
Customized Nios II multi-cycle instructions to accelerate
block-matching techniques

Diego González a, Guillermo Botellaa,*, Carlos Garcíaa,

Anke Meyer Bäseb, Uwe Meyer Bäsec, Manuel Prieto-Matíasa

aDept. Computer Architecture, Universidad Complutense de Madrid. 28040 Madrid (Spain)
bDept. Computer Scientific, Florida State University, Tallahassee, Florida 32310-6046 USA

 cDept. Electrical and Computer Engineering, Florida State University,
Tallahassee, Florida 32310-6046 USA

diegogonzalez@grupobme.es, {gbotella, garsanca, mpmatias}@ucm.es,

{umeyerbaese, ameyerbaese}@fsu.edu

ABSTRACT

This study focuses on accelerating the optimization of motion estimation algorithms, which are widely used in video
coding standards, by using both the paradigm based on Altera Custom Instructions as well as the efficient combination of
SDRAM and On-Chip memory of Nios II processor. Firstly, a complete code profiling is carried out before the
optimization in order to detect time leaking affecting the motion compensation algorithms. Then, a multi-cycle Custom
Instruction which will be added to the specific embedded design is implemented. The approach deployed is based on
optimizing SOC performance by using an efficient combination of On-Chip memory and SDRAM with regards to the
reset vector, exception vector, stack, heap, read/write data (.rwdata), read only data (.rodata), and program text (.text) in
the design. Furthermore, this approach aims to enhance the said algorithms by incorporating Custom Instructions in the
Nios II ISA. Finally, the efficient combination of both methods is then developed to build the final embedded system.
The present contribution thus facilitates motion coding for low-cost Soft-Core microprocessors, particularly the RISC
architecture of Nios II implemented in FPGA. It enables us to construct an SOC which processes 50×50 @ 180 fps.

Keywords: Computer Vision, Optical Flow, MPEG Compression, Block Matching algorithm, NIOS II, FPGA, Custom
Instructions, Embedded Systems.

1. INTRODUCTION
There is an increasing need to process multimedia information in Real-Time, and portable consumer electronic

devices encourage research into green processing. There are many algorithms and systems that are specifically aimed at
handling multimedia task such as motion compensation and coding, which are widely used in the video coding standards.
Furthermore, motion estimation is still the focus of much research, and there exist several structures and
implementations using FPGAs [1-6], GPUs [7-8] and embedded systems [9] in the framework of Real-Time
implementation such as surveillance, tracking, navigation and automotive applications [10-11].

There has been much research into the paradigm of motion estimation for standard video coding in the last 30 years, as it
avoids the use of temporal redundancy in video data for storage and transmission [12-14]. Motion estimation for
multimedia purposes is achieved through Block Matching Techniques [15-19] that analyse the Macro Blocks (blocks of
pixels, or MBs) of the so-called reference frame to estimate the closest block to the current one in the current frame. We
can define the motion vector as an offset from the current frame's MB coordinates to the MB coordinates in the reference
frame. Figure 1 show that the procedure of coding the frame processed with motion estimation in video, either for the
predictor or for the entropy coding, is a crucial part of the MPEG-4, H.264/6 and, nowadays, the H.265 standards. With
regards to Block Matching, there are three main techniques:

Real-Time Image and Video Processing 2015, edited by Nasser Kehtarnavaz, Matthias F. Carlsohn,
Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 9400, 940002 · © 2015 SPIE-IS&T

 CCC code: 0277-786X/15/$18 · doi: 10.1117/12.2077104

Proc. of SPIE-IS&T Vol. 9400 940002-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/15/2015 Terms of Use: http://spiedl.org/terms

Decode

Coder

Control

Transform/
Quantizer

.----- Deq. /lnv.

Transform

I o4Q

Intra /Inter

Motion -

Compensated

Predictor

Motion
Estimator

Control

Data

Quant
Transf. co4ffs

Motio

Data

Entropy

Coding

FRAME T

SUM OF ABSOLUTE DIFFERENCES SMALLER

FRAME T +I

4.

SEARCH WINDOW

FST (Full Search Technique) [15], which matches all possible blocks within a search window in the reference frame to
find the closest block to the one fixed in the current frame (Figure 2). The closest is the one with the minimum
Summation of Absolute Differences (SAD):

Fig. 1. Motivation. Part of the MPEG-4 scheme.

It(x, y) represents the pixel value at the coordinate (x, y) in the frame t and the (u, v) is the displacement of the candidate
Macro Block (MB). If there is a block of size 64×64, the FST algorithm requires 4096 subtractions and 4095 additions to
calculate the SAD expression. The required number of checking blocks is (1+2d)2 while the search window is limited to
within ± d pixels, and currently a power of two is used for it.

31 31

1
0 0

(, ; ,) (,) (,) ,t t
x y

SAD x y u v I x y I x u y v−
= =

= − + +∑∑ (1)

Fig. 2. Full Search Technique.

TSST (Three Steps Search Technique) [20-22] selects nine candidate points, including the center point and eight
checking points on the boundary of the search centre movement ratio (Figure 3), moving forward to the matching point
with the minimum SAD and reducing the step size by half in each of its three steps. The last step stops the search process
with the optimal MV and the minimum SAD that can be obtained.

