Reflection and Preservation of Properties in
Coalgebraic (bi)Simulations*

Ignacio Fabregas, Miguel Palomino, and David de Frutos Escrig

Departamento de Sistemas Informéticos y Computacién, UCM
fabregas@fdi.ucm.es, {miguelpt, defrutos}@sip.ucm.es

Abstract. Our objective is to extend the standard results of preser-
vation and reflection of properties by bisimulations to the coalgebraic
setting, as well as to study under what conditions these results hold for
simulations. The notion of bisimulation is the classical one, while for sim-
ulations we use that proposed by Hughes and Jacobs. As for properties,
we start by using a generalization of linear temporal logic to arbitrary
coalgebras suggested by Jacobs, and then an extension by Kurtz which
includes atomic propositions too.

1 Introduction

To reason about computational systems it is customary to mathematically for-
malize them by means of state-based structures such as labelled transitions sys-
tems or Kripke structures. This is a fruitful approach since it allows to study
the properties of a system by relating it to some other, possibly better-known
system, by means of simulations and bisimulations (see e.g., [I5IT4T2/3]).

The range of structures used to formalize computational systems is quite wide.
In this context, coalgebras have emerged with a unifying aim [I8]. A coalgebra
is simply a function ¢ : X — F X, where X is the set of states and F' X is some
expression on X (a functor) that describes the possible outcomes of a transition
from a given state. Choosing different expressions for F' one can obtain coalgebras
that correspond to transition systems, Kripke structures, ...

Coalgebras can also be related by means of (bi)simulations. Our goal in this
paper is to prove that, like their concrete instantiations, (bi)simulations between
arbitrary coalgebras preserve some interesting properties. A first step in this
direction consists in choosing an appropriate notion for both bisimulation and
simulation, as well as a logic in which to express these properties.

Bisimulations were originally introduced by Aczel and Mendler [, who showed
that the general definition coincided with the standard ones when particularized;
it is an established notion. Simulations, on the other hand, were defined by Hughes
and Jacobs [§] and lack such canonicity. Their notion of simulation depends on
the use of orders that allow (perhaps too) much flexibility in what it can be con-
sidered as a simulation; in order to show that simulations preserve properties, we

* Research supported by the Spanish projects DESAFIOS TIN2006-15660-C02-01,
WEST TIN2006-15578-C02-01 and PROMESAS S-0505/TIC/0407.

C.B. Jones, Z. Liu, J. Woodcock (Eds.): ICTAC 2007, LNCS 4711, pp. 231245} 2007.
© Springer-Verlag Berlin Heidelberg 2007

232 [. Fabregas, M. Palomino, and D. de Frutos Escrig

will have to impose certain restrictions on such orders. As for the logic used for the
properties, there is likewise no canonical choice at the moment. Jacobs proposes a
temporal logic (see [9]) that generalizes linear temporal logic (LTL), though with-
out atomic propositions; a clever insight of Pattinson [I7] provides us with a way
to endow Jacobs’ logic with atomic propositions.

Since our original motivation was the generalization of the results about sim-
ulations and preservation of LTL properties, we will focus on Jacobs’ logic and
its extension with atomic propositions. Actually, modal logic seems to be the
right logic to express properties of coalgebras and several proposals have been
made in this direction, among them those in [TO[T3JT7], which are invariant under
behavioral equivalence. The reason for studying preservation/reflection of prop-
erties by bisimulations here is twofold: on the one hand, some of the operators in
Jacobs’ logic do not seem to fall under the framework of those general proposals;
on the other hand, some of the ideas and insights developed for that study are
needed when tackling simulations. As far as we know, reflection of properties by
simulations in coalgebras has not been considered before in the literature.

2 Preliminaries

In this section we summarize definitions and concepts from [SIITJ9], and intro-
duce the notation we are going to use.

Given a category C and an endofunctor F' in C, an F-coalgebra, or just a
coalgebra, consists of an object X € C together with a morphism ¢: X — FX.
We often call X the state space and ¢ the transition or coalgebra structure.

Ezxample 1. We show how two well-known structures can be seen as coalgebras:

— Labelled transition systems are coalgebras for the functor F' = P(id)“, where
A is the set of labels.

— Kripke structures are coalgebras for the functor F = P(AP) x P(id), where
AP is a set of atomic propositions.

It is well-known that an arbitrary endofunctor F on Sets can be lifted to a
functor in the category Rel of relations, that is, Rel(F) : Rel — Rel. Given a
relation R C X x Y, its lifting is defined by

Rel(F)(R) = {{u,v) € FX; X FX5 | 3w € F(R). F(r1)(w) = u, F(r2)(w) = v},

where r; : R — X are the projection morphisms.

