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Resumen

El comportamiento estocástico de ciertos productos financieros, como el tipo de interés y el precio

de los commodities, ha sido objeto de importantes estudios académicos y constituye un tema de

especial relevancia para profesionales del sector. En la literatura académica podemos encontrar una

gran variedad de modelos que abordan este problema, en su gran mayoŕıa asumiendo que el activo

financiero sigue un proceso con reversión a la media.

En el primer capitulo de esta tesis proponemos un nuevo modelo en tiempo continuo para la

estructura temporal de tipos de interés, donde hemos asumido que el tipo de interés instantáneo

converge a cierto tipo asintótico que varia de forma ćıclica con el tiempo según una serie de Fourier,

es decir

drt = κ(f(t)− rt)dt+ σdWt

f(t) =

∞∑

n=0

Re
[
Ane

inωt
]

donde κ, σ ∈ R
+, Wt es un proceso de Wiener, y donde solo consideramos la parte real de la serie

de Fourier puesto que es la parte que tiene sentido económico. Esta representación del tipo de interés

instantáneo nos permite capturar numerosos cambios en la curvatura de la estructura temporal de

tipos, y nos permite obtener soluciones anaĺıticas para el precio de derivados y medidas del riesgo

financiero.

Dado que un buen ajuste de la estructura temporal de tipos de interés sugiere que el modelo

es potencialmente adecuado para ajustar el precio de bonos y derivados, utilizaremos observaciones

diarias de la US Treasury yield curve rates desde el 31 de Julio del 2001 hasta el 21 de Septiembre del

2012 para analizar el comportamiento emṕırico de nuestro modelo frente a dos modelos de referencia,

a saber Vasicek (1977) y Nelson Siegel (1987).

Los resultados de la estimación dentro de la muestra revelan que, nuestro modelo de Fourier en

su más simple representación, es decir n = 1, supera a ambos modelos de referencia, reduciendo un

24% la suma total de residuos cuadrados del modelo de Nelson Siegel, y un 82% la del modelo de
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Vasicek. Estos resultados son muy interesantes puesto que no es necesario incrementar los términos

en la serie de Fourier para obtener un buen ajuste. Sin embargo, dado que la estructura temporal de

tipos de interés pertenece a un espacio de Hilbert L2([t, T ]), incrementando el numero de términos en

la serie de Fourier nos permitiŕıa ajustar arbitrariamente bien la curva de tipos observada, derivando

en un modelo de no arbitraje.

Durante el periodo muestral la curva de tipos ha adoptado diferentes formas. En este trabajo

consideraremos tres periodos, de aproximadamente un año, para analizar el poder de predicción del

modelo considerando un horizonte temporal de un d́ıa, una semana, y un mes.

El primer periodo, desde el 3 de Agosto del 2004 al 2 de Agosto del 2005, presenta un escenario

muy interesante, donde la curva de tipos tiene pendiente positiva al principio de la muestra y se

vuelve relativamente plana al final. Para un horizonte de predicción de un d́ıa, el modelo de Fourier

mejora ampliamente las predicciones de ambos modelos de referencia. Para horizontes de estimación

más largos, nuestro modelo proporciona mejores resultados pero la brecha se estrecha para algunos

vencimientos. En este periodo, y considerando todos los horizontes de predicción, nuestro modelo

proporciona la suma de residuos cuadrados más baja en 23 de las 33 predicciones.

El segundo periodo va desde el 2 de Agosto del 2006 al 31 de Julio del 2007, y corresponde a un

periodo donde la curva de tipos es muy errática, con abruptas subidas y bajadas en el nivel de tipos

de interés. Bajo estas condiciones ningún modelo proporciona buenos resultados, lo que nos indica

que no es posible anticipar un comportamiento tan caótico.

El tercer periodo corresponde a la muestra más reciente, desde el 20 de Septiembre del 2001 al 21

de Septiembre del 2012. En este periodo los tipos a corto presentan niveles extremadamente bajos,

provocando una gran diferencia entre el nivel de tipos con distintos vencimientos. En promedio,

nuestro modelo de Fourier mejora las predicciones de sus competidores, obteniendo la suma de

residuos cuadrados más baja para 25 de las 33 predicciones.

Considerando los tres periodos, podemos ver que hay ciertos momentos donde el modelo de

Vasicek y Nelson Siegel producen errores de predicción muy grandes. Sin embargo, cuando el modelo

de Fourier es vencido por sus competidores, la diferencia en los errores de perdición es muy estrecha.

En el segundo capitulo, proponemos un nuevo modelo del tipo CIR donde el tipo de interés

instantáneo converge a cierto tipo asintótico que varia de forma ćıclica con el tiempo según un

oscilador armónico. Se puede demostrar que los procesos de este tipo siguen una distribución chi-

cuadrado con δ grados de libertad. Cuando la dimensión del sistema no es un numero entero positivo

la distribución del tipo instantáneo es desconocida. Feller (1951) ha demostrado que cuando δ ≥ 2

el tipo instantáneo permanece positivo, si δ < 2 se puede anular, pero nunca puede ser negativo.

Con estas premisas y teniendo en cuenta que δ depende de los parámetros del sistema, la volatilidad

del tipo instantáneo también se asume dependiente del tiempo y la caracterizamos con un oscilador
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armónico con la misma fase que la del nivel de reversión. En particular

drt = κ(θt − rt)dt+ σt
√
rtdWt

θt = Aθ sin
2(ϕ− ωt)

σ2
t = Aσ sin

2(ϕ− ωt)

donde κ ∈ R
+, y δ = 4θtκ

σ2
t
. Como ambos osciladores están en fase, la dimensión del modelo se

puede representar como δ = 4Aθκ
Aσ

> 0.

Bajo este marco teórico, obtenemos expresiones anaĺıticas para el precio del bono cupón cero y

de diferentes productos derivados.

En el tercer capitulo, proponemos un nuevo modelo en tiempo continuo asumiendo que el logar-

itmo del precio spot del commodity converge a cierto nivel dependiente del tiempo que caracterizamos

con una serie de Fourier, es decir

dSt = κ (f(t)− ln(St))Stdt+ σStdWt

f(t) =

∞∑

n=0

Re
[
Ane

inwt
]

donde κ, σ ∈ R
+, Wt es un proceso de Wiener, y solo consideramos la parte real de la serie

puesto que es la parte que tiene sentido económico.

La idea que subyace detrás de este supuesto se basa en que las fuerzas de mercado dominan el

proceso de valoración del commodity, y por tanto esta sujeto a una fuerte componente estacional.

Bajo esta premisa, obtenemos formulas de valoración anaĺıticas para el precio de contratos de futuros,

opciones Europeas sobre el commodity, y opciones Europeas sobre contratos de futuros.

Los mercados de enerǵıa proporcionan el marco perfecto para estudiar el comportamiento de

este tipo de modelos. En particular, centraremos nuestra atención en el mercado de gas natural,

tomando la serie de precios contado y futuros de Henry Hub. Consideramos la serie de precios

desde el 2 de Febrero de 1998 hasta el 3 de Julio del 2011, para los contratos Ng 5, Ng 8, y Ng 12,

donde Ng 5 es el quinto contrato más próximo al vencimiento, y aśı sucesivamente. En este análisis

evaluaremos la capacidad de ajuste de dos representaciones de nuestro modelo frente a dos modelos

de referencia. En particular, consideramos el modelo propuesto en Schwartz (1997), donde el autor

asume un proceso con reversión a la media con parámetros constantes. Además, consideramos el

modelo propuesto en Lucia y Schwartz (2002), donde los autores asumen un proceso con reversión a

la media igual a cero, incorporando una función trigonométrica con frecuencia anual para abordar el

comportamiento estacional. Un ADF test de las series de precios spot y futuros pone de manifiesto
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la existencia de una ráız unitaria, por lo que ambas series son no estacionarias. En consecuencia,

el análisis espectral de las series presenta un máximo de densidad que corresponde a una frecuencia

igual a cero. Sin embargo, en este estudio necesitamos obtener el espectro de la componente del

precio del futuro que no este explicada por los movimiento del precio spot. Para ello, creamos una

red de frecuencias y ajustamos nuestro modelo a la serie temporal observada para cada valor de

la red. De esta manera obtenemos un mı́nimo error de ajuste bien definido para una frecuencia

corta, que debemos interpretar como la frecuencia fundamental, indicándonos un periodo de entre

15 y 16 años. Además, podemos ver que para la serie Ng 5 y Ng 8, la segunda frecuencia más

relevante es la anual. Sin embargo, la importancia de esta frecuencia decrece con con el tiempo al

vencimiento, desapareciendo completamente del espectro de la serie con vencimiento a un año, Ng

12. Los resultados de la estimación nos muestran que, ambas representaciones de nuestro modelo

mejoran ampliamente los resultados de los modelos de referencia. El modelo con un término en

la expansión de Fourier, reduce la suma de residuos cuadrados del modelo de Lucia y Schwartz en

un 28%, 54%, y 79% para la serie Ng 5, 8, y 12, respectivamente. Comparando con el modelo de

Schwartz, la mejora es del 48%, 61%, y 79% para la serie Ng 5, 8, y 12, respectivamente. Podemos

ver que, para el futuro con vencimiento a un año, el modelo de Lucia y Schwartz no proporciona

ninguna ventaja frente al modelo sin componente estacional, este resultado no debeŕıa sorprendernos

puesto que la frecuencia anual desaparece completamente del espectro de la serie Ng 12.

Aunque la principal mejora proviene de incorporar la frecuencia fundamental, agregando un

segundo y tercer término en la expansión de Fourier proporciona mejoras que no son en absoluto

despreciables. Cabe destacar que, incrementar el numero de términos en la serie nos permitiŕıa

ajustar arbitrariamente bien la serie observada.

Los resultados obtenidos en este trabajo sugieren que, cada uno de nuestros modelos proporciona

una valiosa herramienta para la gestión de cartera, gestión de riesgo y la valoración de derivados.
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Summary

The stochastic behaviour of interest rates and commodity prices have been thoroughly analysed in

the academic literature and constitutes an issue of special relevance for practitioners in financial

markets. Previous studies have proposed numerous processes to model the stochastic component of

these assets, most of them assuming a mean reverting process.

The first chapter of this work introduces a new continuous-time model for the term structure

of interest rates where the instantaneous spot rate is assumed to converge to a long-term level that

changes over time according to a Fourier series, that is

drt = κ(f(t)− rt)dt+ σdWt

f(t) =
∞∑

n=0

Re
[
Ane

inωt
]

where κ, σ ∈ R
+ and Wt is a standard Wiener process, and where we only consider the real

part of the Fourier series since it is the only one that makes economic sense. This representation

of the spot rate allows us to capture a number of changes in the curvature of the term structure

maintaining the analytical tractability and allowing us to compute closed-form expressions for the

prices of numerous interest rate derivatives and risk management measures.

Since a good fit of the term structure should suggest a potentially good fit of bond and derivative

prices, we use daily US Treasury yield curve rates from July 31, 2001 up to September 21, 2012 to

empirically analyse the performance of the simplest expression of our proposed Fourier model, versus

two benchmarks, Vasicek (1977) and Nelson and Siegel (1987).

The in-sample fitting results reveal that our Fourier model outperforms both alternative bench-

marks, reducing the aggregate sum of squares by 24% relative to the Nelson Siegel model, and by

82% relative to the Vasicek model. This is an interesting result since we are estimating the simplest

representation of the Fourier model, that is n = 1. However, since the yield curve function belongs to

a Hilbert space L2([t, T ]), increasing the number of terms in the Fourier expansion would eventually

allow for fitting arbitrarily well the observed yield curve, eventually leading to a no-arbitrage model

of the term structure.
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During the sample period from July 31, 2001 up to September 21, 2012, the yield curve adopted

very different shapes. Hence, we consider three different moments in time to asses the forecasting

power of each model. Each forecasting period covers approximately one year and three forecast

horizons, that is one day, one week, and one month ahead.

The first forecasting period, from August 3, 2004 to August 2, 2005, presents an interesting

scenario, where the term structure is upward sloping at the beginning of the sample and quite flat at

the end. The Fourier model consistently beats its competitors in the one-day ahead forecasting. For

larger forecasting horizons of 5 or 21-days ahead, the Fourier model still provides better predictions

than its competitors although the gap narrows at some maturities. Over this period, the Fourier

model has the lowest sum of squared forecast errors in 23 of the 33 comparisons over maturity and

forecasting horizon.

The second forecasting period, from August 2, 2006 to July 31, 2007, corresponds to a erratic

yield curve, with several ups and downs in yield levels. Under this scenario no model can anticipate

such chaotic behaviour providing poor predictions.

The third forecasting period, from September 20, 2011 to September 21, 2012, is the most recent

sample where shortest maturities are extremely low and yield levels drastically differ with maturity.

On average, the Fourier model again outperforms both competitors, achieving the lowest sum of

squared forecast errors in 25 of the 33 comparisons.

An interesting fact arises considering the three forecasting periods all together, we have found

instances in which the Vasicek and the Nelson-Siegel models produce forecast errors much higher

than their competitors. However, when the Fourier model is beaten by the Vasicek and Nelson-Siegel

models, the difference in forecasting performance is usually quite narrow.

In chapter 2 we propose a new square-root model where the instantaneous interest rate is pulled

back to a certain time-dependent long term level characterized by an harmonic oscillator. Square-

root process of this type follows a rescaled non-central chi-square distribution with δ degrees of

freedom. Whenever the dimension of the process is not a positive integer the spot rate distribution

is unknown. Feller (1951) has demonstrated that whenever δ ≥ 2 the spot rate remains positive, if

δ < 2 it can become null but never negative. Under that assumption and considering that δ depends

on the model parameters, we also propose a time-dependent spot rate volatility characterized by

another harmonic oscillator in phase with the reverting level function. In more detail,

drt = κ(θt − rt)dt+ σt
√
rtdWt

θt = Aθ sin
2(ϕ− ωt)

σ2
t = Aσ sin

2(ϕ− ωt)

VI



where κ ∈ R
+, and δ = 4θtκ

σ2
t
. As both waves are in phase, the model’s dimension can be

represented as δ = 4Aθκ
Aσ

> 0.

Under this framework, we compute closed-form expressions for the prices of zero-coupon bonds,

Forward on a zero coupon-bond, European option on a zero-coupon bond, European option on a

coupon bond, European bond forward option, Forward Rate Agreement, Interest rate swap and

swaption, Caps, floors, and collars.

