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1. Introduction 

ABSTRACT 

The Corredoiras orthogneiss belongs to the intermediate pressure upper units of the 6rdenes Complex 
(Variscan belt, NW Spain), mainly composed by granodioritic orthogneisses, with small bodies of tonalitic 
orthogneisses, amphibole-rich orthogneisses and metagabbronorites. In this work we study their chemical 
and isotopic composition, to gain insight into the linkage between plate tectonics and magmatism and to im­
prove the knowledge of the paleogeographic evolution of the European Variscan Belt. 
Granodioritic and tonalitic orthogneisses range from intermediate to felsic rocks, with 1(20jNa20 ratios� 1, 
typical of cale-alkaline rocks, and high Na20 content, characteristic of I-type granites. Metagabbronorites 
are basic rocks, but some of them are contaminated by interaction with the felsic magmas, showing enrich­
ment in Si02, Na20 and 1(20. All Corredoiras metaigneous rocks are enriched in large ion lithophile elements 
(LILE) and light rare earth elements (tREE) relative to high field strength elements (HFSE), resulting in a high 
LILEjHFSE ratio. These geochemical features are the most characteristic of magmas related to subduction 
zones; furthermore all orthogneisses display significant negative anomalies in Ta, Nb and Zr, which together 
with their low contents in Y and Yb match up with granitoids generated in voleanic arcs or subduction zones. 
SHRIMP U-Pb zircon dating provides a concordia age of 492 ± 3 Ma. Granodioritic orthogneiss has negative 
£Nd(492 Ma) values (-2.2 to -3.6) and high (87Srl�r)i ratios (0.707 to 0.708), on the other hand tonalitic 
orthogneisses and metagabbronorites have positive £Nd(492 Ma) (1.0 to 2.4) and low (87Srj86Sr)i (0.703 to 
0.705), suggesting that granodioritic orthogneisses have a clear crustal influence in their generation, whereas 
tonalitic orthogneisses and metagabbros can be related to basic magmas extracted from the mantle or from a 
basic lower continental crust. 
The Corredoiras chemical characteristics permit us to interpret that this rocks were probably generated in an 
ensialic island arc and may represent a peri-Gondwanan fragment drifted away to open the Rheic Ocean. 

The basement of the European Variscan Belt is composed of sever­
al early Paleozoic crustal fragments. The origin of these pieces has 
been attributed to tectonic processes that occurred along the north­
ern margin of Gondwana during its protracted geological history 
involving varied events, such as plate subduction, generation of mag­
matic arcs and rifting (Martfnez Catalan et al., 2009; Matte, 1991; Pin, 
1990). The study of the chemical and isotopic composition of igneous 
rocks in ancient orogens like the European Variscan Belt, where the 
original geological relationships are extremely reworked, is very 

useful in the reconstruction of paleotectonic environments. Specifi­
cally, cale-alkaline affinity rocks, which are mainly generated in ma­
ture magmatic arcs, can help us to determine the existence of an 
ensialic basement in these arcs. This ensialic basement makes possi­
ble the appearance of geochemically evolved plutonic rocks, as it 
occurs in the Izu-Bonin, Cuba or New Britain arc systems, which con­
tain volumetrically important tonalite and granodiorite batholiths 
(Kawate and Arima, 1998; Marchesi et al., 2007; Rojas-Agramonte 
et al., 2004; Woodhead et al., 1998). The study area is located in the 
northwestern region of the Iberian Massif, which preserves one of 
the best sections of the internal part of the European Variscan Belt, 
with several allochthonous complexes located in Galicia (Ordenes, 
Cabo Ortegal and the Malpica-Tui unit) and Portugal (Braganc;a and 
Morais). 
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In this work, we study the chemical and isotopic composition of 
the Corredoiras unit, which is part of the intermediate pressure 
upper units (Dlaz Garda et al., 1999b; GoIlZalez Cuadra, 2007). The 
metaigneous rocks that form part of the Corredoiras unit, include a 
varied range of rocks types, dominated by a granodiorite-granite as­
sociation, with small amounts of tonalite and gabbro. The study of 
these rock associations is important to gain insight into the linkage 
between plate tectonics and magmatism and to improve the knowl­
edge of the paleogeographic evolution of the European Variscan Belt. 

2. Geological setting 

The European Variscan Belt is a Devonian-Carboniferous orogen 
generated during the progressive collision between Gondwana and 
Laurussia, and the consequent closure of the Rheic Ocean (Martinez 
Catalan et al., 2009). The axial zone of the Variscan Belt is characterized 
by the presence of several allochthonous complexes constituted by exot­
ic terranes with ophiolites and high-P metamorphic rocks (Arenas et al., 
1986). These exotic terranes outline the intricate Pangea suture in 
Europe, which is rootless and it was transported within the allochtho­
nous complexes towards more external regions of the Variscan Belt In 
the NW Iberian Massif, five allochthonous complexes are preserved in 
late synforrnal structures: three of them outcropping in Galicia (Cabo 
Ortegal, Ordenes and the Malpica-Tui unit) and two in the Portuguese 
region of Tras-os-Montes (Bragan<;a and Morais complexes). The 
Ordenes Complex is the largest one (Fig. 1) and it is constituted by 
basal, ophiolitic and upper units (Martinez Catalan et al, 2002, 2007). 

In the Galician allochthonous complexes it is possible to distin­
guish several slices with different origins. These slices can be grouped 
in three sets of units named, from bottom to top: basal, ophiolitic and 
upper units (Martinez Catalan et al., 2002, 2007). These units con­
verged at the onset of the Variscan Orogeny, and thereafter, during 
their accretion and exhumation, they were dismembered and 
thinned, reaching their present configuration as a consequence of 
late orogenic processes of folding and faulting (Martinez Catalan et 
al., 2009). As the ophiolitic units are considered to represent a colli­
sional suture (Arenas et al., 2007a; sanchez Martinez et al., 2007a, 
2007b), the basal units are interpreted as the most external continen­
tal margin of Gondwana (Abati et al., 2010; Arenas et al., 1995, 1997; 
Martinez Catalan et al., 1996; Rodriguez et al., 2003), whereas the 
upper units represent exotic terranes with Gondwanan affinity. 
These upper units can be divided in two sets with contrasting pres­
sure and temperature conditions; on one hand, the high-pressure 
and high-temperature units (HP-HT), occupying the lower structural 
position and, on the other hand, the intermediate pressure units (IP) 
on top of the orogenic pile (Abati et al., 1999, 2003: Fernandez Suarez 
et al., 2007; Ordofiez Casado et al., 2001). 