Proc. of SPIE-IS&T Vol. 9400 940002-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/15/2015 Terms of Use: http://spiedl.org/terms

(D)

NomosENNENNEEN
NomosENNENNEENNorisorimorimm
ENIAMMINENNINNENrtiiriiiiiiiii-rrr1+`A`ANNIAMEr.r1r
LabaramENNENNENorimsrimorimm
EMINEEMIAMEMEN
EMENNEMENNEMEN
MENNEMENEMEMEN

(9) (V)

-7

-6

-5

-4

-7 -6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6 7

r, r\ r,

2

3

6

e

iiiiil ©iiO4©41

Fig. 3. Three Step Search Technique, (a) First step, (b) Second step, (c) Third step.

2DLOG (Two Dimensional Logarithmic Search) [23] uses a cross pattern search (+) in each step until the step size is one
pixel, the initial step size being d/4 (Figure 4). The step size is reduced by half only when the minimum point of the
previous step is the centre one or the current minimum point reaches the search window boundary. If none of these two
conditions is met, the step size remains the same.

Fig. 4. 2DLog. Search path of 2DLOG search algorithm.

The organization of the paper is as follows. In Section 2, an overview of the NIOS II processor is given, accompanied by
its custom instruction types (Section 2.1) and its different memory architectures (Section 2.2), while Section 3 describes
the methodology used to accelerate the algorithms presented in this work. The final results from the memory
configuration chosen and custom instruction paradigm acceleration are shown in Section 4. Finally, Section 5 contains
our conclusions and lines for future work.

2. NIOS II PROCESSOR
 NIOS II [24-25] is a 32 bit general soft core embedded processor which allows the acceleration of time-critical
software algorithms by adding custom instructions to its instruction set. It belongs to a family of three members, namely
Fast, Economy and Standard; each one optimized for a specific price and performance range.
The Nios II/f Fast CPU is optimized for maximum performance [26-27], offering a performance of up to 220 DMIPS in
the Stratix II family of FPGAs, placing it squarely in the ARM 9 [28] class of processor. This performance allows it to
meet the constraints of using custom instructions, high bandwidth switch fabric, and hardware accelerators. It supports
fixed and variable cycle operations. The NIOS II/e Economy CPU is optimized for lowest cost, achieving a smaller
FPGA footprint, and the NIOS II/s Standard CPU is a trade-off solution between processing performance and logic
element usage, reaching over 120 DMIPS while consuming only 930 LEs (Stratix II [29-30]).

Proc. of SPIE-IS&T Vol. 9400 940002-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/15/2015 Terms of Use: http://spiedl.org/terms

Nios II Embedded Processor

A

B

dataa

datab
Custom result

Logic

1
Nba II

ALU

L Out

sf

Optional FIFO, Memory, and Other Logic

e
datas 3 32

datab 3 result

clk -o
cik en-
reset -
start -

n4ate
b4,
cl,.*

Parameterized

stall

Fig. 5. NIOS II Embedded Processor [13].

2.1 NIOS II CUSTOM INSTRUCTIONS

Our first task in this work is to accelerate the algorithms by using the paradigm of the NIOS II custom

instructions [31], which are custom logic blocks adjacent to the ALU in the processor’s data path (Figure 5). They allow
the designer to reduce a complex sequence of standard instructions to a single instruction implemented in hardware. The
NIOS II processor uses gcc built-in functions to map to custom instructions [32], so it is feasible to use the macro
directly in your C or C++ application code, thus avoiding writing assembly code and making one's progress along the
steep learning curve to access custom instructions considerably faster. The NIOS II processor supports different types of
custom instructions, of which there are four kinds that can be used to meet the application’s constraints and
requirements.

The first type is a combinational custom instruction that is described as a logic block that completes its logic function in
a single clock cycle. The second and third types are multi-cycle or sequential custom instructions consisting of a logic
block that requires two or more clock cycles to complete an operation. Finally, the fourth type is an extended custom
instruction, which allows a single custom logic block to implement several different operations using an index to specify
which operation the logic block has to perform.

2.2 MEMORY SYSTEM DESIGN AT EMBEDDED MACHINE VISION SYSTEMS

Another task addressed in this work is to perform an optimization in terms of memory use. Initially we carried
out the whole algorithmic design without using the custom instruction paradigm, but by choosing an efficient
combination of memory types to achieve a faster design. According to NIOS II specifications [34] there are four types of
memories that we could use in our NIOS II processor based design: On-Chip memory, External SRAM, Flash Memory
and SDRAM. Due to the limitations of our low-cost Altera DE2 board [35-36], here we can only use On-chip memory
and SDRAM, which are described below.

On-Chip memory: On-Chip is embedded inside the FPGA. Therefore, this memory type is the fastest and provides the
lowest possible latency. On-Chip memory has a large number of good characteristics, such as transaction pipelining and
no additional circuit-board wiring required. Some kinds of On-Chip memories are characterized by dual-port mode
accessing with different ports for reading and writing, which allows reading over one port while writing is performed
over the other. With regards to drawbacks, it raises volatility and has limited capacity because designed memory capacity
depends only on the specific FPGA device. Due to its advantages and disadvantages, On-Chip memories are mainly used
for storing boot code or LUT (Look-Up Tables).

SDRAM: SDRAM is similar to SRAM, but it must be refreshed periodically to keep its data. The devices that employ
SDRAM are usually low cost and of high-capacity, although a specific hardware controller is needed for it to operate.
Since SDRAM organises the memory space in columns, rows and banks, the controller occupies a major part of the

Proc. of SPIE-IS&T Vol. 9400 940002-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/15/2015 Terms of Use: http://spiedl.org/terms

Set valid movement range

For nine positions inside movement range

Get referenceframe block at position

Minimun cost

between

blocks?

