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On the Approximate Controllability for some
Explosive Parabolic Problems

J.1. Diaz and J.L. Lions

Abstract. We consider in this paper distributed systems governed by para-
bolic evolution equations which can blow up in finite time and which are
controlled by initial conditions. We study here the following question : Can
one choose the initial condition in such a way that the solution does not blow
up before a given time T and which is, at time T, as close as we wish from
a given state ? Some general results along these lines are presented here for
semilinear second order parabolic equations as well as for a non local non-
linear problem. We also give some results proving that “the more the system
will blow up” the “cheaper” it will be the control.

1. Introduction

We consider distributed systems of evolution, i.e. systems whose state (denoted
by %) is given by the solution (or by a solution) of a Partial Differential Equa-
tion (PDE) of evolution. In this paper we consider distributed systems which, 4f
not controlled, can blow up in finite time. We conjecture that these systems are
approzimately controllable (and even ezactly controllable). In other words, by a
“suitable set of actions” (the control), the system can be driven, in a finite time
T, from an initial state y° to a neighborhood of the target 47 (or to reach exactly
yT). We also conjecture that “the more the system will blow-up”, the “cheaper”
it will be the control.

Of course, all this has to be made precise!

This is what we intend to do in the preseni paper, when the control is the
initial state.

Before proceeding, let us notice that considering the initial state as a con-
trol is a standard point of view in the assimilation of date in Meteorology or in
Climatology. Cf. Blayo, Blum and Verron [2], Le Dimet and Charpentier [10].

We consider first semilinear parabolic problems of the type

Yy =0 on I‘DX(O:T),
_g_% =1{ on FN x (OaT)i
V0.2 =ule) om0
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where 0 is a bounded open regular set of RV, 80 = I'p UTy, A is a linear second
order elliptic operator of the form

S Sy
A= -3 L, Yy 1a
Y ijzml 6’[37 (a"ﬂ] B'EJ) + aoy,

where a;; € C1(Q),a0 € C(Q), ag > 0 and there exists o > 0 such that

N
> @)t > alel, ve={&HL e RY, ae ze Q.
1,j=1

In (1), vector v denotes the associated conormal vector, v = {v;}L,,

N
V= Z aij(m)nj s
7=1

with n = {ni}g‘il the unit outward normal to I'y. Function f is assumed to be
locally Lipschitz and u denotes the control function.

In (1) the function f is not necessarily decreasing (nor sublinear at infinity),
so that the associate solutions can blow up in a finite ttme. Let us recall that by
well-known results (see, e.g., Cazenave and Haraux [3]) given u € L9(f2), for some
g € [1, +oo} there is a unique (local in time) solution, defined on a mazimal interval
0, Ty, T = Tin(w) and ||y(t)|[[i,,(m A oo ift S Ty when T (u) < Hoc.

The problem of approximate controllability alluded to above can now be
stated in the following fashion: let T > 0 be given and let £(T7) be the set of
elements « € L¥(Q) for which T}, (u) > T is the set {y(T : w),u € E£(T)} dense
in L9(Q)?

Some positive answers will be presented in what follows for equations of type
(1) and also for other non local models as we explain below.

Of course the problem of approximate (resp. exact) controllability can be
raised for systems not necessarily blowing up in finite time, i.e. for systems such
that Tin(u) = +oc.

