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Two-path interference of transversal vectorial waves is embedded within a larger scheme: this is four-path

interference between four scalar waves. This comprises previous approaches to coherence between vectorial
waves and restores the equivalence between correlation-based coherence and visibility. © 2010 Optical Soci-

ety of America
OCIS codes: 030.1640, 260.2110, 260.5430.

1. INTRODUCTION

Coherence is a key subject in optics derived from the sta-
tistical nature of real light beams [1,2]. Coherence may
represent at least two attributes of the electromagnetic
field:

(a) Correlations between the complex amplitudes of
electromagnetic field modes.

(b) Ability to interfere as visibility of interference
fringes.

For scalar waves these attributes coincide, and coher-
ence means essentially maximum visibility. Moreover,
maximum coherence is obtained when correlations factor-
ize.

For vectorial light the situation is more complex [3].
Most of the work has focused on two-beam interference.
In such a case coherence can be defined directly by the
visibility of interference fringes disregarding polarization
[4-8]. On the other hand, correlation-based degrees of co-
herence have also been introduced [9-11]. At difference
with the scalar case, these two approaches can lead to
contradictory conclusions, as illustrated by the discus-
sions in [10-14]. Moreover, the relation between factoriza-
tion of correlations and visibility is rather involved
[15,16].

In this work we embed two-path interference of trans-
versal vectorial waves within a larger framework: this is
four-path interference, where fringes depend on four in-
dependent phases, being in this way sensitive to all field
correlations. This enlarged framework allows us to ac-
commodate different approaches to coherence, restoring
the agreement between correlation-based coherence and
visibility.

In a previous work [17] we have studied very general
abstract relations between coherence and fringe visibility
for an arbitrary number of field components. This is par-
ticularized here to the case of four components. The main
novelty of this paper is that we introduce a practical re-
alization of the abstract definition of multiple-beam vis-
ibility considered in [17]. This allows us to prove the fol-
lowing results:
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(i) Correlation-based degrees of coherence are equiva-
lent to fringe visibility. The degree of polarization is the
maximum visibility that can be reached for a given field
under deterministic unitary transformations.

(ii) Unit visibility holds exclusively for factorized
fields.

This is illustrated with the example of a Mach-Zehnder
interferometer. From a practical perspective, we show
that different approaches to coherence correspond to im-
pose different restrictions on the input beam splitter that
lead to different relations between coherence and visibil-
ity. Moreover, the ultimate goal is to find the optimum in-
put beam splitter leading to maximum visibility for given
input beams. This is to obtain full advantage of the coher-
ence conveyed by the field in the form of the best possible
interference.

This is closely related to transformation properties un-
der deterministic unitary linear transformations of differ-
ent approaches, represented in this case by the properties
of the input beam splitter. These are of large physical sig-
nificance since they represent all transparent, linear, de-
terministic devices. They do not modify the randomness
or disorder of the field preserving the amount of coher-
ence [3,6,8,18].

For the sake of completeness and to motivate the main
definitions, in Section 2 we recall useful relations between
visibility, coherence, and degree of polarization in the sca-
lar case. These are generalized in Section 3 to the inter-
ference between two partially polarized transversal
waves regarded as a four-path interferometer. This is
used to relate field correlations and visibility embedding
different approaches to coherence as particular cases of a
more general framework.

2. COHERENCE AND VISIBILITY FOR
SCALAR WAVES

Let us consider two harmonic electromagnetic scalar
modes, statistically described by random, complex ampli-
tudes E; o with cross-spectral density matrix I':
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where the angle brackets represent ensemble averages.
Coherence can manifest as two main phenomena: (1)
interference as coherence between modes in the same po-
larization state, and (2) polarization as coherence be-
tween modes in orthogonal polarization states. These two
manifestations are not independent, since we can always
transform polarization into interference and vice versa by
a simple polarization transformation of one of the modes.

A. Coherence and Visibility

In two-beam interference E; 5 represent the complex am-
plitudes of two waves E;=E;s in the same polarization
state described by the complex unit vector . Coherence
manifests through the modulation of the intensity of the
interference, suitably normalized for the sake of conve-
nience,

(|E1e'1 + Eqe'*2[?)