A predicate P of a coalgebra ¢ : X — FX is just a subset of the state space.
Also, a predicate P C X can be lifted to a functor structure using the relation
lifting:

Pred(F)(P) = 1, (Rel(F)(I15(P))) = L1, (Rel(F)(I1s(P)));

where 6 = (id, id) and [[,(X) is the image of X under f, so [[; (P) = {(z,2) |
v € P}, [I,,(R) = {z1 | Jva.x1Rxo} is the domain of the relation R, and
[1,,(R) = {x2 | 3z1.21 Rw2} is its codomain.

Reflection and Preservation of Properties in Coalgebraic (bi)Simulations 233

The class of polynomial endofunctors is defined as the least class of endofunc-
tors on Sets such that it contains the identity and constant functors, and is
closed under product, coproduct, constant exponentiation, powerset and finite
sequences. For polynomial endofunctors, Rel(F') and Pred(F') can be defined
by induction on the structure of F. For further details on these definitions see
[9]; we will introduce some of those when needed. For example, for the cases of
labelled transition systems and Kripke structures we have:

Rel(P(id)*)(R) = {(f,9) | Va € A.(f(a),g(a)) € {(U,V) | Yu € U.3v € V.uRv A
Vv e V.3u e U.uRv}}

Pred(P(id)*)(P) = {f | Va € A. f(a) € {U | Yu € U. Pu}}
RBI(P(AP) X P(Zd))(R) = {((ul,uz), (1}1,’02)) | (u1 =v1.U1,V1 € P(AP)) N
(ug,v2) € {(U,V) |Vu e U.Tv € V.uRv A
Vv € V.3u e U uRv}}

Pred(P(AP) x P(id))(P) = {(u,v) | (u C P(AP)) A (v € {U | Yu € U. Pu)}

A bisimulation for coalgebras ¢: X — FX and d : Y — FY is a relation
R C X x Y which is “closed under ¢ and d”:

if (z,y) € R then (c¢(x),d(y)) € Rel(F)(R).

In the same way, an invariant for a coalgebra ¢ : X — F' X is a predicate P C X
such that it is “closed under ¢”, that is, if © € P then c¢(x) € Pred(F)(P).

We will use the definition of simulation introduced by Hughes and Jacobs
in [8] which uses an order C for functors F' that makes the following diagram
commute

PreOrd

C
/ forget
\

Sets S Sets

Given an order C on F, a simulation for the coalgebras ¢ : X — FX and
d:Y — FY is arelation R C X x Y such that

if (z,y) € R then (c(x),d(y)) € Rel(F)c(R),
where Rel(F)c(R) is defined as
Rel(F)c(R) = {(u,v) | 3w € F(R). w C Fri(w) A Fra(w) C v}.

To express properties we will use a generalization of LTL proposed by Jacobs
(see [9]) that applies to arbitrary coalgebras, whose formulas are given by the
following BNF expression:

p=PCX|-p|loVeloAp|le=¢|Op|Op|DOp|elUp

234 [. Fabregas, M. Palomino, and D. de Frutos Escrig

O is the nexttime operator and its semantics (abusing notation) is defined as
OP = ¢ Y(Pred(F)(P)) = {z € X | ¢(z) € Pred(F)(P)}; O is the henceforth
operator defined as OP if exists an invariant for ¢, such that Q C P with z € Q
or, equivalently by means of the greatest fixed point v, OP = vS.(P A (OS); ¢
is the eventually operator defined as OGP = —=0-P; and U is the until operator
defined as PU Q = pS.(Q V (P A= () —Y)), where p is the least fixed point.

We denote the set of states in X that satisfies ¢ as [¢]x. That is, it P C X
is a predicate, then [P]x = P; if a € {-,(0,0,<¢} then [ap]x = af¢]x, and
if 3 € {NnV,=, U} then [p108p2]lx = [e1]xBle2]x. We will usually omit the
reference to the set X when it is clear from the context. We say that an element
x satisfies a formula ¢, and we denote it by ¢,z |= ¢, when x € [¢]. Again, we
will usually omit the reference to the coalgebra c.

3 Reflection and Preservation in Bisimulations

These definitions of reflection and preservation are slightly more involved than
for classical LTL because the logic proposed by Jacobs does not use atomic
propositions, but predicates (subsets of the set of states). Later, we will see how
atomic propositions can be introduced in the logic.

Given a predicate P on X and a binary relation R C X X Y, we will say that
an element y € Y is in the direct image of P, and we will denote it by y € RP,
if there exists € X with z € P and zRy. The inverse image of R is just the
direct image for the relation R™!.

Definition 1. Given two formulas ¢ on X and ¢ on'Y, built over predicates
Py,...P, and Q1,...Q,, respectively, and a binary relation R C X X Y, we de-
fine the image of ¢ as a formula ©* on'Y , obtained by substituting in o RP; for P;.
Likewise, we build 1p)~1, the inverse of 1, substituting R~1Q; for Q; in 1.

