A2, A3, A4} = {{A1, A2}, {A3, A4}}+ {{A1, A3}, {A2, A4}}+ {{A1, A4}, {A2, A3}},

the relations

{F+
a1 , F

+
a2 , F

+
a3 , F

+
a4} = (Q+

a1a2
iQ+

a3a4
j +Q+

a1a3
iQ+

a4a2
j +Q+

a1a4
iQ+

a2a3
j){Bi, Bj}
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{F+
a1
, F+

a2
, F+

a3
, F−

a4
} = 2Z(ga1a4Q

+
a2a3

i + ga2a4Q
+
a1a3

i + ga3a4Q
+
a1a2

i)Bi (2.10)

{F+
a1 , F

+
a2 , F

−
a3 , F

−
a4} = Q+

a1a2
iQ−

a3a4
j{Bi, Bj}+ 2(gi1i3gi2i4 + gi1i4gi2i3)Z

2 ,

(plus similar relations involving either three F− and one F+ or four F−) follow at once.

Had we chosen the alternative possibility for the fermionic brackets given above, the

brackets (2.10) would be subjected to a corresponding minor modification.

Some comments are in order here. The superalgebra reproduces the algebra of

type (2.1), but in a slightly modified form. Since we are constructing an analogue

of the four-Lie algebra (2.1), we also assume that the algebra associated to the Lie

superalgebra (2.8) inherits the same algebraic structure. More precisely, we suppose that

the algebra is partially quadratic and partially quartic, that is, [g0, g0] ⊆ g0, [g0, g1] ⊆ g1

(these brackets are the same of the corresponding brackets of the Lie superalgebra), but

now the quartic brackets {g1, g1, g1, g1} close quadratically in g0. This means that the

structure which emerges in this process closes in the universal enveloping algebra of

g0 since the R.H.S. involves symmetric products of elements of g0. For this reason

it could be called a non-linear (or quadratic) Lie algebra of order four. To round off

the relationship between Lie superalgebras and the algebra defined by the relations

(2.10), we have to check that the Jacobi identities of Lie superalgebras reproduce the

generalised Jacobi identity (2.2). We observe that there is no need for this to hold in

full generality, as there is no reason for the relations (2.8), together with the Jacobi

identities of Lie superalgebras, to imply the identity (2.2). However, it happens that

if we have a finite dimensional representation of (2.10), the identities (2.2) are trivially

satisfied. For the case under inspection in this work this will not be a constraint, since

the generalised Jacobi identity will be trivially satisfied as well. This happens because

the four-brackets {g1, g1, g1, g1} close upon Pµ or Z (see below) thus we automatically

have [{g1, g1, g1, g1}, g1] = 0. Finally, since the quadratic relations (2.8) imply the

quartic relations (2.10, the superalgebra is compatible with the quartic algebra structure

described by equations (2.10), meaning that any algebra of the form (2.7) satisfying the

(anti)commutation relations (2.8) automatically satisfies, by construction, the relations

(2.10).

This last observation has an interesting consequence. It is well known that Lie

(super)algebras correspond to infinitesimal transformations and that one is able to

associate finite dimensional transformations having the structure of groups and leading

to the notion of Lie (super-)groups. It has been further proved that using heavy algebraic

machinery [6] there is a way to associate an appropriate group to higher order Lie

algebras. The benefit of the previous construction is that one can associate a group

to the quartic algebra using standard procedures, and therefore avoiding complicate

formal tools. This means, in particular, that this direct approach reproduces the

standard quantum mechanical formalism for symmetry descriptions as presented e.g in

[14] (pp. 50-55). On the other hand, it constitutes a well established fact that faithful

representations of higher order algebras are infinite dimensional [4, 6], which immediately

implies that matrix representations are automatically non-faithful. The compatibility of
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quadratic relations with quartic relations further means that any representation of the

Lie superalgebra (2.7) will also be a (non-faithful) representation of the quartic algebra

(2.10)¶. As expected, the converse is not necessarily true.

An unsuspected consequence of the construction above is that it suggests the existence of

some hidden quartic symmetries in superalgebras+. In general terms, this construction

can be understood, in some sense, as a “square” of the graded-superalgebra (2.8). By

this we specifically mean that we can naturally associate to the graded superalgebra (2.8)

the quartic algebra (2.10). It is in this sense that the term “hidden quartic symmetry”

appears in the usual framework of graded Lie superalgebras.