The third chapter introduces a new continuous-time model based on an Ornstein-Uhlenbeck

process for the logarithm of the commodity spot price, with a reversion to a time dependent long-

run level, the time variation of the long-run price level being characterized by a Fourier series. In

more detail,

dSt = κ (f(t)− ln(St))Stdt+ σStdWt

f(t) =
∞∑

n=0

Re
[
Ane

inwt
]

where κ, σ ∈ R+ and Wt is a standard Wiener process, and it is only considered the real part of

the series since it is the part that makes economic sense.

The underlying idea behind this assumption is that the pricing process is driven by market forces

and dominated by a strong seasonal component. Under that assumption, we compute closed-form

expressions for the prices of Futures contract, European option on the commodity, and European

option on the forward commodity.

Energy and power markets present a perfect framework to analyse the suitability of this kind of

models with a seasonal component. We focus our analysis on natural gas as a source of energy, taking

Henry Hub as the pricing point for natural gas futures contracts. We analyse the time-series from

02/02/1998 to 07/03/2011 for futures contract Ng 5, Ng 8, and Ng 12, where Ng 5 is the fifth contract

closest to maturity, and so on. We compare the fitting ability of two different representations of our

model, that is considering one and two terms in the Fourier expansion, to market data against two

alternative benchmarks. In particular, we use the one factor model proposed in Schwartz (1997),

which assumes a mean reverting process with constant parameters. And the model proposed in

Lucia and Schwartz (2002), which assumes a zero level mean reverting process, incorporating a

trigonometric function with annual frequency in order to cope with the seasonal behaviour of the

commodity price. An Augmented Dickey-Fuller test of the Spot and futures price series reveals the

existence of a unit root, meaning that both, the spot and futures price series are nonstationary.

Hence, a spectral analysis of these series presents a maximum spectral density corresponding to the

zero frequency. Nevertheless, in this study we need to obtain the spectrum of the component of

futures prices which is not explained by spot prices. Then using a grid of frequencies and fitting
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our model to the observed time series for each value of the frequency in the grid will exposed those

frequencies. Indeed, we obtain a well defined minimum fitting error at a short frequency, which

should be interpreted as the fundamental frequency, indicating an underlying long run period of 15

to 16 years. Another interesting result arises, the second relevant term in the Fourier series for the

Ng 5 and Ng 8 is the annual frequency. However, the importance of the annual frequency decreases

with maturity, completely disappearing beyond the futures expiring in one year, Ng 12. Compared

with the benchmark models, both representations of our model dramatically improve the in-sample

fit of every observed futures time series. The model with just one term in the Fourier expansion,

reduces the aggregate sum of squares of Lucia and Schwartz model by 28%, 54% and 79%, for Ng 5,

8 and 12, respectively. Compared with Schwartz model, the improvement is of 48%, 61% and 79%

for Ng 5, 8 and 12, respectively. For the futures contract expiring in one year, Lucia and Schwartz

model provides no further improvement from the model with no seasonal component, not surprising

at all since the annual frequency has completely disappear from the Ng 12 spectrum.

Although the main improvement comes with the incorporation of the fundamental frequency,

adding a second and a third term in the model still provide further improvements. On this regard,

it is interesting to point out that increasing the number of terms in the Fourier expansion would

eventually allow for fitting arbitrarily well the observed time series.

The results of each chapter are very relevant, suggesting that our proposed models provide a

simple and powerful tool for portfolio management, risk management and derivative pricing on

interest rates and commodities.
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Chapter 1

A Term Structure Model with Cyclical Mean Reversion:

Pricing and Risk Management

1



1.1 Introduction

The term structure of interest rates has been thoroughly analysed in many academic papers and

constitutes an issue of special relevance for practitioners in financial markets. This chapter introduces

a new continuous-time model for the term structure of interest rates where the instantaneous spot

rate is assumed to converge to a long-term level that changes over time according to a Fourier series.

That specification allows us to capture a number of changes in the curvature of the term structure,

an attractive feature which is also incorporated in the Nelson-Siegel and Svensson models through

exponential functions, providing these two models with a good fit to market interest rates.

Table 1.1 shows some of the models proposed in the academic literature, classified in two cat-

egories: endogenous and exogenous. Endogenous models assume that changes in interest rates are

affected by one or more factors and propose a certain stochastic behaviour for the factors. Under

those assumptions, the current term structure can be derived as an implication from the model.

Popular examples of one-factor models are Vasicek (1977), Brennan and Schwartz (1980), or Cox et

al. (1985). The downside of these models is the lack of an appropriate fit to observed interest rate

data. To mitigate this drawback some multi-factor models have been proposed. See, for instance,

Brennan and Schwartz (1979), Schaefer and Schwartz (1984), Longstaff and Schwartz (1992), Duffie

and Kan (1996), or Chen (1996).

In contrast, exogenous models consider the current term structure as an input and aim to prevent

arbitrage opportunities considering interest rates with different maturities. A pioneer work in this

area was made by Ho and Lee (1986) who proposed a model consistent with observed data. As this

model implies a Gaussian distribution and no mean reversion for interest rates, several papers have

specified and analysed alternative model specifications such as Black et al. (1990), Hull and White

(1990, 1993), Black and Karasinski (1991), Heath et al. (1992), and Mercurio and Moraleda (2000).

For a complete survey on term structure models see, for instance, Webber and James (2001), Brigo

and Mercurio (2006), or Filipović (2009).

In our model, the instantaneous spot rate completely characterizes the evolution in time of

interest rates at different maturities. Under this framework, we compute closed-form expressions for

the prices of zero-coupon bonds and different derivatives such as bond forwards, European options

on zero-coupon and coupon-bearing bonds, European bond forward options, swaps, swaptions, caps,

floors, and collars. Additionally, we compute several risk management measures for bonds, like

Greeks for European bond options, and perform a sensitivity analysis on the model parameters.

Finally, we dig a bit deeper analyzing the in- and out-of-sample performance of this model for the

term structure of interest rates, comparing the results with two benchmark models: Vasicek(1977)

and Nelson and Siegel (1987). We show that, for the data set used in this analysis, the proposed

model outperforms its competitors both, in- and out-of-sample, providing a more precise adjustment

2



to actual market values as well as better forecasts.

This chapter is organized as follows. Section 1.2 introduces the posited model, its main features,

the general pricing partial differential equation and derives the bond pricing equation. Sections 1.3

and 1.4 provide closed-form expressions for prices of different derivatives and some risk management

measures, respectively. Section 1.5 and 1.6 present the empirical analysis. Finally, Section 1.7

summarizes the main findings and make some concluding comments. A final Appendix includes the

mathematical proofs.

1.2 A New Model for the Term Structure

In this section we introduce the model, present the partial differential equation that must be satisfied

by the price of any derivative asset, obtain the bond pricing equations, and characterize the term

structure of interest rates.

1.2.1 The Model

Let rt denote the instantaneous interest rate available at time t. We assume that the time evolution

of rt is given by the Ornstein-Uhlenbeck process, defined by a stochastic differential equation

drt = κ(f(t)− rt)dt+ σdWt (1.1)

where κ, σ ∈ R
+ and Wt is a standard Wiener process. In addition, we assume that the mean-

reversion level, f(t), follows a time-dependent process driven by a Fourier series:

f(t) =
∞∑

n=0

Re
[
Ane

inωt
]

where we only consider the real part of the Fourier series since it is the only one that makes economic

sense. Note that, ∀n | An ∈ C, so that there is a phase factor contained in An. In more detail,

An = An,x + iAn,y where An,x, An,y ∈ R. Hence, An,x and An,y denote the amplitude and phase

of the fluctuations in the instantaneous rate, respectively. Moreover, this model nests the model in

Vasicek (1977) by taking An = 0, ∀n ∈ N− {0}.
Now, let Λ(rt, t) denote the market price of risk, which is assumed constant, Λ(rt, t) = λ. Then,

the risk-neutral version of the process (1.1) is given by

drt = µrdt+ σdW̃t (1.2)
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where

µr = κ (α+ g(t)− rt) (1.3)

α = A0 −
λσ

κ
(1.4)

g(t) =
∞∑

n=1

Re
[
Ane

inωt
]
= f(t)−A0 (1.5)

where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure P̃ .

The following Proposition establishes the solution of the stochastic differential equation (1.2).

Proposition 1 The solution of the risk-neutral process followed by the instantaneous interest rate

is given as1

rs = e−κ(s−t)rt +
(
1− e−κ(s−t)

)
α+

∞∑

n=1

Re

[
κAn

κ+ inω

(
einωs − e−κ(s−t)+inωt

)]
+ σ

∫ s

t
e−κ(s−u)dW̃u

From Proposition 23, it is clear that instantaneous interest rate follows a Normal distribution.

Its first two statistical moments under P̃ are given as

Ẽ[rT | rt] = e−κ(T−t)rt +
(
1− e−κ(T−t)

)
α+

∞∑

n=1

Re

[
κAn

κ+ inω

(
einωT − e−κ(T−t)+inωt

)]
(1.6)

Ṽ [rT | rt] = Ṽ

[
σ

∫ T

t
e−κ(T−u)dW̃u

]
=

(
σ

∫ T

t
e−κ(T−u)dW̃u

)2

= σ2

∫ T

t
e−2κ(T−u)du

=
σ2

2κ

(
1− e−2κ(T−t)

)
(1.7)

where we have applied the isometry property for stochastic integrals in the variance.

1.2.2 Bond Pricing and the Term Structure of Interest Rates

Let P (rt, t, T ) denote the price at time t of a zero-coupon bond that pays $1 at maturity T . Applying

Itô’s Lemma, standard no-arbitrage arguments and some trivial algebra, we get the following partial

differential equation (PDE):

Pt(rt, t, T ) + (µr − Λ(rt, t)σr)Pr(rt, t, T ) +
1

2
σ2
rPrr(rt, t, T )− rtP (rt, t, T ) = 0 (1.8)

that must be verified by the price of any derivative.

1This result arises as e−κ(s−t) is square-integrable in [t, s], so that it belongs to a Hilbert space.

4



Replacing expression (1.1) and the constant market price of risk λ into (2.10), we get the PDE

for the bond price:

Pt + Prκ (α+ g(t) − rt) + Prr
σ2

2
− Prt = 0 (1.9)

subject to the terminal condition P (rT , T, T ) = 1, ∀ rT .

Using probabilistic techniques, the solution of this PDE can be written as a risk-neutral condi-

tional expectation, that is,

P (rt, t, T ) = Ẽ
[
e−

∫ T
t

rsds | rt
]

Looking at Proposition 23, it is clear that
∫ T
t rsds is a random Normal variable. Then, straightfor-

ward algebra leads to the solution of this PDE as given in the following Proposition.

Proposition 2 The price at time t of a zero-coupon bond with maturity T and $1 face value is given

by

P (rt, t, T ) = exp

{
−Ẽ

[∫ T

t
rsds | rt

]
+

1

2
Ṽ

[∫ T

t
rsds | rt

]}

where

Ẽ

[∫ T

t
rsds | rt

]
=

1− e−κ(T−t)

κ
rt −

(
1− e−κ(T−t)

κ
− (T − t)

)
α

+

∞∑

n=1

Re

[
An

nω(κ+ inω)

(
einωt

(
nωe−κ(T−t) + iκ− nω

)
− iκeinωT

)]
(1.10)

Ṽ

[∫ T

t
rsds | rt

]
=

σ2

κ2

[
(T − t)− 2

1− e−κ(T−t)

κ
+

1− e−2κ(T−t)

2κ

]
(1.11)

Since all affine models provide an exponential-affine functional form for bond pricing, we can

immediately rewrite the previous Proposition to obtain the next one.

Proposition 3 The price at time t of a zero-coupon bond with maturity T and $1 face value is given

by

P (rt, t, T ) = eA(t,T )−B(t,T )rt

where

A(t, T ) =
σ2

2κ2

[
(T − t)− 2B(t, T ) +

1− e−2κ(T−t)

2κ

]
+ (B(t, T )− (T − t))α

−
∞∑

n=1

Re

[
An

nω(κ+ inω)

(
einωt

(
nωe−κ(T−t) + iκ− nω

)
− iκeinωT

)]
(1.12)

B(t, T ) =
1− e−κ(T−t)

κ
(1.13)
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In Figure 1.1 we plot the term structure of bond prices for three different set of parameters in the

Fourier model against the structure obtained with Vasicek’s model. We can see the higher flexibility

of our proposed model approach to fit different shapes of the term structure.

The following Corollary immediately arises.

Corollary 1 As a coupon bond can be interpreted as a portfolio of zero-coupon bonds, the price of

coupon bonds can be obtained applying Propositions 2 or 3.

Under this framework and considering the bond price P (rt, t, T ) given by Proposition 3, the term

structure of interest rates is fully characterized in the following Corollary.

Corollary 2 The yield to maturity, R(rt, t, T ), is given by

R(rt, t, T ) = −1

τ
lnP (rt, t, T ), τ = T − t

The short-term interest rate is defined as the instantaneous interest rate at time t, that is,

rt = lim
τ→0

R(rt, t, T ) = R(rt, t, t)

The instantaneous forward rate is given as

f(rt, t, T ) = −∂ ln(P (rt, t, T ))

∂T

Figure 1.2 shows the yield curve for three different set of parameters in the Fourier model against

Vasicek’s model. Clearly, even for small number of terms (n) in the expansion, the Fourier model

is capable of replicating different yield curve shapes such as upward sloping, downward sloping,

humped, and inverted humped. On this respect, it is interesting to stress that our model should be

able to replicate any yield curve shape as n goes to infinity, since the yield curve function belongs

to a Hilbert space L2([t, T ]), and the Fourier series can be made to converge in quadratic mean to

any function in such a space.

For illustrative purposes, Figures 1.3 and 1.4 show how the term structure of interest rates re-

sponds to different values of speed of reversion to the mean and the volatility parameter, respectively.

Both models provide a similar pattern for the chosen parameters: the lower the speed of mean rever-

sion, the lower the yield. Additionally, in the Fourier model, the lower the speed of mean reversion,

the flatter the term structure. Moreover, Figure 1.4 shows that the yield decreases with volatility.