Remark 1. Tt is important to notice that * coincides with ¢! when we consider

R~!instead of R. Analogously, ¢! is just ¢* when we consider R~! instead of R.
Now we can define when a relation preserves or reflects properties.

Definition 2. Let R C X XY be a binary relation and a and b elements such
that aRb. We say that R preserves the property ¢ on X if, whenever a = o,

b = ¢*. We say that R reflects the property o on'Y if b= ¢ implies a = o~ 1.

Let us first state a couple of technical lemmas whose proofs appear in [6].

Lemma 1. Let F be a polynomial functor, R C X XY a bisimulation between
coalgebras ¢ : X — FX andd:Y — FY, P CY, Q C X and zRy. If
d(y) € Pred(F)(P), then c(z) € Pred(F)(R™'P); and if c(x) € Pred(F)(Q),
then d(y) € Pred(F)(RQ).

Another auxiliary lemma we need to prove the main result of this section is the
following:

Reflection and Preservation of Properties in Coalgebraic (bi)Simulations 235

Lemma 2. The direct and inverse images of an invariant are also invariants.

Proof. Let R be a bisimulation between ¢ : X — FX and d:Y — FY. Let
us suppose that P C X is an invariant and let us prove that so is RP; that
is, for all y € RP it must be the case that d(y) € Pred(F)(RP). If y € RP,
then there exists x € P such that zRy. Since P is an invariant, we also have
c(z) € Pred(F)(P) and by Lemma [Ml we get d(y) € Pred(F)(RP).

On the other hand, since R™! is also a bisimulation, the inverse image of an
invariant is an invariant too. a

At this point it is interesting to recall that our objective is to prove that bisim-
ulations preserve and reflect properties of a temporal logic, that is, if we have
TRy and y = ¢ then we must also have = = ¢~ !; and, analogously, if = = ¢
then y = ¢*. We will show this result for all temporal operators except for the
negation; it is well-known that negation is reflected and preserved by standard
bisimulations, but not here because of the lack of atomic propositions in the
coalgebraic temporal logic.

To prove the result for the rest of temporal operators, we will see that if
y € [¢] then we also have z € R~ [¢] and, analogously, if z € [¢] theny € R[¢].
Ideally, we would like to have both R™1[¢] = [p~!] and R[¢] = [¢*] but,
in general, only the inclusion C is true. Fortunately this is enough to prove
our propositions, since the temporal operators are all monotonic except for the
negation. In fact, here is where the problem with negation appears.

Lemma 3 ([6]). Let R be a bisimulation between coalgebras ¢ : X — FX and
d:Y — FY. For all temporal formulas ¢ and 1 which do not contain the
negation operator, it follows that

R 'ely Cle 'Ix and R[Y]x C[¥*]y-

Finally we can show that bisimulations reflect and preserve properties given by
any temporal operator except for the negation.

Proposition 1. Let ¢ be a formula over a set' Y which does not use the negation
operator and let R be a bisimulation between coalgebras ¢ : X — FX and
d:Y — FY. Then the property 1 is reflected by R.

Proof. The result is proved by structural induction over the formula ¢ using the
first half of Lemmas [l and Bl and Lemma[2 See [6] for further details. O

Preservation of properties is a consequence of the reflection of properties together
with the fact that if R is a bisimulation then R~! is also a bisimulation. We have
thus proved the following theorem.

Theorem 1. Let ¢ and ¢ be formulas over sets Y and X, respectively, which
do not use the negation operator and let R be a bisimulation between coalgebras
c: X — FX andd:Y — FY. Then v is reflected by R and ¢ is preserved
by R.

236 [. Fabregas, M. Palomino, and D. de Frutos Escrig
4 Reflection and Preservation in Simulations

In [3I16] it is proved not only that bisimulations reflect and preserve properties
but also that simulations reflect them: it turns out that this result does not
generalize straightforwardly to the coalgebraic setting.

The main problem that we have found concerning this is that the coalgebraic
definition of simulation uses an arbitrary functorial order C, and in general
reflection of properties will not hold for all orders.

Let us show a counterexample that will convince us that simulations may
not reflect properties without restricting the orders. Let us take F' = P(id),
X = {x1,22}, Y = {y1,y2} and the coalgebras ¢ and d defined as c¢(x;) =
{z1,22}, c(x2) = {22}, d(y1) = y2 and d(y2) = y2. We define u C v whenever
v C u and consider the formula ¢ = OP, where P = {y2}, and the simulation
R = {(x1,y2)}. It is immediate to check that R is a simulation and y2 € [¢],

but 71 ¢ [¢ 1]

— y2 € [¢]. Indeed, since d(y2) = ya then y2 € [¢] = OP is equivalent to
y2 € P = {y2}, which is trivially true.

— 21 ¢ [p~1]. By definition, o=t = OR™'P = O{z1}. Since c(z1) = {71, 22},
it is enough to see that xo ¢ {1}, which is also true.

