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A new entropy based on a group-theoretical structure
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Abstract

A multi-parametric version of the nonadditive entropy S, is introduced. This
new entropic form, denoted by S, 5, possesses many interesting statistical prop-
erties, and it reduces to the entropy S, for b = 0, @ = r := 1 — ¢ (hence
Boltzmann-Gibbs entropy Sgg for b = 0, @ = r — 0). The construction of
the entropy Sgp is based on a general group-theoretical approach recently
proposed by one of us [16]. Indeed, essentially all the properties of this new
entropy are obtained as a consequence of the existence of a rational group law,
which expresses the structure of .S, p, » with respect to the composition of statis-
tically independent subsystems. Depending on the choice of the parameters, the
entropy Sq.p,» can be used to cover a wide range of physical situations, in which
the measure of the accessible phase space increases say exponentially with the
number of particles N of the system, or even stabilizes, by increasing N, to a
limiting value. This paves the way to the use of this entropy in contexts where
a system ”freezes” some or many of its degrees of freedom by increasing the
number of its constituting particles or subsystems.
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1. Introduction

In the last decades, the non-extensive scenario, originally proposed in [I§],
has been largely investigated as a new thermodynamic framework allowing to
generalize the standard Boltzmann-Gibbs approach to new physical contexts,
where ergodicity hypothesis is violated [19]. At the same time, the ubiquity of
the notion of entropy in social sciences paved the way to fruitful extensions of
the standard information theory of Shannon and Khinchin [I3} 14} [T1] towards
new classical and quantum formulations.

The search for new entropic forms has been very active in the last decades.
Many different entropies have been proposed, generalizing the Boltzmann-Gibbs
entropy from different perspectives (see, e.g., [11 12, [7, [8 10} 12} 15] 20].

In particular, a group-theoretical approach to the notion of entropy has
been advocated in [I6]. It is based on the observation that a thermodynami-
cally admissible entropy should satisfy not only the first three Khinchin axioms
(continuity, concavity, expansibility), but also a general composability property.
It amounts to require that, given an entropic functional S, its values on a sys-
tem defined by the union of two statistically independent subsystems A and B
should depend (in addition to a possible small set of fixed indices; for instance
the index ¢ for S;) on the entropies of the two subsystems only . This property
can be imposed on full generality (and we shall talk about strict composability)
or at least on subsystems characterized by the uniform distribution (composabil-
ity in a weak sense or composability tout court). This last property applies, for
instance, when considering isolated physical systems at the equilibrium (micro-
canonical ensemble), or in contact with a thermostat at very high temperature
(canonical ensemble) H In full generality, it amounts to say that there exists a
continuous function of two real variables ®(z,y) such that (C1)

S(AUB) = ®(5(4),5(B); {n}) (1)

1To be more precise, let us illustrate the BG case. The formula Spg = In W (assuming W
to be finite) applies to both microcanonical and T" — oo canonical cases, but, in the former,
W refers to the total number of states within a thin slice of phase space corresponding to a
given total energy, whereas, in the latter, W refers to the total number of states within the
entire phase space.



where {n} is a possible set of real continuous parameters, and A C X and
B C X are two statistically independent subsystems of a given system X, with
the further properties

(C2) Symmetry:

O(z,y) = (y, 2). (2)
(C3) Associativity:
(I)(xaq)(yaz)) = (I)(q)(xay)az) (3)
(C4) Null-composability:
O(x,0) = x. (4)

The Boltzmann-Gibbs, the S, the Rényi entropies are known to be strictly com-
posable. Instead, the weak composability property is shared by infinitely many
more entropies. A huge class of admissible entropies (more precisely, contin-
uous, concave, expansible, composable) is provided by the universal-group en-
tropy, related with the Lazard universal formal group. This class possesses many
remarkable properties, in particular a Legendre structure, extensivity in suit-
able regimes, Lesche stability in suitable regimes, among others. The two most
frequent examples of entropies of this class, i.e. possessing a group-theoretical
structure, are Boltzmann-Gibbs entropy and S, entropy. They have associated
the additive group law

