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ABSTRACT 

This study focuses on accelerating the optimization of motion estimation algorithms, which are widely used in video 
coding standards, by using both the paradigm based on Altera Custom Instructions as well as the efficient combination of 
SDRAM and On-Chip memory of Nios II processor. Firstly, a complete code profiling is carried out before the 
optimization in order to detect time leaking affecting the motion compensation algorithms. Then, a multi-cycle Custom 
Instruction which will be added to the specific embedded design is implemented. The approach deployed is based on 
optimizing SOC performance by using an efficient combination of On-Chip memory and SDRAM with regards to the 
reset vector, exception vector, stack, heap, read/write data (.rwdata), read only data (.rodata), and program text (.text) in 
the design. Furthermore, this approach aims to enhance the said algorithms by incorporating Custom Instructions in the 
Nios II ISA. Finally, the efficient combination of both methods is then developed to build the final embedded system. 
The present contribution thus facilitates motion coding for low-cost Soft-Core microprocessors, particularly the RISC 
architecture of Nios II implemented in FPGA. It enables us to construct an SOC which processes 50×50 @ 180 fps. 

 

Keywords: Computer Vision, Optical Flow, MPEG Compression, Block Matching algorithm, NIOS II, FPGA, Custom 
Instructions, Embedded Systems. 

1. INTRODUCTION 
There is an increasing need to process multimedia information in Real-Time, and portable consumer electronic 

devices encourage research into green processing. There are many algorithms and systems that are specifically aimed at 
handling multimedia task such as motion compensation and coding, which are widely used in the video coding standards. 
Furthermore, motion estimation is still the focus of much research, and there exist several structures and 
implementations using FPGAs [1-6], GPUs [7-8] and embedded systems [9] in the framework of Real-Time 
implementation such as surveillance, tracking, navigation and automotive applications [10-11]. 

 
There has been much research into the paradigm of motion estimation for standard video coding in the last 30 years, as it 
avoids the use of temporal redundancy in video data for storage and transmission [12-14]. Motion estimation for 
multimedia purposes is achieved through Block Matching Techniques [15-19] that analyse the Macro Blocks (blocks of 
pixels, or MBs) of the so-called reference frame to estimate the closest block to the current one in the current frame. We 
can define the motion vector as an offset from the current frame's MB coordinates to the MB coordinates in the reference 
frame. Figure 1 show that the procedure of coding the frame processed with motion estimation in video, either for the 
predictor or for the entropy coding, is a crucial part of the MPEG-4, H.264/6 and, nowadays, the H.265 standards. With 
regards to Block Matching, there are three main techniques:  
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FST (Full Search Technique) [15], which matches all possible blocks within a search window in the reference frame to 
find the closest block to the one fixed in the current frame (Figure 2). The closest is the one with the minimum 
Summation of Absolute Differences (SAD): 

 

 
Fig. 1. Motivation. Part of the MPEG-4 scheme. 

 
It(x, y) represents the pixel value at the coordinate (x, y) in the frame t and the (u, v) is the displacement of the candidate 
Macro Block (MB). If there is a block of size 64×64, the FST algorithm requires 4096 subtractions and 4095 additions to 
calculate the SAD expression. The required number of checking blocks is (1+2d)2  while the search window is limited to 
within ± d pixels, and currently a power of two is used for it. 
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Fig. 2. Full Search Technique. 

 
TSST (Three Steps Search Technique) [20-22] selects nine candidate points, including the center point and eight 
checking points on the boundary of the search centre movement ratio (Figure 3), moving forward to the matching point 
with the minimum SAD and reducing the step size by half in each of its three steps. The last step stops the search process 
with the optimal MV and the minimum SAD that can be obtained. 
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Fig. 3. Three Step Search Technique, (a) First step, (b) Second step, (c) Third step. 

 
2DLOG (Two Dimensional Logarithmic Search) [23] uses a cross pattern search (+) in each step until the step size is one 
pixel, the initial step size being d/4 (Figure 4). The step size is reduced by half only when the minimum point of the 
previous step is the centre one or the current minimum point reaches the search window boundary. If none of these two 
conditions is met, the step size remains the same. 

 

 
Fig. 4. 2DLog. Search path of 2DLOG search algorithm. 