As a consequence, we will need to restrict the functorial orders that are in-
volved in the definition of simulation. In a first approach we will impose an extra
requirement that the order must fulfill, and later we will not only restrict the
orders but also the functors that are involved.

4.1 Restricting the Orders

The idea is that we are going to require an extra property for each pair of ele-
ments which are related by the order. In particular, we are particularly interested
in the following property (which is defined in [§]):

Definition 3. Given a functor F : Sets — Sets, we say that an order C
associated to it is “down-closed” whenever a C b, with a,b € F X, implies that

b e Pred(F)(P) = a € Pred(F)(P), for all predicates P C X .
We can show some examples of down-closed orders:

Ezample 2. 1. Kripke structures are defined by the functor ' = P(AP) x
P(id), so a down-closed order must fulfill that if (u,v) C (u',v’), then
(u';v") € Pred(F)(P) implies (u,v) € Pred(F)(P); that is, by definition
of Pred(P(AP) x P(id)), u,u’ C P(AP) and, if v’ € Pred(P(id))(P) = {U |
Vu € U.u € P} then v € Pred(P(id))(P). In other words, for all b € v and
b €, if ¥ € P then b € P. Therefore, what is needed in this case is that
the set of successors v of the smaller pair is contained in the set of successors
v" of the bigger pair, that is, if (u,v) C (v/,v) then v C v’

Reflection and Preservation of Properties in Coalgebraic (bi)Simulations 237

2. Labelled transition systems are defined by the functor F = P(id)*, so the
order must fulfill the following: if v C v then Va € A. u(a) C u/(a).

Those examples show that there are not many down-closed orders, but it does
not seem clear how to further extend this class in such a way that we could still
prove the reflection of properties by simulations. Unfortunately, even under this
restriction we can only prove reflection (or preservation) of formulas that only
use the operators V, A, (O and O.

To convince us of this fact, we present a counterexample with operator <. Let
X = {z1,22},Y = {91, y2} and the functor F' = P(id). We consider the following
down-closed order: u C v if u C v. We also define the coalgebras ¢ : X — F X
and d: Y — FY as c¢(z1) = {1}, c(x2) = {22}, d(y1) = {y1,y2} and d(y2) =
{y2}. Obviously R = {(x1,y1)} is a simulation since ¢(z1) = {z1} C {21} and
{11} C {y1,92} = d(y1) and, also, {x1}Rel(F)(R){y1}. We have y; € O{ya},
since we can reach yo from y;, but 71 ¢ OR™Yys} = Of. Indeed, 71 ¢ OO is
equivalent to x1 € O—f) and this is true since {z1} is an invariant such that
z1 € {x1}, with {z1} C —0.

In order to prove reflection of properties that only use the operators VvV, A, O
and O, we will need a previous elementary result involving binary relations.

Proposition 2. Let R C X XY be a binary relation and P C'Y a predicate.
Let us suppose that uRel(F)(R)v; then, if v € Pred(F)(P) it is also true that
u € Pred(F)(R™'P).

Proof. Once again the proof will proceed by structural induction on the functor
F'. See [6] for further details. O

We will also need a subtle adaptation of Lemmas [2 and [from the framework
of bisimulations to the framework of simulations. In particular, we can adapt
Lemma Pl to prove that if Q is an invariant and R a simulation, R~'(Q is still an
invariant, whereas the first half of Lemma [3] will also be true in the framework
of simulations for formulas that only use the operators V, A, () and O.

Lemma 4. Let R be a simulation between coalgebras ¢ : X — FX and d :
Y — FY, with a down-closed order, and let Q C Y be an invariant. Then
R™Q is also an invariant.

Proof. Weare going toshow that forallz € R™'Q wehave c(z) € Pred(F)(R™'Q).
Let us take an arbitrary x € R~'Q; then, by definition there exists y € Q such that
xRy and, since @ is an invariant, d(y) € Pred(F)(Q). On the other hand, since R
is a simulation, ¢(x) T uRel(F)(R)v T d(y). Henceforth, since we are working
with a down-closed order and d(y) € Pred(F)(Q), then v € Pred(F)(Q). Also,
by Proposition Bl we have u € Pred(F)(R~'Q) and, using again that the order is
down-closed, it follows that c¢(x) € Pred(F)(R™1Q). O

Lemma 5 ([6]). Let R be a simulation between coalgebras ¢ : X — FX and
d:Y — FY, with a down-closed order. If ¢ is a temporal formula constructed
only with operators V, A\, () and O, then

R 'ely Sl 'x -

238 [. Fabregas, M. Palomino, and D. de Frutos Escrig

Now we can state the corresponding theorem:

Theorem 2 ([6]). Let R be a simulation between coalgebras ¢ : X — FX and
d:Y — FY with a down-closed order. If v is a temporal formula constructed
only with operators V, A, (O and O, then the property ¢ is reflected by the
simulation.