S(AUB) = S(A) + S(B) (5)
and the multiplicative one [9J]
S(AUB) =S(A)+ S(B)+aS(A)S(B), (6)

respectively. In the literature, ¢ € R is usually written in the form a :=1 — gq.
In this paper, we explore a remarkable example of rational group law:
S(A) + S(B) +aS(A)S(B)
1+ bS(A)S(B) ’

S(AUB) = (7)

where a,b € R. The corresponding rational group law is given by

r+y+axry

(8)
Notice that when a = b = 0, we recover the standard additive law ; for b =0,
we recover the case @

It is interesting to notice that for b = 0 this relation can be written in an
additive form, namely

In[1 + a®(z,y)] _ In[1 + ax] n [l + ay] ’ (9)

a a a




and this yields to Rényi entropy. Whenever b # 0, we have a genuinely new
case. Notice that, for the particular instances b=a+1#0and b=1—a # 0,
the following additive rules hold respectively:

[t e ) o
e wt] e ] e

These two relations can be interchanged one into the other through the trans-
formation (x,a) — (—z, —a). It might be interesting to explore these properties
in future works.

At the best of our knowledge, this two-parametric rational group law was
not previously considered in the literature. A specific one-parametric realization
of it, i.e

In

(11)

() — z+ y1+ (a — 1)y
+ azxy

plays an important role in algebraic topology. Precisely, for a« = —1,0,1, we
obtain group laws respectively associated with the Euler characteristic, the Todd
genus and the Hirzebruch L-genus [5]. Notice that identifying ¢ = o — 1 and
b= a, Eq. turns out to be Eq. . Also, these relations between «, a and
b are exactly the necessary conditions to get the additive property given in Eq.
(10).

The aim of our work is to construct the entropy associated with the rational
group law (7). It is easy to verify that it satisfies egs. (2)-(). Also, it admits
an inverse, i.e. there exists a real function ¢(z) such that

®(z, p(x)) = 0. (13)

For instance, for the case of the additive law, ¢(x) = —z. For the rational group
law we have ¢(z) = —x/(1 + az). This is the reason why we talk about
the group structure associated with an entropy [16]. Notice however that, if
we restrict to values z,y € RT U {0} (as mandatory for physically reasonable
entropic forms), it is not possible to define an inverse.

In the following, we shall construct explicitly the entropy associated with

the law .

(12)

2. The new entropy and its properties

Definition 1. The S\ entropy, for r > 0, is the function

a,b,r

w w
1
S0 = 3ol =Yontad, (1)
i=1 i=1 ¢

where the generalized plus logarithm is defined as
2(z" — 1)

(+)
Lo T) = .
9ot () —a(z" — 1)+ Va? +4b (a" + 1)

a,b,r

(15)
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The Sé;;? entropy, for r <0, is the function

abr ZS . Zp’LL gabT <pl> y (16)
i=1 7

where the generalized minus logarithm is given by

2(z" —1)
—a(z" —1) — Va2 +4b (zm + 1)

Log ), (z) := (17)

Here a,b are real parameters.
These entropies satisfy many remarkable properties.

Proposition 2. The entropies S((lib)r reproduce the standard Spg entropy for
b=0, a=r, in the limit r — 0:

lim Stonlp] = Spalp. (18)

Proof. Indeed, we have that

aOT szpz 3 (19)

valid for any value of r. Therefore, for ¢ = r and taking the limit r — 0, the
previous expression converts into the entropy Spa.

Proposition 3. The entropies and satisfy the first three Khinchin
azrioms.

Indeed, they are continuous function of all their arguments. Second, the
function s(‘*‘)[p]7 defined in Eq. for r > 0, is concave, ensuring that the
maximum of the entropy is attained at equiprobability, if the following condi-
tions are satisfied for W > 1:

2

i)0<r<1 —>a<Oandb>T (20)
a>0and b>0 (21)
—a?
i) r>1 %a<0andb>T (22)
a?(r? —1)

a>0 and b > (23)

4
Also, the function s(7)[p], defined in Eq. for r < 0, is concave if the



following conditions are verified for W > 1:

i) —1<r<0 —>a<0andb>% (24)

a>0and b>0 (25)

i) r<-—1 —>a§03undb>_Ta2 (26)
a?(r? —1)

a>0 and b > (27)
(+)

a,b,r

Third, it is also possible to show that pLog
(ﬂz)

a,b,r

(1/p) — 0 when p — 0,

which ensures expansibility. Also, Log
the entropy when we have certainty.