Figure 1.5 compare how the term structure of interest rates responds in the Vasicek model and the

Fourier model to different values of the common α parameter. Finally, Figure 1.6 displays how the
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term structure under the Fourier model responds to changes in its parameters An,x, An,y and ω. The

most obvious effect is that of changes in the phase An,y. We can see how the position and height of

the peak in the term structure occur in opposite places for different phases. All these representations

confirm that our proposed model provides a great flexibility even for small number of terms in the

Fourier expansion.

1.3 Derivatives Pricing

This section is devoted to the analytical computation of closed-form expressions for the prices of

different derivative securities under this new model. In more detail, we price bond derivatives and

derivatives on interest rates.

1.3.1 Pricing of Bond Derivatives

The bond pricing PDE (1.9) subject to the appropriate terminal condition allows us to obtain closed-

form expressions for the price of any interest rate derivative. Then, considering a derivative whose

pay-off at time T is given by UT (rT ),
2 the price at time t of this contract will read as:

Ut(rt, t, T ) = Ẽ
[
e−

∫ T
t

rsdsUT (rT ) | rt
]

Proposition 4 The price at time t of any interest rate derivative with terminal pay-off UT (rT ) is

given by

Ut(rt, t, T ) = P (rt, t, T )Ẽ [UT (wT ) | rt]

where P (rt, t, T ) is given by Proposition 2 and wT follows a normal distribution with conditional

moments

Ẽ[wT | rt] = Ẽ[rT | rt]− C̃ov

[
rT ;

∫ T

t
rsds | rt

]
(1.14)

Ṽ [wT | rt] = Ṽ [rT | rt] (1.15)

where Ẽ[rT | rt] and Ṽ [rT | rt] are given by equations (1.6)-(1.7), respectively, and

C̃ov

[
rT ;

∫ T

t
rsds | rt

]
=

σ2

2

(
1− e−κ(T−t)

κ

)2

(1.16)

Proof. See the Appendix.

After obtaining this general closed-form expression for the price of any interest rate derivative,

we proceed to analyzing in detail several specific assets:

2Clearly, if UT (rT ) = 1, the previous bond price expression is obtained.
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1. Forward on a zero coupon-bond

Consider a forward contract expiring at time Tf written on a zero-coupon bond maturing

at time Tb > Tf and face value $1. Under the risk neutral measure P̃ , the delivery price

established at time t for this forward contract is given as

F (rt, t, Tf , Tb) = Ẽ
[
P (wTf

, Tf , Tb) | rt
]

The value at time t of this forward is given by the next Proposition.

Proposition 5 The value at time t of a bond forward contract maturing at time Tf written

on a zero-coupon bond with maturity date Tb and face value $1 is given by

F (rt, t, Tf , Tb) = Ẽ
[
P (wTf

, Tf , Tb) | rt
]

= exp

{
A(Tf , Tb)−B(Tf , Tb)Ẽ

[
wTf

| rt
]
+

1

2
B2(Tf , Tb)Ṽ

[
wTf

| rt
]}

where A(Tf , Tb) and B(Tf , Tb) are given by (1.12) and (1.13), respectively, and Ẽ
[
wTf

| rt
]

and Ṽ
[
wTf

| rt
]
as given by (1.14) and (1.15), respectively.

2. European option on a zero-coupon bond

Consider a call option maturing at time Tc with strike K, written on a zero-coupon bond that

matures at time Tb > Tc. Let ct(rt, Tc, Tb,K) denote the price at time t of this call option.

Then, the boundary condition of the PDE (1.9) will be given by

cTc(rTc , Tc, Tb,K) = max {P (rTc , Tc, Tb)−K, 0}

Hence, under the risk-neutral measure P̃ , the price at time t of this option will be given by

ct(rt, Tc, Tb,K) = Ẽ
[
e−

∫ Tc
t

rsds(P (rTc , Tc, Tb)−K)+ | rt
]

The call option price is given by the following Proposition.

Proposition 6 The price at time t of a European call option with maturity Tc written on a

zero-coupon bond expiring at time Tb and $1 face value is given by

ct(rt, Tc, Tb,K) = P (rt, t, Tc)Ẽ
[
(P (wTc , Tc, Tb)−K)+ | rt

]

= P (rt, t, Tc)F (rt, t, Tc, Tb)Φ(d1)− P (rt, t, Tc)KΦ(d2)
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where the bond price P (rt, t, ·) is given by Proposition 2, the bond forward value F (rt, t, Tc, Tb)

is given by Proposition 5, Φ(·) denotes the standard normal distribution function, and

d1 =
ln
(
F (rt,t,Tc,Tb)

K

)
+ 1

2B(Tc, Tb)
2Ṽ [wTc | rt]

B(Tc, Tb)

√
Ṽ [wTc | rt]

d2 = d1 −B(Tc, Tb)

√
Ṽ [wTc | rt]

with B(Tc, Tb) as in (1.13), Ṽ [wTc | rt] as given by (1.15), and F (rt, t, Tc, Tb) as in Proposition

5.

3. European option on a coupon bond

Consider a European call option that matures at time Tc and strike K. The underlying asset

is a coupon bond maturing at time Tb paying N coupons αi at times si, i = 1, 2, · · · , N where

s1 > Tc, sN = Tb. The price of this coupon bond at time Tc is given by the sum of the

corresponding zero-coupon bonds, that is,

P (rTc , Tc, Tb) =
N∑

i=1

αiP (rTc , Tc, si) (1.17)

where P (rTc , Tc, si) , i = 1, 2 · · · , N is given by Proposition 3.

Let ct
(
rt, Tc, {si}Ni=1,K

)
denote the price at time t of this call option. Using (2.22), the

boundary condition of the PDE (1.9) becomes now

cTc

(
rTc , Tc, {si}Ni=1,K

)
= max

{
N∑

i=1

αiP (rTc , Tc, si)−K, 0

}

Applying Proposition 4, the call option price is given as

ct
(
rt, Tc, {si}Ni=1,K

)
= P (rt, t, Tc) Ẽ

[
cTc

(
wTc , Tc, {si}Ni=1,K

)
| rt
]

= P (rt, t, Tc) Ẽ

[
max

{
N∑

i=1

αiP (wTc , Tc, si)−K, 0

}
| rt
]

Since the bond price is lognormally distributed, the distribution of
∑N

i=1 P (wTc , Tc, si) is un-

known. Then, in line with Jamshidian (1989), we will find Ki, i = 1, 2, · · · , N such that

max

{
N∑

i=1

αiP (wTc , Tc, si)−K, 0

}
=

N∑

i=1

αimax {P (wTc , Tc, si)−Ki, 0} (1.18)

where Ki = P (̟,Tc, si) and ̟ is the solution of
∑N

i=1 αiP (̟,Tc, si) = K.3

3Note that the existence of strikes Ki such that equation (2.23) has a solution is guaranteed as the bond price is a

decreasing function of the instantaneous interest rate.
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The European call option on a coupon bond can be interpreted as a portfolio of European call

options on zero-coupon bonds with “appropriate” strikes Ki , which allows us to characterize

its price in the following Proposition.

Proposition 7 The price at time t of a European call option with maturity Tc on a coupon

bond expiring at time Tb and paying coupons αi at times si, i = 1, 2, · · · , N is given by

ct
(
rt, Tc, {si}Ni=1,K

)
=

N∑

i=1

αi ct (rt, Tc, si,Ki)

where ct (rt, Tc, si,Ki) is given by Proposition 6.

4. European bond forward option

Consider a European bond forward call option that matures at time Tc with strike K. If this

option is exercised, the call-holder pays K and receives a forward maturing at time Tf on a

bond that expires at time Tb > Tf > Tc. Let ct (rt, Tc, Tf , Tb,K) denote the price at time t of

this option.

The boundary condition of the PDE (1.9) is given as

cTc (rTc , Tc, Tf , Tb,K) = max {F (rTc , TcTf , Tb)−K, 0}

Under the risk-neutral measure P̃ , the price at time t of this option is given as

ct (rt, Tc, Tf , Tb,K) = Ẽ
[
e−

∫ Tc
t

rsds (F (rTc , Tc, Tf , Tb)−K)+ | rt
]

In short, we have the following Proposition.

Proposition 8 The price at time t of a European bond forward call option with maturity Tc

on a forward contract expiring at time Tf on a zero-coupon bond that matures at time Tb with

a $1 face value is given by

ct (rt, Tc, Tf , Tb,K) = P (rt, t, Tc)Ẽ
[
(F (wTc , Tc, Tf , Tb)−K)+ | rt

]

= P (rt, t, Tc)Θ(rt, t, Tc, Tf , Tb)Φ(d1)− P (rt, t, Tc)KΦ(d2)

where P (rt, t, Tc) is given by Proposition 2, Φ(·) denotes the standard normal distribution

function, and
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Θ(rt, t, Tc, Tf , Tb) = exp

{
A(Tf , Tb)−B(Tf , Tb)̺ (rt, t, Tc, Tf , Tb) +

1

2
B (Tf , Tb)

2 Ṽ
[
wTf

| rt
]}

̺ (rt, t, Tc, Tf , Tb) =
(
1− e−κ(Tf−Tc)

)
α+ Ẽ[wTc |rt]e−κ(Tf−Tc) − C̃ov

[
rTf

,

∫ Tf

Tc

rsds|rTc

]

+
∞∑

n=1

Re

[
κAn

κ+ inω

(
einωTf − e−κ(Tf−Tc)+inωTc

)]

d1 =
v + Ṽ [wTc | rt]B(Tf , Tb)e

−κ(Tf−Tc) − Ẽ [wTc | rt]√
Ṽ [wTc | rt]

d2 = d1 − e−κ(Tf−Tc)B(Tf , Tb)

√
Ṽ [wTc | rt]

v =
− ln(K) +A(Tf , Tb)−B(Tf , Tb)η + 1

2B(Tf , Tb)
2Ṽ
[
wTf

| rTc

]

B(Tf , Tb)e
−κ(Tf−Tc)

η =
(
1− e−κ(Tf−Tc)

)
α− C̃ov

[
rTf

,

∫ Tf

Tc

rsds|rTc

]

+
∞∑

n=1

Re

[
κAn

κ+ inω

(
einωTf − e−κ(Tf−Tc)+inωTc

)]

where A(Tf , Tb), B(Tf , Tb), Ẽ[wTx | rt], Ṽ [wTx | rt], and C̃ov
[
ry,
∫ y
x rsds | rx

]
are given by

equations (1.12)-(1.16), respectively.

Remark 1 Note that P (rt, t, Tc)Θ (rt, t, Tc, Tf , Tb) should not be interpreted as the forward

price at time t but rather, as the price at time t of an asset paying the forward price at time

Tc.

Corollary 3 For all the above cases, put option prices are directly obtained from application

of put-call parity.

1.3.2 Interest Rate Derivatives

We now examine the pricing of derivative assets on a given interest rate: FRAs, swaps, caps, floors,

and collars.

1. Forward Rate Agreement
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Consider a FRA with maturity s and $1 notional value, where the investor agrees to receive a

floating rate with tenor Ts− s and pay a fixed interest rate K. The floating rate is set at time

s and the net cash-flow is received at time Tr > s.

Hence, under the risk-neutral measure P̃ , the FRA value at time t is given as

FRAt(rt, s, Tr, Ts,K) = Ẽ
[
e−

∫ Tr
t

rudu (R(rs, s, Ts)−K) | rt
]

The following Proposition provides a closed-form expression for the FRA value.

Proposition 9 The value at time t of a FRA with maturity s and $1 notional value, where

it is agreed to pay a fixed rate K and receive a floating rate with tenor Ts − s, is given by

FRAt(rt, s, Tr, Ts,K) = P (rt, t, Tr)Ẽ[R(ws, s, Ts)−K | rt]

= P (rt, t, Tr)

[
B(s, Ts)µ−A(s, Ts)

Ts − s
−K

]

where P (rt, t, Tr) is given by Proposition 2 and µ = Ẽ[ws | rt] is given by equation (1.14).

2. Interest rate swap and swaption

An interest rate swap can be interpreted as either the difference between two coupon bonds

or a portfolio of FRA’s. Hence, valuing swaps arises directly by applying Proposition 2 or 9.

Similarly, swaption valuation is an immediate consequence of Proposition 7.

3. Caps, floors, and collars

A cap (floor) contract guarantees its holder a pay-off if a certain floating interest rate is above

(below) a specified rate, the cap (floor) level. Caps (floors) involve a series of regular payments,

usually referred as caplets (floorlets). Hence, a cap (floor) can be interpreted as a portfolio of

caplets (floorlets).

Consider a caplet contract written on the floating rate maturing at time s and with $1 face

value. If exercised, the investor pays a fixed interest rate K and receives a floating rate with

tenor Ts− s. The floating rate is set at time s and the net cash-flow is received at time Tr > s.

Hence, under the risk-neutral measure P̃ , the price at time t of this caplet is given by

Caplett(rt, s, Tr, Ts,K) = Ẽ
[
e−

∫ Tr
t

rudu max {R(rs, s, Ts)−K, 0} | rt
]

The caplet price is provided by the following Proposition.
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Proposition 10 The price at time t of a caplet contract written on the floating rate with $1

face value and tenor Ts − s is given as

Caplett(rt, s, Tr, Ts,K) = P (rt, t, Tr)Ẽ
[
(R(ws, s, Ts)−K)+ | rt

]

= P (rt, t, Tr)Ẽ

[(
B(s, Ts)ws −A(s, Ts)

Ts − s
−K

)+

| rt
]

= P (rt, t, Tr)

[(
µ
B(s, Ts)

Ts − s
− A(s, Ts)

Ts − s
−K

)
Φ(d1)− σφ(d1)

]

where P (rt, t, Tr) is given by Proposition 2, φ(·) and Φ(·) denote the standard normal density

and distribution functions, respectively, and d1 = µB(s,Ts)−A(s,Ts)−(Ts−s)K
B(s,Ts)σ

, and µ = Ẽ[ws | rt]
and σ2 = Ṽ [ws | rt] are given by equations (1.14)-(1.15), respectively.

Floorlet pricing arises from similar calculations as those in the above Proposition. Alterna-

tively, we can use the caplet-floorlet parity.

Cap, floor, and collar prices are an immediate application of these results.

1.4 Risk Management

We now use the closed-form expressions we have obtained for the derivatives’ prices to compute

several risk measures for zero-coupon bonds, as well as Greeks and specific sensitivity measures for

a European call option on a zero-coupon bond.