3. Supersymmetry and quartic extensions of the Poincaré algebra

Bearing in mind that we are mainly interested on (extended) space-time symmetries

compatible with the principle of relativity and quantum mechanics, it is worthy to be

inspected in detail whether higher order symmetries emerge in supersymmetry. In this

section, we first recall the properties of spinor in arbitrary space-time dimensions. In the

next subsection, we briefly recall the principle for the construction of supersymmetric

theory in arbitrary space-time dimensions and address the question whether these

algebraic structures are of the form (2.8) or (2.9). We finally show to which extent

quadratic extensions of the Poincaré algebra can be naturally associated to the usual

supersymmetric extensions.

3.1. Properties of spinors in arbitrary space-time dimensions

For our purpose it is convenient to review the main properties of spinors and Dirac-Γ

matrices in any dimensions. Introducing the tensor metric in D−space-time dimensions

ηµν = diag(1,−1, · · · ,−1), the Dirac Γ−matrices are defined by,

{Γµ,Γν} = 2ηµν .

One can easily show that the Dirac matrices are complex 2[D/2] × 2[D/2] matrices ([a]

representing the integer part of a). These matrices act on Dirac spinors ΨD. Such spinors

are complex and exist in any space-time dimensions. Furthermore, when the dimension

is even, on can define the chirality matrix, χ = i[D/2]Γ0 · · ·ΓD−1 (χ2 = 1, {Γµ, χ} = 0)

leading to the so-called Weyl spinors Ψ± = 1/2(1 ± χ)ΨD. In certain dimensions,

additional specific spinors can be defined. For that purpose, we introduce a matrix B

¶ If we denote g(2) (resp. g(4)) the superalgebra (2.7) (resp. of the quartic algebra (2.10)) and

define their associated universal enveloping algebra U(g(2)) (resp. U(g(4))) −for the definition of the

enveloping algebra of higher order algebras see [4, 6]−), the representations of g(2) (resp. g(4)) extend

to representations of U(g(2)) (resp. U(g(4))). As a consequence of the quotient U(g(4))/I(2) ∼= U(g(2))

(where I(2) is the two-sided ideal generated by the relations (2.8) - or (2.9) -) it turns out that a

representation of g(2) is also a representation of g(4).
+ Successive attempts to adapt this methodology to the framework of colored Lie superalgebras [15],

have led to serious formal obstructions that cannot be surmounted.
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such that,

BΓµB
−1 = ±Γµ⋆, (3.1)

where Γ⋆ denotes the complex conjugate of the matrix Γ. The sign in the equation

above depends on the space-time dimension. When the matrix B satisfies the property

BB⋆ = 1, a Majorana spinor can be defined. A Majorana spinor exists in certain

dimensions and satisfies the condition Ψ⋆ = BΨ. In such a case one can find a realisation

of the Dirac matrices where all the matrices are real (or purely imaginary), and as a

consequence the components of a Majorana spinor can be chosen to be real. On the

contrary, when BB⋆ = −1, an SU(2)−Majorana spinor Ψi, i = 1, 2 can be defined.

An SU(2)−Majorana spinor satisfies Ψ⋆
i = ǫijBΨj with ǫij the SU(2) invariant volume

form. The various types of spinors strongly depend on the space-time dimension. It

is however important to emphasize that the results are indeed periodic of period eight.

As simple consequence, a property valid in D−space-time dimensions is also valid in

(D + 8)−dimensions. For instance, a Majorana spinor in D = 3 can be defined, but

also in D = 11. Table 1 summarizes the type of spinors, given modulo 8, that is, from

D = 0 mod 8 to D = 7 mod 8.

Table 1. Types of spinors in various dimensions, Nf indicates the number of real

components of a given spinor.

D = 0 mod 8 D = 1 mod 8 D = 2 mod 8 D = 3 mod 8 D = 4 mod 8 D = 5 mod 8 D = 6 mod 8 D = 7 mod 8

Majorana Majorana
Majorana-

Weyl
Majorana Majorana

SU(2)-
Majorana

SU(2)-
Majorana-

Weyl

SU(2)-
Majorana

Nf = 2
d
2 Nf = 2

d−1

2 Nf = 1

2
2
d
2 Nf = 2

d−1

2 Nf = 2
d
2 Nf = 2

d−1

2 Nf = 1

2
2
d−1

2 Nf = 2
d
2

If we introduce Γµ the Dirac Γ−matrices in D space-time dimensions and C the charge

conjugation matrix defined by

CΓµC−1 = ±Γµt, (3.2)

where Γt denotes the transpose of the matrix Γ and the sign depends on the space-time

dimension, the matrices ΓµC and C are either symmetric or anti-symmetric depending

on the dimension as indicated in Table 2 (the results are also periodic of period eight).