Instead of considering down-closed orders, we could have imposed the converse
implication, that is, those orders that satisfy that if a € Pred(F)(P) then b €
Pred(F)(P).

Definition 4. Given a functor I' : Sets — Sets we say that an order C is
up-closed if whenever a C b then

a € Pred(F)(P) = b€ Pred(F)(P), for all predicates P .

Obviously up-closed is symmetrical to down-closed, that is, it is equivalent to
taking C°P instead of T in Definition Bl So, for example, in the case of Kripke
structures an up-closed order would satisfy (u,v) C (u/,2") if v/ C v.

The interesting thing about up-closed orders is that they allow us to prove
preservation of properties; again, this result will hold only for formulas con-
structed with the operators V, A, (O and O. We need the following auxiliary
result whose proof is analogous to the case of down-closed orders. Since if R is a
simulation for the order T, then R~! is a simulation for the oposite order CP,
we can apply Theorem 2] to get the following (see [6] for more details):

Theorem 3. Let R be a simulation between coalgebras ¢ : X — FX and
d:Y — FY carrying an up-closed order. If p is a temporal formula constructed
only with the operators V, A\, (O and O, then R preserves the property .

4.2 Restricting the Class of Functors

As we have just seen, it is not enough to restrict ourselves to down-closed (or
up-closed) orders to get a valid result for all properties. What we want is a
necessary and sufficient condition over functorial orders that implies reflection
(or preservation) of properties by simulations. So far we have not found such a
condition, but we have a sufficient one for simulations to reflect properties (and,
in fact, also so that they preserve properties).

Recalling the structure of lemmas and propositions used to prove reflection
and preservation of properties by bisimulations, we notice that the key ingredient
was Lemma [Il With this lemma we were able to prove directly preservation
of invariants (Lemma [)) and the relation between R™! (respectively R) of a
formula and the inverse of a formula (respectively direct image of a formula).
Also, Lemma [was essential to prove directly reflection and preservation of
formulas built with the nezttime operator and the rest of temporal operators.

In the previous section the problem we faced was that either the second half
of Lemma [I] (for down-closed orders) or the first half of Lemma [I] (for up-closed

Reflection and Preservation of Properties in Coalgebraic (bi)Simulations 239

orders) held, but not both simultaneously. As a consequence, the results for the
operators eventually and until did not hold. So, if we were capable of finding a
subclass of functors and orders such that they fulfill results analogous to Lemma
[[then, translating those proofs, we would get reflection and preservation of
arbitrary properties.

We are going to define a subclass of functors and orders in the way that
Hughes and Jacobs did in [§] for the subclass Poly.

Definition 5. The class Order is the least class of functors closed under the
following operations:

1. For every preorder (A, <), the constant functor X — A with the order given
by Ex=<a.

2. The identity functor with equality order.

3. Given two polynomial functors Fy and Fy with orders C' and T2, the product
functor Fy x Fy with order Cx given by

(u,v) Cx (u/,0") if wC'W/ and v20.

4. Given the polynomial functor F with order CF and the set A, the functor
FA with order Cx given by

u Cx v if u(a) CF v(a) for all a € A.

5. Given two polynomial functors Fy and Fy with orders C' and £2, the co-
product functor Fy + F> with order Cx given by

uCx v if u=ki(ug) and v = k1 (vo) with ug C* vy
oru = ka(ug) and v = Ka(vy) with ug Z2 vg .

6. Given the polynomial functor F with order CF', the powerset functor P(F)
with order Cx given by

ulx v if VYa€euw3dbev suchthat aCTF b
and alsoVb € v3Ia € u such that a CTF b.

For example the usual order for Kripke structures is not in the class Order.
Besides, in the definition of Poly in [8] the authors did not consider the powerset
functor but we do, although we are not using the usual order for this functor.

At first, to obtain that simulations not only reflect but also preserve properties
may seem a little surprising. If we think about the elements in the subclass
Order we notice that we have restricted the orders to equality-like orders, that
is, almost all possible orders in Order are the equality. However, since the class
Order is very similar to the class Poly, it has the same good properties shown
in [§] (like the stablility of the orders and functors).

Ezample 3. 1. If we consider the functor P(id), then the order C defined in
Definition [l says that v C v if and only if for each a € u there exists b € v
such that a = b, and if for each b € v there exists a € u such that a = b.
This means that C is the identity relation. As an immediate consequence for
transition systems the only possible Order simulations are bisimulations.