There is a variety of felsic metaigneous rocks in the basal and the 
upper units and the study of their chemical and isotopic composition 
is essential to establish their tectonic setting. This knowledge will con­
tribute to the paleogeographic reconstruction of the different units rec­
ognized in the allochthonous complexes. For example, in the basal 
units, two igneous series with different age have been distinguished 
(Rodriguez Aller, 2005): an older series with cale-alkaline affinity 
(490-480 Ma; Abati et aI., 2010; Diez Fernandez et aI., 2011; Santos 
Zalduegui et al., 1995), and a younger series with alkaline-peralkaline 
composition (480-470 Ma; Diez Femandez et al., 2011: Monrero et al., 
2009; Rodriguez et al., 2007). This bimodal magmatism and its geo­
chemical characteristics point to a Cambro-Ordovician extensional ep­
isode in the most external margin of Gondwana that signals the origin 
of the Rheic Ocean (Abati et al., 2010; Oiez Fernandez et al., 2011; 
Martinez Catalan et al, 2009). 

In the upper units there is a wider diversity of igneous rocks, includ­
ing ultramafic, mafic and felsic types (Arenas et al., 2007b). The ages of 
magmatism vary between 520 and 500 Ma (Abati et al, 1999, 2007; 
Castifieiras et al., 2010; Fernandez Suarez et al., 2007; Ord6fiez 

Dsado, 1998; Santos et al., 2002). There are a few studies on the geo­
chemistry of the igneous rod{s in the HP-HT units (Galan and Marcos, 
1997; Gillbarguchi et al., 1990; Mendia Aranguren, 2000) and the 
mafic rocks in the IP units (Andonaegui et al., 2002); however, no geo­
chemical study has been carried out nowadays in the felsic rocks from 
the IP upper units. 

2.1. Units of the Ordenes Complex 

The basal units consist of metasediments alternating with granitic 
orthogneisses and metabasites. The sediments include phyllites, 
schists, metagraywakes and paragneisses. The metagranitoids have 
meta- to peraluminous character, and cale-alkaline, alkaline and per­
alkaline compositions (Abati et al., 2010; Diez Fernandez et al., 2011). 
The metabasites have tholeiitic composition and some of them may 
correspond to alkali basalts. The cale-alkaline orthogneisses are relat­
ed to a magmatic arc generated during subduction and they yield U­
Pb ages between 490 and 475 Ma (Abati et al., 2010; Diez Femandez 
et al., 2011; Santos Zalduegui et al., 1995). The bimodal, partially alka­
line magmatism reflects a rifting episode (Pin et al., 1992) active be­
tween 480 and 475 Ma (Diez Femandez et al., 2011; Montero et al., 
2009; Rooriguez et al., 2007), which probably resulted in the breaking 
and drifting away of a peri-Gondwanan terrane, and the opening of 
the Rheic Ocean (Diez Femandez et al., 2011; Martinez Catalan et 
al., 2009). The basal units are interpreted as fragments of the most ex­
ternal edge of the Gondwanan continental margin because they are 
not separated from the lower allochthon by ophiolites. 

The ophiolitic units crop out discontinuously underlying the upper 
units and they are composed of at least two different types of ophio­
lites (Arenas et al., 2007b). Those occupying the higher structural po­
sition represent the basal section of an ophiolite sequence, and their 
geochemistry indicates a supra-subduction character (Sanchez 
Martinez et al., 2007b). Zircon grains extracted from leucogabbros 
of this unit yield a concordant U-Pb age of 395 Ma (Dlaz Garda et 
al., 1999a; Pin et al., 2002). The structurally lower ophiolitic units 
consist of greenschist facies, voleanic and plutonic mafic rocks 
(greenstones) and metapelites, with rare felsic orthogneisses, serpen­
tinites, and cherts, all strongly sheared. These ophiolites are inter­
preted as remnants of an oceanic crust which has been related to 
the early opening of the Rheic Ocean, during Cambrian times 
(Arenas et aI., 2007c). 

The upper units occupy the core of the Ordenes Complex and they 
are composed of terrigenous metasediments, orthogneisses and 
metabasites (metagabbros, eclogites, mafic granulites and amphibo­
lites), with ultramafic rocks in the HP-HT upper units. The gabbros 
and orthogneisses yield U-Pb ages around 500 Ma, whereas detrital 
zircons in the metasediments indicate a maximum depositional age 
of 530-500 Ma for the uppermost greenschist facies metagraywackes 
(Fernandez Suarez et al., 2003; Fuenlabrada et al., 2010). The geo­
chemical signature of the igneous rocks in the HP-HT upper units 
has been compared to MORB and related to continental rifting (Cil 
Ibarguchi et al., 1990), whereas mafic rocks in the intermediate P 
upper units have arc tholeiitic affinities (Andonaegui et al., 2002; 
Castifieiras, 2005). 

The Corredoiras unit is one of the intermediate pressure upper 
units of the Ordenes Complex (Fig. 2). It crops out to the southwest 
of the Complex, occupying a lower structural position (Gonzalez 
Cuadra, 2007). This unit displays a heterogeneous deformation and 
distribution of metamorphism. Two burial and exhumation episodes 
can be deduced based on its structure, relative chronology and meta­
morphism, the first occurs in granulite facies conditions and the sec­
ond in amphibolite facies conditions (Gonzilez Cuadra, 2007). 
Available ages point out to an igneous protolith emplacement for 
this unit at 500 Ma, a first burial episode between 493 and 484 Ma, 
and a second episode with exhumation finished at 375 Ma (Abati et 
al., 1999; Dallmeyer et al., 1997). The Corredoiras Unit consists of 



metasediments and the metaigneous rocks of the Corredoiras massif. 
Metasediments are pelites (granulitic gneisses and schists) and grey­
wackes (paragneisses and migmatites). Metaigneous rocks derive 
from acid and intermediate intrusive bodies (granodioritic, tonalitic 
and amphibole-rich orthogneisses) and basic bodies (metagabbros 

ORDENES 

and amphibolites). They show a heterogeneous deformation, ranging 
from virtually undeformed and preserving their igneous texture to 
rocks with a strong mylonitic fabric. We have selected the less de­
formed samples for the geochemistry study, although some protomy­
lonitic rocks have also been analyzed. 
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Fig. 1. Terrane distribution in the allochthonous complexes of NW Iberia (GaJicia) and a WNW-ESE oriented general cross section. The map shows the synformal structure of the 
complexes where a rootless branch of the main suture of Pangea in Europe is exposed. The location of the geological map presented in Fig. 2 is also shown. 



3. Description of the Corredoiras orthogneisses and related rocks 

The Corredoiras metaigneous massif is mainly composed of a large 
body of orthogneisses. In detail, the following lithologies can be dis­
tinguished in the Corredoiras massif (Fig. 2): granodioritic orthog­
neiss, which constitutes the major part of the unit and it has been 
mapped in different color tones according to their deformation de­
gree; tonalitic orthogneiss, which crops out at a small area to the 
NW of the massif; amphibole-rich orthogneiss, which is very scarce 
and appears associated to the previous lithology; and small bodies 
of metagabbros scattered within the orthogneisses. The orthogneisses 
include centimeter to meter-scale metapelitic xenoliths of ellipsoidal 
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shape when they are not deformed. When deformed, they are thinner 
and develop boudinage textures. The undeformed xenoliths show 
granulite facies metamorphic conditions, with quartz, biotite and gar­
net. The deformed xenoliths are transformed into staurolite schists. 