For the case of A = —A and Dirichlet boundary conditions (i.e., 3Q = I'p),
the linear case (f(s) = as -+ b) was already considered by Lattes and Lions [9]
and Lions [11]. Concerning the nonfinear case, it seems that the first result in
the literature was due to Bardos and Tartar [1]. They proved a negative answer:
if f(s) =— |sP s, and p > 1 then any solution of (1) satisfies the “universal”
estimate :

ly(z,t)] < Ct=V@=Y] for any (z,t) € @ x (0,7). (2)

for some positive constant C' independent of u. So, in this case, the approximate
controllability fails if y7 € L9(€2) is such that

|yT(z)] > CT Y= on a positively measured subset of (1.
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A first positive result for nonlinear problems was due to Henry [8] who proved the
L? approximate controllability when f is assumed to be globally Lipschitz. More
recently his result was improved in Fabre, Puel and Zuazua [7] where the authors
obtain the mentioned property in L9(),with ¢ arbitrary 1 < ¢ < oo, under the
condition f locally Lipschitz and sublinear at the infinity, i.e. such that

IF(s)] < C(1+|s]), for |s| large enough. (3)

The above results can be easily extended to more general elliptic operators A and
when 'y is not empty.
We shall assume that

sf{(s) > 0 for any s with [s| > sg, for some sg = 0 (4)

so that solutions may blow up. A first result concerns the case of small time T
Theorem 1.1. Assume (4) and

w{| [ 7551 ) <= ®

for some 51> sq. Le_‘t_yT e L), for some q € {1,+oc], and let € € (0,1). Then,
there ezists u € C2(Q) and 19 > 0 such that Trn(u) > 1 and

”y(TO;'“‘) - yTHLq(Q) S e

The proof of this result will be given in Section 2. Although several remarks
and generalizations will be also given in that section, we point out that condition
(5) requires a superlinear growth on f (when |s| is large). In fact, it is easy to see
that (5) is fulfilled in the cases of f(s) = A |s|P~" s, with p > 1, and, for instance,
[£(s)] < Ael!] for any A > 0, for which blow-up phenomena may arise.

The proof of Theorem 1.1 shows that time 7o must be (in general) small
enough. A natural question is to find conditions on the data in order to have
19 = T arbitrary. Two different results can be obtained in that direction. The first
one concerns the case of the “pure” Newmann problem and y” “near a constant”:

Theorem 1.2. Let £ > 0 be given. Assume ({), (5), 9Q = Ty and assume that
yT & L), for some g € [1,+0], 5 such that

lv" — MHLq(Q) < /2, for some constant M. (6)
Then, for any T > 0 and € € (0,1) there ezists u € C? (ﬁ) with Tr(u) > T and

(T u) - yT”Lo(Q) se

If yT is near a stationary state (even if it is an unstable one) we shall prove
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Theorem 1.3. Assume (4), (5) and let y© € L(£2), for some ¢ € {1, +00], be such
that there exisis g* € L°°(81) verifying that

Ags = [f{g") inf,

gt =0 onp,
%-% =0 on Iy.

and
| g~ yrHLq(n) < &/2.

Then, for any T > 0 and € € (0,1) there ezists u € C? (Q), different of g*, with
Twm(u) > T and

T3 w) = 5" | gy S &

The proofs of these results are contained in Section 3 where, again, some
generalizations and remarks will be given.

As a final question, it seems interesting to study the optimality of the control
w. This is done in Section 4. A partial result in this direction is the following

Theorem 1.4. Assume that the conditions of Theorem 1.2 or 1.8 are satisfied with
q = +oo. Then the set

= . . . T
K= {v:ve L) [p(T30) =47 piy S &
ly(t:0) oy < 17 ey + 178 € 0,71}
is not empty. Moreover there exists vy € K such that

”UOHLM(Q) = inf{EiUHLDC(Q) ;v € K}

We indicated above that we conjecture that the “more it blows up”, the
cheaper it will to (approximately) control the system. Such & result is provided by
the following

Theorem 1.5. Assume that the conditions of Theorem 1.2 holds true with ¢ = +00
and f(s) = AF(s), A >0, F(0) =0. Then
oo (M Lo @y ™\ O when A 7 o0,

where vo(A) denotes the control obtained in Theorem 1.4

All the above results are improvements of the paper Diaz and Lions [6]. Our
approach is based on a suitable use of the solution Y () of the associated backward
Cauchy problem

28 = f(¥ () - J(0), £ <0,
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(Notice that in the above formulation we replaced the final time T by t = 0, which
is possible since the ODE is autonomous, i.e., f is time independent).