 
 

The organization of the paper is as follows. In Section 2, an overview of the NIOS II processor is given, accompanied by 
its custom instruction types (Section 2.1) and its different memory architectures (Section 2.2), while Section 3 describes 
the methodology used to accelerate the algorithms presented in this work. The final results from the memory 
configuration chosen and custom instruction paradigm acceleration are shown in Section 4. Finally, Section 5 contains 
our conclusions and lines for future work. 

 

2. NIOS II PROCESSOR 
 NIOS II [24-25] is a 32 bit general soft core embedded processor which allows the acceleration of time-critical 
software algorithms by adding custom instructions to its instruction set. It belongs to a family of three members, namely 
Fast, Economy and Standard; each one optimized for a specific price and performance range. 
The Nios II/f Fast CPU is optimized for maximum performance [26-27], offering a performance of up to 220 DMIPS  in 
the Stratix II family of FPGAs, placing it squarely in the ARM 9 [28] class of processor. This performance allows it to 
meet the constraints of using custom instructions, high bandwidth switch fabric, and hardware accelerators. It supports 
fixed and variable cycle operations. The NIOS II/e Economy CPU is optimized for lowest cost, achieving a smaller 
FPGA footprint, and the NIOS II/s Standard CPU is a trade-off solution between processing performance and logic 
element usage, reaching over 120 DMIPS while consuming only 930 LEs (Stratix II [29-30]). 
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Fig. 5. NIOS II Embedded Processor [13].  

 
2.1 NIOS II CUSTOM INSTRUCTIONS 

 
Our first task in this work is to accelerate the algorithms by using the paradigm of the NIOS II custom 

instructions [31], which are custom logic blocks adjacent to the ALU in the processor’s data path (Figure 5). They allow 
the designer to reduce a complex sequence of standard instructions to a single instruction implemented in hardware. The 
NIOS II processor uses gcc built-in functions to map to custom instructions [32], so it is feasible to use the macro 
directly in your C or C++ application code, thus avoiding writing assembly code and making one's progress along the 
steep learning curve to access custom instructions considerably faster. The NIOS II processor supports different types of 
custom instructions, of which there are four kinds that can be used to meet the application’s constraints and 
requirements. 

The first type is a combinational custom instruction that is described as a logic block that completes its logic function in 
a single clock cycle. The second and third types are multi-cycle or sequential custom instructions consisting of a logic 
block that requires two or more clock cycles to complete an operation. Finally, the fourth type is an extended custom 
instruction, which allows a single custom logic block to implement several different operations using an index to specify 
which operation the logic block has to perform. 
 
2.2 MEMORY SYSTEM DESIGN AT EMBEDDED MACHINE VISION SYSTEMS 

Another task addressed in this work is to perform an optimization in terms of memory use. Initially we carried 
out the whole algorithmic design without using the custom instruction paradigm, but by choosing an efficient 
combination of memory types to achieve a faster design. According to NIOS II specifications [34] there are four types of 
memories that we could use in our NIOS II processor based design: On-Chip memory, External SRAM, Flash Memory 
and SDRAM. Due to the limitations of our low-cost Altera DE2 board [35-36], here we can only use On-chip memory 
and SDRAM, which are described below. 

 
On-Chip memory: On-Chip is embedded inside the FPGA. Therefore, this memory type is the fastest and provides the 
lowest possible latency. On-Chip memory has a large number of good characteristics, such as transaction pipelining and 
no additional circuit-board wiring required. Some kinds of On-Chip memories are characterized by dual-port mode 
accessing with different ports for reading and writing, which allows reading over one port while writing is performed 
over the other. With regards to drawbacks, it raises volatility and has limited capacity because designed memory capacity 
depends only on the specific FPGA device. Due to its advantages and disadvantages, On-Chip memories are mainly used 
for storing boot code or LUT (Look-Up Tables). 
 
SDRAM: SDRAM is similar to SRAM, but it must be refreshed periodically to keep its data. The devices that employ 
SDRAM are usually low cost and of high-capacity, although a specific hardware controller is needed for it to operate. 
Since SDRAM organises the memory space in columns, rows and banks, the controller occupies a major part of the 

Proc. of SPIE-IS&T Vol. 9400  940002-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/15/2015 Terms of Use: http://spiedl.org/terms



Set valid movement range

For nine positions inside movement range

Get referenceframe block at position

Minimun cost

between

blocks?