Update minimun (cost and block position)

.. 1 esepno converge. none

Get reference frame block at position

maim........

Is cost minimun

between blocks?

Chosen metric equals

to SAD?

For each position inside current block

Cunenl block

[position[> Reference

blodt[position[?

Cost = Cost Current block [position[- Reference block [position[

Cost = Cost + Reference blak [position[- Current block [position[

For each uusiliun inside cunenl block

Set valid movement range

Get reference frame block at position

Minimum cost

between

blocks?

Update minimun (cost and block position)

Diamond center

minimum cost

or corner?

Reduce movement step to the half

I a . a; m a. « .« 44,,,m,

interface. The complexity of the interface means always using an SDRAM controller which drives the timing, addresses
multiplexing and refreshes every cycle. Thus SDRAM provides a large capacity at low cost, and its power consumption
is lower compared with SRAM. It is feasible to share SDRAM buses to connect many SDRAM devices and external
memories of other families such as flash or SRAM. SDRAM latency is always greater than regular external SRAM or
FPGA on-chip memory. However, while first-access latency is high, the pipelining of consecutive access increases the
global throughput. SDRAM can achieve higher clock frequencies than SRAM, thus improving performance.

3. METHODOLOGY
 The methodology can mainly be divided into two different sections. The first one presents the parameters for
the designs achieved through the use of NIOS II custom instructions, and the second one presents the improvements
through every valid and possible combination of On-Chip and SDRAM memory in a design using NIOS II.

3.1 NIOS II CUSTOM INSTRUCTIONS

In this part profiling is performed (using the well-known codeblocks tool [33]) of the three presented
algorithms in order to directly address the time leak point, which is where we can improve performance by replacing
source code with custom instructions. For a better comprehension of our profiling, Figures 6-8 show the FST [15], TSST
[20-22] and 2DLOG [23] flow charts, and Figures 9-11 contain the CopyBlock, GetBlock and GetCost flow charts.

Fig. 6(left) FST, 7 (center) TSST and 8 (right) 2DLOG flow charts.

For each byte in source address

Copy byte from source address to destination address

For each row into block size

Call Do DMA with block row and destination address

Fig. 9(left) CopyBlock ,10 (center) GetBlock and 11 (right) GetCost charts.

Proc. of SPIE-IS&T Vol. 9400 940002-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/15/2015 Terms of Use: http://spiedl.org/terms

Nias 11/f

. .. .

. .. .

. .

. .

. .

. .

. .

. .

MB la MB 32
Windovu Sire

MB 84 NIB la MB 32 NIB 84
Window Size 3.6

Sopak,ck MG«skKk M Ge:Coa F317.2oLOGnSST M «n«

MB la MB 32
VVinciova Size 32

B 69

1.9 BIN

ZS aá5n+oPU.M
ZS 1216,1

T55no,021,5A r a.o,an-
9T aá5 moPU.M

V9 MN 121VM ST 9IAM

9 aá5 A+.9Pu.M

Ñ
o

N

ST BUT

.

.

.

.

.
Vii sonry

Nias 11 /e

, I , I II I I I III
I
I
I

,
I
,
I

I
I
I
I

I
I
I
I

I
I
I
I

I
I
I
I

I
I
I
I

,
I
I
I

I
I
I
I

I
I
,
I

I
I
,
I

I
I
,
I

I
I
,
,

I
I
,
I

I
I
,
,

I
I
I
I

,
,
,
I

I
I
I
I

,
,
,
I

I
I
,
I

I
I
I
I

I
I
I
I

I
I
I
I

I
I
I
I

I
I
I
I

I
I
I
I

MB 32
Window sae B

LL

MB 64 MB 16

COpyBbdc aGetBknck

MB 32
window sae 16
GetCOrt aFST/212LOC/155T

LL E,

FAB 64

LL

FMB 32MB 16

Other
window sae 52

Fig. 12. Profiling of the different algorithms over all Nios II processors for each Macro-block (MB) and Window size.

Figure 12 shows the profiling results obtained over complete executions of our motion estimation process when choosing
FST, TSST and 2DLOG accordingly. From the profiling analysis we can decide, as candidate for replacement, to replace
the GetCost function with a specific custom instruction. Regarding the custom instruction types and the candidate
function structure to be replaced, we have decided to approach it with a multi-cycle custom instruction.
In our first approach [27-28] the combinational custom instruction was accelerated, due to its speed (only one clock
cycle), its easiness, and the GetCost function structure. Nevertheless, the multi-cycle custom instruction is implemented
here due to its inherent advantages with regards to parallelism and pipelining, thus providing a more sophisticated
custom instruction than the combinational one. The extended custom instruction was discarded because only one kind of

Proc. of SPIE-IS&T Vol. 9400 940002-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/15/2015 Terms of Use: http://spiedl.org/terms

Time Vs Custom Instruction.
FST, Window Size 8 pixels.

50000

ú 40000
m

É 30000

É
20000

r 10000

MB MB MB MB MB MB MB MB MB
16 32 64 16 32 64 16 32 64

N ios II/e N ios II/s N ios II/f

Configuration

CI OFF

CI Co ON

CIMuON

Time Vs Custom Instruction.
FST, Window Size 16 pixels.