(1) = 0, yielding the value zero for

Proposition 4. The generalized logarithms and satisfy the group law
and have the properties:

Log\t) o] = Log,)_, 1o, (28)
+ +

Log ) _.[v) = Log), 11/p], (29)

Log’) Ip] = —Log"), ,[p] (30)

implying that Logéi),r[p] = —Log(fia)’bﬁT[p].

These equalities can be proven by direct calculations. These properties en-
able us to say that the entropies and are thermodynamically admissible
[16]. It means that our entropy satisfies the first three SK axioms and in addition
the generalized logarithm is composable in the sense of egs. (1)-(4).

Constrained to the regions allowed in Proposition 3, the generalized loga-
rithms Loggi?T(W) are monotonically increasing functions of W, see Fig.
The graphics for the other allowed regions, shown in Proposition 3, have quali-
tatively the same behavior.

3. The construction of the entropy Sg 5, from the rational group law

In this section, we solve in full generality the following inverse problem:
given the group law , find the associated entropy. Therefore, according to
the general framework proposed in [I6], assume that there exists a continuous
function

®(z,y) = x 4+ y + higher order terms (31)

that satisfies the group properties -. Notice that the rational law is of
this form. The entropy associated with can be constructed as follows. We
look for a function G(t), which a priori is a formal power series, such that

O(z,y) = GG (2) + G (y)). (32)
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Figure 1: Logfjb)r in function of W for a = 0.3, b=2 and r = 1.3.

This function G(t) is called the formal group exponential [9]. Here G71(s) is
the compositional inverse of G(t), i.e. G(G7(s)) = s and G~1(G(t)) = t. The
most general form of G(t) is

s tk—i—l t2 t3
= Ap—— = A A — 4+ As— + . ...
G(t) kzzo L] ot + 12+ 23+ (33)

formal group [9]. The entropy associated with (31f) is unique if we fix 4y = 1,
and will be of the form

When considering this general form, equation (32)) defines the Lazard universal
(31]

Sulp] = épzc (), (34)

Di

i.e. will be a representative of the universal-group entropy. The inverse G~1(s)
can be computed by means of the Lagrange inversion theorem. We get:

1 S A1 2
G~ (S) = XO - ms + (35)

The case of the BG entropy is immediately obtained. In this case ®(x,y) = z+y,
and the Lazard law gives G(t) = ¢. From eq. we get back the BG case.

Let us apply the previous theory to the case of interest, i.e. the rational
group law (8). Now we have that Ay = Aj(a,b). The expansion of the function



O(z,y) is

®(z,y) = x+y+axy—blzy® + yz?) — aba’y?
R+ 2%P) + ab?aty?
+ higher order terms (36)

By using the expression with the form for the expansion of the formal
exponential, and identifying the terms appearing in this expansion with those
coming from 7 we get an infinite set of relations for the coefficients Ay:

AO c R
A = aA%
1
1
1
Ay = g(a* =220 +167) A7
1
A4 = g (a® — 52 a®b + 136 ab®) A
1
A = 5 (a®— 114"+ 720 0% — 272 ") A (37)

(38)

A priori, the coefficients Ay provide the most general solution to our problem.
Before proceeding further, let us consider the particular case b = 0. Then

O(z,y) =z +y+axy (39)

If we put b = 0 in the previous coefficients , and let Ap = 1, we get imme-
diately

1
ay = Eak (40)
ie. .
at _ 1
G(t) = ¢ —. (41)

which is the correct form we were looking for. Indeed, according to the pre-
scription , and putting @ = 1 — ¢ we get back the S, entropy

w -1 W q
D, —1 1—5:-,1104
S: i L = = ’L. 42
iglp - P (42)

The general case provides us with a series solution: indeed, we reconstruct
G(t) and hence the entropy (34]), term by term. However, this series can be
re-summed, to give the closed form solution



2(e™ — 1)

G(t) = 43
() —a(e™ — 1) £ Va2 + 4b(em 4+ 1) (43)

In particular it emerges that the arbitrary coefficient is fixed to be
Ag=t—= (44)

+—.
va? + 4b

The realization of the universal-group entropy » . p;G (ln p%) for G(t) given by
eq. (43) is nothing but the entropies and .