We conclude this paper by some few remarks on another type of non linear
non local system. Namely we consider the problem

yt—f—Ayﬁcnyy?dm in 2 x (0,77,
y=0 on 00 x (0,7, (M
y(0,2) = u(z) on £,

when A is as above but symmetric
Aij = i

and where ¢ > 0.
We shall prove (by different methods) the following

Theorem 1.6. System (7) is approzimately eontrollable in L?(§2).
Moreover we shall prove

Theorem 1.7. The “cost of approzimate controllability” decreases to 0 as ¢ in-
creases to 4o in (7).

2. On the approximate controllability for small time
Proof of Theorem 1.1. Let g* € C? (ﬁ) be such that

. dg” .
g"=0onTp, 8—gy =0 on 'y and ” g —yTHLq(Q) <gf2.

Assume, for the moment, that
f € C*(R).

First step. Let « € Q arbitrary and let Y, = g*(z). Since the ODE of the (C'P : Yy)
is an equation of “separable variables”, it is easy to see that there exists T'(f, g*) >
0 such that the solution Y(t : ¥y) of (C'P : Yy) can be continued backwards to
[(-T(f,g*),0]. In particular, for any 7 € [0,7'(f, g")] we can define the function

ur(z) =Y (=71 g"(x)), 5 €0 (8)

Cleazly Y (¢ : g"(z)) depends continuously on the initial data and therefore on

z € Q. Thus, u, € C({L.). Moreover, if z € I'p, then ¢g*(z) = 0 and so u.(z) =0
since Yo, = 0 is an equilibrium point of the ODE

dy
Et_(t) = f(Y (1) — £(0).
On the other hand, we have
Y ‘
Vur(z) = a—(—r : g (z))Vg* (x).

(8}
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Thus %% =0 on I'yy . Moreover

u, %Y v WOt Og ay .
P, ) = gaz T @ g @)+ g (o g @) g ey (@)

But from the Peano Theorem we know that 42 (¢ : g*(z)) is given as the solution
of the linear Cauchy problem

{ L)y=f(Y(t: g (@) 2(t)
Z0) =1,

and so, %(t : g*(z)) depends continuously on z € (. Since f € C%(R), applying

again the Peano Theorem we get that %%};—(t : g*(z)) also depends continuously

on x € €. In conclusion, u, € C2(f). Let
M(T(£,9")) = sup{|[vrll ey - 7 € 0, T(f, 9"}

Is is clear that M, (T(f,g")) < co. Consider, now, the function U € C?(Q x [0, 7])
given by

Ulz,t) =Y ({t —7: g (x)).
(notice that, in fact, U is defined on Q x [—(T(f,¢*) — 7),7)). Then
Uz,0) =Y (—7: g*(x)) = u-(2), €T,

Ulz,t) =0,ifz €Tp and E(z,t)=0ifzeTn., t€[0,T(f,g"),

Up+ AU — F(U) = h(z,b), =€ Q, t € (0.T(f, "),
where
h{z,t) == —f(0) + AU.
(notice that from the above arguments i € C(Q x [0, T(f,g7)])). Define
Ma(T(f,9*) = sup{|All poo a0,y : T € [0, T(S, g}
We point out that Mu{T(f, ¢*)) < oo and that
Ulz,7) = Y(0: g*(z)) = g*(x), =€ Q.