The most abundant lithology in the Corredoiras massif is a hypi­
diomorphic granular coarse-grained granodiorite. Principal minerals 
are potassium feldspar and plagioclase phenocrysts, quartz and bio­
tite; minor minerals include garnet, apatite, ilmenite, rutile, zircon, 
titanite, monazite and tourmaline, the latter only present in unde­
formed or slightly deformed rocks. Muscovite, chlorite and epidote 
appear as secondary minerals. Most of the Corredoiras orthogneisses 
have a weak foliation or are isotropic, except in shear zones where 
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Fig. 2. Geological map of the Corredoiras massif and other important units in the eastern part of the 6rdenes Complex (Gonzalez Cuadra. 2007). 



the texture is gneissic grading to mylonitic or cataclastic. Plagioclase 
is present in two different textural situations: either as euhedral to 
subhedral lath lamellae twin phenocrysts with weak oscillatory zona­
tion, or as small myrmekite crystals surrounding potassium feldspar. 
Perthite microtextures are common in potassium feldspar pheno­
crysts, which also exhibit simple twinning and include small plagio­
clase crystals. Garnet is anhedral and free of inclusions. Deformation 
in these rocks is accompanied by grain size reduction and mineral 
stretching (Gonzalez Cuadra, 2007). Quartz is deformed and recrys­
tallized forming irregular aggregates with biotite, making the rock 
look darker and apparently richer in biotite. Potassium feldspar, pla­
gioclase and garnet preserve its initial aspect, and develop a micro­
scopically incipient foliation. When the deformation increases these 
minerals are finally broken and recrystallized, in parallel bands with 
grain size reduction and developing a gneissic compositional layering. 

Tonalitic orthogneisses are medium grained, granular and hypi­
diomorfic. They are composed of quartz, plagioclase, potassium feld­
spar, biotite, garnet and, in some samples, hornblende. Subordinate 
minerals are apatite, zircon, ilmenite, titanite and monazite. These 
orthogneisses have mainly tonalitic to granodioritic composition, 
but rare monzogranitic types can also be found. Their texture consists 
of a plagioclase and potassium feldspar network with intergranular 
quartz. Their petrographic features are similar to those of the grano­
dioritic orthogneisses. When amphibole is present, it forms inter­
growth aggregates with biotite. Garnet may exhibit opaque and 
quartz inclusions. Deformed types develop a biotite lepidoblastic tex­
ture with elongated quartz-feldspar aggregates and an intense grain 
size reduction. 

Macroscopic and microscopic enclaves have been found in both 
types of orthogneisses, formed by biotite, quartz, plagioclase and 
muscovite. The micas of the enclaves are quite different to the host 
rock ones, biotite is greenish and has fewer accessory minerals in­
cluded, and muscovite is more birefringent. Less common minerals 
are hornblende, garnet, tourmaline, titanite and epidote. 

Amphibole-rich orthogneisses appear as boudins within the tona­
litic orthogneisses, ranging in size from decimeters to meters. They 
are composed of hornblende, garnet, plagioclase, potassium feldspar 
and quartz. Accessory minerals are ilmenite, zircon and titanite. Chlo­
rite, epidote and zoisite appear as secondary minerals. They exhibit 
nematoblastic texture with medium grain size and a strong orienta­
tion of hornblende and plagioclase-quartz aggregates defining a com­
positional layering. Plagioclase, quartz and potassium feldspar appear 
as more or less equigranular aggregates. Potassium feldspar has thin 
perthites, whereas plagioclase can appear either as medium sized 
crystals with lamellar twinning or as small crystals with myrmekite 
texture around potassium feldspar. Garnet forms small aggregates, 
usually inclusion-free, but in some samples there is a core with 
micro folded opaque inclusions and a rim without inclusions. 

The metagabbros are found as dispersed bodies within the orthog­
neisses. The field relationships between both rocks are not clear; nev­
ertheless, some gabbroic bodies contain small amounts of quartz and 
potassium feldspar, suggesting some mechanical contamination with 
the granodiorites. For that reason, we interpret that the metagabbros 
probably intruded the orthogneisses when they were still unconsoli­
dated, generating contaminated lithologies. An additional evidence 
for mechanical contamination is a tonalitic orthogneiss outcrop, 
where an area with abundant metagabbro enclaves shows a possible 
magma mingling process between both lithologies. All these observa­
tions suggest that all the different metaigneous lithologies involved in 
the Corredoiras Unit are coeval, and they intruded at virtually the 
same time. Some metagabbros preserve a granular or intergranular 
to subophitic igneous texture, with medium to coarse grain size, 
moreover this igneous texture can be recognized because plagioclase 
crystals are hypidiomorfic with polysynthetic twinning and weak 
optic zoning, and pyroxene crystals are large (up to 8 mm) and 
exhibit a subophitic texture. They are composed of plagioclase, 

orthopyroxene, clinopyroxene and sporadic olivine, whereas subordi­
nate minerals are biotite, ilmenite, and apatite, allowing a more pre­
cise classification as metagabbronorites. Amphibole and garnet can 
develop depending on the metamorphic conditions. Secondary min­
erals are chlorite, epidote and actinolite-tremolite. The pyroxenes 
are always intergranular with exsolution lamellae, and olivine 
shows pyroxene-amphibole symplectitic rims. 

Quartz appears as small interstitial crystals and as bigger xeno­
crysts in the contaminated metagabbronorites. 

4. Geochemistry 

4.1. Analytical methods 

Forty-nine samples (> 5 kg each) of the different lithologies of the 
Corredoiras massif selected from the best-preserved outcrops were 
analyzed for whole rock geochemistry (major, minor and trace ele­
ments). Among them there are twenty-nine granodioritic orthogneiss 
samples, nine tonalitic orthogneisses, two amphibole-rich orthog­
neisses and nine metagabbronorites. Taking into account their defor­
mation features, the granodioritic orthogneisses can be divided into 
undeformed (13 samples), weakly foliated (9 samples) and foliated/ 
protomylonitic (7 samples). 

The samples were crushed with a steel jaw crusher and powdered 
to 200 mesh grain size in an agate mill at the laboratories of the Uni­
versidad Complutense de Madrid, and the subsequent chemical ana­
lyses were carried out at the Activation Laboratories Ltd. (Actlabs) 
in Canada using the procedure 4Lithoresearch. The digestion proce­
dure was lithium metaborate/tetraborate fusion, and the analytical 
technique used to measure elemental concentrations was inductively 
coupled plasma mass spectrometry (ICP-MS). 