_— 2
BB B =

I(<P1,<P2) =

where ¢; are the phases acquired by the waves within the
interferometer and I(¢q, ¢9) actually depends just on the
phase difference ¢;—¢y. The standard expression for the
fringe visibility is

x_Imin

Ima 2|<E1E;>| 2\'/;
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lul, (3

where I, min are the maxima and minima of I(¢;, ¢9)
when ¢; 5 are varied, u is the complex second-order de-
gree of coherence, and r is the intensity ratio:
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There is a clear proportionality between coherence u and
visibility V. There are useful alternative expressions lead-
ing to the same V. This is the matrix distance [3,19]

V2 =2tr[(y - 7.)%], (5)

where vy is the normalized counterpart of I', and v, is the
matrix obtained from vy by removing all phase-dependent
matrix elements:

. 1 (<|E1|2> 0 ) .
TEr MTER D 0 (Ep) ©

Moreover, V can also be expressed as the distance be-
tween I(¢;, ¢9) and the uniform intensity distribution rep-
resenting interference with null visibility [20]:

1
V= ﬁLﬂd‘Pld%U(%,@z) - 17 (7)

B. Coherence and Degree of Polarization
In the polarization context E;, represent the complex
amplitudes of two orthogonally polarized waves E;=Ee;

Vol. 27, No. 8/August 2010/J. Opt. Soc. Am. A 1765

with 81'8;=0. In this case coherence manifests in the po-
larization state and can be assessed through the degree of
polarization P,

PE)=

Ny =Ny detT" |12
- ) (8)

NNy (trT)2

where \; 4 are the eigenvalues of I'. Equivalently, in
terms of u and r we have

A=+ 4]l

P(E) 9)

1+r

An alternative matrix-distance expression leading to the
same P is [3]

P2=2t i) '—1 ! O) 10
- 1‘[('}’—1) ]’ 1_2 01 ’ ( )

where 1 is the 2 X 2 normalized identity matrix represent-
ing fully unpolarized light.

A key point is that P is invariant under deterministic
unitary transformations E—A=UE, A’=(A;,A,), E!
=(E{,E,), and U being arbitrary 2 X 2 unitary matrices.
This produces the unitary transformation of the cross-
spectral density matrix I'(E) —T'(A)=UT(E)U". Since this
preserves traces and eigenvalues we get y(E)— y(A)
=Uy(E)U" and P(A)=P(E). However V(A)# V(E), since
the diagonal form is not preserved, i.e., 7v,(A)
#Uv,(E)U". Similarly, u(A) # u(E).

C. Visibility and Degree of Polarization
The two above scenarios are not independent and V, P
satisfy the equality [17]

VZ+ W2=P? (11)
where W is the matrix distance between 7y, and i, and

(B, - <|E22>)2 i ( 1- )
EP+(EP)

1+r

WA(E) = 2tr[(y, - 1)?] = (

(12)

The relation (11) can be easily demonstrated from relation
(10) by expressing the degree of polarization as P2
=2tr[(y-y,+y,—1)%] and taking into account that y—1y,
and y,-1 are trace-orthogonal matrices tr[(y—vy,)(y,—1)]
=0. This is to say that relation (11) is a version of the
Pythagorean theorem as illustrated in Fig. 1.

This implies that P is the maximum visibility P
=V(A) under unitary transformations E —A=UE. More-
over, for every I' there are unitary transformations such
that the visibility reaches its maximum P=V(A), which
holds if and only if W(A)=0. For example this is the case

Y
P v

i .
w T

Fig. 1. Illustration of the relation V2+W?2=P2,
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of the transformation E—A=UE with U=U,U,, where
U, is the unitary matrix that diagonalizes I':

uru (MO 13
d d~— O )\2 ) ( )
where \; 5 are the eigenvalues of both I'(E) and I'(A), and
Uy is the unitary matrix

1/1 1
U°=V_E(1 _1), (14)

so that

1 )\1 + )\2 )\1 - )\2
) (15)

I'A) =UI'E)U'=—
(4)=Ur®U 2<>\1—>\2 A+ Ay

and W(A)=0, V(A)=P. Therefore, the practical meaning
of P is being maximum visibility under deterministic uni-
tary transformations.

D. Discussion

Let us illustrate the above relations between visibility, po-
larization, and coherence by means of the Mach—Zehnder
interferometer in Fig. 2. For the sake of simplicity let us
assume without loss of generality that w is real. The loss-
less input beam splitter U (with real transmission and re-
flection coefficients for simplicity) mixes the input com-
plex amplitudes E;, leading to the amplitudes A; 5 for
the internal modes:

Aj=cos 6E; +sin 6E5, Ag=-sin 0E; + cos OE,,
(16)

where 60 is a free parameter representing the energy-
splitting between modes. In the internal arms of the in-
terferometer the modes A; 5 experience the phase shifts
A 9—A; 9 exp(ie; o), and then are mixed at the 50% beam
splitter BS. In terms of the coherence u(E) and intensity
ratio r(E) of the input beams, the visibility V(A) of the in-
terference at the output port of the interferometer is

N |sin(26)[r(E) - 1]+ 2u(E) r(E)cos(26)|

17
1+r(E) )
If visibility is a manifestation of coherence, it is legitimate
to ask which is the maximum V(A) when the input beam
splitter U is varied, that is, when 6 is varied. The maxi-

Fig. 2. Scheme of a two-path Mach—Zehnder interferometer for
two scalar waves.
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Fig. 3. Plot of P (dashed curve) and V (dotted curve) as func-
tions of the intensity ratio r for ©=0.7 (solid curve).

mum holds for tan(26)=(r-1)/ (Zu\ef;) leading to V,.«(A)
=P(E). Moreover, for the same optimum 6 we get the
maximum of |u(A)|, being |u(A)|max=Vimax(A) =P(E). This
chain of equalities holds because for the optimum U we
get r(A)=1 and W(A)=0.