Table 2. Symmetry of the Γ−matrices
D mod 8 0 1 2 3 4 5 6 7

C sym sym
sym

anti-sym
anti-sym anti-sym anti-sym

sym

anti-sym
sym

ΓµC
sym

anti-sym
sym sym sym

sym

anti-sym
anti-sym anti-sym anti-sym
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Finally, we recall that the tensor product of two Weyl spinors for D = 2n decomposes

on the set of p−forms ([p] denotes p−forms and [n]± (anti-)self-dual n−forms)

S+ ⊗ S+ =

{

[0]⊕ [2]⊕ · · · ⊕ [n]+ when n is even

[1]⊕ [2]⊕ · · · ⊕ [n]+ when n is odd
,

(3.3)

S+ ⊗ S− =

{

[1]⊕ [3]⊕ · · · ⊕ [n− 1] when n is even

[0]⊕ [2]⊕ · · · ⊕ [n− 1] when n is odd
,

with S± denoting the left- (and right-)handed spinors.

These results constitute standard material and can be found in many textbooks on the

subject (see e.g. [16]).

3.2. Supersymmetry in any space-time dimensions: a brief summary

Adjoining to the Poincaré generators spinors of the form given in Table 1, one is able to

construct a supersymmetric extension of the Poincaré algebra in space-time dimensions

D ≤ 11 (see e.g. [17] for a systematic study of supersymmetry in arbitrary space-time

dimensions). In order to obtain a quartic extension of the Poincaré algebra associated

to supersymmetry along the lines of Section 2, we have to check whether or not the

various superalgebras are of the form (2.8) or (2.9). This means in particular that since

g(1,1) = 〈Z〉 6= ∅ - or g(0,0) = 〈Z〉 6= ∅ - at least one central charge is needed, and thus at

least anN = 2 supersymmetry. Inspecting theD−dimensional supersymetric extensions

of the Poincaré algebra with the help of Table 2 and playing with the central charges [17],

one observes that the N = 2 supersymmetric algebra may be put on the form of (2.7)

(or its modified version) in all dimensions but D = 5, 11. It turns out that the D = 8, 10

cases are exceptional since only one Majorana spinor is required. In order to illustrate

the procedure we focus on the D = 10 case. In order to reproduce the superalgebra

of the form (2.8) we have to consider type IIA supersymmetry (type I and IIB are

excluded). Type IIA supersymmetry is based on a Majorana spinor (or equivalently

one left-handed and one right-handed Majorana-Weyl spinors). With the notations of

(2.5) we have g0 = g(0,0)⊕ g(1,1) = Iso(1, 9)⊕〈Z〉, g1 = g(1,0) ⊕ g(0,1) = 〈Q+
a 〉⊕ 〈Q−

a′〉 and

the fermionic part of the algebra takes the form

{Q+
a , Q

+
b } = 2i(ΣµC−+)abPµ, {Q−

a′ , Q
−
b′} = 2i(Σ̃µC+−)a′b′Pµ, {Q+

a , Q
−
b′} = ZC+−

ab′ .(3.4)

3.3. Quartic extension of the Poincaré algebra associated to supersymmetry

After these considerations we are now in situation of presenting our main result. When

the N = 2 superalgebras with one central charge of the previous section can be put on

the form of (2.8) (or (2.9)), as we have seen, they enable us to propose an alternative

construction of quartic algebras. Let us stress that the role of the central charge is
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essential for the argumentation. This specifically means that up to the dimensions

D = 5, 11, quartic extensions of the Poincaré algebra are realisable. An amazing feature

of these considerations is that super-Poincaré algebra with central charges exhibits a

hidden quartic symmetry. The quartic brackets are constructed along the lines of (2.10)

and it has to be mentioned that since Pµ and Z commute with the Q’s, the generalised

Jacobi identity (2.2) is satisfied independently of any representations. Moreover, as

already commented, these algebraic structures associated to Lie superalgebras are

hybrid, partially reflecting the structure of an algebra and partially of a four-algebra.