Update minimun (cost and block position)

.. 1 esepno converge. none

Get reference frame block at position

maim........

Is cost minimun

between blocks?

Chosen metric equals

to SAD?

For each position inside current block

Cunenl block

[position[ > Reference

blodt[position[?

Cost = Cost Current block [position[ - Reference block [position[

Cost = Cost + Reference blak [position[ - Current block [position[

For each uusiliun inside cunenl block

Set valid movement range

Get reference frame block at position

Minimum cost

between

blocks?

Update minimun (cost and block position)

Diamond center

minimum cost

or corner?

Reduce movement step to the half

I a . a; m a. « .« 44,,,m,

interface. The complexity of the interface means always using an SDRAM controller which drives the timing, addresses 
multiplexing and refreshes every cycle. Thus SDRAM provides a large capacity at low cost, and its power consumption 
is lower compared with SRAM. It is feasible to share SDRAM buses to connect many SDRAM devices and external 
memories of other families such as flash or SRAM. SDRAM latency is always greater than regular external SRAM or 
FPGA on-chip memory. However, while first-access latency is high, the pipelining of consecutive access increases the 
global throughput. SDRAM can achieve higher clock frequencies than SRAM, thus improving performance. 

3. METHODOLOGY  
 The methodology can mainly be divided into two different sections. The first one presents the parameters for 
the designs achieved through the use of NIOS II custom instructions, and the second one presents the improvements 
through every valid and possible combination of On-Chip and SDRAM memory in a design using NIOS II. 
 

3.1 NIOS II CUSTOM INSTRUCTIONS 

In this part profiling is performed  (using the well-known codeblocks tool [33]) of the three presented 
algorithms in order to  directly address the time leak point, which is where we can improve performance by replacing 
source code with custom instructions. For a better comprehension of our profiling,  Figures 6-8 show the FST [15], TSST 
[20-22] and 2DLOG [23] flow charts, and Figures 9-11 contain the CopyBlock, GetBlock and GetCost flow charts. 
 

      
 

Fig. 6(left) FST, 7 (center) TSST and 8 (right) 2DLOG flow charts. 

For each byte in source address

Copy byte from source address to destination address             

For each row into block size

Call Do DMA with block row and destination address              
 

Fig. 9(left) CopyBlock ,10 (center) GetBlock and 11 (right) GetCost charts. 

Proc. of SPIE-IS&T Vol. 9400  940002-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/15/2015 Terms of Use: http://spiedl.org/terms



Nias 11/f

. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .

MB la MB 32
Windovu Sire

MB 84 NIB la MB 32 NIB 84
Window Size 3.6

Sopak,ck MG«skKk M Ge:Coa F317.2oLOGnSST M «n«

MB la MB 32
VVinciova Size 32

B 69

1.9 BIN

ZS aá5n+oPU.M
ZS 1216,1

T55no,021,5A r a.o,an-
9T aá5 moPU.M

V9 MN 121VM ST 9IAM

9 aá5 A+.9Pu.M

Ñ
o

N

ST BUT

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .
Vii sonry

Nias 11 /e

, I , I II I I I III
I
I
I

,
I
,
I

I
I
I
I

I
I
I
I

I
I
I
I

I
I
I
I

I
I
I
I

,
I
I
I

I
I
I
I

I
I
,
I

I
I
,
I

I
I
,
I

I
I
,
,

I
I
,
I

I
I
,
,

I
I
I
I

,
,
,
I

I
I
I
I

,
,
,
I

I
I
,
I

I
I
I
I

I
I
I
I

I
I
I
I

I
I
I
I

I
I
I
I

I
I
I
I

MB 32
Window sae B

LL

MB 64 MB 16

COpyBbdc aGetBknck

MB 32
window sae 16
GetCOrt aFST/212LOC/155T

LL E,

FAB 64

LL

FMB 32MB 16

Other
window sae 52

 

 

 
 

Fig. 12. Profiling of the different algorithms over all Nios II processors for each Macro-block (MB) and Window size. 
 