U-Th-Pb analyses of zircon were conducted at the Bay SHRIMP­
RG (co-owned between the U.S. Geological Survey and the Stanford 
University) during one analytical session in October 2005. Zircon sep­
aration was carried out at the Universidad Complutense (Madrid) fol­
lowing standard techniques, including crushing, pulverizing, sieving, 
Wilfley table, magnetic separator and methylene iodide. Zircons 
were handpicked under a binocular microscope and representative 
grains were chosen in accordance with their size, length-to-breadth 
ratio, roundness, color, and other salient morphological features. 
They were mounted on a double-sided adhesive on glass slides in 
1 x 6 mm parallel rows together with some chips of zircon standard 
R33 (Black et al., 2004). After being set in epoxy resin, the zircon 
grains were ground down to expose their central portions. Internal 
structure, inclusions, fractures and physical defects were identified 
with transmitted and reflected light on a petrographic microscope, 
and with cathodoluminescence on a jEOL 5800LV electron micro­
scope (housed at USGS-Denver). 

Secondary ions generated from the target spot with an 02- pri­
mary ion beam varying from 4 to 6 nA. The primary ion beam pro­
duced a spot with a diameter of -30 J.UTI and a depth of 1-2 J.UTI for 
an analysis time of 8-10 min. Five scans were collected, and the 
counting time for 206Pb was increased according to the Pal eo zoic 
age of the sample to improve counting statistics and precision of 
the 206PbP38U age. Concentration data for zircon are standardized 
against zircon standard CZ3 (550 ppm U, Pidgeon et al., 1995), and 
isotope ratios were calibrated against R33 czo6*Pb/238U = 0.06716, 
equivalent to an age of 419 Ma, Black et al., 2004) which were ana­
lyzed repeatedly throughout the duration of the analytical session. 

Data reduction follows the methods described by Ireland and 
Williams (2003) and Williams (1998), and SQUID (version 1.08) 
and ISOPLOT (version 3.00) software (Ludwig, 2002, 2003) were 
used. The Pb composition used for initial Pb corrections was 204Pb/ 
206Pb = 0.0554, 207PbP06Pb = 0.864 and 208PbP06Pb = 2.097, calcu­
lated by SQUID using the Stacey and Kramers (1975) model. 



Twelve samples were selected for Sm-Nd and Rb-Sr geochemis­
try, five granodioritic orthogneisses, four tonalitic orthogneisses and 
three metagabbronorites. The analyses were carried out at the U.S. 
Geological Survey (Denver), following the analytical procedures de­
scribed in Premo and Loucks (20(0). Whole rock powders were dis­
solved in 7 ml PFA teflon vials with ultrapure concentrated HF 
+ HN03, and then spiked with a dilute mixed tracer of 84Sr_87Rb 
and 150Nd_149Sm. The effluent was then passed through a large 
(30 ml resin-volume) column with AG50W-X8 cation exchange 
resin, separating Rb, Sr, and REE. Srn was separated from Nd using 
AG50W-X8 cation exchange resin and alpha-hydroxyisobutyric acid 
method of Lugmair et aL (1975), and then they were both loaded 
with dilute H3P04 acid onto tantalum filaments in triple filament 
mode and run on a mUlti-sample VG lsomass 54R mass spectrometer. 

Table 1 
Major and trace element average composition of Corredoiras metaigneous rocks. 

4.2. Major and trace element geochemistry 

4.2.1. Major element composition 
Average values of the results for major oxides and trace element 

analyses of the Corredoiras massif are listed in Table 1, (the complete 
dataset is provided in the Supplemental data Table Al). Granodioritic 
orthogneisses are felsic rocks, with SiOz wt.% varying from 66.6 to 
75.1 (average 69.8). The compositional ranges for the rest of the 
major elements vary between 15.7 and 13.9 for Ab03, 6.2-1.5 for 
Fez03T, 1.4-0.3 for MgO, 3.5-1.2 for CaO, 3.5-2.5 for NazO and 4.9-
2.2 for KzO. Tonalitic orthogneisses range from intermediate to felsic 
compositions (58.1-73.7 SiOz wt.%) with an average composition of 
64.9 and they have higher contents in Ab03, FeZ03 T, MgO, CaO and 
NazO than the granodioritic orthogneisses (16.1-13.4, 9.6-2.4, 2.4-

Sample Granodioritic orthogneisses Tonalitic orthg. Metagabbros Amphibole orthg. 

(n=2) 

Si02 
Ti02 
Ah03 
Fe203T 
MnO 
MgO 
(,0 
Na20 
K,O 
P20S 
LOI 
Total 
#Mg 
ACKN 

B, 
Rb 
S, 
T, 
Nb 
Hr 
Z, 
Y 
Th 
U 
( , 
Ni 
V 
Pb 
Zn 
Th/Ta 
Th,Nb 

La 
(e 
p, 
Nd 
Sm 
Eu 
Gd 
Tb 
Dy 
Hu 
E, 
Tm 
Yb 
Lu 
L REE 
(Ll/yb)N 

Undeformed 
(n=13) 

70.53 
0.50 

14.55 
3.30 
0.05 
0.78 
2.25 
3.13 
3.32 
0.22 
0.88 

99.51 
0.18 
1.13 

1204 
84 
183 
0.66 
9.80 
5.89 
224 
49 
15.13 
1.88 
55 
19 
38 
34 
47 
22.92 
3.38 

41.31 
86.54 
10.55 
41.19 

9.47 
1.50 
9.36 
1.59 
8.81 
1.70 
4.99 
0.74 
4.47 
0.63 

222.50 
6.18 

#Mg = (Mg+2j[Mg+ 2+ Fe+2 TD. 

Foliated 
(n=9) 

69.13 
0.55 

14.90 
3.71 
0.06 
0.89 
2.28 
3.17 
3.29 
0.21 
1.11 

99.30 
0.16 
1.15 

1250 
85 
187 
0.77 
10.90 
6.84 
270 
55 
16.39 
2.20 
54 
19 
44 
33 
53 
21.29 
3.33 

46.71 
94.49 
11.95 
46.71 
10.26 

1.56 
1.026 
1.75 
9.79 
1.92 
5.60 
0.82 
4.92 
0.69 

246.56 
6.35 

Protomylonitic 
(n=7) 

69.69 
0.63 

14.00 
4.13 
0.07 
0.85 
2.36 
3.04 
3.58 
0.23 
0.82 

99.40 
0.15 
1.06 

1297 
93 
161 
0.82 
12.50 
9.16 
301 
69 
21.46 
2.13 
64 
19 
45 
38 
50 
26.17 
3.09 

57.77 
124.01 

14.49 
55.44 
12.49 

1.70 
12.22 

2.08 
11.96 

2.46 
7.38 
1.12 
6.94 
0.99 

310.70 
5.57 

(n=9) 

64.86 
0.83 

14.94 
6.61 
0.11 
1.30 
2.54 
3.70 
3.12 
0.30 
0.82 

99.13 
0.16 
1.06 

593 
103 
153 
1.08 
14.60 
9.38 
355 
46 
9.86 
2.72 
69 
20 
73 
26 
101 
9.13 
2.09 

29.20 
75.68 

8.20 
33.11 

7.80 
1.73 
8.05 
1.37 
7.67 
1.54 
4.67 
0.74 
4.71 
0.69 

183.73 
4.15 

Uncontaminated 
(n=6) 