Second step. Let us show that the solution y(z,t : u,), with u, given by (8), is a
global solution on € x [0, 7], i.e. that Ty, (u-) > 7. More precisely, let us show that

sup e, urlgmqintoy £ 7 € DT80 < M(T 7)), (9)
for some M3(T(f,g*)) < co. Let us start by assuming that f(0) < 0. Define m™* (?)
by

m*(E) =Y (t—7: ||[ur}+E§Lm(Q)) )
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where, in general, [u](z) = max(u(z),0). From assumption (5) we know that
m.(t) is defined at least on [—(T'(f,g*) — 7), 7]. Moreover we have

ye - Ay — f(y) =0<mf +Amt — f(m?) in Q x (0,7),
y(t, ) =0<m(1) on I'p x (0,7),
o= omt = on Tx x (0,7),

o o
y(0,2) = ur(z) <m¥(0) = |[us]+] poo oy on -

Then, by the comparison principle (which holds for problem (1)), we conclude that
ylz, t) € mt(t), ae z € Q, for any ¢ € [0,7]. If f(0) > 0 we replace the barrier
function m™(¢) by the solution of

{ MF(t) = F(M* (1))
MF0) = lfurlll (o

and again we get that y(z, ) < M*(t), a.e. z € £, for any ¢ € [0, 7] (notice that
m*(t) < M7T(t)). In a similar way we can construct negative barrier functions
m~ (t) and M~ (¢} and the conclusion holds.

Third step. Given € € (0,1) let 70 € (0, T'(f, ¢*)] be such that

TgeK(T(f’g‘))mMz (T, g*)) <e/2 (10)
where
K(T(f,6%) = max{|f'(s)| - s € [-My(T(L, 7)), Ms(T(FgDIE (1)

Then, as f is globally Lipschitz on the interval [—M3(T(f, ), Ma(T(f,g"))]
using the L% () x [0, 7o) )-estimates on functions y(z,t : uy,) and U(x,t), and since
the functional operator A : D(A)} — L*(2) given by

DA)={weW"(Q):w=00nTp, %f}ﬂ =0on Ty, Ay € LI} and

5)
Ay= Ay, ifye D(A), (12)

generates a semigroup of contractions on L4(Q), using Gronwall’s inequality, we
conclude that, for any ¢ € {0, T'(f, g*)], we have

t
lu(t : ur) — U(-)t)”m(m < eKt/O e S)“LQ(Q) ds < te™* My (T(f,9%)) < /2
(13)
In particular, making ¢ = 7 we get that
(7o ) = 3" | oy < MWCo70 2 tig) = @y + 1 67 = 9" oy &

Fourth step. If f ¢ C?(R) we approximate f by f. with f. € C*(R) such that

|F(s) — f(s)} <e/2, for any s € R.

We modify the definition of function U(z,t) by replacing f by f. in the definition
of ¥(#). The rest of the proof follows with obvicus modifications.
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Remark 2.1. [t is possible to obtain some expressions for the solulion Y (t) of (CP :
Yy). We start by pointing out that, for the arguments of the proof of Theorem 1.1,
we can assume without loss of generality that [ is strictly increasing. Indeed, once
that we have the estimate (9), we can replace the equation of (1) by

v+ Ay = fly) Q= (0,T),
with
Ay = Ay + (K + 1)y, fly) = fly)+ (K +1)y,
K = K(T(f,9"))

and now f(y) is strictly increasing. Coming back to (CP :Yy) we have

Ya ds 4
———————— T — 1
L@fwwﬂm ! (14)

Then, if we define the (strictly decreasing) function
T(r) := /00 4
Jr Fls) = f(0)
and its inverse function

n=U"1 then (14) says that V(Y (1)) — ¥(Yy) = —t.
In fact, it is clear that defining
Y(t) =n(T(Ye) — t)
we get the (unique) solution of (CP : Yy). In this way, the function u.(z) of the
vroof of Theorem. 1.1 is given by

ur(z) = n(¥(g*(x)) + 1),z € T,
and
Uls,8) = Yt =7 g"(@)) = n(¥(g" (@) + 7 — ).
If, for instance,
fls) =5
then

o0 ds 1
W= [ g

n@=@*@=j%

u-(z) = n(¥{g"(x)) +7) =
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In this special case it is also possible to check directly that if, for instance, A = —A,
then

6(r = )g" (@) [Vg* ()" Ag*(x)
21+ 2(r — t)g* ()P [1+2(r — t)g"(2)*P7>
Remark 2.2. We point out that if (4) holds true with sp = 0 and g = +o00, estimate
(9) implies that
llu(t - uT)”LO‘D(Q) < ||yT1|Lw(Q) , for any t € [0,7]
(it suffices to see that Y (t) and M(t) are increasing functions and that we can
assume that || g (| e (o) < “yTHLw(Q)).