Figure 12 shows the profiling results obtained over complete executions of our motion estimation process when choosing 
FST, TSST and 2DLOG accordingly. From the profiling analysis we can decide, as candidate for replacement, to replace 
the GetCost function with a specific custom instruction. Regarding the custom instruction types and the candidate 
function structure to be replaced, we have decided to approach it with a multi-cycle custom instruction.  
In our first approach [27-28] the combinational custom instruction was accelerated, due to its speed (only one clock 
cycle), its easiness, and the GetCost function structure. Nevertheless, the multi-cycle custom instruction is implemented 
here due to its inherent advantages with regards to parallelism and pipelining, thus providing a more sophisticated 
custom instruction than the combinational one. The extended custom instruction was discarded because only one kind of 
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operation was needed between each pair of pixels (calculating SAD). The internal register file custom instruction derives 
from the multi-cycle one, and that one is tackled as previously mentioned. Finally, the external interface custom 
instruction has been discarded due to the fact that there is no need to communicate to external interfaces. 
We therefore employ the multi-cycle type to replace the GetCost function source code, as was indicated by the profiling. 
As explained above, the GetCost function is used to calculate the SAD between two macroblocks, one from the reference 
frame, and the other one from the current frame.  
When replacing the GetCost source code by the combinational custom instruction, which was carried out previously 
[27], the latter is called for every pair of pixels, one from each macroblock, and the local SAD calculated is accumulated 
to later give the total SAD between the required pair of macroblocks. On the other hand, when replacing the GetCost 
source code by the multi-cycle custom instruction, the latter is called for every group of eight pixels, four from each 
macroblock, and its main feature, the multi-cycle architecture, is used to calculate an accumulated SAD for that group. In 
this way, executing the multi-cycle custom instruction produces few accumulated SADs, which are then added to obtain 
the total SAD between the required pair of macroblocks. 
 
In Figure 13, we present all the results obtained for every possible combination between the executed algorithm (FST, 
2DLOG, and TSST), the selected macroblock size (16, 32, and 64), and the window size used (8, 16, and 32), for the 
well-known Foreman test bench video coding test sequence [33] using just the baseline case (“CI OFF”), the mono cycle 
(“CI Co ON”) and multi-cycle custom instruction (“CI Mu ON”). They will be shown in comparison with the 
combinational custom instruction case and the base case, which we consider to be the GetCost source code, translated 
directly to Nios II processor instructions. 
In this way, it is possible to analyze at a glance how much time we are saving with our improvement using our designed 
custom instruction. The best case achieves an improvement of 76.08% when executing the FST algorithm on the Nios 
II/e processor using a window search of 32 and a macroblock size of 32. On the other hand, the worst case remains 
without improvement when executing the TSST algorithm on the Nios II/f processor using a window size of 32 and a 
macroblock size of 16. 
 

 
 Fig. 13. Throughput for each algorithm, MacroBlock and processor without/with using Custom Instruction in GetCost. 
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3.2 MEMORY SYSTEM DESIGN 

We can deal with different memory combinations by taking advantage of each kind of memory mentioned 
above in order to achieve a rapid design. In order to achieve that, we have improved our design by testing it with every 
permitted memory combination, as shown in Table 1 (using on-chip and SDRAM memories only). We have chosen the 
on-chip memory because it is the fastest available memory on the FPGA, and SDRAM due to its big capacity and its 
lower cost with a good performance. The system is fitted with a fixed window size of 32 pixels. We make a comparison 
of the results obtained for each one of the tested algorithms. Here we only present the allowed memory combinations 
(Table 4) which deliver a valid design  (figures 14-16) that produces a correct program output on our testing platform 
(Altera DE2 board) [35], which incorporates a Cyclone II EP2C35F672C6 chip [36].  
Figures 14-16 represent the throughput in every mentioned combination for the three motion estimation algorithms, 
which helps the designer to characterize every combination. Configuration types 2 and 3 give the optimized performance 
since program memory is allocated using On-Chip memory. The second most optimized configuration group is 
numbered as 6-8, where the Stack is configured to be On-Chip memory. We consider the baseline case (number 1) to be 
just using SDRAM in every single parameter of the microprocessor design. 
 