200000

3 150000

1100300
50000

0
MB MB MB MB MB MB MB MB MB
16 32 64 16 32 64 16 32 64

N ios II/e N ros II /f

CI OFF

CI Co ON

CIMuON

Time Vs Custom Instruction.
FST, Window Size 32 pixels.

600000
Do 500000

400000
E 300000

É 200000
r 100000

0
MB MB MB MB MB MB MB MB MB
16 32 64 16 32 64 16 32 64

N ios II/e N ios u/f

CI OFF

CICoON

CI Mu ON

Time Vs Custom Instruction.
2DLOG, Window Size 8 pixels.

7000
Do 6000
m 5000
É 4000

3000
E 2000
= 1000 I 7

I 7
MB MB MB MB MB MB MB MB MB
16 32 64 16 32 64 16 32 64

N ios 11/e N ios I I/s N ios 11/f

Configuration

CI OFF

CI Co ON

CIMu ON

Time Vs Custom Instruction.
2DLOG, Window Size 16 pixels.

7000
6000
5000

E 4000
3000

E 2000
~ 1000

0

I
I
I 7
I

MB MB MB MB MB MB MB MB MB
16 32 64 16 32 64 16 32 64

N ios II/e N ios II/s N ios II/f

Configuration

CI OFF

CI Co ON

CI Mu ON

Time Vs Custom Instruction.
2DLOG, Window Size 32 pixels.

7000
6000

m 5000
E 4000
y 3000
E 2000
= 1000

-ME

MB MB MB MB MB MB MB MB MB
16 32 64 16 32 64 16 32 64

N ios 11/e N ios I I/s N ios 11/f

Configuration

CI OFF

CI Co ON

CIMu ON

Time Vs Custom Instruction.
TSST, Window Size 8 pixels.

7000
Do 6000

5000
E 4000
m 3000
E 2000

1000

II77
I
I

MB MB MB MB MB MB MB MB MB
16 32 64 16 32 64 16 32 64

N ios II/e N ios 11/s N ios 11/f

Configuration

CI OFF

CICoON

CIMu ON

Time Vs Custom Instruction.
TSST, Window Size 16 pixels.

7000
6000
5000

E 4000
3000

E 2000
~ 1000

II77
I
I

MB MB MB MB MB MB MB MB MB
16 32 64 16 32 64 16 32 64

N ios 11/e N ios 11/s N ios 11/f

Configuration

CI OFF

CI Co ON

CI Mu ON

Time Vs Custom Instruction.
TSST, Window Size 32 pixels.

7000
6000
5000

E 4000
3000

E 2000
1000

II77
I
I

MB MB MB MB MB MB MB MB MB
16 32 64 16 32 64 16 32 64

N ios II/e N ios 11/s N ios 11/f

Configuration

CI OFF

CICoON

CIMu ON

operation was needed between each pair of pixels (calculating SAD). The internal register file custom instruction derives
from the multi-cycle one, and that one is tackled as previously mentioned. Finally, the external interface custom
instruction has been discarded due to the fact that there is no need to communicate to external interfaces.
We therefore employ the multi-cycle type to replace the GetCost function source code, as was indicated by the profiling.
As explained above, the GetCost function is used to calculate the SAD between two macroblocks, one from the reference
frame, and the other one from the current frame.
When replacing the GetCost source code by the combinational custom instruction, which was carried out previously
[27], the latter is called for every pair of pixels, one from each macroblock, and the local SAD calculated is accumulated
to later give the total SAD between the required pair of macroblocks. On the other hand, when replacing the GetCost
source code by the multi-cycle custom instruction, the latter is called for every group of eight pixels, four from each
macroblock, and its main feature, the multi-cycle architecture, is used to calculate an accumulated SAD for that group. In
this way, executing the multi-cycle custom instruction produces few accumulated SADs, which are then added to obtain
the total SAD between the required pair of macroblocks.

In Figure 13, we present all the results obtained for every possible combination between the executed algorithm (FST,
2DLOG, and TSST), the selected macroblock size (16, 32, and 64), and the window size used (8, 16, and 32), for the
well-known Foreman test bench video coding test sequence [33] using just the baseline case (“CI OFF”), the mono cycle
(“CI Co ON”) and multi-cycle custom instruction (“CI Mu ON”). They will be shown in comparison with the
combinational custom instruction case and the base case, which we consider to be the GetCost source code, translated
directly to Nios II processor instructions.
In this way, it is possible to analyze at a glance how much time we are saving with our improvement using our designed
custom instruction. The best case achieves an improvement of 76.08% when executing the FST algorithm on the Nios
II/e processor using a window search of 32 and a macroblock size of 32. On the other hand, the worst case remains
without improvement when executing the TSST algorithm on the Nios II/f processor using a window size of 32 and a
macroblock size of 16.

 Fig. 13. Throughput for each algorithm, MacroBlock and processor without/with using Custom Instruction in GetCost.

Proc. of SPIE-IS&T Vol. 9400 940002-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/15/2015 Terms of Use: http://spiedl.org/terms

3.2 MEMORY SYSTEM DESIGN

We can deal with different memory combinations by taking advantage of each kind of memory mentioned
above in order to achieve a rapid design. In order to achieve that, we have improved our design by testing it with every
permitted memory combination, as shown in Table 1 (using on-chip and SDRAM memories only). We have chosen the
on-chip memory because it is the fastest available memory on the FPGA, and SDRAM due to its big capacity and its
lower cost with a good performance. The system is fitted with a fixed window size of 32 pixels. We make a comparison
of the results obtained for each one of the tested algorithms. Here we only present the allowed memory combinations
(Table 4) which deliver a valid design (figures 14-16) that produces a correct program output on our testing platform
(Altera DE2 board) [35], which incorporates a Cyclone II EP2C35F672C6 chip [36].
Figures 14-16 represent the throughput in every mentioned combination for the three motion estimation algorithms,
which helps the designer to characterize every combination. Configuration types 2 and 3 give the optimized performance
since program memory is allocated using On-Chip memory. The second most optimized configuration group is
numbered as 6-8, where the Stack is configured to be On-Chip memory. We consider the baseline case (number 1) to be
just using SDRAM in every single parameter of the microprocessor design.