240 [. Fabregas, M. Palomino, and D. de Frutos Escrig

2. If we consider the functor A x id where A has a preorder <4 different from
the identity, the order C from Definition [His the following: (u,v) C (u/, ") iff
v="1v"and u <4 u'. So, if <4 is not the identity, neither is C. For example,
let us take X = {x1, 22,23}, Y = {y1,92}, AP = {p1,p2,ps} and consider
the functor F' = P(id) x P(AP) and the coalgebras ¢ : X — FX and d :
Y — FY defined by c(z1) = ({22, 23}, {p1}), c(z2) = ({x3}, {p2}), c(w3) =
({2}, {ps}), d(y1) = ({2}, {p2}) and d(y2) = ({y2}, {p1}). Obviously there
is no bisimulation between x; and y; since this atomic propositions are not
the same, but taking the order C defined as (u,v) C (v/,v") iff w =’ (that
is, taking as the preorder <p the total relation) we have that there exists
a simulation R in Order between z1 and y;.

Lemma 6 ([6]). Let R C X x Y be a simulation between coalgebras ¢ : X —
FX and d :' Y — FY, such that the functor F is in the class Order. Let
us also suppose that P C'Y and xRy; then, if d(y) € Pred(F)(P) we have
c(z) € Pred(F)(R™'P).

In a similar way we have the corresponding lemma involving direct predicates.

Lemma 7. Let R C X XY be a simulation between coalgebras ¢ : X — FX
and d :' Y — FY, such that the functor F is in Order. Let us suppose also
that P C X and xRy. Then, if c¢(x) € Pred(F)(P), d(y) € Pred(F)(RP).

Now we can conclude that under these hypothesis simulations reflect and pre-
serve properties, simultaneously! This fact is a straightforward result from Lem-
mas [and [1

Theorem 4. Let R be a simulation between coalgebras ¢ : X — FX and
d:Y — FY, with F' a polynomial functor in the class Order. Then, the
simulation R reflects and preserves properties.

5 Including Atomic Propositions

A consequence of the fact that the logic proposed by Jacobs does not introduce
atomic propositions was the need of giving non-standard definitions of reflection
and preservation of properties. Kurz, in his work [I3] includes atomic proposi-
tions in a temporal logic for coalgebras by means of natural transformations.

Definition 6. Given a set AP of atomic propositions, the formulas of the tem-
poral logic associated to a coalgebra ¢ : X — FX are given by the BNF expres-
ston:

e=plopleVelenple=¢|Op|OCp|[0p|oU e

where p € AP is an atomic proposition.

Kurz also defines when a state x satisfies an atomic proposition p, that is, he
defines the semantics of an atomic proposition.

Reflection and Preservation of Properties in Coalgebraic (bi)Simulations 241

Definition 7. Let F' : Sets — Sets be a functor and AP a set of atomic
propositions. Let v : F = P(AP) be a natural transformation and ¢ : X — FX
a coalgebra. We say that x satisfies an atomic proposition p € AP, and denote
it x = p, when p € (vx oc)(x). This way [p] = {z |p € (vx oc)(x)}.

Notice that in fact this defines not only a semantics but a family of possible
semantics that depends on the natural transformation. For example, we can
define a natural transformation for the functor for Kripke structures in this way:

vx : P(AP) x P(X) — P(AP)
(P,.Q) — P

With vx we have characterized the standard semantics of LTL for Kripke struc-
tures. Analogously, we could define the following interpretation: v (P,Q) =
P(AP)\ P.

Introducing in our temporal logic the semantics of the atomic propositions,
we can prove the following theorem involving bisimulations:

Theorem 5. Let R be a bisimulation between coalgebras ¢ : X — FX and
d:Y — FY. Let ¢ be a temporal formula; then, the following is true for all
re X andy €Y such that xRy:

€ elx = yelply-

Here we have captured in the same theorem the classical ideas of reflection
and preservation of properties: we have some property in the lefthand side of
a bisimulation if and only if we have the property in its righthand side. In
this case the theorem is true also for the negation operator thanks to the atomic
propositions. Intuitively, this is because now we have an “if and only if” theorem,
whereas in Theorem [l we needed to reason separately for each implication using
monotonicity, and negation lacks it. Also notice that even though we could think
that in Theorem [l our predicates played the role of atomic propositions, there
are some essential differences: first, predicates are not independent of each other,
unlike atomic propositions, and secondly, while atomic propositions stay the
same predicates vary with each set of states.

Proof. Once again the proof will proceed by structural induction on the formula
. We only show some of the cases (the complete proof can be found in [6]).

1. Let ¢ = p where p is an arbitrary atomic proposition. This way we have the
following diagram, for v an arbitrary natural trasformation:

T 2

X < R >Y
c [e,d] d

\ Frq v Fo v
FX < FR >FY
VX VR vy

v id ' id '
P(AP) <™ P(AP) > P(AP)

242 [. Fabregas, M. Palomino, and D. de Frutos Escrig

This diagram is commutative. Indeed, since R is a bisimulation the upper
side commutes, while the lower side commutes because v is a natural trans-
formation.

So, x € [¢]x means by definition that p € (vx o ¢)(x). Since the diagram
commutes then p € (vgo e, d])(z,y) & p € (vy od)(y), that is, y € [¢]y.