As an illustration, we give the structure of the algebra constructed along these

lines for the exceptional case D = 10. Using the algebraic structure (2.5) with

g0 = g(0,0)⊕g(1,1) = Iso(1, 9)⊕〈Z〉, g1 = g(1,0)⊕g(0,1) = 〈Q+
a 〉⊕〈Q−

a′〉 and the construction

given in section 2.1 one obtains the following brackets (we only give the quartic brackets)
{

Q+
a1 , Q

+
a2 , Q

+
a3 , Q

+
a4

}

= − 8
(

(ΣµC−+)a1a2(Σ
νC−+)a3a4 + (ΣµC−+)a1a3(Σ

νC−+)a2a4

+ (ΣµC−+)a1a4(Σ
νC−+)a2a3

)

PµPν (3.5)
{

Q+
a1
, Q+

a2
, Q+

a3
, Q−

a′4

}

= 4i
(

(ΣµC−+)a1a2C
+−
a3a′4

+ (ΣµC−+)a1a3C
+−
a2a′4

+ (ΣµC−+)a2a3C
+−
a1a′4

)

ZPµ

{

Q+
a1
, Q+

a2
, Q−

a′3
, Q−

a′4

}

=
(

− 8(ΣµC−+)a1a2(Σ
νC+−)a′3a′4PµPν + C+−

a1a′3
C+−

a2a′4
Z2 + C+−

a2a′3
C+−

a1a′4
Z2
)

,

plus similar brackets involving one Q+ and three Q− or four Q−. We can observe that

the algebra has a very similar appearance to (2.5) (compare in particular to the second

relation).

As we have mentioned previously, a representation of the super-Poincaré algebra

is automatically a representation of the induced quartic algebra. Since the assumption

on the non-vanishing of the central charge seems to be more interesting (look at the

second bracket in (2.10) in relation to the second bracket of (2.4)), we only have

considered the case were the representation of supersymmetry does not trivialise the

central charge Z. This fact excludes the massless representations and the massive BPS-

saturated bound [18]. In other words, massive representations with |Z| < 2M show

an unexpected behaviour under quartic symmetries. But now, since we are considering

massive representations, the number of fermionic degrees of freedom cannot exceed

Nf ≤ 16. In consequence, the only dimensions where a quartic extension leading to

non-trivial results exist are D = 2, 3, 4 and 7, respectively. The number of supercharges

are such that the required spinors for the extensions are like follows:

(i) in D = 2 one left-handed and one right-handed Majorana-Weyl spinor;

(ii) in D = 3, 4 two Majorana spinors;

(iii) in D = 7 one SU(2)−Majorana spinor.

An appealing consequence of this is that the massive invariant N = 2 Lagrangians

constructed so far in this specific dimensions are moreover invariant with respect to

the transformations induced by the quartic algebra. Thus, the corresponding N = 2

supermultiplet and their associated transformations laws will automatically be an
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invariant multiplet of the corresponding quartic structure with the same transformation

properties (see footnote ¶ on page 6). Therefore, this simple observation means that,

within this construction, interacting Lagrangians invariant under quartic symmetries are

obtained. In the same sense as the notion of supersymmetry surmounts the obstruction

described by the no-go theorem of Coleman-Mandula [19], our present construction can

be seen as an analogous expansion that avoids the constraints of the Haag-Lopuszanski-

Sohnius theorem [20]. This analogy should however not be misunderstood at the

conceptual level. While supersymmetry represents a fertile novelty (with respect to

classical inner/outer symmetry analysis) by means of the introduction of fermionic

charges, therefore leading to new phenomenological aspects, the construction of quartic

algebras executed in this work is heavily dependent on the supersymmetric algebra

formalism and underlying constraints.

3.4. Representations of quartic extensions

The ansatz linking algebras of order four to Lie superalgebras has remarkable

consequences concerning their respective representation theories, in the sense that

superalgebra representations automatically induce representations of the order four

structures. In full generality, the reversal of this assertion is not true, as we briefly

justify. Consider for instance the four-dimensional quartic extensions of the Poincaré

algebra in four space-time dimensions. If we study massive representations, the little

algebra is generated by the Q’s and P 0 = −im and the four-brackets take the form

{Qα1

I1, Qα2

I2, Qα3

I3, Qα4

I4} = 2Z2
(

εα1α2εα3α4ε
I1I2εI3I4

+ εα1α3εα2α4ε
I1I3εI2I4 + εα1α4εα2α3ε

I1I4εI2I3
)

,

{

QI1
α1 , Q

I2
α2 , Q

I3
α3 , Q̄I4 α̇4

}

= 2mZ
(

δI1I4ε
I2I3εα2α3σ

0
α1α̇4 + δI2I4ε

I1I3εα1α3σ
0
α2α̇4

+ δI3I4ε
I1I2εα1α2σ

0
α3α̇4

)

,

{

QI1
α1 , Q

I2
α2 , Q̄I3 α̇3 , Q̄I4 α̇4

}

= 2m2
(

δI1I3δ
I2

I4σ
0
α1α̇3σ

0
α2α̇4 + δI1I4δ

I2
I3σ

0
α1α̇4σ

0
α2α̇3

)

+ 2Z2εα1α2εα̇3α̇4ε
I1I2εI3I4.