This example also allows us to emphasize that, al-
though deeply connected, nevertheless coherence, visibil-
ity, and polarization express different ideas. This is re-
flected by the dependence of P and V on the intensity ratio
r, while u is independent of r. This is further illustrated
in Fig. 3, where we have plotted P, V, and u as functions
of r for u=0.7. They coincide when r=1.

3. INTERFERENCE BETWEEN TWO
TRANSVERSAL WAVES

Let us apply the above analysis to the interference of two
transversal waves with complex-amplitude vectors EJt
=(E;\,E;,), j=1,2. Let us construct the 4 X4 matrix I
containing all field correlations:

I Top (Ei.E},) (E.E;,)
F: 5 i,j= * * B (18)
Iy Ty (Ei B (B E;,

where I'; ; and I'y 5 describe polarization effects, or intra-
beam correlations, and I'; 5 represents the usual interfer-
ence terms, or interbeam correlations. The four-
dimensional counterparts of Eqs. (5), (10), and (12) are
[17]

4 4
VXE) = gtr[(i’- v.)’], P*E)= gtr[(vf— )7,

4
W2(E) = gtr[(’/u - i)2]7 (19)

where 7y is the normalized counterpart of I', i is the nor-
malized 4 X 4 identity matrix,

1000
1 1o 100

=ur 1o o1 0f (20)
0001

7, 1s obtained from y by removing all nondiagonal matrix
elements,
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(Eq1.* 0 0 0
1 0 (B, 0
Y= y ) . (21)
| 0 0 (Es» 0
0 0 0 (B2,

and the four-dimensional vector E contains the four com-
ponents

El El,x
E2 El,y
E= = . (22)
E3 E2,x
E4 EZ,y

P can be regarded as a global measure of coherence in-
cluding both intrabeam and interbeam correlations [11].
Moreover P is invariant under 4 X4 unitary transforma-
tions A=UE such that P(A)=P(E), but in general V(A)
#V(E) and W(A) # W(E).

A useful alternative expression for V leading to the
same value as the matrix distance (19) is the correspond-
ing generalization of Eq. (7):

. > KEED?

J*k

41
VQ(E)=——f dell(@) - 1P =—"——,
siemt), “9¢ 3<2<|E€|2>>2

4

(23)

where ¢=(¢1,,¢1,,9P2.,92,) are four independent
phases, do=d¢; ;d¢; ,des des,y, and I(¢) is the normal-
ized intensity distribution

< 2 B e 2>

i,k

="t 1 (24)
2 AE
€,m

In Fig. 4 we have schematized a practical method to ob-
tain the intensity distribution I(¢) in a four-path interfer-
ometer. We have considered the Mach—Zehnder arrange-
ment, although the same conclusions can be obtained
using other configurations. The scheme is essentially a
vectorial replica of the scalar case in Fig. 2. The input
lossless beam splitter U mixes the four input complex am-
plitudes E; 5 leading to the amplitudes A; 5 for the inter-
nal modes.

Variable independent phase shifts ¢; ;, modify the phase
of the complex amplitudes A;,—A;; exp(ig;;). After-
wards, there are two linear polarizers p; o with axes ori-
ented at w/4 with respect to axes x,y in the transversal

¢, P, BS
oo
mVsr/aald

|9

E O’f Ay
¢2,x ¢2,y p2

E;
Fig. 4. Scheme of a four-path Mach—Zehnder interferometer for
two vectorial waves.
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plane. The axes x,y are chosen so that A;; # 0. Additional
phases and polarization changes produced at the mirrors
are embodied in the input beam splitter U.

Finally, the beams interfere after the 50% beam splitter
BS insensitive to polarization. The record of the light in-
tensity at the detector for varying ¢;; gives I(¢) propor-
tional to Eq. (24), replacing E; ;, by A; ;. Then the visibility
V(A) can be obtained via the distance in Eq.(23). This is a
four-path interferometer since the intensity distribution
I(¢) depends on four independent phase variables.

Note that the variable phase shifts ¢;; are introduced
before the polarizers, so that the polarizers do not remove
critical information from the field. Their role is just to mix
the x,y components. This simple scheme mimics the ab-
stract projection on phase states analyzed in the quantum
perspective of multi-beam coherence in [17].