 
Table 1. Memory System Design Configuration (MSDC). SD=SDRAM; OC=On-Chip Memory. 

 
Design 
Number 

 
Processor Reset Vector 

 

 
Processor Exception Vector 

 
Stack 

 
Heap 

 
Read/ 
Write  

Data (.rwdata) 

 
Read Only  

Data (.rodata) 

 
Program (.text) 

1 
 SD SD SD SD SD SD SD 

2 
 SD SD SD SD SD SD OC 

3 
 SD SD SD SD SD OC OC 

4 
 SD SD SD SD OC SD SD 

5 
 SD SD SD SD OC OC SD 

6 
 SD SD OC SD SD SD SD 

7 
 SD SD OC SD OC SD SD 

8 
 SD SD OC SD OC OC SD 

9 
 OC OC SD SD SD SD SD 

10 
 OC OC SD SD SD OC SD 

11 
 OC OC SD SD OC SD SD 

12 
 OC OC SD SD OC OC SD 

13 
 OC OC OC SD SD SD SD 

14 
 OC OC OC SD SD OC SD 

15 
 OC OC OC SD OC SD SD 

16 
 OC OC OC SD OC OC SD 
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Fig. 14. Throughput obtained for each MSDC (FST). 
 

 
 

Fig. 15. Throughput obtained for each MSDC (2DLOG). 
 

 
 

Fig. 16. Throughput obtained for each MSDC (TSST). 
 

As we can see, the group formed of configurations 2 and 3 achieves the best performance since the program text is 
allocated using On-chip memory. The second best group of configurations is formed of designs 6 to 8 and 13 to 16, 
where the stack is configured to be On-chip. The third group is formed of the remaining configurations (1, 4, 5, and 9 to 
12), where stack and program text are both allocated in SDRAM. The baseline case, design 1, is constructed using just 
SDRAM in every single configuration parameter of the memory system design. 
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4. FINAL RESULTS: CUSTOM INSTRUCTIONS AND MEMORY CHOICE 
 

In the two approaches that we have implemented and described in this paper, we built the embedded system by 
putting all results together (multi-cycle custom instruction and memory combination in the architecture of the embedded 
system) in order to enhance the overall performance results 
 
We can see in Figures 17-19 the performance obtained for every single memory combination with and without Custom 
Instruction and classified by processor type. In order to be able to make a comparison, we also show the enhancement 
obtained with respect to the monocycle custom instruction in our previous approaches [37-38]. Additionally, we present 
the performance compared against the reference design (number 1). Color columns represent the improvement when 
custom instruction is not enabled (CI OFF), and superposed gray columns show the performance when custom 
instruction is enabled (CI ON). 
The results obtained when running the Nios II/e processor are translated into three groups of configurations. The best 
performance group is formed of configurations 2 and 3 (up to nearly 60%) due to the fact that the program text is 
allocated in the On-chip memory. The second best performance group is formed of configurations 6 to 8 (up to nearly 
35%) due to the fact that the stack is allocated in the On-chip memory. The third performance group is formed of 
configurations 1, 4, and 5 (up to nearly 3%), due to both program text and stack are allocated in the SDRAM memory. 
Focusing on the Nios II/s processor, the results obtained are translated again into two main groups of configurations. The 
best performance group is formed of configurations 6 to 8 (up to nearly 75%) due to the stack being allocated in the On-
chip memory, and the other one is formed of configurations 1 to 5 (up to nearly 5%) due to the fact that using the 
instruction cache of this processor and allocating program text in the On-chip memory does not have any effect. 
Regarding the Nios II/f processor, the best performance group is formed of configurations 6 to 8 (up to nearly 60%) due 
to the fact that the stack is allocated in the On-chip memory, and formed of configurations 1 to 5 (up to nearly 3%) due 
to the fact that using the instruction cache of this processor and allocating program text in the On-chip memory barely 
has any effect. 
 

 

 

 
 

Fig. 17. Time Reduction (%) Vs Custom Instruction+ Memory Optimization for combinational custom instruction [37] 
and multi-cycle custom instruction regarding Nios II / e. Also is shown the enhancement regarding baseline. 
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Fig. 18. Time Reduction (%) Vs Custom Instruction+ Memory Optimization for combinational custom instruction [37] 

and multi-cycle custom instruction regarding Nios II / f. Also is shown the enhancement regarding baseline. 
 