Table 1. Memory System Design Configuration (MSDC). SD=SDRAM; OC=On-Chip Memory.

Design
Number

Processor Reset Vector

Processor Exception Vector

Stack

Heap

Read/
Write

Data (.rwdata)

Read Only

Data (.rodata)

Program (.text)

1
 SD SD SD SD SD SD SD

2
 SD SD SD SD SD SD OC

3
 SD SD SD SD SD OC OC

4
 SD SD SD SD OC SD SD

5
 SD SD SD SD OC OC SD

6
 SD SD OC SD SD SD SD

7
 SD SD OC SD OC SD SD

8
 SD SD OC SD OC OC SD

9
 OC OC SD SD SD SD SD

10
 OC OC SD SD SD OC SD

11
 OC OC SD SD OC SD SD

12
 OC OC SD SD OC OC SD

13
 OC OC OC SD SD SD SD

14
 OC OC OC SD SD OC SD

15
 OC OC OC SD OC SD SD

16
 OC OC OC SD OC OC SD

Proc. of SPIE-IS&T Vol. 9400 940002-8

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/15/2015 Terms of Use: http://spiedl.org/terms

8000

-7.7 6000

4000

2000

0

Time Vs Memory System Design.
2DLOG, window size 32 pixels.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Memory System Design

Design

Time Vs Memory System Design.
TSST, window size 32 pixels.

6000

Design

5000

Ñ 4000
E 3000

É E E2000
1= 1000

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Memory System Design

600000
-. 500000
ca

V, 400000
E 300000

É 200000
~ 100000

o

Time Vs Memory System Design.
FST, window size 32 pixels.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Memory System Design

Design

Fig. 14. Throughput obtained for each MSDC (FST).

Fig. 15. Throughput obtained for each MSDC (2DLOG).

Fig. 16. Throughput obtained for each MSDC (TSST).

As we can see, the group formed of configurations 2 and 3 achieves the best performance since the program text is
allocated using On-chip memory. The second best group of configurations is formed of designs 6 to 8 and 13 to 16,
where the stack is configured to be On-chip. The third group is formed of the remaining configurations (1, 4, 5, and 9 to
12), where stack and program text are both allocated in SDRAM. The baseline case, design 1, is constructed using just
SDRAM in every single configuration parameter of the memory system design.

Proc. of SPIE-IS&T Vol. 9400 940002-9

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/15/2015 Terms of Use: http://spiedl.org/terms

Nios II /e + CI Multi -cycle
a0

FST, MB16
70

FST, MB32
60

FST, MB6450
2DLO0, M B16

g
2DLO0, M B32

20 2DLO0, M B64
10

TSST, MB16

[1],[4,5],[9,12] .4ndc(SDRAM) text(SDRAM) [2,3] st4[k(SDRAM) text(On -thip) [6.6][13,16] sxk(On -drip) text(SD6AM) TSST, MB32

Memory System Des.. TSST, M064

80

70

60

50

40

~ 30
20

10

0

Nios II /e + CI Combinational

J
[1],[4,5],[9,12] .stadc(SDRAM) .text(SDRAM) [2,3] .stack(SDRAM) .text(On -chip) [6,8][13,16] .stack(On -chip) .text(SDRAM)

Memory System Design

FST, MB16

FST, MB32

FST, M864

2DLOG, M816

2DLOG, M832

2DLOG, M864

TSST, MB16

TSST, MB32

TSST, MB64

Nios II/e
Bo

)0
60

50

É YO
r 30

20

30

O

F5T,MB16
FST, MB 32

FST,MB64

2DLOG,MB32

213LOG,1/113 64

TSST,MB16

12 31 stxk(SDRAMI .text(04-114o)
Ea-

f4 51f9 121 .stack(SDRAMI .text15DRAMI 31113 161 stacklOn-chia).textISDRAMI
7557, MB 32

10
Memory System 0e4161 7557, MB 64

4. FINAL RESULTS: CUSTOM INSTRUCTIONS AND MEMORY CHOICE

In the two approaches that we have implemented and described in this paper, we built the embedded system by
putting all results together (multi-cycle custom instruction and memory combination in the architecture of the embedded
system) in order to enhance the overall performance results