Firstly, consider a zero-coupon bond whose price is given by Proposition 3. As it is well known,

the two major bond risk measures are duration and convexity. The duration measures the percentage

change in the bond price with respect to changes in interest rates while the convexity measures the

sensitivity of duration to changes in interest rates. The next Proposition provides mathematical

expressions for both of them.

Proposition 11 The duration and convexity for a zero-coupon bond are given as

Duration = − 1

P (rt, t, T )

∂P (rt, t, T )

∂rt
= B(t, T )

Convexity =
1

P (rt, t, T )

∂2P (tt, t, T )

∂r2t
= B2(t, T )

where B(t, T ) is given by equation (1.13).

We now consider a European call option with strike K that matures at time Tc on a zero-coupon

bond that matures at time Tb > Tc. The price of this option at time t is given by Proposition 6.
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The Greeks of the option indicate price sensitivities with respect to some variables. We focus on

delta, gamma, and vega. The first two measures indicate sensitivity of the option price with respect

to the underlying asset price while vega reflects the effect of changes in the underlying return volatility

on the derivative price. The expressions for these Greeks are provided by the following Proposition.

Proposition 12 The mathematical expressions for the delta, gamma, and vega at time t for a

European call option with strike K that matures at time Tc on a zero-coupon bond that matures at

time Tb > Tc are given as

∆ = Φ(d1)

Γ =
φ(d1)

P (rt, t, Tc)F (rt, t, Tc, Tb)B(Tc, Tb)

√
Ṽ [wTc | rt]

ν = P (rt, t, Tc)F (rt, t, Tc, Tb)
φ(d1)

σ

√
Ṽ [wTc | rt]

where Φ(·) and φ(·) denote the standard normal distribution and density functions, respectively, d1 is

given by Proposition 6, P (rt, t, Tc) and B(Tc, Tb) are given by Proposition 3, F (rt, t, Tc, Tb) as given

by Proposition 5, and Ṽ [wTc | rt] is given by equation (1.15).

Finally, from a risk management perspective, it is important to analyze the sensitivity of the

option price to each of the parameters incorporated into the Fourier component of the long-term

level of interest rates. The following proposition describes how a European call option on a zero-

coupon bond reacts to changes in the Fourier parameters: the amplitude An,x, the phase An,y, and

the temporal frequency ω. These sensitivities are directly obtained using Proposition 6.

Proposition 13 The sensitivities of the price of a European call option on a zero-coupon bond with

respect to the mean reversion parameters are given by:

∂ct(rt, Tc, Tb,K)

∂x
= P (rt, t, Tc)F (rt, t, Tc, Tb)

(
∂A(t, Tc)

∂x
+

∂A(Tc, Tb)

∂x
−B(Tc, Tb)

∂Ẽ [wTc | rt]
∂x

)
Φ(d1)

−KP (rt, t, Tc)
∂A(t, Tc)

∂x
Φ(d2), x = An,x, An,y, w

with P (rt, t, Tc) and F (rt, t, Tc, Tb) as given by Propositions 2 and 5, respectively, B(Tc, Tb) as given

by (1.13), Φ(·) denotes the standard normal distribution function, and ∂A(·, ·)/∂x and ∂Ẽ [wTc | rt] /∂x
are obtained differentiating (1.12) and (1.14) with respect to the appropriate argument, respectively.
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1.5 Empirical Analysis

In this section we analyze the empirical performance of our proposed Fourier model of the term

structure, versus two benchmarks, Vasicek (1977) and Nelson and Siegel (1987). Since we have

analytical expressions for interest rates, bond prices and derivative prices, we could use realized data

on either of these variables to evaluate the model. The reason why we opt for using interest rate

data is that a good fit of the term structure and hence, of the discount function for future cash

flows, should suggest a potentially good fit of bond and derivative prices. Alternatively, it is unclear

that a relatively good fit of bond or derivative prices might necessarily imply a good fit of the term

structure. However, we consider analyzing the performance of our model for bond and derivative

prices as an interesting issue for further research.

To keep simple the specification of our model, we will just consider the first term in the Fourier

series in (3.7), n = 1. As mentioned before, the Vasicek specification is a special case of our model,

while Nelson and Siegel (1987) suggested to model the yield curve at a point in time by,

R(τ) = β1 + β2

(
1− exp (−λτ)

λτ

)
+ β3

(
1− exp (−λτ)

λτ
− exp (−λτ)

)
(1.19)

where τ is time to maturity, and β1, β2, β3, λ are constant parameters. The parameters β1, β2, β3

are closely related to the level, slope and curvature of the yield curve, respectively, while λ governs

the exponentially decay rate. This is an interesting benchmark since it is one of the most popular

models of the yield curve, being used in many central banks in the implementation and evaluation

of monetary policy. Besides, Diebold and Li (2006) showed the good forecasting performance of

the Nelson-Siegel model in comparison with ten alternative competitors, including Fama and Bliss

(1987) and Cochrane and Piazzesi (2005), among others.

1.5.1 Data

The data set used for the empirical study consists of daily US Treasury yield curve rates. In more

detail, we take daily observations of the Treasury constant maturity interest rates for 1, 3, and 6

months and for 1, 2, 3, 5, 7, 10, 20, and 30 years, from July 31, 2001 up to September 21, 2012. The

30-year Treasury constant maturity series was discontinued on February 18, 2002, and reintroduced

on February 9, 2006. During this period, the US Treasury published an adjustment factor that

allowed for estimation of the 30-year nominal rate from the observed daily nominal 20-year interest

rate. Figure 1.7 presents a 3-D plot of the yield curve for the whole period and the maturities

mentioned.

In the last part of the sample, short rates took very low values, being equal to zero at some

point. We will therefore use absolute measures when evaluating forecasts since at those interest rate

levels, relative measures of forecast errors might be huge even for small absolute errors.
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1.5.2 In-sample model fitting

We start by assessing the in-sample fitting of the three models. For this purpose, we employ the

whole sample period, with 2790 daily observations for interest rates at each maturity.

Corollary 6 allows us to formulate the problem of minimizing the sum of squared pricing errors in

the form of a regression model. Indeed, the structural parameters of the yield curve for the Fourier

model, taking just the first term in (3.7) can be estimated, for each maturity j, from:

Yj,t = δ1z1j,t + δ2z2j,t + δ3z3j,t + δ4z4j,t + uj,t (1.20)

where:

Yj,t = R(rt, t, T )−
B(t, T )

T − t
rt

z1j,t =
B(t, T )

T − t
− 1

z2j,t =
1

2κ2
− B(t, T )

(T − t)κ2
+

1− e−2κ(T−t)

4(T − t)κ3

with B(t, T ) =
1− e−κ(T−t)

κ
, and

δ1 = α, δ2 = σ2, δ3 = Ax, δ4 = Ay.

while the term Re

[
(Ax + iAy)

(
eiωt

(
ωe−κ(T−t) + iκ− ω

)
− iκeiωT

ω(κ+ iω)

)]
that appears in the expres-

sion for P (rt, t, T ) in Proposition (3) subject to Corollary 6 derives in δ3z3t + δ4z4t.
4

The error term ut in model (1.20) can be interpreted as the approximation error in the practical

implementation of the pricing formula because of taking just one term of the infinite Fourier expan-

sion. The difficulty with this model is that the explanatory variables are functions of the structural

parameters κ and ω, so we cannot proceed to estimate as in a simple regression involving observable

variables. We estimate the model each day using the cross section of observed interest rates solving a

nonlinear optimization problem that searches for the values of κ, ω, δ1, δ2, δ3,and δ4 that minimize the

sum of squared residuals in (1.20), SR(θ̂t) =
∑

j,t [Yj,t − (δ1z1j,t + δ2z2j,t + δ3z3j,t + δ4z4j,t + uj,t)]
2.

4

Re





− (Ax + iAy)





eiωt
(

ωe−κ(T−t) + iκ− ω
)

− iκeiωT

ω(κ+ iω)(T − t)







 =

Ax

ω(κ2 + ω2)(T − t)

{

−κω cos(ωt)e−κ(T−t)
− κ2 (sin(ωT )− sin(ωt))− ω2 sin(ωt)

(

e−κ(T−t)
− 1

)

+ κω cos(ωT )
}

+

Ay

ω(κ2 + ω2)(T − t)

{

κω sin(ωt)e−κ(T−t)
− κ2 (cos(ωT )− cos(ωt))− ω2 cos(ωt)

(

e−κ(T−t)
− 1

)

− κω sin(ωT )
}

=

= Axz3t + Ayz4t.
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After estimation, we recover the values of the structural parameters θ =
(
α, σ2, Ax, Ay, κ, ω

)
. As

a result, we obtain time series for each parameter in θ over the sample period, July 31, 2001 to

September 21, 2012.

The Vasicek model obtains when setting z3t = z4t = 0 in (1.20). We then estimate the structural

parameters θ =
(
α, σ2, κ

)
. From the Nelson-Siegel model (1.19), we directly obtain daily estimates

for the structural parameters θ = (β1, β2, β3, λ).

Each day we take as initial conditions in estimation the estimates obtained for the previous day.

We used the level of the long-term 30-year rate each day as initial condition to estimate δ1 and β1.

To avoid potential instability in parameter estimates, we imposed an upper bound on daily changes.

Table 1.2 presents the mean and standard deviation of daily estimated parameters over the whole

sample. We also show for each model some indication of its ability to fit the observed daily yield

curves, through the minimized numerical value of the objective function
∑

i,tmin SR(θ̂t), as well

as
∑

i,t |ûi,t|, the sum of the absolute value of pricing errors, over the whole sample and across all

maturities. We can see how the Fourier model provides a significantly better in-sample fitting of

the observed yield curve, outperforming both alternative benchmarks. The Fourier model reduces

the aggregate sum of squares by 24% relative to the Nelson Siegel model, both of them reducing by

76% and 82% the sum of squares of the Vasicek benchmark.5 This is an interesting result since we

are estimating the Fourier model with n = 1. It is encouraging to know that we do not need to go

farther away in the Fourier series to achieve a good representation of the term structure.6 Increasing

the number of terms in the Fourier expansion would eventually allow for fitting arbitrarily well the

observed yield curve, eventually leading to a no-arbitrage model of the term structure.

Figures 1.8 to 1.10 show the time evolution of estimated parameters for the three models. Pa-

rameters for the Fourier model are relatively stable, except for σ2. However, a cross-section of data

is not too adequate to properly identify the value of σ, the size of fluctuations in the spot rate over

time. In fact daily estimates of σ turn out to be negligible except for clusters of days distributed

over the sample. It is better to examine the ratio σ/κ, since σ enters into the bond valuation formula

only through that ratio, as part of the A(t, T ) term. in Figure 1.11 we can see how the σ/κ-ratio7

tends to take higher values during the period when the spot rate, represented by the one-month

rate, raises from 1% to 5% to then decrease to the neighborhood of 0%. Over that period, the

contribution of the σ/κ-ratio to the first term in A(t, T ) is numerically significant. The contribution

5The Fourier model reduces the sum of absolute values of fitting errors over the whole sample by 11% relative to

the Nelson Siegel model, both of them reducing this statistic by 55% and 60% realtive to the Vasicek benchmark.
6Imposing upper bounds on daily parameter changes constitutes a serious disadvantage for Fourier model, which it

would deliver an aggregate sum of squares errors of 0.0055 by imposing no restrictions, with an improvement of 74%

relative to Nelson-Siegel model.
7Figure 1.11 displays the value of

√

σ2/κ2 throughout the sample period. Notice that the square of this ratio enters

in the A(t, T ) term in the expresion for the price of a bond.

17



of the σ/κ-ratio is essentially zero anywhere else, except towards the end of the sample, in this case

without any correlation with movements in the spot rate.

The speed of reversion of the spot rate to its long-term level oscillates between 0.03 and 0.67,

with a mean value κ̄ = 0.27. Estimating a representative value for the σ parameter through the

product of the sample average of |σ/κ| times the sample average of κ leads to σ̂ = 0.0080.

Parameters for Vasicek model display a behaviour similar to the analogous parameters in the

Fourier model, although we had to impose an upper bond in the value of κ, the speed of mean

reversion, which was reached over the central part of the sample. Estimated parameters for Nelson

Siegel behave over time as expected, given the observed time evolution of interest rates. The β1

parameter follows the fluctuations in interest rates at the longest maturity. The correlation between

daily estimates of β1 and the 30-year interest rate is 0.9390. The sum of β1 and β2 closely follows the

shortest interest rate. The correlation between the sum of these two parameters and the 1-month

interest rate is 0.9986.

1.6 Out-of-sample forecasting

Having compared the in-sample fit of the three models of the yield curve, we now analyze their

forecasting performance. Given the good in-sample fit of the Fourier model, we maintain the simplest

choice of n = 1 when computing out-of-sample forecasts. During the last ten years in the sample

the yield curve adopted very different shapes. Hence, we consider three different moments in time to

asses the forecasting power of each model. Figure 1.12 shows the observed term structure surface for

the three forecast periods chosen, each of them providing a different scenario to stress the strengths

and weaknesses of each model. The first forecasting period covers from August 3, 2004 to August 2,

2005, that is 251 daily points. The second forecasting period ranges from August 2, 2006 to July 31,

2007, with 251 daily points. Finally, the third period covers the most recent period, from September

20, 2011 up to September 21, 2012, with 254 daily points. Each period approximately covers one

year.

The forecast exercise consists in finding predicted parameters, θ̂, over the forecasting horizon for

each model, assuming the parameter vector follows in each case a first-order autoregressive process,

θ̂t = ĉ+ γ · θ̂t−1 + εt

where εt represents a vector white noise process. Over a given forecasting period, we take each day the

time series for estimated parameter values up to that day, estimate a vector autoregression of order

one, and forecast parameter values for the required forecast horizon, h = 1, 5, 21 days ahead. Since

the Fourier and Vasicek models are both short rate models, we first obtain the forecast E [rt+∆t|rt]
where ∆t = 1, 5, 21, for the instantaneous rate, from the Euler discretization: E [rt+∆t|rt] = rt +
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κ(µ−rt)∆t , where µ is a single parameter in the Vasicek model, and it is a nonlinear function of the

structural parameters in our proposed Fourier model. From this forecast, we can readily obtained

forecasts for interest rates at other maturities. This computation can be seen in (1.20), where we

need to solve for R(rj,t, t, T ) given parameter estimates and the forecast E [rt+∆t|rt] for the spot

rate.