2. Let us suppose ¢ = —¢p. In this case we must show that x € —[po]x if
and only if y € —[wo]y, that is, we must see that x ¢ [po]x if and only
if y ¢ [wo]y. By induction hypothesis we have © € [po]x if and only if
y € [woly-

3. Let us suppose now that ¢ = QOpg. We must prove that x € Opo]x is
equivalent to y € Olwolly, that is, ¢(x) € Pred(F)([yo]x) is equivalent to
d(y) € Pred(F)([¢o]y). The latter will be proved by structural induction
on the functor F. As an example we show the case of F' = G“4. Let us prove
only one implication since the other one is almost identical. We have

Pred(F)([olx) = {f | Va € A. f(a) € Pred(G)([¢olx)} -

Once again, as we have shown in other proofs, we define for each a € A and
each F-coalgebra ¢ : X — F(X) a G-coalgebra, ¢ : X — G(X) where
for each x € X we have ¢*(x) = ¢(z)(a). In this way, we have xRy and
c®(z) = ¢(z)(a) € Pred(G)([eo]x). By induction hypothesis we have that
d*(y) € Pred(G)([o]y). Since this is a valid argument for all a € A, we
obtain d(y) € Pred(F)([¢o]y)-

4. ¢ = Opg. Assuming that z € [¢]x we get that there exists

Q@ C X an invariant for ¢ with Q C [¢o]x and z € Q.

Now, RQ is a invariant for d and, also, such that RQ C [yo]y with y € RQ.
Indeed, if x € @ then y € RQ and if b € RQ there must exists some
a € @ C Jeo]x such that aRb. So, by induction hypothesis we get that
b € [poly

On the other hand, if y € [p]y there must exists some invariant 7' on Y,
such that T' C [yo]ly with y € T, hence for proving x € [¢]x it is enough
to consider the invariant R~17. O

To obtain a similar result for simulations, we will need again to restrict the
class of functors and orders as we did in Sections L] and In particular
we are interested in the following antimonotonicity property: if v C u’ then
v(u') Cv(u).

Definition 8. Let F : Sets — Sets be a functor, AP a set of atomic propo-
sitions and v : F = P(AP) a natural transformation. We say that T is a
down-natural v-order if, whenever u C u' then v(u') C v(u).

Obviously this definition depends on the natural transformation that we consider
in each case. For example, for Kripke structures we have the following natural
transformation: vx ((Ax, Bx)) = Ax C AP. To obtain a down-natural v-order

Reflection and Preservation of Properties in Coalgebraic (bi)Simulations 243

the following must hold: (u,v) C (u/,v") then v((v',v")) C v((u,v)), that is, it

will be enough to require (u,v) C (v, v") iff v’ C w.
This way, if we combine the down-closed and the down-natural orders we get:

If (u,v) C(v,v") then o« Cuandv Co'.

This characterization is not as restrictive as one could think. Indeed, if we
recall the definition of functorial order we had:

PreOrd
forget
\
Sets IS Sets

c

This diagram means that the functor F' and the order C almost have the same
structure and indeed, we could use a natural transformation between T and
P(AP) in Definition [0 instead of a natural transformation between F and
P(AP), that is, v :C= P(AP). Considering v in this way, an immediate conse-
quence is that if we take as order in P(AP) the relation D (as is done in [16]),
then u C v implies v(u) C v(v).

We can tackle the proof of reflection of properties (with atomic propositions)
by simulations as we did in Section Il imposing to the order not only to be
down-natural but also down-closed. But, if we do that we will find the same
difficulties we faced in Section [l (that is, we would not be able to prove reflec-
tion of formulas built with the operators until and eventually). Therefore, we
must restrict the class of functors and orders, as we did with the class Order in
Section 2] but imposing also that the orders must be down-natural.

Definition 9. The class Down-Natural v-Order is the subclass of Order
where all orders are down-natural.

Notice that we are defining a different class for each natural transformation v.
Under this condition we state the corresponding theorem involving simulations
and the reflection of properties (with atomic propositions); for the proof see [6].

Theorem 6. Let R be a simulation between coalgebras ¢ : X — FX and
d:Y — FY on the same polynomial functor F' from Sets to Sets belonging
to the class Down-Natural v-Order and let ¢ be a temporal formula. Then,
for each x € X and y € Y such that xRy:

yelely = =zelg)x.

We showed above that simulations for functors in the class Order reflected
and preserved all kinds of properties. Instead, now we can only prove one im-
plication, that corresponding to the reflection of properties. This is so because
down-natural v-orders have a natural direction.

Exactly in the same way as we did with down-natural v-orders, we can define
the corresponding class of up-natural v-orders:

244 [. Fabregas, M. Palomino, and D. de Frutos Escrig

Definition 10. Let F': Sets — Sets be a functor, AP a set of atomic propo-
sitions and v : F = P(AP) a natural transformation. We say that C is an
up-natural v-order if uw C o' implies v(u) C v(u').