 

 

 
 
Fig. 19. Time Reduction (%) Vs Custom Instruction+ Memory Optimization for combinational custom instruction [37] 

and multi-cycle custom instruction regarding Nios II / s. Also is shown the enhancement regarding baseline. 
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It does not matter what the selected macroblock size or the executed algorithm is, the Nios II/e processor always 
achieves better results when activating the custom instruction with the group formed of configurations 6 to 8 and 13 to 
16, between slightly more than 30% and 50% depending on the macroblock size and the algorithm executed, due to the 
stack being allocated in the On-chip memory. In the case of the group formed of configurations 2 and 3, it achieves 
improvements of between more than 10% and more than 30% when turning our custom instruction on, depending also 
on the macroblock size and the technique used. Although the group formed of configurations 1, 4, and 5 spends more 
time executing our combinatorial custom instruction or not, when using it the improvement achieved compared with the 
use of the GetCost source code is greater than the one achieved with the group built of configurations 2 and 3. Indeed, it 
is between more than 20% and more than 40% depending on the said factors.  
Regardless of the macroblock size or the executed algorithm, the Nios II/s processor always achieves a better 
performance when turning our custom instruction on with the group formed of configurations 6 to 8 and 13 to 16, due to 
the fact that the stack is allocated in the On-chip memory. This group achieves improvements from slightly more than 
10% to nearly 50% when turning our custom instruction on, depending on the algorithm executed and the selected 
macroblock size. On the other hand, there are improvements which vary from nearly 10% to slightly more than 20% 
depending on those factors when activating our custom instruction instead of translating the source code into the 
processor instruction set, due to the fact that using the instruction cache of this processor and allocating program text in 
the On-chip memory does not have any effect. 
Regarding the case of turning our custom instruction on, with the Nios II/f processor, all the designs are inside the same 
group of configurations regardless of the selected macroblock size. This is due to the fact that only the FST algorithm 
using macroblock sizes of 16 and 32 calls  the custom instruction many more times. Therefore, the designs present an 
improvement from nearly zero up to more than 50% depending on the algorithm executed and the macroblock size. 
Regarding all the Nios II processor types, we can conclude that classification of the memory system designs grouped by 
the improvements achieved when turning our custom instruction on corresponds directly with the classification 
performed when grouping the memory system designs by their achieved improvement compared with design number 1, 
except when dealing with the Nios II/f processor. In spite of this, the best performance group of the memory system 
designs does not always correspond to the best performance group of memory system designs when turning our custom 
instruction on, as happens when running on the Nios II/e processor. Although on the Nios II/s processor there is a direct 
relation between configurations grouped by achieved improvement compared with design number 1 and configurations 
grouped by achieved improvement when turning our custom instruction on. 
 
Regarding the resources consumed, we show in Table 2 the comparison when the custom instruction is used (Nios II /f) 
or no custom instruction is used. 
 
 

Table 2. FPGA Resources measured with Quartus tool [39] with a window’s size of 32 pixels. 
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5. CONCLUSIONS  
 
This work outlines a low-cost system, mapped using very large scale integration technology, which accelerates software 
algorithms by converting them into custom hardware logic blocks, and shows the best combination of On-chip memory 
and SDRAM for the Nios II processor.  
The average performance obtained is about 45% for the full set of parameters: window and macroblock sizes, algorithms 
and processor architecture used. The maximum throughput using this design represents an improvement of about 75% 
(window and macroblock sizes of 32, FST, Nios II/e processor). With the optimization of using the memory types 
available in the design, an improvement of 60% was achieved in the execution time. Finally, considering the 
combination of both techniques, an improvement of 80% was reached on average, and 90% for the optimum case. This 
means a considerable improvement with respect to its monocycle counterpart which corresponds to a throughput of 450 
Kpps (Kilo pixel per second) or just a SoC which processes 50×50 @ 180 fps if using the 2DLOG technique with a 
macroblock size of 32 running on the Nios II/f processor. We are actively working on characterizing the power and 
energy consumption for mono and multi-cycle instructions, releasing a dense feedback between accuracy and efficiency 
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