AU (x,t) =

Remark 2.3. The proof of Theorem 1.1 allows to see that assumptions (4), and
(5) are merely used to be sure that the Cauchy problem (CP : Yy) has a solution
backward continuable when we take Yy = g*(z) with x € Q arbitrary. In fact, as-
sumption (5) implies that the continuation interval is “universal” (i.e. independent
of the values of g*(x) ). More generally, the same proof applies to the case in which
(4), and (5) are replaced by the following general condition on f and y”

H(f ) = 3 T(f, yT) € (0,77 suc}.z t{}at the solution of (C;P Ya)
’ is continuable to [=T(f,y"),0] for any Yy = y" (z),z € {1

as well as that g* =47, i.e.,
T

_ Is)
y' e c? () and y© =0 on PD,%zo on In.
i2

It is easy to see that assumption H(f,y") is verified if f is sublinear (in that case
T(f,v7) = -+ca), as well as in the case in which f is a decreasing function, as ,
for instance, f{s) = — |S[1ﬁ_1 s, with p > 1. In this last case T(f,y7) < +co and
T(f,y") strongly depends on the concrete values of Yq = yT(z). So, ifyT € L>®(Q)
we get the approzimate controllability at least for some small 7o € (0, T{(f,y*)]. In
some sense, this generalization of Theorem 1.1 covers the gap open by the negative
results of Bardos and Tartar {1] and gives an answer fo a conjecture posed in Fabre,
Puel and Zuazua [7] concerning this special function f.

Remark 2.4. It is also possible to get other type of generalizations, this lime con-
cerning the elliptic operator A. In the proof of Theorem 1.1 we merely applied the
Le-continuous dependence and the comparison principle for the associated func-
tional operator A : D(A) — L*(Q) and the Linearity of A was not used. So the
results remain valid for other diffusion operators (some quasilinear operators as,
for instance, the p-Laplacion, the minimal surface operator and some fully nonlin-
ear aperators).

Remark 2.5. The constructive nature of the proof of Theorern 1.1 supplies addi-
tional qualitative informations on the constructed conirol w. So, for instance, u
vanishes (resp. is strictly positive, resp. strictly negative) on the same subset of €
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where g* vanishes (resp. is strictly positive, resp. strictly negative). This type of
qualitative informations were obtained in Diaz [4] and Diaz, Henry and Ramos [5]
for differeni nonezplosive semilinear problems.

Remark 2.6. It is easy to see that there is not uniqueness of the control w (in fact
of the pair {u,0}).

Remark 2.7. A general comment concerns o different type of arguments in order
to prove canclusions for short time such as the one presented in Theorem 1.1. In
fact, we can consider the abstract semilinear Cauchy problem

{ () + Ay(t) = fly(t) te (0,T), m X,
y(0) = in X,

where X denotes o Banach space. Under very general conditions (see, e.g., the
exposition made in Vrabie [14] it is well known that the solution depends continu-
ously on the initial data and therefore the conclusion of Theorem 1.1 holds trivially
by choosing u = y* (or u = g* with g* a reqularization of y*). Although this kind
of arqguments would lead to very general results (even of a greater generalily than
Theorem 1.1) we point out that the proof of Theorem 1.1 has a constructive char-
acter which is very useful in order to study the approzimate controllability for large
time and other gualitative properties (see Sections 3 and 4 below).