1.6.1 From an upward-sloping to a flat yield curve: August 3, 2004 to August

2, 2005

The first forecasting period, from August 3, 2004 to August 2, 2005, is highly interesting because

of the significant changes in the term structure over time. At the beginning of the sample the term

structure is upward sloping, with yield levels increasing with maturity to a spread between short and

long rates of around 3%. However, at the end of the sample the gap among maturities drops to less

than 1%. Figure 1.13 presents the observed time-series yield for maturities from 1 month up to 30

years. We see a significant change over time, with short rates displaying a noticeable increment of

more than 2 percentage points between 08/03/2004 and 08/02/2005. Medium term yields display a

convergence to a common level of around 4% at the end of the period. On the other hand, long rates

maintain a roughly constant level over the whole period, except for the 20 and 30-year rates, which

decrease somewhat. From 01/12/2005 on, the 20-year rate exceeds the 30-year rate, an interesting

particularity corresponding to humped yield curves. This first forecasting period can give us some

insights on how each model responds to changes in the shape of the term structure as well as to

changes in the levels of interest rates.

Figure 1.14 presents the mean forecast error in basis points for the three models for forecasting

horizons of h = 1, 5, 21 days. Tables 1.3 to 1.5 summarize the size of forecast errors for each model

and maturity. The Fourier model consistently beats its competitors in one-day ahead forecasting. For

larger forecasting horizons of 5 or 21-days ahead, the Fourier model still provides better predictions

than its competitors although the gap narrows at some maturities.

Figure 1.15 shows 1-day ahead predictions from each model for 1 to 5-year maturities, as well

as the corresponding forecasting error, in absolute value. We can see that the three models have a

good forecasting performance at the beginning of the sample, when the term structure has a clear

upward increasing shape. At the beginning of 2005, as well as in the last part of the sample, the

Fourier model predicts clearly better than Vasicek and Nelson-Siegel models, specially at 2- and

5-year maturities.

Over this period, the Fourier model has the lowest sum of squared forecast errors in 23 of the 33

comparisons over maturity and forecasting horizon. The Nelson-Siegel model has the lowest sum of

squared errors in 8 comparisons, and the Vasicek model is best in 2 of the comparisons. Using the
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sum of absolute square errors turns out very similar results in the three forecasting periods.

1.6.2 Erratic short-tem rates: August 2, 2006 to July 31, 2007

Figure 1.16 presents the observed time-series yield for each maturity ranging from 1 month up to

30 years for the second forecasting period, from August 2, 2006 to July 31, 2007. This period is

more erratic with several ups and downs in yield levels, specially at the shorter maturities. Over

such changes in levels, the term structure remains relatively flat, with short, medium and long rate

maturities remaining close to each other over the whole period.

Figure 1.17 presents the mean forecast error in basis points for the three models, while Tables

1.6 to 1.8 summarize forecasting errors for each model and maturity. Figure 1.17 confirms what

intuition has led us to expect, that under such chaotic scenario no model has a nice forecasting

performance at all. In particular, the performance of the Vasicek model seriously deteriorates for

long rates at each forecasting horizon.

Figure 1.16 shows the 1 month rate presenting several fluctuations in level over the forecasting

period. None of the three models seems to anticipate this behaviour when the forecast horizon is

21 days. For the shorter 1 and 5-day forecasting horizons, the Fourier and Vasicek models deliver

significant better predictions than the Nelson-Siegel model.

In this forecasting period, the Vasicek model is more competitive, achieving the lowest sum of

squared errors in 8 of the 33 comparisons over maturity and forecasting horizon. The Fourier model

has the lowest sum of squared errors in 13 of the 33 cases, versus 12 comparisons in which the

Nelson-Siegel model has the lowest sum of squared errors.

1.6.3 Stable, low interest rates: September 20, 2011 to September 21, 2012

A glance to realized yields from September 20, 2011 to September 21, 2012, in Figure 1.12, shows

that yield levels drastically differ with maturity. In addition, since yield levels at the shortest

maturities are extremely low during the whole period, then even a slight deviation from the realized

yield produces a huge relative error. Considering the limitations and particularities stated above it

is interesting to analyze the forecasting results by maturity.

Figure 1.19 presents the mean forecast error in basis points for the three models. We have

intentionally truncated these graphs, because the magnitude of forecasting errors for the Vasicek

model at some maturities largely exceeds its model competitors. Tables 1.9 to 1.11 summarize

forecast errors for each model and maturity. An interesting fact is that, over this period, the Nelson-

Siegel model forecasts for short rates up to 1 year are very poor for every forecasting horizon. On

average, the Fourier model again outperforms both competitors, although its forecasting efficiency

tends to deteriorate for longer maturities and forecasting horizons.
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Figure 1.18 shows the observed time-series yield for each maturity, ranging from 1 month up to

30 years. Roughly speaking, maturities larger than 1 year fluctuate around a mean value during the

whole period. Nevertheless, for maturities between 1 and 12 months we can appreciate two different

subsamples: a first one, from 09/20/2011 up to 02/14/2012, and a second one, from 02/15/2012 up

to 09/21/2012, when there seems to be a change in the mean. We expect that the errors for these

yields around 02/15/2012 will tell us something about the performance of each model in the presence

of a change in the data structure. In this analysis we have excluded the Vasicek model, focusing

our comparison on the Fourier and the Nelson-Siegel models. Figures 1.20 to 1.22 present the time-

series of errors in absolute value around the critical date. We can see that for every maturity and

forecasting horizon, the Fourier model outperforms the Nelson-Siegel model, producing sharper yield

rate predictions in those dates where the data structure changes and suggesting that the Fourier

model is more flexible and incorporates this type of anomalies faster that its model competitor.

In this later forecasting period, the Fourier model again has the best forecasting performance,

achieving the lowest sum of squared forecast errors in 25 of the 33 comparisons. The Nelson-Siegel

model has the lowest sum of squared errors in 7 comparisons, and the Vasicek model in just one of

them.

Considering the three forecasting periods together, we can conclude that, on average, the Fourier

model outperforms the Vasicek and the Nelson-Siegel models. We have found instances in which the

Vasicek and the Nelson-Siegel models produce forecast errors much higher in absolute size than their

competitors. That has not been the case for the Fourier model. When the Fourier model is beaten

by the Vasicek and Nelson-Siegel models, the difference in forecasting performance is usually quite

narrow. This should be an additional important consideration in favor of preferring our proposed

Fourier model relative to the Vasicek and Nelson-Siegel alternatives to forecast the term structure.

1.7 Conclusions

We have introduced a new continuous-time model for the term structure of interest rates by assum-

ing that the instantaneous spot rate reverts to a mean level described by a Fourier series. Such

specification incorporates a good deal of flexibility, allowing the model to capture a variety of dif-

ferent shapes of the term structure. Our model nests the original one presented in Vasicek (1977),

while preserving the analytical tractability of the Vasicek model. Even in its simplest representa-

tion, based on a single term of the Fourier expansion, our model is capable of replicating different

yield curve shapes: upward sloping, downward sloping, humped, and inverted humped. Moreover,

since the yield curve function belongs to a Hilbert space L2([t, T ]), any observed yield curve can be

perfectly fitted in the mean-quadratic sense by our model by letting an arbitrarily large number of
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terms in the Fourier expansion.

Under this framework, we have obtained analytical expressions for the prices of bonds and several

fixed income derivatives. Additionally, we have computed risk management measures for bonds,

Greeks for European bond options, and performed a sensitivity analysis on the model’s parameters.

We have also analysed the empirical performance, both in- and out-of-sample, of the simplest

version of the model against two different benchmarks, those proposed in Vasicek (1977) and Nelson

and Siegel (1987). Our empirical findings show that the Fourier model provides a better and more

reliable in- and out-of-sample estimation of the yield curve, outperforming both benchmark models

and providing more accurate forecasts. Furthermore, when it is dominated by its alternatives,

the difference in performance is relatively small. These results are very relevant, suggesting that

our proposed Fourier model provides a simple and powerful tool for portfolio management, risk

management and derivative pricing.
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1.8 Appendix of Proofs

Proof of Proposition 4

Define YT =
∫ T
t rsds. Since both YT and rT are random normal variables, their joint density function

is given by

ϕ(rT ;YT ) =
1

2πσ1σ2
e
− 1

2
ξ

1−ρ2

where

σ1 =

√
Ṽ (rT |rt)

σ2 =

√
Ṽ (YT |rt)(1 − ρ2)

ρ =
C̃ov(rT ;YT |rt)√
Ṽ (rT |rt)Ṽ (YT |rt)

ξ =
[rT − Ẽ(rT |rt)]2

Ṽ (rT |rt)
+

[YT − Ẽ(YT |rt)]2

Ṽ (YT |rt)
− 2ρ[rT − Ẽ(rT |rt)][YT − Ẽ(YT |rt)]√

Ṽ (rT |rt)Ṽ (YT |rt)

We have previously computed the conditional expectation and variance for both rT and YT (see

equations (1.6)-(1.7) and (1.10)-(1.11)). We now compute the covariance between both variables:

C̃ov[rT ;YT | rt] = Ẽ

[(
σ

∫ T

t
e−κ(T−u)dW̃u

)(
σ

∫ T

t

∫ s

t
e−κ(s−u)dW̃uds

)
| rt
]

= σ2

∫ T

t
ds

∫ s

t
e−κ(T+s−2u)du =

σ2

2κ2

(
1− e−κ(T−t)

)2

The price at time t of the derivative, Ut(rt, t, T ), is equal to the discounted expected pay-off under

the risk-neutral measure, that is,

Ut(rt, t, T ) = Ẽ
[
e−YTUT (rT ) | rt

]
=

∫ ∞

−∞

∫ ∞

−∞
e−YTUT (rT )ϕ(rT ;YT )dYTdrT

Completing the square for YT and rT in ϕ(rT ;YT )e
−YT and setting

µ1 = Ẽ(rT |rt)− C̃ov(rT ;YT |rt)

µ2 = Ẽ(YT |rt)− Ṽ (YT |rt)(1− ρ2) +

√
Ṽ (YT |rt)ρ[rT − Ẽ(rT |rt)]√

Ṽ (rT |rt)

we get

ϕ(rT ;YT )e
−YT =

1

2πσ1σ2
exp

{
−1

2

(
YT − µ2

σ2

)2

− 1

2

(
rT − µ1

σ1

)2

− Ẽ(YT |rt) +
1

2
Ṽ (YT |rt)

}

= P (rt, t, T )ϕ(µ1;σ1)ϕ(µ2;σ2)
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Therefore

Ut(rt, t, T ) = P (rt, t, T )

∫ ∞

−∞
UT (rT )ϕ(µ1;σ1)drT

∫ ∞

−∞
ϕ(µ2;σ2)dYT

= P (rt, t, T )

∫ ∞

−∞
UT (rT )ϕ(µ1;σ1)drT

or, equivalently,

Ut(rt, t, T ) = P (rt, t, T )Ẽ [UT (wT ) | rt] , wT ∼ N(µ1, σ
2
1)
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1.9 Appendix of Tables

Table 1.1: Term Structure Models.

Author(s) Model Specification

Merton (1973) dr = θdt+ σdw θ, σ are constant

Vasicek (1977) dr = κ(θ − r)dt + σdw κ, θ, σ are constant

Cox et al. (1985) dr = κ(θ − r)dt + σ
√
rdw κ, θ, σ are constant

Chan et al. (1992) dr = κ(θ − r)dt + σrγdw κ, θ, σ, γ are constant

Ho and Lee (1986) dr = θtdt + σdw θt is time-varying and σ is constant

Black et al. (1990) d ln(r) =
[

θt −
σ′

t

σt

ln(r)
]

dt+ σtdw θt, σt are time-varying

Hull and White (1990, 1993) dr = κ(θt − r)dt+ σtrγdw θt, σt are time-varying, γ = 0, 1/2

Black and Karasinski (1991) d ln(r) = φt [ln(µt)− ln(r)] dt + σtdw φt, µt are time-varying

Heath et al. (1992) df = αtdt + σtdw f is the forward rate

Mercurio and Moraleda (2000) dr = r
[

ηt −
(

λ− γ
1+γt

)

ln(r)
]

dt + σrdw ηt is time-varying and λ, γ, σ are constant

Brennan and Schwartz (1979) dr = θrdt + σr1dw1 + σr2dw2 θi, σij , i = r, l, j = 1, 2

dl = θldt+ σl1dw1 + σl2dw2 are constant

Schaefer and Schwartz (1984) ds = m(µ − s)dt+ ηdw1 m, µ, η, σ

dl = (σ2 − ls)dt+ σ
√
ldw2 are constant

Longstaff and Schwartz (1992) dx = (γ − δx)dt +
√
xdw1 γ, δ, η, ν are constant

dy = (η − νy)dt +
√
ydw2

Duffie and Kan (1996) dX1 = (b1 +
∑2

i=1 a1iXi)dt + σ11

√

α1 +
∑2

i=1 β1iXidw1 Xi, i = 1, 2 are the yields

dX2 = (b2 +
∑2

i=1 a2iXi)dt + σ22

√

α2 +
∑2

i=1 β2iXidw2 of two zero-coupon bonds

Chen (1996) dr = κ(θ − r)dt +
√
σ
√
rdw1 κ, ν, θ̂, ζ, µ, σ̂, η

dθ = ν(θ̂ − θ)dt + ζ
√
θdw2 are constant

dσ = µ(σ̂ − σ)dt + η
√
σdw3

Fourier Model dr = κ(f(t) − r)dt+ σdw f(t) =
∑

∞

n=0 Re
[

Aneinωt
]
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Table 1.2: Parameters estimates. In-Sample Estimation

Parameter Fourier Vasicek Nelson-Siegel

δ̂1 ∗ 100 5.248(0.003) 5.338(0.035) -

β̂1 ∗ 100 - - 4.973(0.002)

δ̂2 ∗ 100 0.040(0.000) 0.210(0.020) -

β̂2 ∗ 100 - - -3.248(0.002)

δ̂3 ∗ 100 0.269(0.004) - -

β̂3 ∗ 100 - - -2.793(0.003)

δ̂4 ∗ 100 0.100(0.005) - -

κ̂ 0.2747(0.0002) 0.3998(0.0024) -

λ̂ - - 0.6091(0.0006)