We can see in Figures 17-19 the performance obtained for every single memory combination with and without Custom
Instruction and classified by processor type. In order to be able to make a comparison, we also show the enhancement
obtained with respect to the monocycle custom instruction in our previous approaches [37-38]. Additionally, we present
the performance compared against the reference design (number 1). Color columns represent the improvement when
custom instruction is not enabled (CI OFF), and superposed gray columns show the performance when custom
instruction is enabled (CI ON).
The results obtained when running the Nios II/e processor are translated into three groups of configurations. The best
performance group is formed of configurations 2 and 3 (up to nearly 60%) due to the fact that the program text is
allocated in the On-chip memory. The second best performance group is formed of configurations 6 to 8 (up to nearly
35%) due to the fact that the stack is allocated in the On-chip memory. The third performance group is formed of
configurations 1, 4, and 5 (up to nearly 3%), due to both program text and stack are allocated in the SDRAM memory.
Focusing on the Nios II/s processor, the results obtained are translated again into two main groups of configurations. The
best performance group is formed of configurations 6 to 8 (up to nearly 75%) due to the stack being allocated in the On-
chip memory, and the other one is formed of configurations 1 to 5 (up to nearly 5%) due to the fact that using the
instruction cache of this processor and allocating program text in the On-chip memory does not have any effect.
Regarding the Nios II/f processor, the best performance group is formed of configurations 6 to 8 (up to nearly 60%) due
to the fact that the stack is allocated in the On-chip memory, and formed of configurations 1 to 5 (up to nearly 3%) due
to the fact that using the instruction cache of this processor and allocating program text in the On-chip memory barely
has any effect.

Fig. 17. Time Reduction (%) Vs Custom Instruction+ Memory Optimization for combinational custom instruction [37]
and multi-cycle custom instruction regarding Nios II / e. Also is shown the enhancement regarding baseline.

Proc. of SPIE-IS&T Vol. 9400 940002-10

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/15/2015 Terms of Use: http://spiedl.org/terms

Nios II /s + CI Multi -cycle
so

70
FST, MB16

FST, MB32fio
FST, M869So

440 M B36

2DLOG, M B3230
20
10

2DLOG, M 669

TSST, MB16

[1]14,5],[912] .stack(SDRAM) .text(SDRAM [2,8] stack(SDRAM) .text(On< hip) [1,8][83,11] stack(OnCiip).text(SDRA0,) TSST, MB32
Memory System Design TSST, MB69

Nios II/f
BO

70

60

50

E 40

a 30

20

10

O

FST, MR 16

FST, MB 32

M2131_06,MB16

M21:405, M8 32

NTSST, MB 16

1231 stack(SDBnM1 texllOn-chip) 14.51.19.121 sa&ISDBAM11e#ISUBAMI 1681113.161 sacklOn-ch inl teaHSDenM1
NTSST, M832

SU
Memory System De#8n TSST, MB 64

Nios II/s

f2 31 stxk(SDgaM1 çext(On<3vD1 DI 511'9.121 sack(3DBAM1 feH(SDBHMl [68][13,16] stack(On-Min) rexF(S17anM1
Memory System Design

FST, MB 16

FST, MB 32

FST,MB64

M2DLOG,MB16

12010D, M 8 32

M2DL06,MB64
N TSST, MB 16

MTSST, MB 32

TSST, MB 64

Nios II /s + CI Combinational
o
70

60

z:
E

20
10

O

FST, M816

FST, M832

FST, MB64

2DLOG, M816

2DLOG, M832

[11,[4, 51 ,[9,121.stadc(SDRAM).text(SDRAM) (2,31 stack(SDRAM) 3ext(On -chip)

Memory System Design

[6,81[13,161 5xk(On-dhip) .text(sDRAM)

2DLOG, MB64

TSST, M616

TSST, M832

TSST, M564

Nios II /f + CI Multi -cycle
SO

EST, MB16
70

FST, M03260
EST, MB6450
2DLOG, MB16

g
2010G, M 832

20 2DLOG, MB64
10

TSST, MB16
0

[1],[4,5],[9,12] .9ack(SDRAM) .tezt(SORAM) [2,3] .stack(SDRAM) tex2(On -drip)

Memory System Design

[628][13,16] 5ack(On -dip) .tert(SORRM) NTS3T, M832

uTSST, MB64

Nios II /f + Cl Combinational
BO

FST, MB16
70

FST, MBS260

50 FIT, MB64
á.40 2DLOG, 816
t

30 2DLOG, M 832
20

2DLOG, MB64
10

TSST, M8160
[1],[4,5],[9,12] .stack(SDRAM) .text(SDRAM) [2,3] stack]SDRAM).text /On -chip) [6,8][13,16] .stack(On- chip).text(SDRAM) TSST, M832

Memory System Design TSST, MB64

Fig. 18. Time Reduction (%) Vs Custom Instruction+ Memory Optimization for combinational custom instruction [37]

and multi-cycle custom instruction regarding Nios II / f. Also is shown the enhancement regarding baseline.

Fig. 19. Time Reduction (%) Vs Custom Instruction+ Memory Optimization for combinational custom instruction [37]

and multi-cycle custom instruction regarding Nios II / s. Also is shown the enhancement regarding baseline.

Proc. of SPIE-IS&T Vol. 9400 940002-11

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/15/2015 Terms of Use: http://spiedl.org/terms