3. On the approximate controllability for large time

Proof of Theorem 1.2. Arguing as in the proof of Theorem 1.1 with ¢g* = M we
construct the function

v(z) =Y (=T : M),z €,
where Y*(t : M) denotes the solution of the ordinary Cauchy problem

{ 9Y2 () = f(Y*(t)), £ <0,
Y*(0) = M.

Defining
Uz, t) ==Y (¢ -1 : M)

we have that

U (z,t) =0if z €T , t €[0T

(notice that since I'p is empty we do not need to have U* vanishing in any part
of & : this is the reason why we replace Y (¢ : M) by Y*(¢ : M)). The rest of the
arguments of the proof of Theorem 1.1 can be repeated but now with

h(z,1) = AU*(z,£) =0

and the conclusion holds for the initial control u = v.
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Remark 3.1. As in Remark 2.1, if we assume f strictly increasing (or more gen-
erally (4) with so = 0) then we have that

U (z,t) :ZY*(t—T:J\/I)=7’)*(l11*(ﬂ/I)+T—t)
with
oy [T
U (r) .—/r Ok if r >0,
and

= ()7

Proof of Theorem 1.3. We introduce the positive constants

w = max{|f'(s)| : 5 € [~ g | ey — L " N poo ey + 1}
and
g o= (¢/(2[9"9) exp(—wT).

By Theorem 1.1 there exists {ug, 7o} such that
ly(mo;v0) = g% Loy S €
We can assume that 79 < T (otherwise the proof ends). For ¢ < T7,(vg) and = € Q
we introduce
z{z,t) == y(z,t:v) — " (x).
We also define
T =sup{t| t >, [|z(ﬂ|iLm(ﬂ) < 1 for any ¢ € (15,8)}.
It is clear that 7% < Tpn(vg). So, by construction, ||z(£)| fa(qy < 1 for any ¢ €
(70, T*). Then, if we define

Fs+g (@) —flg*(x)) if [si< 1,
¢(z,5) =< f1+g°(@) - flg"(z)) i s>1,

f(=1+g"(z)) — flg*{z)) if s<-1,

we get that f(z(z,1) + g*(x)) — F(g"(z)) = ¢(z, z(x,t)). We point out that ¢(z, s)
is a Lipschitz function of constant smaller or equal than w. Since
2+ Az = ¢(z, 2(z,t))  in Qx (1, 17),
Z(t,"l:) ={ 011 FD X (O) T):
gz on 'y x (0,7),

=)

(Al

av
”Z(TO)”Loo(Q)
we deduce that
20| oo g2y < € 12(70) | Loy for any t € (70, T7).
In particular,
2(T*) | ooy < (/(2 12 7)™
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and so T < T* (otherwise we get a contradiction with the definition of 7). Then
HZ(T)||L°°(Q) <e/(2 |Q|1/q)
and the proof is completed since, again,
||y(,T : UU) - yT

Remark 3.2. The same proof applies for more general functions y* € L), for
some q € [1,+00], such that

1 . N
pagey < 1 "y T 00) = g ooy + || 67 = Y ooy <=

there exists g* € L°°()) verifying thal ” gt — yTHLq(Q) <e/2 and
149" = £(0" Nl pee oy < (/2102 T)) exp(—wT) with
w = max{|f'(s)] (s€ (= Ng* 1 poe 2y = L g7 I e gy + 11}
g°=00nTp, & =0onTy.