As we did for down-natural v-orders, we define a subclass of Order:

Definition 11. The class Up-Natural v-Order is the subclass of Order
where all orders are up-natural.

Theorem 7. Let R be a simulation between coalgebras ¢ : X — FX and
d:Y — FY on the same polynomial functor F in the class Up-Natural
v-Order, and let @ be a temporal formula. Then, for allx € X and y € Y such
that xRy:

refelx = yeloly.

6 Conclusions

The main goal of this paper was to study under what assumptions coalgebraic
simulations reflect properties. In our way towards the proof of this result, we
were also able to prove reflection and preservation of properties by coalgebraic
bisimulations. For expressing the properties we used Jacobs’ temporal logic [9],
later extended with atomic propositions using the idea presented in [I3].

That coalgebraic bisimulations reflect and preserve properties expressed in
modal logic is a well-known topic (e.g, [LIOJI3/T7]), but not so the corresponding
results for simulations. The main difficulty is that Hughes and Jacobs’ notion of
simulation is defined by means of an arbitrary functorial order which bestows
them with a high degree of freedom. We have dealt with this by restricting the
class of functorial orders (although even so we are not able of obtaining a general
result) and by restricting also the class of allowed functors.

In order to get more general results on the subject, an interesting path that we
intend to explore is the search for a canonical notion of simulation. This definition
would provide us, not only with a “natural” way to understand simulations but,
hopefully, would also give rise to “natural” general results about reflection of
properties.

Another promising direction of research is the study of reflection and preser-
vation of properties in probabilistic systems, following our results of [4] in com-
bination with the ideas presented in [7I5l2].

Acknowledgement

The authors would like to thank the anonymous referees for their comments and
suggestions.

Reflection and Preservation of Properties in Coalgebraic (bi)Simulations 245

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Aczel, P., Mendler, N.P.: A final coalgebra theorem. In: Dybjer, P., Pitts, A.M.,

Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer
Science. LNCS, vol. 389, pp. 357-365. Springer, Heidelberg (1989)

Bartels, F., Sokolova, A., de Vink, E.P.: A hierarchy of probabilistic system types.
Theor. Comput. Sci. 327(1-2), 3-22 (2004)

Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

de Frutos Escrig, D., Palomino, M., Fabregas, I.: Multiset bisimulation as a com-
mon framework for ordinary and probabilistic bisimulations (submitted)

de Vink, E.P., Rutten, J.J.M.M.: Bisimulation for probabilistic transition systems:
a coalgebraic approach. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A.
(eds.) ICALP 1997. LNCS, vol. 1256, pp. 4460-4470. Springer, Heidelberg (1997)
Fébregas, 1., Palomino, M., de Frutos Escrig, D.: Reflection and preser-
vation of properties in coalgebraic (bi)simulations (extended) (2007),
http://maude.sip.ucm.es/~miguelpt/

Hasuo, I.: Generic forward and backward simulations. In: Baier, C., Hermanns, H.
(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 406-420. Springer, Heidelberg (2006)
Hughes, J., Jacobs, B.: Simulations in coalgebra. Theor. Comput. Sci. 327(1-2),
71-108 (2004)

. Jacobs, B.: Introduction to Coalgebra. Towards Mathematics of States

and Observations. Book in preparation. Draft available in the web,
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebralntro.pdf

Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the Founda-
tions of Mathematics, vol. 141. North-Holland, Amsterdam (1999)

Jacobs, B., Rutten, J.J.M.M.: A tutorial on (co)algebras and (co)induction. Bul-
letin of the European Association for Theoretical Computer Science 62, 222-259
(1997)

Kesten, Y., Pnueli, A.: Control and data abstraction: The cornerstones of prac-
tical formal verification. International Journal on Software Tools for Technology
Transfer 4(2), 328-342 (2000)

Kurz, A.: Logics for coalgebras and applications to computer science. PhD thesis,
Universitat Miinchen (2000)

Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System
Design 6, 1-36 (1995)

Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

Palomino, M.: Reflexién, abstracciéon y simulacién en la légica de reescritura. PhD
thesis, Universidad Complutense de Madrid, Spain (March 2005)

Pattinson, D.: Expressivity Results in the Modal Logic of Coalgebras. PhD thesis,
Universitat Miinchen (2001)

Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput.
Sci. 249(1), 3-80 (2000)

http://maude.sip.ucm.es/~miguelpt/
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf

	Reflection and Preservation of Properties in Coalgebraic (bi)Simulations
	Introduction
	Preliminaries
	Reflection and Preservation in Bisimulations
	Reflection and Preservation in Simulations
	Restricting the Orders
	Restricting the Class of Functors

	Including Atomic Propositions
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