47.83 
0.84 

17.65 
8.80 
0.13 

10.29 
9.10 
2.36 
0.24 
0.10 
2.23 

99.58 
0.48 
0.85 

100.83 
6 
208 
0.19 
3.30 
1.98 
78 
16 
0.94 
0.11 
418 
157 
129 
4 
72 
5.59 
0.57 

7.17 
15.32 

2.09 
9.28 
2.49 
1.03 
2.94 
0.48 
2.82 
0.57 
1.70 
0.25 
1.64 
0.24 

48.02 
2.98 

Contaminated 
(n=3) 

51.69 
1.32 

15.62 
9.87 
0.15 
7.21 
8.63 
2.79 
0.73 
0.15 
1.72 

99.88 
0.37 
0.74 

317 
14 
174 
0.38 
6.50 
4.33 
167 
33 
6.08 
0.43 
350 
83 
204 
11 
90 
16.03 
1.82 

20.57 
44.20 

5.54 
23.33 

5.70 
1.40 
6.24 
1.03 
5.93 
1.18 
3.48 
0.53 
3.33 
0.49 

122.97 
4.11 

71.54 
0.69 

12.37 
4.53 
0.06 
0.80 
5.15 
3.03 
0.19 
0.20 
1.07 

99.63 
0.15 
0.85 

45.50 
4 
509 
0.77 
10.20 
6.25 
249 
29 
6.27 
1.72 
75 
19 
73 
4 
40 
8.14 
2.46 

25.42 
52.35 

6.84 
26.70 

6.15 
1.33 
5.99 
1.04 
5.40 
1.03 
2.81 
0.41 
2.54 
0.36 

137.33 
6.69 



0.4, 4.4-0.9, 4.0-3.4, respectively) and similar content in K20 (4.1-
1.9). Na20 concentration is relatively high (:::::3 wt.%), which is char­
acteristic of I-type granites (Hine et al., 1978), even though the K20j 
Na20 ratios are near 1, typical of cale-alkaline rocks. 

The two amphibole-rich orthogneisses samples are felsic in com­
position (66.8-76.3), with similar MgO and CaO contents (0.9-0.7 
and 0.18-0.19, respectively) and different composition for the rest 
of the major elements, so sample 107939 has higher Ab03, Fe203 T 
and Na20 contents and lower CaO than sample 107940. 

The Si02 wt% from metagabbronorites varies from 45.6 to 52.5, as 
corresponds to basic rocks. As mentioned above, some metagabbronor­
ites seem contaminated by interaction with the felsic magmas, which is 
also supported by the chemistry: compared to the uncontaminated 
metagabbronorites, the contaminated ones are enriched in Si02 (aver­
age 51.7 wt.% compared to 47.8 wt.%), Na20 (2.8 compared to 2.4) and 
K20 (0.7 compared to 0.2), whereas they are depleted in Fe203T (9.5 

Feat 

MgO 

against 9.8), MgO (7.2 against 10.3), CaD (8.5 against 9.1) and Al2D, 
(15.6 against 17.7). 

All of the Corredoiras rocks show systematic trends of decreasing 
Ab03, Fe203 T, MgO, Ti02 and P20S with increasing Si02. MgO content 
in orthogneisses is low, with #Mg (#Mg= (Mg+2 j[Mg+2 + Fe+2 T])) 
ranging from 0.17 to 0.09, decreasing with increasing Si02. The meta­
gabbronorites show higher #Mg from 0.53 to 0.38, but these are rela­
tively low for basic rocks, meaning that they do not represent primary 
magmas. These basic rocks are probably equivalent to the Monte 
Castelo gabbros, a huge gabbroic massif outcropping in the western 
part of the intermediate pressure upper units (Andonaegui et al., 2002). 

In an AFM diagram, (Fig. 3a, Irvine and Baragar, 1971) the orthog­
neisses define a cale-alkaline suite, whereas the metagabbronorites 
plot in the tholeiitic field close to the line dividing both fields. In 
order to precisely determine the magmatic series of the metagabbro­
norites, we have used the Th vs. Co diagram (Fig. 3b, Hastie et al., 
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rocks of the Corredoiras massif. 



2007), where island arc tholeiites can be discriminated from the calc­
alkaline series. The uncontaminated metagabbronorites plot in the 
field of the (ale-alkaline basalts, whereas the contaminated ones are 
detached from them, plotting in the field of high-potassium basalts. 
The orthogneisses also plot in the field of high-potassium rocks. 

In the Peccerillo and Taylor (1976) diagram (Fig. 3c), the orthog­
neisses define a high-potassium (ale-alkaline suite, whereas the 
metagabbros plot in the low-potassium field, except for the contami­
nated gabbros that plot in the medium-potassium field. Amphibole­
rich orthogneisses are depleted in potassium and plot in the low­
potassium field accordingly. 

In the Na20 + K20-CaO vs. Si02 diagram (Fig. 3d, Frost et al., 2001) 
the granodioritic orthogneisses plot in the field of the calc-alkalic 
series, whereas the tonalitic orthogneisses plot in the field of the 
alkalic-calcic series, owning to their higher CaO content. 

The NCKN ratios (molecular Alz03/[CaO + Na20 + K20]) range be­
tween 1.09 and 1.38 in the granodioritic orthogneisses and from 1.01 
to 1.09 in the tonalitic orthogneisses, indicating a transitional charac­
ter between low peraluminous to peraluminous. The lower NCKN 
values in the tonalitic orthogneisses suggest a more basic precursor. 
Furthermore, the tonalitic orthogneisses show a marked negative 
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correlation in P20S with increasing silica, a diagnostic feature of 
I-type granites when apatite reaches saturation in less peraluminous 
magmas (Chappell, 1999). Both metagabbronorites and amphibole­
rich orthogneisses are metaluminous. 

4.2.2. Trace element composition 
Average values of trace elements are listed in Table 1. All orthog­

neisses show enrichment in incompatible elements (Rb, Ba, K, Th, U), 
with some differences between them. The granodioritic orthogneisses 
are more enriched in Ba (1550-734 ppm) and Th (26.9-8.39 ppm) than 
the tonalitic orthogneisses (Ba 785-326 ppm; Th 4.92-11.2 ppm); they 
have the opposite behavior regarding Rb, the tonalitic orthogneisses 
have slightly higher average values (103 ppm) than the granodioritic 
orthogneisses (87 ppm). The metagabbronorites are less enriched in in­
compatible elements than the orthogneisses, but again there are differ­
ences between contaminated and uncontaminated metagabbronorites; 
the former are richer in incompatible elements (Ba: 317 ppm, Rb: 
14 ppm, Th: 6.1 ppm and U: OAppm, average values) than the latter 
(100.9 ppm, 6 ppm, 0.9 ppm, and 0.1 ppm, respectively). Finally, the 
amphibole-rich orthogneisses have the lowest contents in incompatible 
elements. 
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Fig. 5. Ba/fh-Th diagram (Munker et ai., 2004) showing that partial melting of sedi­
ments had a clear influence on the generation of part of the metaigneous rocks includ­
ed in the Corredoiras massif. 