4, On the “cost” of the controls

Proof of Theorem 1.4. By applying Theorems 1.2 or 1.3, with ¢ = 400, and
Remark 2.2 we have that the set

K = {’U cv e L(Q) ¢ ||y(T;v) ‘yTHLm(m <e,
1y )l oo () < ”yTHLW(m +1,vt € [D,T}}

is not empty. Let us start by assuming that

f is strictly decreasing on [— ”yTIILw @ 1, ”yTHLm(Q) + 1L (15)

Then any solution of problem {1} with v € K coincides with the solution of a
similar problem in which we replace the function f by the truncated function
) 1(s) i s < [l | ooy + 1
f(s) = f(“yT“Lm(ﬂ) +1) if s> ”i’/T”Lm(Q) +1,
T : T
F=1ly HLm(n) 1) i s <= |ly “Lw(ﬂ) -1

Now, let {vy, } be a minimizing sequence. Obviously

[vn lzeo(ay < llvoll Lo ey »

with vy the control given in the statement of Theorems 1.2 or 1.3. So, v, — v
weakly-star in L°°({2). By applying the theory of accretive operafors generating
compact semigroups (see, e.g. Vrabie [14]) it is easy to see that y(t;v,) — y(¢;v)
strongly in L9(Q), for any ¢ € (1,+00), and that [|y{t; v)|| pee gy < ”yTHLm(Q) +1.
Thus the conclusion follows. If (15) fails, we argue as in Remark 2.1, i.e. we replace
the equation of (1) by

v+ Ay = Fly) inQx(0,7T),
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with
Ay = Ay — (K + Ly, fly) = fly)— (K + Dy,

for some K > 0 large enough and now f(y) becomes strictly increasing (notice

that by the change of variables y = eMy*, we can always assume that ap > K +1).

Remark 4.1. It would be interesting to know if the conclusion of Theorem 1.4
remains true after replacing the set K by the more general set

K={v}| ve L®Q), lyT;v) —yTHLw(Q) <e}

and if we also replace the exponent ¢ = 0o by g € [1,4-00) arbilrary (see some
related results for g =2 and f(s) = 5% in Lions [12] (Section 1.12)).

Proof of Theorem 1.5. We can assume without loss of generality that F is a strictly
increasing function. Using the notation of Remark 3.1 we have that

u(z) = U*(z,0) = np(VR(M) +AT)

where

. = ds .
F('T') I:/T- T(S*)‘, 1f7">07
and
np = {(Vr) ™

(notice that ¥*(r) = ¥h(r)/A). On the other hand, since F' is a Lipschitz function
near r = 0 and F(0) = 0 we have that

Thir) / +ooifr ™0

(and also Wh(r) ™, 0 if r / +o0). Analogous properties hold if r < 0. Then
[/l ooy N 0'if A 7 +o0 and, since by construction

w0 (M ooy < tll Loy »
we get the result.

Remark 4.2. We conjecture that the conclusion of Theorem 1.5 remains true un-
der more general conditions (more general functions y*, more general boundary
conditions, etc.).

Remark 4.3. For previous results along the lines of Theorem 1.5 with distributed
(or boundary) control, cf. Lions and Zuazua ([13}) (cf. also Theorem 1.7 below).
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5. Approximate controllability of non local systems

‘We consider now system (7) of the Introduction and we are going to prove Theo-
rems 1.6 and 1.7.

Let us first notice that given u € L?(Q) the existence of a solution (local in
time) defined on a mavimal interval [0, T (T = Tin(u) and [[y(8) p2¢qy /o0
ift /" T, when T, (u) < +00) can be proved by using compactness methods (see,
e.g. Theorem 4.3.1. of Vrabie [14]). Notice also that problem (7) has a superlinear
nature since if we denote

F(y) = cy/ y*da
Q
then F :L%(Q)) — L*(Q2) and

3
IFEW 2y = e Mullzeqq) -
On the other hand, if we set

ly@I® = f y(z,1)%ds,

we obtain, after multiplying (7) by v, that

5 = IOl + aly(®) - elly(@)]* =0 (16)

where

alo(®) = aly(e) ) = | (3" a - ;y + aoy?)de

i,9=1

The estimate (16) shows the “unboundedness” of ¥ as { — 400 and the “increase
in instability” as ¢~ +oo. This is made more precise below.