ω̂ 1.2409(0.0001) - -
∑

i,tmin SR(θ̂i,t) 0.0160 0.0881 0.0210
∑

i,t |ûi,t| 16.2672 40.0327 18.2915

Note: This table presents the mean and standard deviation of the daily estimated parameters over the whole

sample.
∑

i,t min SR(θ̂i,t) represents the least squares pricing error,
∑

i,t |ûi,t| shows the pricing errors in

absolute value, both of them for the whole period and every maturity.
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Table 1.3: Out-of-Sample 1-day-Ahead Forecasting errors. Period 1

Fourier Vasicek Nelson-Siegel

Maturity
∑

t û
2
t

∑
t |ût|

∑
t û

2
t

∑
t |ût|

∑
t û

2
t

∑
t |ût|

1 month 0.0465 77 0.0469 77 0.6021 343

3 months 0.0723 106 0.1825 167 0.0407 82

6 months 0.2388 222 0.8116 402 0.4095 299

1 year 0.0566 97 0.3215 239 0.2326 217

2 years 0.0817 110 0.1953 189 0.2932 239

3 years 0.1288 145 0.0825 113 0.0615 94

5 years 0.0916 119 0.3410 251 0.2222 198

7 years 0.1631 164 0.3497 250 0.2890 221

10 years 0.1226 146 0.2061 196 0.1956 190

20 years 0.2777 238 0.5914 356 0.4668 317

30 years 0.1205 143 0.1290 148 0.0878 122
∑

i,t û
2
i,t 1.4002 3.2575 2.9007

∑
i,t |ûi,t| 1568 2389 2323

Note: This table presents the size of forecast errors for each model and maturity obtained for the period 1

and the forecast horizon h = 1. Every value must be multiplied by a factor 10−3
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Table 1.4: Out-of-Sample 5-day-Ahead Forecasting errors. Period 1

Fourier Vasicek Nelson-Siegel

Maturity
∑

t û
2
t

∑
t |ût|

∑
t û

2
t

∑
t |ût|

∑
t û

2
t

∑
t |ût|

1 month 0.1547 152 0.1608 155 0.4453 262

3 months 0.1210 138 0.2680 206 0.0763 112

6 months 0.2945 244 0.9370 431 0.6689 385

1 year 0.1111 131 0.4454 284 0.4489 301

2 years 0.2358 190 0.3733 264 0.5669 333

3 years 0.3835 264 0.2467 197 0.2607 211

5 years 0.3199 234 0.5285 295 0.4049 254

7 years 0.4056 258 0.5742 306 0.5050 285

10 years 0.3755 256 0.4490 276 0.4178 263

20 years 0.4394 265 0.7307 351 0.6173 322

30 years 0.3546 245 0.3347 241 0.2897 224
∑

i,t û
2
i,t 3.1956 5.0484 4.7019

∑
i,t |ûi,t| 2377 3006 2951

Note: This table presents the size of forecast errors for each model and maturity obtained for the period 1

and the forecast horizon h = 5. Every value must be multiplied by a factor 10−3
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Table 1.5: Out-of-Sample 21-day-Ahead Forecasting errors. Period 1

Fourier Vasicek Nelson-Siegel

Maturity
∑

t û
2
t

∑
t |ût|

∑
t û

2
t

∑
t |ût|

∑
t û

2
t

∑
t |ût|

1 month 0.5380 309 0.6287 334 0.5773 321

3 months 0.3794 254 0.7038 339 0.9795 426

6 months 0.6593 338 1.5803 534 2.5067 745

1 year 0.4945 286 1.0894 437 1.9873 625

2 years 0.9128 378 1.1499 439 2.0756 618

3 years 1.4250 486 0.9973 404 1.3280 466

5 years 1.2154 445 1.3308 480 1.1973 434

7 years 1.2893 468 1.4385 497 1.2859 458

10 years 1.2473 470 1.3112 483 1.1345 446

20 years 0.8849 368 1.0867 389 1.0305 386

30 years 1.0320 426 0.9009 396 0.8422 378
∑

i,t û
2
i,t 10.0778 12.2175 14.9450

∑
i,t |ûi,t| 4227 4732 5303

Note: This table presents the size of forecast errors for each model and maturity obtained for the period 1

and the forecast horizon h = 21. Every value must be multiplied by a factor 10−3
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Table 1.6: Out-of-Sample 1-day-Ahead Forecasting errors. Period 2

Fourier Vasicek Nelson-Siegel

Maturity
∑

t û
2
t

∑
t |ût|

∑
t û

2
t

∑
t |ût|

∑
t û

2
t

∑
t |ût|

1 month 0.0900 95 0.0899 95 0.5260 292

3 months 0.2625 209 0.3036 219 0.1073 133

6 months 0.2182 187 0.6223 334 0.4225 295

1 year 0.0567 97 0.1565 160 0.2820 248

2 years 0.1638 151 0.4237 276 0.0813 106

3 years 0.2924 236 0.5613 344 0.1250 141

5 years 0.1591 160 0.4174 300 0.1695 171

7 years 0.1628 169 0.2475 223 0.1663 170

10 years 0.1254 148 0.0814 113 0.1054 135

20 years 0.2497 226 1.0717 494 0.3772 285

30 years 0.0808 110 0.4528 299 0.0952 127
∑

i,t û
2
i,t 1.8613 4.4281 2.4579

∑
i,t |ûi,t| 1788 2856 2104

Note: This table presents the size of forecast errors for each model and maturity obtained for the period 2

and the forecast horizon h = 1. Every value must be multiplied by a factor 10−3
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Table 1.7: Out-of-Sample 5-day-Ahead Forecasting errors. Period 2

Fourier Vasicek Nelson-Siegel

Maturity
∑

t û
2
t

∑
t |ût|

∑
t û

2
t

∑
t |ût|

∑
t û

2
t

∑
t |ût|

1 month 0.4339 234 0.4276 233 0.7148 326

3 months 0.3900 251 0.4122 251 0.2316 196

6 months 0.2315 187 0.6228 331 0.4277 279

1 year 0.1245 139 0.1949 175 0.2975 235

2 years 0.3243 218 0.5669 305 0.2599 199

3 years 0.4925 297 0.7298 363 0.3440 231

5 years 0.3966 251 0.5892 325 0.3882 252

7 years 0.3707 242 0.4139 260 0.3647 244

10 years 0.3143 224 0.2365 197 0.2703 209

20 years 0.3978 263 1.2303 496 0.5243 309

30 years 0.2319 192 0.6232 328 0.2269 188
∑

i,t û
2
i,t 3.7082 6.0471 4.0497

∑
i,t |ûi,t| 2499 3264 2668

Note: This table presents the size of forecast errors for each model and maturity obtained for the period 2

and the forecast horizon h = 5. Every value must be multiplied by a factor 10−3
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Table 1.8: Out-of-Sample 21-day-Ahead Forecasting errors. Period 2

Fourier Vasicek Nelson-Siegel

Maturity
∑

t û
2
t

∑
t |ût|

∑
t û

2
t

∑
t |ût|

∑
t û

2
t

∑
t |ût|

1 month 2.0097 577 1.8642 559 2.0527 555

3 months 0.7033 372 0.6293 324 0.6968 369

6 months 0.2864 211 0.6328 304 0.4709 249

1 year 0.3490 229 0.3682 238 0.3788 245

2 years 1.0549 420 1.1371 444 0.8728 389

3 years 1.4563 487 1.4281 502 1.1828 459

5 years 1.2583 476 1.3734 492 1.3598 498

7 years 1.2391 478 1.2213 469 1.3082 489

10 years 1.1313 456 1.0437 439 1.0820 445

20 years 1.1132 418 2.0837 573 1.1412 419

30 years 0.8541 392 1.4589 485 0.6937 353
∑

i,t û
2
i,t 11.4556 13.2408 11.2398

∑
i,t |ûi,t| 4515 4828 4470

Note: This table presents the size of forecast errors for each model and maturity obtained for the period 2

and the forecast horizon h = 21. Every value must be multiplied by a factor 10−3
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Table 1.9: Out-of-Sample 1-day-Ahead Forecasting errors. Period 3

Fourier Vasicek Nelson-Siegel

Maturity
∑

t û
2
t

∑
t |ût|

∑
t û

2
t

∑
t |ût|

∑
t û

2
t

∑
t |ût|

1 month 0.0037 21 0.0038 22 0.0482 103

3 months 0.0082 39 0.0606 112 0.0087 41

6 months 0.0081 37 0.1176 153 0.0283 79

1 year 0.0038 25 0.4247 312 0.0807 139

2 years 0.0103 41 1.2825 558 0.0384 89

3 years 0.0212 59 2.2555 745 0.0691 115

5 years 0.0547 93 1.1933 528 0.1460 169

7 years 0.0823 116 0.1713 171 0.0762 107

10 years 0.0905 121 0.8881 447 0.2359 212

20 years 0.1137 135 0.3338 251 0.1273 147

30 years 0.1165 135 0.1504 153 0.1090 128
∑

i,t û
2
i,t 0.5131 6.8816 0.9677

∑
i,t |ûi,t| 820 3450 1329

Note: This table presents the size of forecast errors for each model and maturity obtained for the period 3

and the forecast horizon h = 1. Every value must be multiplied by a factor 10−3
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Table 1.10: Out-of-Sample 5-day-Ahead Forecasting errors. Period 3

Fourier Vasicek Nelson-Siegel

Maturity
∑

t û
2
t

∑
t |ût|

∑
t û

2
t

∑
t |ût|

∑
t û

2
t

∑
t |ût|

1 month 0.0090 36 0.0106 39 0.0400 88

3 months 0.0116 47 0.0786 128 0.0081 37

6 months 0.0090 38 0.1401 168 0.0427 96

1 year 0.0060 32 0.4669 327 0.1037 156

2 years 0.0291 71 1.3660 572 0.0685 111

3 years 0.0747 113 2.3855 758 0.1081 132

5 years 0.2283 185 1.3788 551 0.2866 218

7 years 0.3744 238 0.3977 250 0.3248 217

10 years 0.4289 256 1.1401 456 0.5557 294

20 years 0.5326 285 0.7249 332 0.5404 294

30 years 0.5533 288 0.5667 296 0.5365 286
∑

i,t û
2
i,t 2.2567 8.6558 2.6151

∑
i,t |ûi,t| 1590 3877 1930

Note: This table presents the size of forecast errors for each model and maturity obtained for the period 3

and the forecast horizon h = 5. Every value must be multiplied by a factor 10−3
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Table 1.11: Out-of-Sample 21-day-Ahead Forecasting errors. Period 3

Fourier Vasicek Nelson-Siegel

Maturity
∑

t û
2
t

∑
t |ût|

∑
t û

2
t

∑
t |ût|

∑
t û

2
t

∑
t |ût|

1 month 0.0177 54 0.0434 90 0.0182 55

3 months 0.0232 67 0.1645 188 0.0227 56

6 months 0.0134 46 0.2458 227 0.1198 165

1 year 0.0153 50 0.6508 387 0.2174 224

2 years 0.0733 108 1.6900 632 0.1855 185

3 years 0.1952 180 2.8375 818 0.1968 180

5 years 0.5150 288 1.8503 613 0.5543 310

7 years 0.8568 375 0.8079 375 0.7953 356

10 years 1.0476 420 1.4420 481 1.1051 423

20 years 1.3240 472 1.3640 484 1.3315 469

30 years 1.4326 483 1.3441 472 1.3651 472
∑

i,t û
2
i,t 5.5139 12.4404 5.9116

∑
i,t |ûi,t| 2544 4769 2896

Note: This table presents the size of forecast errors for each model and maturity obtained for the period 3

and the forecast horizon h = 21. Every value must be multiplied by a factor 10−3
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1.10 Appendix of Figures
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Figure 1.1: Simulation of the Zero-coupon bond price term structure for an arbitrary set of parameters.

Parameter Values Vasicek Model:

Blue line: r0 = 0.02, α = 0.05, σ = 0.002, κ = 0.2.

Parameter Values Fourier Model :

Red line: r0 = 0.02, α = 0.05, σ = 0.0011, κ = 0.3397, ω = 20, n = 5, A1,x = 0.1758, A1,y = 0.0402, A2,x =

−0.3011, A2,y = 0.0172, A3,x = 0.0498, A3,y = −0.1215, A4,x = 0.0798, A4,y = 0.1618, A5,x =

0.0894, A5,y = 0.0655.

Green line: r0 = 0.02, α = 0.07, σ = 0.0005, κ = 0.018, ω = 0.48, n = 2, A1,x = −1.8, A1,y = 1, A2,x =

1.5, A2,y = −1.5.

Violet line: r0 = 0.02, α = 0.08, σ = 0.0002, κ = 0.02, ω = 0.25, n = 1, A1,x = 0.3, A1,y = 0.03
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Figure 1.2: Term Structure of Interest Rates for an arbitrary set of parameters.

Parameter Values Vasicek Model:

Blue line: r0 = 0.02, α = 0.05, σ = 0.002, κ = 0.2.

Parameter Values Fourier Model:

Red line: r0 = 0.02, α = 0.05, σ = 0.0011, κ = 0.3397, ω = 20, n = 5, A1,x = 0.1758, A1,y = 0.0402, A2,x =

−0.3011, A2,y = 0.0172, A3,x = 0.0498, A3,y = −0.1215, A4,x = 0.0798, A4,y = 0.1618, A5,x =

0.0894, A5,y = 0.0655.

Green line: r0 = 0.02, α = 0.07, σ = 0.0005, κ = 0.018, ω = 0.48, n = 2, A1,x = −1.8, A1,y = 1, A2,x =

1.5, A2,y = −1.5.

Violet line: r0 = 0.02, α = 0.08, σ = 0.0002, κ = 0.02, ω = 0.25, n = 1, A1,x = 0.3, A1,y = 0.03
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Figure 1.3: Term structure of interest rates for different values of the speed of mean reversion κ. In

both models, the values of κ corresponding to the curves from the top down are 0.6, 0.2, 0.1, 0.05, and 0.01,

respectively.

Parameter Values Vasicek Model : r0 = 0.02, α = 0.05, σ = 0.0002.

Parameter Values Fourier Model : r0 = 0.02, α = 0.05, σ = 0.0002, ω = 0.20, n = 1, A1,x = 0.05, A1,y =

−0.03.
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Figure 1.4: Term structure of interest rates for different values of σ. In both models, the values of σ

corresponding to the curves from the top down are 0.0002, 0.002, 0.005, 0.007, and 0.009, respectively.