It does not matter what the selected macroblock size or the executed algorithm is, the Nios II/e processor always
achieves better results when activating the custom instruction with the group formed of configurations 6 to 8 and 13 to
16, between slightly more than 30% and 50% depending on the macroblock size and the algorithm executed, due to the
stack being allocated in the On-chip memory. In the case of the group formed of configurations 2 and 3, it achieves
improvements of between more than 10% and more than 30% when turning our custom instruction on, depending also
on the macroblock size and the technique used. Although the group formed of configurations 1, 4, and 5 spends more
time executing our combinatorial custom instruction or not, when using it the improvement achieved compared with the
use of the GetCost source code is greater than the one achieved with the group built of configurations 2 and 3. Indeed, it
is between more than 20% and more than 40% depending on the said factors.
Regardless of the macroblock size or the executed algorithm, the Nios II/s processor always achieves a better
performance when turning our custom instruction on with the group formed of configurations 6 to 8 and 13 to 16, due to
the fact that the stack is allocated in the On-chip memory. This group achieves improvements from slightly more than
10% to nearly 50% when turning our custom instruction on, depending on the algorithm executed and the selected
macroblock size. On the other hand, there are improvements which vary from nearly 10% to slightly more than 20%
depending on those factors when activating our custom instruction instead of translating the source code into the
processor instruction set, due to the fact that using the instruction cache of this processor and allocating program text in
the On-chip memory does not have any effect.
Regarding the case of turning our custom instruction on, with the Nios II/f processor, all the designs are inside the same
group of configurations regardless of the selected macroblock size. This is due to the fact that only the FST algorithm
using macroblock sizes of 16 and 32 calls the custom instruction many more times. Therefore, the designs present an
improvement from nearly zero up to more than 50% depending on the algorithm executed and the macroblock size.
Regarding all the Nios II processor types, we can conclude that classification of the memory system designs grouped by
the improvements achieved when turning our custom instruction on corresponds directly with the classification
performed when grouping the memory system designs by their achieved improvement compared with design number 1,
except when dealing with the Nios II/f processor. In spite of this, the best performance group of the memory system
designs does not always correspond to the best performance group of memory system designs when turning our custom
instruction on, as happens when running on the Nios II/e processor. Although on the Nios II/s processor there is a direct
relation between configurations grouped by achieved improvement compared with design number 1 and configurations
grouped by achieved improvement when turning our custom instruction on.

Regarding the resources consumed, we show in Table 2 the comparison when the custom instruction is used (Nios II /f)
or no custom instruction is used.

Table 2. FPGA Resources measured with Quartus tool [39] with a window’s size of 32 pixels.

Method

Logic
Cells

Embedded
Multipliers

M4K
Rams

Memory
bits

No Custom
Instruction.

2210
(7%) 0 0

412272
(85%)

Custom
Instruction

(mono
cycle).

3970
(12%) 4

98

(96%)

99200
(20%)

Custom

Instruction
(multi-
cycle).

4962
(15%) 4

99

(97%)

128960
(26%)

Proc. of SPIE-IS&T Vol. 9400 940002-12

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/15/2015 Terms of Use: http://spiedl.org/terms

5. CONCLUSIONS

This work outlines a low-cost system, mapped using very large scale integration technology, which accelerates software
algorithms by converting them into custom hardware logic blocks, and shows the best combination of On-chip memory
and SDRAM for the Nios II processor.
The average performance obtained is about 45% for the full set of parameters: window and macroblock sizes, algorithms
and processor architecture used. The maximum throughput using this design represents an improvement of about 75%
(window and macroblock sizes of 32, FST, Nios II/e processor). With the optimization of using the memory types
available in the design, an improvement of 60% was achieved in the execution time. Finally, considering the
combination of both techniques, an improvement of 80% was reached on average, and 90% for the optimum case. This
means a considerable improvement with respect to its monocycle counterpart which corresponds to a throughput of 450
Kpps (Kilo pixel per second) or just a SoC which processes 50×50 @ 180 fps if using the 2DLOG technique with a
macroblock size of 32 running on the Nios II/f processor. We are actively working on characterizing the power and
energy consumption for mono and multi-cycle instructions, releasing a dense feedback between accuracy and efficiency

6. ACKNOWLEDGMENTS
This work has been partially supported by Spanish Project TIN 2012/32180.

7. REFERENCES
[1] Botella, G., Martín, H. J., Santos, M., & Meyer-Baese, U. (2010). FPGA-based multimodal embedded

sensor system integrating low-and mid-level vision. Sensors (Basel, Switzerland), 11(8), 8164-8179.
[2] Botella, G., García, A., Rodríguez-Álvarez, M., Ros, E., Meyer-Baese, U., & Molina, M. C. (2010).

Robust bioinspired architecture for optical-flow computation. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 18(4), 616-629.

[3] Botella, G., Meyer-Baese, U., & García, A. (2009). Bio-inspired robust optical flow processor system for
VLSI implementation. Electronics letters, 45(25), 1304-1305.

[4] Botella, G., Ros, E., Rodríguez, M., García, A., & Romero, S. (2006, May). Pre-processor for bioinspired
optical flow models: a customizable hardware implementation. In Electrotechnical Conference, 2006.
MELECON 2006. IEEE Mediterranean (pp. 93-96). IEEE.

[5] Botella, G., Meyer-Baese, U., García, A., & Rodríguez, M. (2012). Quantization analysis and
enhancement of a VLSI gradient-based motion estimation architecture. Digital Signal Processing, 22(6),
1174-1187.

[6] Meyer-Baese, U., Botella, G., Romero, D. E., & Kumm, M. (2012, May). Optimization of high speed
pipelining in FPGA-based FIR filter design using genetic algorithm. In SPIE Defense, Security, and
Sensing (pp. 84010R-84010R). International Society for Optics and Photonics.

[7] García, C., Botella, G., Ayuso, F., Prieto, M., & Tirado, F. (2013). Multi-GPU based on multicriteria
optimization for motion estimation system. EURASIP Journal on Advances in Signal Processing,
2013(1), 1-12.