Before proving Theorems 1.6 and 1.7 let us show some examples in which
Trn(1u) < +oo. For this and later purposes we are going to use the eigenfunctions

Aw; = A, 0<A <<
w; =0 on 69, (17}
Jo wiwjds = &;.

We recall that wy(z) > 0 a.e. z €
Proposition 5.1. Let u € L2(£2), u > 0 on §, be such that

2
A
(/ uw;dm) > -y
Q C
Then Ty (u) < +o0.

Proof. By multiplying by y_(¢) = min(y(¢),0) and applying Gronwall’s inequality
we get that y(¢) > 0 on  for any t € [0, T,,,[. We introduce the function

H(t) = /Qy(t)"wld:r, fort € [0, Tl
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Then
H(t) = /Qyt(t)wldrc =-MH{) + c(Ly(t)Qdm)H(t).
But
2 2unde < . 2dz.
0 < [ a(0Pwds < [y’
Therefore

H'(t) > H(t)(—M + cH(t)?), on 0, T

and the result follows in a standard way (see, e.g. Proposition 5.4.1 of Cazenave
and Haraux [3]).
In order to prove Theorems 1.6 and 1.7 we introduce

E,,, = space generated by w;, 1 <i<m. (18)
Let T be given. We shall have approzimate controllability if we know that

given yT € E,,, there exists u € L*(Q2) such that (7) has (19)
a solution defined in §2 x (0,T") and which is such that y(T') = y*.

Actually, we are going to verify (19) by choosing u € L, i.e.
= Zujwj. (20)
j=1

The controls are now {u;} € R™.
For the initial condition (20), the solutions of (7) can be computed as follows.
The solution y(t) € En, so that

y(t) =y (Owy,

i=1

where
i (8) + Ay (8) = ey (Y (2),
y;(0) = Yy ) (21)
Y(t)= Zj:1 yi(E)°-

One has to find (if possible) u; such that 7" < T (u) and

™m

y;(T) = 47 (where y™ = "yl wy). (22)
=1

The solution of (21) is given by

Y, (t) = u; exp(—Ajt + cZ(t)), where }

Z(t)= fot Y(s)ds. (23)
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But (23) is still implicit. We make it explicit in the following way. Let us set

Zu2 ——2)\t

Then (23) leads to
Y (t) = Ult)e*%®
and since Y (¢) = Z'(¢), it follows that

Z'(t)e 22 = [, i (24)
—2A;t

e 1 = ~2c/ U(s)d ——ZCZ(lme 2-.

Formulae (23) (24) define “explicitly” y; in functlon of the terms u;. One has to
find, if possible, u; such that (22) holds true, i.e.
—NT e—cZ(T)y;f

uje
i.e. finally

Uy = Ry TyTe cZ(T)
Let us set

1= e—2MT
w0 = 55 T - AT
Then one has to find, if possible, u; such that
uj = zJT(l - cZ,uj(T)u?)l/z. (25)

i=1
It follows from (25) that

S i (Td = (O g (T4 — e pi(Thui)
J=1 i=1 j=1
If we set
1271 = (M=)
j=1

it follows that
S 2 ”ZTHZ
(Y2 = — 26
Dol = (26)

hence
T
%5

Uj = " o o
(1+ |72

This proves Theorem 1.6.
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Moreover we can define as the cost the quantity 3577 (Tyu3. It is given
by (26), which shows Theorem 1.7.

Remark 5.2. By using (23) and (24) we get that the solution of (21) is given by

2t Uy
—ont -
(- exy (=

It is easy to see that the associated function y(t) blows wp in o finite time (i.e.
Tm{u) < +00) if the initial dalum u is such that

m 2

us 1
L > =
/\j [

yi(t) =e”

=1

Remark 5.3. In the above proof, the fact that ¢ > 0 is essential. Things become
different, for instance in (26), if ¢ < 0.
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