On primitive mantle normalized diagrams, samples display mod­
erate to strong depletion in Nb, Ta, Sr, P and Ti, a typical feature of 
subduction-related magmatic rocks (Brown et al., 1984; Rogers and 
Hawkesworth, 1989). The tonalitic orthogneisses have higher values 

in Nb (average of 14.6 ppm) and Ta (average of1.1 pp m) with respect 
to the granodioritic orthogneisses (Nb: 11.1 ppm, Ta: 0.8 ppm, aver­
age values). Strontium is slightly higher in the granodioritic orthog­
neisses (177 ppm average) than in the tonalitic orthogneisses 
(103 ppm average). The uncontaminated metagabbros have the low­
est values in Nb and Ta (3.3 and 0.2 ppm, respectively), and they are 
slightly enriched in Sr (208 ppm), while the contaminated metagab­
bros have somewhat higher Nb (6.5 pp m) and Ta (0.4 ppm) and 
lower contents in Sr (174 ppm). Finally, the amphibole-rich orthog­
neisses have the highest contents in Sr (509 ppm), probably because 
they are richer in plagioclase. These rocks have Nb and Ta values sim­
ilar to those of the other orthogneisses (Nb: 10.2 ppm, Ta: 0.8 ppm). 

The orthogneisses also have high Th/Ta ratios (16.2-31.8 for the 
granodiorites, and 4.4-10.4 for the tonalites), which is typical of 
subduction-related magmas (Gorton and Schandl, 2000; Rogers and 
Hawkesworth, 1989). 

The granodioritic orthogneisses have total rare earth element 
(REE) contents ranging between 120 and 425 ppm, and show a nega­
tive correlation with the increase in SiOz. The REE concentrations are 
10 to 250 times chondritic abundances (Nakamura, 1974), and show 
fractionated chondrite-normalized patterns [(LajYb)N = 2.9-10.7] 
(Fig . .  4a), typical of cale-alkaline rocks. The light rare earth elements 
(LREEs) [(La/Srn)N = 2.5-3.1 [ are fractionated compared to the heavy 
rare earth elements (HREEs) which exhibit a flatter pattern [(Gdj 
Vb)N = 0.9-2.7] with negative Eu anomalies ranging from moderate 

Ag. 6. cathodoluminescence images for selected zircons from the analyzed sample of orthogneiss. 
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to pronounced ((Eu/Eu*) = 0.3-0.7). The tonalitic orthogneisses have 
lower total REE contents (125-225 ppm), with less variation than the 
granodioritic orthogneisses, and they also show a negative correlation 
with the increase in silica content. They have concentrations between 
15 and 130 times the chondritic abundances. Their chondrite­
normalized pattern (Fig . .  4b) is parallel to those of the previous sam­
ples, although it is less fractionated [(LajYb)N = 2.5-7.1] than in the 
granodioritic orthogneisses. The Eu anomalies are similar in both li­
thologies (Eu/Eu* =0.4-0.9). 

The two amphibole-rich orthogneisses samples have total REE 
contents lower than the previous orthogneisses (90-190 ppm), with 
concentrations between 10 and 105 times the chondritic abundances 
(Fig . .  4c). Their fractionation is similar to the other orthogneisses 
[(La/Yb)N= 5.7-7.3] and they also have negative Eu anomalies (Eu/ 
Eu' = 0.6-0.8). 

The metagabbronorites have the lowest total contents in REE 
(150-40 ppm), the highest values corresponding to contaminated 
metagabbronorites. The concentrations range between 14.9 and 
31.6 ppm (20 to 5 times chondritic values) for the uncontaminated 
metagabbros, and between 52.S and 77.2 ppm (SO to 12 times chon­
dritic values) for the contaminated metagabbros. The latter show 
higher fractionation [(LajYb )N= 3.8-4.1 [ than the former [(La/ 
Yb)N= 1.7-4.0] (Fig . .  4d). In both cases, the fractionation in HREE is 

Table 2 
Nd and Sr isotopic data of Corredoiras orthogneisses. 

similar [(GdjYb)N= 1.4-1.5]. The contaminated metagabbros have 
negative Eu anomalies (Eu/Eu* = 0.7-0.S), whereas the uncontami­
nated metagabbros have positive Eu anomalies (Eu/Eu* = 1.1-2.3). 

The Corredoiras metaigneous rocks exhibit an enrichment in large 
ion lithophile elements (LILE) and light rare earth elements (LREE) 
relative to high field strength elements (HFSE), resulting in a high 
LILE/HFSE ratio. These geochemical features are the most characteris­
tic of magmas related with subduction zones (Davidson, 1996; 
Tatsumi and Eggins, 1995). The depletion in HFSE is the consequence 
of mass flux processes from the subducting plate to the sub-arc man­
tle. Typically there is a preferential mobilization of LItE in hydrous 
fluids from the down-going slab; however, these elements are also 
concentrated in the continental crust and can be indicative of crustal 
contamination of magmas. 

Nonetheless, there are some geochemical tracers to evaluate if the 
LILE enrichment is either a consequence of fluid mobilization or a re­
sult of sediment melting or crustal contamination (Hawkesworth et 
al., 1997; Miinker et al., 2004), for example Ba/Th vs. Th. The rationale 
behind this diagram is that magmas generated in an intra-oceanic 
supra-subduction zone derive from the partial melting of the mantle 
wedge enriched by slab fluids (Miinker et al., 2004) so they have 
low concentration in Th and high Ba/Th ratio; on the other hand, if 
the enrichment is due to sediment melting or contamination in conti­
nental crust shallow levels, magmas will have high Th concentrations 
and low Ba/Th ratio. In this diagram (Fig. 5), the Corredoiras metaig­
neous rocks show low Ba/Th ratio and high Th contents, defining a 
path that indicates a connection with sediment or continental crust 
melting. In the case under discussion, we favor continental crust 
melting. This feature is also evident in the contaminated gabbros as 
they are richer in Th and more depleted in Ba/Th ratio than the 
uncontaminated gabbros. 