If we now make the following substitutions (analogous to the corresponding substitution

for the N = 2 supersymmetric extension with central charge):

a1 = Q1
1 − Q̄22̇ , a3 = Q1

1 + Q̄22̇ ,

a2 = Q1
2 + Q̄21̇ , a4 = Q1

2 − Q̄21̇ ,
(3.6)

one observes that a1, · · · , a4, a†1, · · · , a
†
4 generate the Clifford algebra of the polynomial

P 2(x1, · · · , x4, y
1, · · · , y4) =

(

2(2m+ Z)x1y
1 + 2(2m+ Z)x2y

2 + 2(2m− Z)x3y
3

+ 2(2m− Z)x4y
4
)2

in the sense that
(

xIa
I + yIa†I

)4

= P 2(x1, · · · , x4, y
1, · · · , y4). (3.7)
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The representations of the N = 2 supersymmetric algebra in four dimensions are

obtained from the study of representations of the Clifford algebra, i.e. when the a’s

satisfy the quadratic relation,
(

xIa
I + yIa†I

)2

= P (x1, · · · , x4, y
1, · · · , y4), (3.8)

which is obviously compatible with (3.7). On the contrary, one can construct

representations of (3.7) such that (3.8) is not satisfied. The algebra (3.7) has been

introduced a long time ago by mathematicians and is called the Clifford algebra of the

polynomial P 2 [21]. It has been shown that to any polynomial f one can associate a

Clifford algebra Cf , and that a matrix representation can be obtained [22]. But for

polynomials of degree higher than two, the representation is not unique, and various

inequivalent representations of Cf (even of the same dimension) can be constructed (see,

for instance, [23]). This difficulty contributes considerably to the problem of classifying

representations of Cf , which is still open, though it has been proved that the dimension

of the representation is a multiple of the degree of the polynomial [24].

In the framework of our analysis, this may provide new representations

corresponding to interesting quartic extensions of the Poincaré algebra. This hierarchy of

representations on the top of the standard representations obtained in supersymmetric

theories might be compared to the parafermionic extension of the Poincaré algebra

considered in [25]. It turns out that the algebra studied there shares some similarities

with ours, like the non-linearity and the possibility of deriving a hierarchy of

representations starting from the standard supersymmetric one. To which extent

these two different approaches have additional far-reaching common features and reflect

physical phenomena in supersymmetric theories still constitutes work in progress.

4. Perspectives and outlook

In this paper we have given a systematic way to associate a quartic Lie algebra (which

closes with fully symmetric quartic brackets) to a graded Lie superalgebra of a certain

type. In particular, this construction can be applied to standard supersymmetric

theories. This specifically alludes to the fact that any representation of N = 2

supersymmetric algebras shares a hidden quartic symmetry. We insist upon the

fundamental role of the non-vanishing central charge, implying that, in these conditions,

any supersymmetry Lagrangian reflects a hidden quartic symmetry. One may wonder

whether this apparently simple but unexpected peculiarity is a consequence of some deep

“raison d’être” responding to some structural or phenomenological aspect adequately

described by this type of hidden symmetry, and somehow encoded in the conformation

of the Lagrangian.

Another question that emerges naturally from our analysis is what happens if

we relax the assumption on the non-vanishing of the central charge. This opens the

possibility of having massless representations, and we are no more limited to the few

cases exhibited in section 3. A particularly interesting case is that of ten-dimensional
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type IIA supersymmetry, which constitutes in some sense an exceptional model − recall

that in this case a quartic extension is constructed with only one Majorana spinor −

and inherits a hidden quartic symmetry in quite natural way.

We have pointed out that the construction of the quartic algebra structure does

not impose constraints on the number of central charges. In this sense, an analogous

analysis of N > 2 supersymmetric extensions can be considered. Also in this case, the

quartic Clifford algebras enable us to connect the underlying representation theory of

these structures. The main difficulty in this task refers to the fact whether the N > 2

extensions can be written in the adequate form, in order to apply the procedure, as

well as to consider the physically relevant models. Work in this direction is currently in

progress.
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