Parameter Values Vasicek Model : r0 = 0.02, α = 0.05, κ = 0.02.

Parameter Values Fourier Model : r0 = 0.02, α = 0.05, κ = 0.02, ω = 0.20, n = 1, A1,x = 0.05, A1,y = −0.03.
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Figure 1.5: Term structure of interest rates for different values of the mean reversion level α. In both models,

the values of α corresponding to the curves from the top down are 0.05, 0.04, 0.03, 0.02, and 0.01, respectively.

Parameter Values Vasicek Model : r0 = 0.02, σ = 0.0002, κ = 0.02.

Parameter Values Fourier Model : r0 = 0.02, σ = 0.0002, κ = 0.02, ω = 0.20, n = 1, A1,x = 0.05, A1,y =

−0.03.
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Figure 1.6: Term structure of interest rates for different values of the Fourier parameters.

First Graph: r0 = 0.02, α = 0.05, σ = 0.0002, κ = 0.2, ω = 0.20, n = 1, A1,y = −0.03. and A1,x =

−0.05;−0.005; 0; 0.005; 0.05.

Second Graph: r0 = 0.02, α = 0.05, σ = 0.0002, κ = 0.02, ω = 0.30, n = 1, A1,x = 0.05. and A1,y =

−0.2;−0.02; 0; 0.02; 0.2.

Third Graph: r0 = 0.02, α = 0.05, σ = 0.0002, κ = 0.1, n = 1, A1,x = 0.05, A1,y = −0.03 and ω =

0.2; 0.25; 0.4; 0.5; 1.
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Figure 1.7: Historical evolution of the Yield Curve from July 31, 2001 up to September 21, 2012.
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Figure 1.8: Estimated parameters from Fourier Model
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Figure 1.9: Estimated parameters from Vasicek Model
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Figure 1.10: Estimated parameters from Nelson-Siegel Model
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Figure 1.11: σ
κ
evolution. The red line corresponds to the sample mean of the ratio, while the dashed line

represents its standard deviation.
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Figure 1.12: Observed term structure of interest rates for the three forecasting periods

08/03/2004 02/01/2005 08/02/2005
1

1.5

2

2.5

3

3.5

4
Short Term Yields

 

 
1 Month
3 Months
6 Months
12 Months

08/03/2004 02/01/2005 08/02/2005
2

2.5

3

3.5

4

4.5
Medium Term Yields

 

 
2 Years
3 Years
5 Years

08/03/2004 02/01/2005 08/02/2005
3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6
Long Term Yields

 

 
7 Years
10 Years
20 Years
30 Years

08/03/2004 02/01/2005 08/02/2005
0.05

0.1

0.15

0.2

0.25

0.3
Yield Curve Slope

Figure 1.13: Time-series yields from 08/03/2004 to 08/02/2005 and the evolution of the term structure

slope.

45



1 Month 3 Months 6 Months 12 Months 2 Years 3 Years 5 Years 7 Years 10 Years 20 Years 30 Years
0

5

10

15

20

Maturity

B
as

is
 P

oi
nt

s

Forecast horizon 1 day

 

 

1 Months 3 Months 6 Months 12 Months 2 Years 3 Years 5 Years 7 Years 10 Years 20 Years 30 Years
0

5

10

15

20

Maturity

B
as

is
 P

oi
nt

s

Forecast horizon 5 days

1 Month 3 Months 6 Months 12 Months 2 Years 3 Years 5 Years 7 Years 10 Years 20 Years 30 Years
0

5

10

15

20

25

30

Maturity

B
as

is
 P

oi
nt

s

Forecast horizon 21 days

Fourier
Nelson−Siegel
Vasicek

Figure 1.14: Mean absolute forecast error across maturities, in basis points, for forecasting period 1.
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Figure 1.16: Time-series yields from 08/02/2006 to 07/31/2007 and the evolution of the term structure

slope.
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Figure 1.17: Mean absolute forecast error across maturities, in basis points, for forecasting period 2.
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Figure 1.18: Time-series yields from 09/20/2011 to 09/21/2012 and the evolution of the term structure

slope.
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Figure 1.19: Mean absolute forecast error across maturities, in basis points, for forecasting period 3.
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Figure 1.20: Time series of 1-day ahead forecasting errors, in absolute value, around 02/15/2012
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Figure 1.21: Time series of 5-days ahead forecasting errors, in absolute value, around 02/15/2012
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Figure 1.22: Time series of 21-days ahead forecasting errors, in absolute value, around 02/15/2012
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Chapter 2

Derivatives Pricing under a New Macro-financial Square-root

Process for the Term Structure of Interest Rates
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2.1 Introduction

Through the time, modelling the term structure of interest rates has been the object of many

studies and the aim of attention for economists and financial institutions. This chapter proposes

a new square-root model where the instantaneous interest rate is pulled back to a certain time-

dependent long term level characterized by an harmonic oscillator. Cox et al. (1985) has shown that

square-root processes of this type follow a rescaled non-central chi-square distribution. Therefore,

assuming a time-dependent mean reversion level will derive in a time-dependent spot rate volatility.

As the empirical evidence (see, for instance, Chan et al. (1992)) has illustrated that interest rate

volatility depends on the interest rates level, it seems natural to model the interest rate volatility

using a similar functional form as that in the mean reversion level.

Continuous-time models proposed in the academic literature for the analysis of the term structure

of interest rates can be classified in endogenous and exogenous. Endogenous models make certain

assumptions on the factors that drive the term structure and on the stochastic processes followed by

these factors. As a consequence, the term structure is fully characterized by the underlying factors

meaning that the current term structure of rates is an output (and not an input) of the model.

Examples of one-factor endogenous models are Vasicek (1977), Brennan and Schwartz (1980), or

Cox et al. (1985) (CIR from now on). The main drawback of these models is the lack of empirical

realism as they imply perfect correlation between returns of bonds that differ in their maturity, in

contrast to empirical evidence. Consequently, these models do not fit accurately the current term

structure and, then, they do not price correctly the associated interest rate derivatives. In order to

cope with this problem, several two-factor endogenous models have been proposed in, for instance,

Schaefer and Schwartz (1984), Longstaff and Schwartz (1992), or Duffie and Kan (1996). In addition,

Chen (1996) introduced a three-factor model.

On the other hand, exogenous models take the current term structure as given and derive future

changes in interest rates avoiding intertemporal arbitrage opportunities. One of the first contribu-

tions in this type of modelling was proposed in Ho and Lee (1986) who built a model consistent

with the initial term structure of interest rates. Because of the limitations of this model, some other

exogenous models have bee proposed by a number of authors such as Black et al. (1990), Hull and

White (1990, 1993), Black and Karasinski (1991), Heath et al. (1992), and Mercurio and Moraleda

(2000). We can mention the models introduced in Hull and White (1990, 1993) that extend those

presented in Vasicek (1977) and Cox et al. (1985) by introducing some time-dependent parame-

ters and adding more flexibility to fit the initial term structure of interest rates. For a thoroughly

literature review on term structure models see, for instance, Webber and James (2001), Brigo and

Mercurio (2006), or Filipović (2009).

Our model assumes that the mean reversion level at which interest rates are converging and the
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spot rate volatility follow a cyclic process characterized by an harmonic oscillator. Then, the whole

term structure of interest rates is fully determined by the instantaneous spot rate. Under these

assumptions, we obtain closed-form expressions for prices of bonds and different derivatives such as

bond forward agreements, European options on zero-coupon and coupon-bearing bonds, European

bond forward options, swaps, swaptions, caps, floors, collars, and provide some risk management

measures.

This chapter is organized as follows. Section 2.2 introduces the new square-root model and

its practical implications. Section 2.3 presents the general pricing partial differential equation and

derives closed-form expressions for different derivatives. Finally, Section 2.4 summarizes the main

findings and conclusions. Mathematical proofs are deferred to the Appendix.

2.2 A New Square-root Model for the Term Structure

In this section, we propose our model, the specific functional form for each time-dependent parameter,

and describe all the practical implications arising from this model.

Unlike many other one-factor models that allow the spot rate process for time-dependent pa-

rameters (see, for instance, Hull and White (1990, 1993)), we now assume that the mean reversion

level depends on the business cycle. We also consider that the interest rate volatility depends on

the interest rate level. In order to model the behaviour of both variables, we assume a harmonic

oscillator given as

f(t) = A sin(ϕ− ωt)

where A denotes the amplitude of the wave, ϕ the offset phase, and w the temporal frequency.

We now define the mean reversion level, θt, and the volatility, σ2
t , as

θt = Aθ sin
2(ϕ− ωt) (2.1)

σ2
t = Aσ sin

2(ϕ− ωt) (2.2)

Hence, the positiveness of the mean reversion level and the interest rate volatility is guaranteed.

Let rt denote the instantaneous interest rate available at time t whose dynamic is

drt = µrdt+ σrdWt (2.3)

where Wt is a standard Wiener process and

µr = κ(θt − rt) (2.4)

σr = σt
√
rt (2.5)
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where κ ∈ R
+. Looking at these expressions, it is clear that our model nests that presented in Cox

et al. (1985) taking ω = 0 in equations (2.1)-(2.2).

For square-root processes of this type, Cox et al. (1985) shows that the distribution function of

interest rates is a rescaled non-central chi-square with δ degrees of freedom. Note that, whenever δ

is not a positive integer, the distribution of rt is unknown.

Besides, the dimension of the process rt is given by δ = 4θtκ
σ2
t
. As both waves are in phase, the

model’s dimension can be represented as δ = 4Aθκ
Aσ

> 0. 1

Our model guarantees the positiveness of interest rates. On this respect, Feller (1951) studied

the Fokker-Plank-Kolmogorov equation for the transition density and showed that rt > 0 if δ ≥ 2,

however it can become null if δ < 2 but will never become negative.

2.3 Pricing

This section presents closed-form expressions for the price of zero-coupon bonds and, later, we

analytically compute closed-form formulas for the prices of different securities.

Let P (rt, t, T ) denote the price at time t of a zero-coupon bond that pays $1 at maturity T .

Then, the bond price dynamics is given by the process

dP = µP (rt, t, T )P (rt, t, T )dt+ σP (rt, t, T )P (rt, t, T )dWt (2.6)

Applying Itô’s Lemma and using (2.3), it can be shown that

µP =
1

P

(
Pt + µrPr +

1

2
σ2
rPrr

)
(2.7)

σP = σr
Pr

P
(2.8)

where arguments have been omitted and subscripts in P indicate the corresponding partial derivative.

Applying standard no-arbitrage arguments, there exists a factor Λ(rt, t), called market price of risk,

such that

µP (rt, t, T )− rt = Λ(rt, t)σP (rt, t, T ) (2.9)

Finally, some trivial algebra leads to the following partial differential equation (PDE)

Pt(rt, t, T ) + (µr − Λ(rt, t)σr)Pr(rt, t, T ) +
1

2
σ2
rPrr(rt, t, T )− rtP (rt, t, T ) = 0 (2.10)

that must be verified by the price of any derivative.

1Note that, if sin(ϕ − ωt) is equal to zero, then δ becomes indeterminate. As this case would only occur for a

infinitesimal period of time, we do not consider this possibility.
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2.3.1 Bond Pricing

We consider a market price of risk such as

Λ(rt, t) =
λt
√
rt

σt
(2.11)

Using expressions (2.5)-(2.11), the PDE (2.10) becomes

Pt(rt, t, T ) + (κ(θt − rt)− λtrt)Pr(rt, t, T ) +
1

2
σ2
t rtPrr(rt, t, T )− rtP (rt, t, T ) = 0 (2.12)

The solution of this PDE, subject to the boundary condition P (rT , T, T ) = 1, ∀rT , is given by

the following Proposition.

Proposition 14 The price at time t of a zero-coupon bond with maturity T and $1 face value is

given by

P (rt, τ) = A(τ)e−B(τ)rt

where

A(τ) = exp

{
−
∫ T

t
κθtB(τ)dt

}

B(τ) =
c1MC(a, q, x) +MS(a, q, x)

1
2(λ+ κ) (c1MC(a, q, x) +MS(a, q, x)) + ω (c1MCP (a, q, x) +MSP (a, q, x))

a = −Aσ + (λ+ κ)2

4ω2

q = − Aσ

8ω2

x = ϕ− ωt

c1 = −MS(a, q, ϕ − ωT )

MC(a, q, ϕ− ωT )

τ = T − t

where θt is given by (2.1), MC and MS represent the Mathieu cosine and sine function, respectively,

and MCP and MSP represent the derivative with respect to x of the Mathieu cosine and sine function,

respectively.

Proof. See the Appendix

Remark 2 An interesting approximation arises for q ≈ 0, that is, periods of low volatility where

the underlying frequency in the Mathieu function is relatively high. Satisfying this requirement will

derive in

MC(a, q, x) ≈ cos(
√
a · x), MS(a, q, x) ≈ sin(

√
a · x)√
a
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Figure 2.1 compares the bond price in the CIR model against three alternatives in our model.

We check that, in our model, the bond price does not decrease monotonically with time to matu-

rity. Additionally, we provide much more flexibility than the CIR model with the same analytical

tractability. We can also visualize the presence of humps, which is a very desirable effect not only

here but also in any interest rate derivative.

The following Corollary immediately arises.

Corollary 4 As a coupon bond can be interpreted as a portfolio of zero-coupon bonds, pricing of

coupon bonds is straightforward applying Proposition 14.

Replacing the bond price expression obtained in Proposition 14 into (2.7)-(2.8) and using (2.5)-

(2.11), we get the next Corollary.

Corollary 5 The bond price dynamics under the no-arbitrage condition is given as

dP (rt, t, T ) = µP (rt, t, T )P (rt, t, T )dt+ σP (rt, t, T )P (rt, t, T )dWt

where

µP (rt, t, T ) = rt(1− λtB), σP (rt, t, T ) = −Bσt
√
rt

Note that, in a risk-neutral world, where λt = 0, the bond price process is a martingale. Under

this framework, the term structure is fully characterized considering the zero-coupon bond price

P (rt, t, T ) given by Proposition 14, as stated in the following Corollary.