The solution in closed form , or equivalently the generalized logarithms
and , can also be obtained from the group law by a direct procedure.
It entails the formulation of a suitable ansatz for the solutions of .

The previous approach has the advantage of being systematic, i.e. it can
be used in full generality from any group law of the form , and does not
demand any guess or ansatz. This method amounts to the construction of a
series solution for the functional equation , and is conceptually similar to the
technique for generating series solutions of differential equations.

4. On the extensivity of the entropy Sq.p.»

One of the main reasons to consider generalized entropies is the fact that they
can be useful, or even mandatory, to describe systems with unusual behavior.
If an entropy is extensive, it essentially means that, for an occupation law W =
W(N) of the phase space associated with a given system, it is asymptotically
proportional to N, the number of particles of the system. Precisely, Spg is
extensive whenever W (N) ~ k¥ where k € R is a suitable constant. However,
for substantially different choices of W = W(N), this property is no longer true
for Sgg.

A natural question is to ascertain whether the new entropy we propose in this
paper is extensive. Its group structure, once again, ensures that this property
holds for a suitable asymptotic occupation law W = W(N) of phase space. A
general result proven in [I6] is that a sufficient condition for an entropy of the
form to be extensive is that

InW(N) ~ G~Y(N), (45)

provided that the real function W(N) be defined for all N € N, with

limy 0o W(N) = co. These requirements usually restrict the space of param-
eters. In our case, we observe that when p; = 1/W for all ¢ = 1,--- , W, the
entropies , for » > 0, and , for r < 0 (or, more generally, the entropy
given by eq. (34)), tend to the limit value

2
S W - ——= 46
wer VW= e )



if imy 00 W(N) = oco. In particular, for b — 0, the entropy diverges; as a
consequence of the previous discussion, there exists a regime of extensivity, for
W(N) ~ N7, with v = L.

If limy 0o W(N) = ¢ € Ry, with ¢ > 1, these entropies tend to the value

2(c"—1)
Va2 +4b(cm+1)—a(c —1)

In both cases, if b # 0 the limiting value is finite, independently on whether
W diverges or tends to a constant for N — oco. Consequently, the b # 0
entropies, albeit monotonically increasing functions of W, can not be extensive.

A natural question emerges, concerning the kind of systems such type of
entropies could be useful for. A possible answer is that the present formalism
could be relevant whenever treating systems highly connected, where the ad-
dition of a new degree of freedom essentially does not change the value of the
entropy, for a large number of degrees of freedom. For example, if we add a
molecule of water in a glass of liquid water, after enough time the molecule will
move everywhere inside the glass. However, if we release a molecule of water
in a glass filled with ice, the additional molecule will eventually freeze. The
increase of the entropy value is substantially lower in the latter case than in the
former.

One can also consider different scenarios, borrowed from social sciences,
where no thermodynamical or energetical aspects are involved, and extensivity
is a priori not required. Again such entropies, that increase very little with the
addition of new degrees of freedom, could be play a relevant role in describing
situations where the amount of information tends to stabilize, irrespectively of
the increase of new agents involved in the information exchange.

Consequently, the multiparametric entropy S, is compatible with both
scenarios: the standard one, where an increase of the numbers of degrees of
freedom converts into an increase of the entropy, and the “anomalous” one,
where an increase of the number of particles essentially freezes the system, by
confining it in the phase space. Excepting for S, for ¢ > 1 and S5 for 6 < 0 (see
[20] and references therein), this flexibility in the limit W — oo is seemingly
not shared by the entropies typically used in the literature.

SE) 1/ —

a,b,r

(47)
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