[8] Ayuso, G Botella, C García, M Prieto, F Tirado, GPU-based acceleration of bio-inspired motion
estimation model. Concurrency and Computation: Practice and Experience. 25, 1037 –1056 (2013).
doi:10.1002/cpe.2946

[9] Igual, F. D., Botella, G., García, C., Prieto, M., & Tirado, F. (2013). Robust motion estimation on a
low-power multi-core DSP. EURASIP Journal on Advances in Signal Processing, 2013(1), 1-15
[10] Mota, S., Ros, E., Díaz, J., Botella, G., Vargas, F., & Prieto, A. (2003, September). Motion driven

segmentation scheme for car overtaking sequences. In Proceedings of 10th International Conference on
Vision in Vehicles (VIV’2003).

[11] Díaz, J., Ros, E., Mota, S., Botella, G., Cañas, A., & Sabatini, S. (2003). Optical flow for cars
overtaking monitor: the rear mirror blind spot problem. Ecovision (European research project).

Proc. of SPIE-IS&T Vol. 9400 940002-13

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/15/2015 Terms of Use: http://spiedl.org/terms

[12] Marpe, D.; Wiegand, T.; Sullivan, G.J. The H.264/MPEG4 advanced video coding standard and its
applications. IEEE Commun. Mag. 2006, 44, 134–143.

[13] ITU-T Recommendation H.264 (draft). International standard for advanced video coding; 2003.
[14] ITU-T Recommendation H.264 & ISO/IEC 14496-10 (MPEG-4) AVC. Advance Video Coding for

Generic Audiovisual Services; 2005.
[15] Konrad, J. Estimating motion in image sequences. IEEE Signal Process Mag. 1999, 16, 70–91.
[16] Kappagantula, S.; Rao, K.-R. Motion compensated interframes image prediction. IEEE Trans.

Commun. 1985, 33, 1011–1015.
[17] Kuo, C.-J.; Yeh, C.-H.; Odeh, S.-F. Polynomial Search Algorithms for Motion Estimation. In

Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, Orlando, FL, USA, 11
July 2012; pp. 813–818.

[18] Zhu, S.; Ma, K.-K. A new diamond search algorithm for fast block-matching motion estimation.
IEEE Trans. Image Process. 2000, 9, 287–290.

[19] Zhu, S. Fast Motion Estimation Algorithms for Video Coding. M.S. thesis, Nanyang Technology
University: Singapore, 1998.

[20] Koga, T.; Iinuma, K.; Hirano, A.; Iijima, Y.; Motion-Compensated Interframe Coding for Video
Conferencing. In Proceedings of the IEEE National Telecommunications Conference, New Orleans, LA,
USA, 15 November 1981.

[21] Liu, B.; Zaccarin, A. New fast algorithms for estimation of block motion vectors. IEEE Trans.
Circuit. Syst. Video Technol. 1993, 3, 148–157.

[22] Li, R.; Zeng, B.; Liou, M.-L. A new three-step search algorithm for block motion estimation. IEEE
Trans. Circuit. Syst. Video Technol. 1994, 4, 438–422.

[23] Jain, J.-R.; Jain, A.-K. Displacement measurement and its application in interframes image coding.
IEEE Trans. Commun. 1981, 29, 1799–1808.

[24] [on-line] http://www.altera.com/devices/processor/nios2.
[25] Chu, P. Embedded SoPC Design with NIOS II Processor; Wiley: Hoboken, NJ, USA, 2012.
[26] [on-line] Nios II Performance Benchmarks. http://www.altera.com/literature/ds/ds_nios2_perf.pdf.
[27] [on-line] Altera: Nios Processor. Available online: http://www.altera.com/literature/lit-nio.jsp.
[28] [on-line] ARM. Architecture for the Digital World.

http://www.arm.com/products/processors/classic/arm9/.
[29] [on-line] http://www.altera.com/devices/fpga/stratix-fpgas/stratix-ii/stratix-ii/st2-index.jsp.
[30] [on-line] Altera. http://www.altera.com/devices/fpga/stratix-fpgas/stratix-ii/stratix-ii/st2-index.jsp.
[31] [on-line] http://www.altera.com/devices/processor/nios2/benefits/performance/ni2-acceleration.html.
[32] [on-line] http://www.altera.com/literature/ug/ug_nios2_custom_instruction.pdf.
[33] [on-line] https://launchpad.net/codeblocks..
[34] [on-line] Yushin, C. CIPR Sequences. Available online: http://www.cipr.rpi.edu/resource/sequences/ .
[35] [on-line] http://www.altera.com/education/univ/materials/boards/de2/
[36] [on-line] Altera. Cyclone II FPGAs at Cost That Rivals ASICs. Available online:

http://www.altera.com/devices/fpga/cyclone2/ cy2-index.jsp.
[37] González, D., Botella, G., García, C., Prieto, M., & Tirado, F. (2013). Acceleration of block-matching

algorithms using a custom instruction-based paradigm on a Nios II microprocessor. EURASIP Journal on
Advances in Signal Processing, 2013(1), 118.

[38] González, D., Botella, G., Meyer-Bäse, A., & Meyer-Bäse, U. (2013, May). Optimization of block-
matching algorithms using custom instruction-based paradigm on NIOS II microprocessors. In Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series (Vol. 8750).

[39] [on-line] Quartus II tool. Available online:
http://www.altera.com/education/univ/software/quartus2/unv-quartus2.html

Proc. of SPIE-IS&T Vol. 9400 940002-14

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 07/15/2015 Terms of Use: http://spiedl.org/terms