Corollary 6 The yield to maturity, R(rt, t, T ), is given by

R(rt, t, T ) = −1

τ
lnP (rt, t, T ), τ = T − t

The short-term interest rate is defined as the instantaneous interest rate at time t, that is,

rt = lim
τ→0

R(rt, t, T ) = R(rt, t, t)

The instantaneous forward rate is given as

f(rt, t, T ) = −∂ ln(P (rt, t, T ))

∂T
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Figure 2.2 shows the term structure of interest rates in the CIR model and three alternatives in

our model. We can see how our model adds flexibility as we can reflect different behaviours for the

term structure.

For illustrative purposes, Figures 2.3 and 2.4 show how the term structure of interest rates

responds to changes in the mean reversion speed and volatility in both models. In the CIR model,

the higher the speed of mean reversion, the higher the interest rate while, in our model, the lower

the mean reversion speed, the flatter the term structure. Besides, in our model, there is a twist in

the pattern due to the cyclic behaviour. In Figure 2.4, for both models, the higher the volatility,

the lower the term structure.

Figures 2.5 and 2.6 reflect the response of the term structure of interest rates to different values of

the mean reversion level in both models. In the CIR model, the higher the mean reversion level, the

higher the yield. In our model, it is harder to analyse this response as it depends on three parameters.

Anyway, we observe that the lower the amplitude, the flatter and the lower the term structure. When

changing the temporal frequency, it seems clear that the higher the temporal frequency, the more

humped the term structure. Finally, for different offset phases, the curves occasionally crossover

each other.

On the risk management side, we get the following corollary.

Corollary 7 The two major bond risk measures, duration and convexity, are given as

• Duration measures the bond price sensitivity for a change in interest rates:

Duration = − 1

P (t, T )

∂P (t, T )

∂rt
= B(t, T )

• Convexity measures how duration changes with interest rates:

Convexity =
1

P (t, T )

∂2P (t, T )

∂r2t
= B2(t, T )

with B(t, T ) as given by Proposition 14.

2.3.2 Pricing of Bond Derivatives

The PDE (2.12) subject to the appropriate boundary condition will lead us to value any interest

rate derivative. Consider a derivative whose pay-off at time s is given by Us(rs).
2 Applying the

fundamental results of Heath et al. (1992), there exists an unique equivalent risk-neutral measure

P̃ such that the value at time t of this derivative Ut can be represented as

Ut(rt, t, s) = Ẽ
[
e−

∫ s
t
ruduUs(rs)|rt

]

2Clearly, if Us(rs) = 1, the previous bond price expression is obtained.
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where Ẽ denotes expectation with respect to the risk-neutral measure P̃ .

Let

W̃t = Wt +

∫ t

0
Λudu (2.13)

denote the Wiener process under P̃ . Under this measure, applying (2.6), (2.9), and (2.13), the

risk-neutral dynamics of the bond price is given as

dP (rt, t, s) = rtP (rt, t, s)dt+ σPP (rt, t, s)dW̃t

Hence, the discount bond price process is a martingale.

Define g(P (rt, t, s)) = lnP (rt, t, s). Then, applying Itô’s Lemma, we get

dgt =
∂g(P )

∂P
dP − 1

2

∂2g(P )

∂P 2
(dP )2 =

1

P

(
rtPdt+ σPPdW̃t

)
− 1

2

1

P 2
σ2
PP

2dt

where the corresponding arguments have been omitted. Integrating from 0 to t, we get

P (rt, t, s) = P (r0, 0, s) exp

(∫ t

0
rudu+

∫ t

0
σP (u, s)dW̃u − 1

2

∫ t

0
σ2
P (u, s)du

)

Hence, for each s ∈ [t, T ], the process Zs
t defined as

Zs
t =

P (rt, t, s)

P (r0, 0, s)
e−

∫ t
0 rudu = exp

(∫ t

0
σP (u, s)dW̃u − 1

2

∫ t

0
σ2
P (u, s)du

)

is a martingale. Moreover, in line with Karatzas and Shreve (1988), we get

Zs
t = 1 +

∫ t

0
σP (u, s) exp

(∫ t

0
σP (x, s)dW̃x −

1

2

∫ t

0
σ2
P (x, s)dx

)
dW̃u

Thus, by the Girsanov’s theorem, for each s ∈ [t, T ], there exists an equivalent s-forward measure

P s such that

W s
t = W̃t +

∫ t

0
σP (u, s)du (2.14)

where W s
t represent a standard Wiener process under P s.

Karatzas and Shreve (1988) shows that, for a random variable Y

Es [Y |Ft] =
1

Zt
t

E [Zs
t Y |Ft]

Then, the following Proposition presents the equivalent change of measure.

Proposition 15 Under P̃ , the value at time t of any derivative Ut(rt, t, s) given by

Ut(rt, t, s) = Ẽ
[
e−

∫ s
t
ruduUs(rs)|rt

]
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has an equivalent s-forward measure, P s, such that

Ut(rt, t, s) = P (rt, t, s)Ẽ

[
Zs
t

Zt
t

Us(rs)|rt
]
= P (rt, t, s)E

s [Us(rs)|rt]

where Es represents expectation under P s and

Zs
t

Zt
t

=
e−

∫ s

t
rudu

P (rt, t, s)

Moreover, the instantaneous forward rate is given as

f(rt, t, T ) = D(t, T ) +BT (t, T )rt (2.15)

with

D(t, T ) = −AT (t, T )

A(t, T )
=

δ

4

∫ T

t
BT (u, T )σ

2
udu (2.16)

Applying Itô’s Lemma and using the spot rate dynamics (2.3), we get

df(rt, t, T ) = µfdt+ σfdWt (2.17)

where

µf = (BTt(t, T )− κBT (t, T )) rt, σf = BT (t, T )σt
√
rt

Similarly to Heath et al. (1992), the following restriction on the forward rate drift is verified

µf (ω, t, T ) = σf (ω, t, T )

[∫ T

t
σf (ω, t, x)dx+ Λt

]

Now, replacing (2.14) into the forward rate process (2.17), we get

df(rt, t, s) = σf

[∫ s

t
σf (t, v)dv +Λt

]
dt+ σf (dW

s
t − Λtdt− σP dt)

Hence, using
∫ s
t σf (rt, t, v)dv = σP (rt, t, s) leads to

df(rt, t, s) = σf (rt, t, s)dW
s
t = Bs(t, s)σt

√
rtdW

s
t (2.18)

Then, comparing equations (2.17) and (2.18), we get

drt = κs (θst − rt) dt+ σt
√
rtdW

s
t

where

κs =
Bst(t, s)

Bs(t, s)

θst =
κ

κs
θt
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Hence, under the s-forward measure, the instantaneous interest rate follows a CIR-type process with

speed and level of mean reversion given by κs and θst , respectively. Then, standard methods applied

in Cox et al. (1985) can be used.

Define the state variable Xs(t) = (xs1(t), ..., x
s
d(t)) as the process generating rs =‖ Xs ‖2. The

state variable dynamics for xsi (t) is given by

dxsi (t) =
1

2
σt
√

Bs(t, s)dW
s
i (t)

Hence,

rs =

d∑

i=1

[
1

2

∫ s

t
σu
√

Bs(u, s)dW
s
i (u) + xsi (u)

]2

=
d

4

∫ s

t
σ2
uBs(u, s)du+ ‖ Xs(t) ‖

∫ s

t
σu
√

Bs(u, s)dW
s(u)+ ‖ Xs(t) ‖2 (2.19)

where W s(t) = (W s
1 (t), ...,W

s
d (t)) is a d-dimensional Wiener process under P s.

Note that, under P s, the instantaneous forward rate can be represented as

f(t, s) =‖ Xs(t) ‖2 +D(t, s) (2.20)

Taking conditional expectations under P s in (2.19) and using (2.15)-(2.16) and (2.20), we get

Es [rs|rt] = D(t, s) +Bs(t, s)rt

Defining d = δ = 4θtκ
σ2
t

and ̟ = δ
D(t,s)rs, we obtain

Es [̟|rt] = δ +
δBs(t, s)

D(t, s)
rt

Hence, ̟ follows a non-central chi-square distribution with δ degrees of freedom and non-

centrality parameter (δBs(t, s)/D(t, s)) rt.

The value at time t of a derivative whose pay-off at time s is given by Us(rs) will read as

Ut(rt, t, s) = Ẽ
[
e−

∫ s
t
ruduUs(rs)|rt

]

Applying Proposition 15, the next Proposition arises.

Proposition 16 The value at time t of any interest rate derivative with terminal pay-off Us(rs) is

given by

Ut(rt, t, s) = P (rt, t, s)E
s [Us(̟)|rt]

where P (rt, t, s) is given by Proposition 14, Es represents expectation under P s, and

̟ =
δ

D(t, s)
rs ∼ χ2

(
δ,
δBs(t, s)

D(t, s)
rt

)
(2.21)

with B(s, T ) as given by Proposition 14 and D(t, s) as given by (2.16).
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After obtaining this general closed-form expression, we analyse several particular cases:

1. Forward on zero-coupon bond

Consider a forward contract expiring at time s written on a zero-coupon bond maturing at

time T > s and $1 face value. Then, under the s-forward measure P s, the delivery price

established at time t for this forward contract is given as

F (rt, t, s, T ) = Es [P (rs, s, T )|rt]

Then, using Proposition 16, the value of this bond forward is given as follows.

Proposition 17 The value at time t of a bond forward maturing at time s, written on a

zero-coupon bond expiring at time T and $1 face value is given by

F (rt, t, s, T ) = Es [P (rs, s, T )|rt]

=
A(s, T )e−

1
2
(ξ1−ξ2)

(
2
δB(s, T )D(t, s) + 1

) δ
2

where A(s, T ) and B(s, T ) are given by Proposition 14, D(t, s) as given by (2.16), and

ξ1 =
δBs(t, s)

D(t, s)
rt

ξ2 =
ξ1

2
δB(s, T )D(t, s) + 1

2. European option on zero-coupon bond

Consider a European call option maturing at time s with strike K, written on a zero-coupon

bond that matures at time T > s. Let ct(rt, s, T,K) denote the price at time t of an European

call option. Then, the boundary condition of the PDE (2.12) is given by

cs(rs, s, T,K) = max{P (rs, s, T )−K, 0}

Under the risk-neutral measure P̃ , the price at time t of this call option is given by

ct(rt, s, T,K) = Ẽ
[
e−

∫ s

t
rudu (P (rs, s, T )−K)+ |rt

]

Then, using Proposition 16, we price this option as follows.
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Proposition 18 The price at time t of a European call option with maturity s written on a

zero-coupon bond expiring at time T and $1 face value is given by

ct(rt, s, T,K) = P (rt, t, s)E
s

[(
A(s, T )e−B(s,T )rs −K

)+
|rt
]

= P (rt, t, s)F (rt, t, s, T )χ
2 (ρ2, δ, ξ2)− P (rt, t, s)Kχ2 (ρ1, δ, ξ1)

where χ2(·) denotes the non-central chi-square distribution function and

ρ1 =
δ

B(s, T )D(t, s)
ln

(
A(s, T )

K

)

ρ2 = ρ1

(
2

δ
B(s, T )D(t, s) + 1

)

ξ1 =
δBs(t, s)

D(t, s)
rt

ξ2 =
ρ1
ρ2

ξ1

with P (rt, t, s), A(·, ·), and B(·, ·) as given in Proposition 14, F (rt, t, s, T ) as given by Propo-

sition 17, and D(t, s) as given by equation (2.16).

Proof. See the Appendix.

3. European option on coupon bond

Consider a European call option that matures at time s and strike K. The underlying asset

is a coupon bond maturing at time T paying N coupons αi at times ji, i = 1, 2, · · · , N
where j1 > s, jN = T . The price of this coupon bond at time s is given as the sum of the

corresponding zero-coupon bonds, that is,

P (rs, s, T ) =

N∑

i=1

αiP (rs, s, ji) (2.22)

where P (rs, s, ji), i = 1, 2 · · · , N is given by Proposition 14.

Let ct
(
rt, s, {ji}Ni=1,K

)
denote the price at time t of this call option. Using (2.22), the boundary

condition of the PDE (2.12) becomes now

cs
(
rs, s, {ji}Ni=1,K

)
= max

{
N∑

i=1

αiP (rs, s, ji)−K, 0

}

Applying Proposition 16, the call option price is given as

ct
(
rt, s, {ji}Ni=1,K

)
= P (rt, t, s)E

s
[
cs
(
̟, s, {ji}Ni=1,K

)
|rt
]

= P (rt, t, s)E
s

[
max

{
N∑

i=1

αiP (̟, s, ji)−K, 0

}
|rt
]
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In line with Jamshidian (1989), we find Ki, i = 1, 2, · · · , N such that

max

{
N∑

i=1

αiP (̟, s, ji)−K, 0

}
=

N∑

i=1

αimax {P (̟, s, ji)−Ki, 0} (2.23)

where Ki = P (κ, s, ji) and κ is the solution of
∑N

i=1 αiP (κ, s, ji) = K.3

Hence, this option can be interpreted as a portfolio of European call options on zero-coupon

bonds with “appropriate” strikes Ki as stated in the following Proposition.

Proposition 19 The price at time t of a European call option with maturity s on a coupon

bond expiring at T , paying coupons αi at times ji, i = 1, 2, · · · , N is given by

ct
(
rt, s, {ji}Ni=1,K

)
=

N∑

i=1

αi ct (rt, s, ji,Ki)

where ct (rt, s, ji,Ki) is given by Proposition 18.

4. European bond forward option

Consider a European bond forward call option maturing at time s with strike K, where the

underlying asset is a bond forward contract with expiration date Tf written on a zero-coupon

bond that matures at time Tb > Tf > s and $1 face value.

Let ct(rt, s, Tf , Tb,K) denote the price at time t of this call option.

Then, the boundary condition for the PDE (2.12) is given by

cs(rs, s, Tf , Tb,K) = max {F (rs, s, Tf , Tb)−K, 0}

Under the risk-neutral measure P̃ , the price at time t of this option is given as

ct(rt, s, Tf , Tb,K) = Ẽ
[
e−

∫ s
t
rudu (F (rs, s, Tf , Tb)−K)+ |rt

]

Applying Proposition 16, the price of this option is given by the following Proposition.

Proposition 20 The price at time t of a European bond forward call option that matures at

time s on a forward contract expiring at time Tf written on a zero-coupon bond maturing at

time Tb and $1 face value is given by

ct(rt, s, Tf , Tb,K) = P (rt, t, s)E
s
[
(F (rs, s, Tf , