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Coherence and visibility for vectorial light
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Two-path interference of transversal vectorial waves is embedded within a larger scheme: this is four-path
interference between four scalar waves. This comprises previous approaches to coherence between vectorial
waves and restores the equivalence between correlation-based coherence and visibility. © 2010 Optical Soci-
ety of America
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. INTRODUCTION
oherence is a key subject in optics derived from the sta-

istical nature of real light beams [1,2]. Coherence may
epresent at least two attributes of the electromagnetic
eld:

(a) Correlations between the complex amplitudes of
lectromagnetic field modes.

(b) Ability to interfere as visibility of interference
ringes.

For scalar waves these attributes coincide, and coher-
nce means essentially maximum visibility. Moreover,
aximum coherence is obtained when correlations factor-

ze.
For vectorial light the situation is more complex [3].
ost of the work has focused on two-beam interference.

n such a case coherence can be defined directly by the
isibility of interference fringes disregarding polarization
4–8]. On the other hand, correlation-based degrees of co-
erence have also been introduced [9–11]. At difference
ith the scalar case, these two approaches can lead to

ontradictory conclusions, as illustrated by the discus-
ions in [10–14]. Moreover, the relation between factoriza-
ion of correlations and visibility is rather involved
15,16].

In this work we embed two-path interference of trans-
ersal vectorial waves within a larger framework: this is
our-path interference, where fringes depend on four in-
ependent phases, being in this way sensitive to all field
orrelations. This enlarged framework allows us to ac-
ommodate different approaches to coherence, restoring
he agreement between correlation-based coherence and
isibility.

In a previous work [17] we have studied very general
bstract relations between coherence and fringe visibility
or an arbitrary number of field components. This is par-
icularized here to the case of four components. The main
ovelty of this paper is that we introduce a practical re-
lization of the abstract definition of multiple-beam vis-
bility considered in [17]. This allows us to prove the fol-
owing results:
1084-7529/10/081764-6/$15.00 © 2
(i) Correlation-based degrees of coherence are equiva-
ent to fringe visibility. The degree of polarization is the

aximum visibility that can be reached for a given field
nder deterministic unitary transformations.
(ii) Unit visibility holds exclusively for factorized

elds.

This is illustrated with the example of a Mach–Zehnder
nterferometer. From a practical perspective, we show
hat different approaches to coherence correspond to im-
ose different restrictions on the input beam splitter that
ead to different relations between coherence and visibil-
ty. Moreover, the ultimate goal is to find the optimum in-
ut beam splitter leading to maximum visibility for given
nput beams. This is to obtain full advantage of the coher-
nce conveyed by the field in the form of the best possible
nterference.

This is closely related to transformation properties un-
er deterministic unitary linear transformations of differ-
nt approaches, represented in this case by the properties
f the input beam splitter. These are of large physical sig-
ificance since they represent all transparent, linear, de-
erministic devices. They do not modify the randomness
r disorder of the field preserving the amount of coher-
nce [3,6,8,18].

For the sake of completeness and to motivate the main
efinitions, in Section 2 we recall useful relations between
isibility, coherence, and degree of polarization in the sca-
ar case. These are generalized in Section 3 to the inter-
erence between two partially polarized transversal
aves regarded as a four-path interferometer. This is
sed to relate field correlations and visibility embedding
ifferent approaches to coherence as particular cases of a
ore general framework.

. COHERENCE AND VISIBILITY FOR
CALAR WAVES
et us consider two harmonic electromagnetic scalar
odes, statistically described by random, complex ampli-

udes E with cross-spectral density matrix �:
1,2

010 Optical Society of America
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� = � ��E1�2� �E1E2
*�

�E1
*E2� ��E2�2� � , �1�

here the angle brackets represent ensemble averages.
Coherence can manifest as two main phenomena: (1)

nterference as coherence between modes in the same po-
arization state, and (2) polarization as coherence be-
ween modes in orthogonal polarization states. These two
anifestations are not independent, since we can always

ransform polarization into interference and vice versa by
simple polarization transformation of one of the modes.

. Coherence and Visibility
n two-beam interference E1,2 represent the complex am-
litudes of two waves Ej=Ej� in the same polarization
tate described by the complex unit vector �. Coherence
anifests through the modulation of the intensity of the

nterference, suitably normalized for the sake of conve-
ience,

I��1,�2� =
��E1ei�1 + E2ei�2�2�

��E1�2� + ��E2�2�
, �2�

here �j are the phases acquired by the waves within the
nterferometer and I��1 ,�2� actually depends just on the
hase difference �1−�2. The standard expression for the
ringe visibility is

V�E� =
Imax − Imin

Imax + Imin
=

2��E1E2
*��

��E1�2� + ��E2�2�
=

2�r

1 + r
���, �3�

here Imax,min are the maxima and minima of I��1 ,�2�
hen �1,2 are varied, � is the complex second-order de-
ree of coherence, and r is the intensity ratio:

��E� =
�E1E2

*�

���E1�2���E2�2�
, r�E� =

��E1�2�

��E2�2�
. �4�

here is a clear proportionality between coherence � and
isibility V. There are useful alternative expressions lead-
ng to the same V. This is the matrix distance [3,19]

V2 = 2tr	�� − �u�2
, �5�

here � is the normalized counterpart of �, and �u is the
atrix obtained from � by removing all phase-dependent
atrix elements:

� =
1

tr�
�, �u =

1

��E1�2� + ��E2�2����E1�2� 0

0 ��E2�2�� . �6�

oreover, V can also be expressed as the distance be-
ween I��1 ,�2� and the uniform intensity distribution rep-
esenting interference with null visibility [20]:

V2 =
1

2�2�
2�

d�1d�2	I��1,�2� − 1
2. �7�

. Coherence and Degree of Polarization
n the polarization context E1,2 represent the complex
mplitudes of two orthogonally polarized waves E =E �
j j j
ith �1 ·�2
* =0. In this case coherence manifests in the po-

arization state and can be assessed through the degree of
olarization P,

P�E� =
��1 − �2�

�1 + �2
= �1 − 4

det �

�tr��21/2

, �8�

here �1,2 are the eigenvalues of �. Equivalently, in
erms of � and r we have

P�E� =
��1 − r�2 + 4���2r

1 + r
. �9�

n alternative matrix-distance expression leading to the
ame P is [3]

P2 = 2tr	�� − i�2
, i =
1

2
�1 0

0 1� , �10�

here i is the 2�2 normalized identity matrix represent-
ng fully unpolarized light.

A key point is that P is invariant under deterministic
nitary transformations E→A=UE, At= �A1 ,A2�, Et

�E1 ,E2�, and U being arbitrary 2�2 unitary matrices.
his produces the unitary transformation of the cross-
pectral density matrix ��E�→��A�=U��E�U†. Since this
reserves traces and eigenvalues we get ��E�→��A�
U��E�U† and P�A�=P�E�. However V�A��V�E�, since

he diagonal form is not preserved, i.e., �u�A�
U�u�E�U†. Similarly, ��A����E�.

. Visibility and Degree of Polarization
he two above scenarios are not independent and V, P
atisfy the equality [17]

V2 + W2 = P2, �11�

here W is the matrix distance between �u and i , and

W2�E� = 2tr	��u − i�2
 = � ��E1�2� − ��E2�2�

��E1�2� + ��E2�2��
2

= �1 − r

1 + r�
2

.

�12�

he relation (11) can be easily demonstrated from relation
10) by expressing the degree of polarization as P2

2tr	��−�u+�u−i�2
 and taking into account that �−�u
nd �u−i are trace-orthogonal matrices tr	��−�u���u−i�

0. This is to say that relation (11) is a version of the
ythagorean theorem as illustrated in Fig. 1.
This implies that P is the maximum visibility P
V�A� under unitary transformations E→A=UE. More-

ver, for every � there are unitary transformations such
hat the visibility reaches its maximum P=V�A�, which
olds if and only if W�A�=0. For example this is the case

�

i

P
V

W
�
u

Fig. 1. Illustration of the relation V2+W2=P2.
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f the transformation E→A=UE with U=U0Ud, where
d is the unitary matrix that diagonalizes �:

Ud�Ud
† = ��1 0

0 �2
� , �13�

here �1,2 are the eigenvalues of both ��E� and ��A�, and
0 is the unitary matrix

U0 =
1

�2
�1 1

1 − 1� , �14�

o that

��A� = U��E�U† =
1

2
��1 + �2 �1 − �2

�1 − �2 �1 + �2
� , �15�

nd W�A�=0, V�A�=P. Therefore, the practical meaning
f P is being maximum visibility under deterministic uni-
ary transformations.

. Discussion
et us illustrate the above relations between visibility, po-

arization, and coherence by means of the Mach–Zehnder
nterferometer in Fig. 2. For the sake of simplicity let us
ssume without loss of generality that � is real. The loss-
ess input beam splitter U (with real transmission and re-
ection coefficients for simplicity) mixes the input com-
lex amplitudes E1,2 leading to the amplitudes A1,2 for
he internal modes:

A1 = cos 	E1 + sin 	E2, A2 = − sin 	E1 + cos 	E2,

�16�

here 	 is a free parameter representing the energy-
plitting between modes. In the internal arms of the in-
erferometer the modes A1,2 experience the phase shifts
1,2→A1,2 exp�i�1,2�, and then are mixed at the 50% beam
plitter BS. In terms of the coherence ��E� and intensity
atio r�E� of the input beams, the visibility V�A� of the in-
erference at the output port of the interferometer is

V�A� =
�sin�2	�	r�E� − 1
 + 2��E��r�E�cos�2	��

1 + r�E�
. �17�

f visibility is a manifestation of coherence, it is legitimate
o ask which is the maximum V�A� when the input beam
plitter U is varied, that is, when 	 is varied. The maxi-

E1

A1

�
1

�
2E2

A2

U

I( )�

BS

ig. 2. Scheme of a two-path Mach–Zehnder interferometer for
wo scalar waves.
um holds for tan�2	�= �r−1� / �2��r� leading to Vmax�A�
P�E�. Moreover, for the same optimum 	 we get the
aximum of ���A��, being ���A��max=Vmax�A�=P�E�. This

hain of equalities holds because for the optimum U we
et r�A�=1 and W�A�=0.

This example also allows us to emphasize that, al-
hough deeply connected, nevertheless coherence, visibil-
ty, and polarization express different ideas. This is re-
ected by the dependence of P and V on the intensity ratio
, while � is independent of r. This is further illustrated
n Fig. 3, where we have plotted P, V, and � as functions
f r for �=0.7. They coincide when r=1.

. INTERFERENCE BETWEEN TWO
RANSVERSAL WAVES
et us apply the above analysis to the interference of two

ransversal waves with complex-amplitude vectors Ej
t

�Ej,x ,Ej,y�, j=1,2. Let us construct the 4�4 matrix �
ontaining all field correlations:

� = ��1,1 �1,2

�2,1 �2,2
�, �i,j = ��Ei,xEj,x

* � �Ei,xEj,y
* �

�Ei,yEj,x
* � �Ei,yEj,y

* �� , �18�

here �1,1 and �2,2 describe polarization effects, or intra-
eam correlations, and �1,2 represents the usual interfer-
nce terms, or interbeam correlations. The four-
imensional counterparts of Eqs. (5), (10), and (12) are
17]

V2�E� =
4

3
tr	�� − �u�2
, P2�E� =

4

3
tr	�� − i�2
,

W2�E� =
4

3
tr	��u − i�2
, �19�

here � is the normalized counterpart of �, i is the nor-
alized 4�4 identity matrix,

� =
1

tr�
�, i =

1

4�
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
� , �20�

u is obtained from � by removing all nondiagonal matrix
lements,

1 2 3 4 5

0.2

0.4

0.6

0.8

1

P

V

�

r

ig. 3. Plot of P (dashed curve) and V (dotted curve) as func-
ions of the intensity ratio r for �=0.7 (solid curve).
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�u =
1

tr��
��E1,x�2� 0 0 0

0 ��E1,y�2� 0 0

0 0 ��E2,x�2� 0

0 0 0 ��E2,y�2�
� , �21�

nd the four-dimensional vector E contains the four com-
onents

E = �
E1

E2

E3

E4

� = �
E1,x

E1,y

E2,x

E2,y

� . �22�

P can be regarded as a global measure of coherence in-
luding both intrabeam and interbeam correlations [11].
oreover P is invariant under 4�4 unitary transforma-

ions A=UE such that P�A�=P�E�, but in general V�A�
V�E� and W�A��W�E�.
A useful alternative expression for V leading to the

ame value as the matrix distance (19) is the correspond-
ng generalization of Eq. (7):

V2�E� =
4

3

1

�2��4�
2�

d�	I��� − 1
2 =
4

3

�
j�k

��EjEk
*��2

��
�

��E��2��2 ,

�23�

here �= ��1,x ,�1,y ,�2,x ,�2,y� are four independent
hases, d�=d�1,xd�1,yd�2,xd�2,y, and I��� is the normal-
zed intensity distribution

I��� =
���

j,k
Ej,kei�j,k�2�

�
�,m

��E�,m�2�
. �24�

In Fig. 4 we have schematized a practical method to ob-
ain the intensity distribution I��� in a four-path interfer-
meter. We have considered the Mach–Zehnder arrange-
ent, although the same conclusions can be obtained

sing other configurations. The scheme is essentially a
ectorial replica of the scalar case in Fig. 2. The input
ossless beam splitter U mixes the four input complex am-
litudes E1,2 leading to the amplitudes A1,2 for the inter-
al modes.
Variable independent phase shifts �j,k modify the phase

f the complex amplitudes Aj,k→Aj,k exp�i�j,k�. After-
ards, there are two linear polarizers p1,2 with axes ori-

nted at � /4 with respect to axes x ,y in the transversal

E1

A1

E2

A2

U

I( )�

BS�
1,x

�
1,y

p
1

�
2,x

�
2,y p

2

ig. 4. Scheme of a four-path Mach–Zehnder interferometer for
wo vectorial waves.
lane. The axes x ,y are chosen so that Aj,k�0. Additional
hases and polarization changes produced at the mirrors
re embodied in the input beam splitter U.
Finally, the beams interfere after the 50% beam splitter

S insensitive to polarization. The record of the light in-
ensity at the detector for varying �j,k gives I��� propor-
ional to Eq. (24), replacing Ej,k by Aj,k. Then the visibility
�A� can be obtained via the distance in Eq.(23). This is a

our-path interferometer since the intensity distribution
��� depends on four independent phase variables.

Note that the variable phase shifts �j,k are introduced
efore the polarizers, so that the polarizers do not remove
ritical information from the field. Their role is just to mix
he x ,y components. This simple scheme mimics the ab-
tract projection on phase states analyzed in the quantum
erspective of multi-beam coherence in [17].
As in the scalar case, the goal addressed within this

cheme is to find the input beam splitter U that leads to
he maximum visibility V�A�. That is to say, how to make
he better use of the coherence conveyed by the input
elds E. A different optimization procedure can be found

n [21].
The Pythagorean theorem (11) holds so that P�V. The
aximum P=V�A� is obtained if and only if W�A�=0. The
aximum visibility can always be reached by the input

eam splitter U with U=U0Ud, where Ud is the unitary
atrix that diagonalizes 
, and

U0 =
1

2�
1 1 1 1

1 1 − 1 − 1

1 − 1 1 − 1

1 − 1 − 1 1
� . �25�

he transformation U0 applied to the diagonal form of �
roduces a matrix where all elements of the diagonal are
qual so that �u=i, W�A�=0, and V�A�=P. The conclusion
s that the correlation-based measure of coherence P is
he maximum visibility that can be achieved in four-path
nterference. This is exactly the same result that holds in
wo-beam interference between scalar waves.

. Maximum Visibility and Factorization
e recall that P=1 holds if and only if there is field fac-

orization �EjEk
*�=EjEk

* [11], where we are using the ar-
angement of components in Eq. (22). This is because

P2�E� =
4

3� tr��2�

�tr��2 −
1

4 =
4

3� �
j

�j
2

��
k

�k�2 −
1

4� , �26�

here �j�0 are the eigenvalues of �. Thus, the maximum
=1 is obtained when � has only one nonvanishing eigen-
alue, so that

� = Ud
†�

� 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
�Ud, �27�

here Ud is the unitary matrix that digonalizes �. There-
ore,
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�EjEk
*� = �Ud;1,j

* Ud;1,k, �28�

o that factorization holds with Ej=��Ud;1,j
* .

This guarantees that unit visibility in four-path inter-
erence holds exclusively for factorized fields, as in the
calar case.

. Visibility and Interbeam Coherence
he same four-path scheme can be used to produce inter-

erence fringes with visibility depending exclusively on
he interbeam correlations in �1,2 in relations (18) in the
orm of the degree of coherence �TSF introduced in [10]. To
his end, the input beam splitter U is of the form U=U1

� U2, so that the two beams E1,2 are not mixed; only their
olarization is changed Aj=UjEj. The transformations Uj
re devised so that the intrabeam correlations �j,j�A� in
elations (18) are both diagonal in the basis of linear po-
arization along the x, y axes. This removes from V all in-
rabeam correlations �Aj,xAj,y

* �=0 , so that from Eq. (23)
e get

V2 =
4

3

�
j,k

��A1,jA2,k
* ��2

��
�,m

��A�,m�2��2 =
4

3

tr��1,2�2,1�

�tr�1,1 + tr�2,2�2 , �29�

hich can be expressed in terms of �TSF [10] as

V2 =
4

3

tr�1,1tr�2,2

�tr�1,1 + tr�2,2�2�TSF
2 , �TSF

2 =
tr��1,2�2,1�

tr�1,1tr�2,2
.

�30�

ther practical schemes relating P and �TSF with mea-
urable quantities can be found in [22–24].

. Two-Beam Interference Disregarding Polarization
inally, the coherence approaches in [4,5] can be recov-
red within this approach with a trivial input beam split-
er U=identity (that is, no beam mixing nor polarization
hanges), removing the polarizers, and adjusting the
hases �j,x=�j,y=�j, so that

I��1,�2� � ��E1ei�1 + E2ei�2�2�

= ��E1�2� + ��E2�2� + 2��E1
† · E2��cos��2 − �1 + ��,

�31�

here � is the argument of �E1
† ·E2�. Using Eq. (3) and

aking into account that

�j,k = �EjEk
†�, tr�j,k = �Ek

† · Ej�, �32�

e get that the visibility is determined by the degree of
oherence introduced in [4,5]

V =
2�tr�1,1tr�2,2

tr�1,1 + tr�2,2
��KW�, �KW =

tr�1,2

�tr�1,1tr�2,2

. �33�

. CONCLUSIONS
n the above sections we have embedded different ap-
roaches to the coherence of vectorial waves within a
ingle practical framework. This is achieved by connect-
ng correlation-based degrees of polarization and coher-
nce with the visibility of interference fringes in a four-
ath interferometer.
Different approaches to coherence focus on different as-

ects of this field property, in the same spirit that the de-
rees of polarization, coherence, and fringe visibility pro-
ide complementary perspectives to the coherence of two
calar waves. From the point of view of this manuscript,
ifferent approaches to coherence determine the visibility
f different interferometers. This is a practical conse-
uence of their different symmetry properties.
In particular we have shown that the degree of polar-

zation is equivalent to maximum visibility, as it holds in
he scalar case. Moreover, we have shown also that unit
isibility holds exclusively for factorized fields, as in the
calar case.
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