Other ratios in the Corredoiras metaigneous rocks that support the 
influence of the continental crust in their origin are low U/Th, and 
high Th/Ce and Th/Ta ratios. Specifically, both the granodioritic 
orthogneisses and the contaminated metagabbronorites show high 
Th/Ta ratios, the latter with an average value of 16.03. This high 
value contrasts with the values obtained in the uncontaminated 
metagabbronorites (average 5.5S). High Th/Ta values clearly point 
out to an influence of subducted sediments or an interaction with 
continental crust. The tonalitic orthogneisses show Th/Ta ratios 
slightly higher (average 9.13) than the uncontaminated metagabbro­
norites, indicating an origin from more primitive liquids than the 
granodioritic orthogneiss with little interaction with continental 

Sample Age (T) Srn Nd 147Sm/44Nd 143Nd/MNd ENd at T T� Rb S< 87Rbj87Sr 87Srj8"5r 87Srj86Sr 
(Ma) (ppm) (ppm) (Ma) (ppm) (ppm) (at T) 

Granodiorite orthogneiss 
107890 492 4.63 20.27 0.13789 0.512294 -2.98 1484 96 156 1.782 0.719774 0.707075 
107891 492 5.94 25.43 0.14103 0.512274 -3.57 1578 96 157 1.771 0.719517 0.706899 
107899" 492 8.76 41.55 0.12728 0.512241 -3.34 1403 61 227 0.778 0.713232 0.707690 
107908 492 9.26 44.31 0.12623 0.512298 -2.17 1297 62 230 0.780 0.713615 0.708055 
107928 492 10.24 46.89 0.13187 0.512277 -2.93 1413 83 172 1.397 0.717186 0.707230 

Tonalite orthogneiss 
107930 492 8.l1 34.11 0.14352 0.512546 1.59 1103 66 149 0.849 0.710523 0.704475 
107931 492 5.58 22.74 0.14832 0.512597 2.28 1069 149 56 7.733 0.755395 0.700296 
107934 492 6.48 29.76 0.13139 0.512550 2.43 949 108 147 2.203 0.718899 0.703205 
107937 492 7.28 31.80 0.13818 0.512541 1.83 1042 91 183 1.439 0.714712 0.704455 

Metagabbros 
107898 492 2.31 8.89 0.15670 0.512560 1.04 1291 3 150 0.058 0.705182 0.704770 
107913 492 4.l1 17.13 0.14504 0.512436 -0.65 1341 12 162 0.214 0.706684 0.705157 
107925 492 1.87 7.44 0.15152 0.512575 1.83 1165 9 196 0.133 0.705082 0.704136 

• Zircon sample. 



crust materials (Hawkesworth et al., 1997). Furthermore, the meta­
gabbronorites show high ThjYb ratios (> 1 for contaminated and <1 
for uncontaminated) which are displaced from the MORB-OIB array 
(Pearce, 2008), suggesting either an upper crustal interaction or an 
interaction with a mantle lithosphere containing an inherited sub­
duction component. 

5. SHRIMP U-Pb geochronology 

5.1. Sample description 

One undeformed granodiorite (sample 107899) was selected for 
geochronological characterization by U-Pb SHRIMP in zircon to con­
firm the crystallization age of the protolith, previously dated by 
Abati et al. (1999), and to investigate zircon inheritance. Morpholog­
ically, the studied sample contains two zircon populations (Fig. 6), 
one with high breadth-to-length ratio and rounded edges, and other 
with acicular shape and idiomorphic habit. Under cathodolumines­
cence (CL), it is possible to distinguish three different zones. At the 
central areas, there are discontinuous zones which are interpreted 
as inherited xenocrystic cores. Generally, these cores are mantled by 
subsequent zircon growth episodes, which developed oscillatory 
zones, characteristic of igneous zircon. Finally, the oscillatory zones 
might be cut by a discontinuous non-luminescent rim with homoge­
neous zoning. Acicular zircon grains can be inherited, but they usually 
lack xenocrystic cores. 

5.2. Results 

Forty-eight analyses were performed on 38 zircon grains. The 
whole set of analytical data is in Supplemental data Table A2. Seven­
teen analyses yielded ages older than 1000 Ma (reported as 204Pb_ 
corrected 207Pbpo6Pb) and after rejecting seven discordant analyses, 
two distinct populations can be distinguished at -2.1 and -2.5 Ga. 
Ages younger than 1000 Ma (reported as 207Pb-corrected 206Pbj 
238U) vary between 450 and 600 Ma, with an acme at -490 Ma, and 
their uncorrected radiogenic compositions are plotted in a Tera­
Wasserburg diagram (Fig. 7). 

After calculating the median age of the young data and pooling the 
most concordant ages around the median value, we obtain a concor­
dia age (sensu Ludwig, 1998) of 492.3±2.7 Ma (Fig. 7). Taking into 
account this result together with the CL images, we interpret that 
this date represents the crystallization age of the granodioritic proto­
litho Younger ages can be the result of a subsequent metamorphic 
event or lead loss occurred in the magmatic zircon, whereas slightly 
older ages can be interpreted as Pan-African inheritance (see Abati 
et al., 1999, 2007). Other less abundant inherited components include 
Paleoproterozoic (between 2.0 and 2.1 Ga) and Neoarchean (around 
2.6 Ga). 

6. Sm-Nd and Rb-Sr geochemistry 

The results are in Table 2. The granodioritic orthogneisses have slight­
ly lower 143Ndjl44Nd values (0.512241-0.512298) than the tonalitic 
orthogneiss (0.512541-0.512597) or the metagabbros (0.512436-
0.512575). ENd values have been calculated using the crystallization 
age obtained in sample 107899 by SHRIMP (492 Ma). Initial 87Srj86Srver_ 
sus ENd(492 Ma) values are plotted in Fig. 8, and a clear difference can be 
established between the felsic and the intermediate to basic Corredoiras 
rocks. On one hand, the granodioritic orthogneiss samples cluster arOlllld 
negative ENd(492 Ma) values (-2.2 to -3.6) and high (87Srj86Sr)i ra­
tios (0.707 to 0.708). On the other hand, tonalitic orthogneisses and 
metagabbronorites have positive ENd(492 Ma) values (1.0 to 2.4) and low 
(87Srl6Sr)j ratios (0.703 to 0.705). Additionally, two samples from this 
group are anomalous, a tonalitic orthogneiss (sample 107931) that has 
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the lowest (87Srj86Sr)j ratio, which probably reflects isotopic distur­
bance during metamorphism, and contaminated metagabbronorite 
(sample 107913) that has slightly negative ENd(492 Ma) value and higher 
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(87Srj86Sr)i ratio, owing to austal contamination during its generation. 
The relatively high values in Sri and negative values in ENd of the grano­
dioritic orthogneisses suggest that these rocks have a clear crustal influ­
ence in their generation, in contrast to the tonalitic orthogneisses and 
lll1contaminated metagabbronorites, where the influence of a crustal 
component is negligible and their origin can be related to basic magmas 
extracted from the mantle or from a basic lower continental crust 

In Fig. 8 we have also included the pattern followed by the Andean 
batholiths, studied by Rogers and Hawkesworth (1989) and the 
Lachlan Fold Belt batholiths (I-type) studied by McCulloch and 
Chappell (1982). It is evident that the Corredoiras metaigneous 
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rocks are very similar to Andean batholiths, strengthening the hy­
pothesis that these rocks were generated in a subduction zone 
where continental crust already existed. 