As in the scalar case, the goal addressed within this
scheme is to find the input beam splitter U that leads to
the maximum visibility V(A). That is to say, how to make
the better use of the coherence conveyed by the input
fields E. A different optimization procedure can be found
in [21].

The Pythagorean theorem (11) holds so that P=V. The
maximum P=V(A) is obtained if and only if W(A)=0. The
maximum visibility can always be reached by the input
beam splitter U with U=UyU,, where Uy, is the unitary
matrix that diagonalizes I', and

11 1 1
11 1 -1 -1
2l1 -1 1 -1/
1-1-1 1

Uy= (25)

The transformation U, applied to the diagonal form of T’
produces a matrix where all elements of the diagonal are
equal so that y, =i, W(A)=0, and V(A)=P. The conclusion
is that the correlation-based measure of coherence P is
the maximum visibility that can be achieved in four-path
interference. This is exactly the same result that holds in
two-beam interference between scalar waves.

A. Maximum Visibility and Factorization

We recall that P=1 holds if and only if there is field fac-
torization <EjEZ>=€jSZ [11], where we are using the ar-
rangement of components in Eq. (22). This is because

4(tr(r? 1

(trT)? 4

where \;=0 are the eigenvalues of I'. Thus, the maximum
P=1is obtained when I" has only one nonvanishing eigen-
value, so that

N0OO0O
r=u; 000909 U 2
= Uy 0000 d»s ( 7)
0000
where Uy is the unitary matrix that digonalizes I'. There-
fore,
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(BiE)) =NUyq Ugaps (28)

so that factorization holds with &= \KUZ; 1

This guarantees that unit visibility in four-path inter-
ference holds exclusively for factorized fields, as in the
scalar case.

B. Visibility and Interbeam Coherence

The same four-path scheme can be used to produce inter-
ference fringes with visibility depending exclusively on
the interbeam correlations in I'; 5 in relations (18) in the
form of the degree of coherence urgr introduced in [10]. To
this end, the input beam splitter U is of the form U=U;
® Uy, so that the two beams E; 5 are not mixed; only their
polarization is changed A;=UE;. The transformations U;
are devised so that the intrabeam correlations I'; j(A) in
relations (18) are both diagonal in the basis of linear po-
larization along the x, y axes. This removes from V all in-
trabeam correlations (Aj,xA;Q:O , so that from Eq. (23)
we get

Ay A5
4%|< 1420 4 tr(l' o0y 1)

3 (E <|A€,m|2>>2 - 3 (trFLl + ter,Z)z’
t,m

V2= (29)

which can be expressed in terms of urgr [10] as
tr(I'y o5 1)
trl"l’ltrl—‘2’2 ’

(30)

4 trrl,ltrrz,z 9
)QI“TSF’ MTSF =

- g (trl"l,l + trl"z’z

Other practical schemes relating P and urgp with mea-
surable quantities can be found in [22—24].

C. Two-Beam Interference Disregarding Polarization
Finally, the coherence approaches in [4,5] can be recov-
ered within this approach with a trivial input beam split-
ter U=identity (that is, no beam mixing nor polarization
changes), removing the polarizers, and adjusting the
phases ¢; .= ¢;,=¢;, so that

I((P17 (PZ) o <|Elei‘P1 + Ezei‘P2|2>
= ([E,%) + ([Esf) + 2|(E] - Ey)lcos(gz ~ o1+ 8),
(31)

where & is the argument of <EJ{-E2). Using Eq. (3) and
taking into account that

r;,=EE), tul,=E,-E), (32)

we get that the visibility is determined by the degree of
coherence introduced in [4,5]

2\!trrlyltrr2,2 ‘ ‘ trF1’2 ( )
Ve—"-s-ob—— M ,  MERWE ———. 33
trly y + trlg 5 o K Vtrl'y 1trly o

4. CONCLUSIONS

In the above sections we have embedded different ap-
proaches to the coherence of vectorial waves within a
single practical framework. This is achieved by connect-
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ing correlation-based degrees of polarization and coher-
ence with the visibility of interference fringes in a four-
path interferometer.

Different approaches to coherence focus on different as-
pects of this field property, in the same spirit that the de-
grees of polarization, coherence, and fringe visibility pro-
vide complementary perspectives to the coherence of two
scalar waves. From the point of view of this manuscript,
different approaches to coherence determine the visibility
of different interferometers. This is a practical conse-
quence of their different symmetry properties.

In particular we have shown that the degree of polar-
ization is equivalent to maximum visibility, as it holds in
the scalar case. Moreover, we have shown also that unit
visibility holds exclusively for factorized fields, as in the
scalar case.
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