Calculated depleted mantle model ages (TDM, see Table 2 and 
Fig. 9a; DePaolo, 1981) for the granodioritic orthogneisses range be­
tween 1300 and 1600 Ma, whereas tonalitic orthogneisses and meta­
gabbros have slightly younger model ages (1000-1300 Ma). The 
absence of inherited zircon with these ages (Fig. 9b), the presence 
of older inherited zircon and the varied litho logical constitution of 
the Corredoiras massif (basic to felsic rocks) suggest that the Nd 
model ages represent a mixture between juvenile material and 
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melting of an old crust. The older model ages of the granodioritic 

orthogneisses would indicate a higher proportion of old crustal com­

ponents in the mixture, whereas more juvenile material would be 

necessary to explain the younger model ages of the tonalites and 

gabbros. 

7. Tectonic setting 

Calc-alkaline volcanic and plutonic rocks have long been recog­

nized as the products of arc magmatism occurring at convergent 

plate boundaries. The plutonic roots of those arc systems are often ex­

posed in old terranes, generally following collision/accretion, uplift 

and erosional events. To determine the tectonic setting of the Corre­

doiras massif, we have used standard discrimination diagrams for 

granitoids, i.e., Y + Nb vs. Rb, Y vs Nb (Pearce et al., 1984) and Rb/ 

30-Hf-Ta 30 (Harris et aI., 1986). In the Y + Nb vs. Rb and Yvs. Nb di­

agrams (Fig. l Oa and b, respectively), the Corredoiras felsic and inter­

mediate rocks plot in the volcanic arc granites field (VAG) close to the 

ocean ridge granites (ORG) or the within plate granites (WPG). 

The Rb/30-Hf-Ta 30 diagram better discriminates the tectonic set­

ting for these rocks (Fig. 1 0c); all of the felsic and intermediate 

metaigneous rocks plot in the volcanic arc granites field. We have 

also plotted all the Corredoiras rocks in the Hf/3-Th-Ta diagram 

(Wood, 1980) (Fig. 1 0d), which allows an accurate discrimination of 
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subduction related rocks. Most of the samples plot in the volcanic 

arc field with calc-alkaline affinity (Hf;Th<3), except for three 

gabbros that have tholeiitic affinity (Hf;Th>3). 

In the ZrjY vs. Zr diagram (Pearce, 1983), the metagabbronorites 

plot in the continental island arc field (Fig. l l a). In the (La/Sm)N vs. 

ZrjY diagram (Fig. 1 1  b), where the La/Srn ratio is normalized to prim­

itive mantle (Bolhar et al., 2003), all of the Corredoiras metagabbro­

norites plot as crustally contaminated rocks, which is consistent 

with their low MgO and Cr content and relatively high NazO and 
KzO contents. 

Trace element abundances for each group ofCorredoiras samples can 

be normalized to the average composition of rocks from a specific geo­

dynamic setting to determine more accurately their origin. We have 

used the average ORG composition from Pearce et al. (1984) for all the 

orthogneisses, whereas the basic rocks have been normalized to the N­

MORE composition (Pearce, 1996). All orthogneisses are characterized 

by a highly fractionated trace element pattern (Fig. 1 2), with a strong 

enrichment in Th and slightly enriched in Ce and Hf compared to ORG. 

They display significant negative anomalies in Ta, Nb and Zr, which to­

gether with their low contents in Y and Vb are characteristic of granit­

oids generated in volcanic arc or subduction zones. The amphibole­

rich orthogneisses also have negative anomalies in Ta and Nb and the 

same low content in Vb. Comparing our samples with the average an­

desite-dacite-rhyolite assodation from island and continental arcs 

according to Drummond et al. (1996), the granodioritic and tonalitic 

orthogneiss patterns are similar to the continental arc association 

(Fig. 1 2d), even though the Corredoiras orthogneisses are slightly 

enriched in most of the elements. Amphibole-rich orthogneisses plot be­

tween the island and continental arc patterns. In a similar diagram, the 

metagabbros pattern (Fig. 1 3) resembles continental arc basalts with 

high K (Pearce, 1 996). They also show a slight enrichment in Th, more 

pronounced in the contaminated gabbros. All the metagabbros have a 

negative anomaly in Nb, which is typical of igneous rocks generated in 

a subduction zone. 

8. Discussion and conclusions 

The Corredoiras massif metaigneous rocks have geochemical, U­
Pb and Sm-Nd compositions indicating that they belong to the Cam­

bro-Ordovician (520-495 Ma) magmatic episode recorded in the 

upper units of the allochthonous complexes (Abati et al., 1999, 

2007; Santos et al., 2002). The geochemical characteristics point out 

that the Corredoiras metaigneous rocks have been generated in a 

magmatic arc and that continental crust was involved in the origin 

of the magma. This hypothesis is also backed up by the presence of 

metasedimentary enclaves and biotite-rich microenclaves within 

them. Major element geochemistry resemble I-type granite features 

(high KzO and NazO contents, negative slope in PzOs with increasing 

SiOz and weak peraluminous character). Their incompatible elements 

enrichment, negative anomalies in Nb, Ta, Sr, P and Ti are typical of 

continental arcs. High Th values and low Ba/Th ratios indicate a sedi­

ment participation or continental crust contamination in the magmas 

that originated the Corredoiras rocks. A negative ENd value in the 

granodioritic orthogneisses may be also considered as evidence for 

the involvement of felsic crustal material during the genesis of these 

rocks. On the contrary, tonalitic orthogneisses and metagabbros 

have a positive ENd value that can be produced by mantle derived 

melts or by lower crustal melts . 

The presence of inherited zircons that also appear in other igneous 

rocks of the upper units, suggests that this continental crust could be­

long to the West African Craton. Detrital zircon ages from low grade 

metasediments of the upper units (Martlnez Catalan et al., 2009) 

also record the major crust forming events in NW Africa: this evi­

dence points to a common basement for the upper units, and suggests 

that the island arc was ensialic and may represent a peri-Gondwanan 

fragment which drifted away opening the Rheic Ocean. Martlnez 
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Catalan et al. (2007) proposed a model reconstructing the tectonic 

evolution of the allochthonous complexes from Galicia. In this 

model can be seen that around 500 Ma a Peri-Gondwanan terrane is 

detached from the Gondwana margin by slab roll-back and an arc­

related magmatic activity during Late Cambrian-Early Ordovician. 
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Fig. 13. Immobile trace element plot of the Corredoiras metagabbros. Normalizing 
values correspond to N-MORB average composition according to Pearce (1996). Shad­
ing zone is the compositional range for all samples. 

We propose that the magmatic rocks of the Corredoiras massif were 

generated in this realm, probably located in the arc inner zone, 

where the magmas can be strongly influenced by the continental 

crust (Fig. 14). 

Later on, this arc was involved in the Variscan collision. A Cambro­

Ordovician arc-related metamorphism was preserved in the 

intermediate-P units, but was overprinted by a Silurian-Early Devoni­

an tectonometamorphic event in the high-P and high-T units. This 

event involved subduction of part of the arc, as a consequence of its 

accretion to Laurussia while the Rheic Ocean was still open. 

Supplementary materials related to this article can be found on­

line at doi: 10.1 016jj.lithos.201 1 . 11 .00S. 
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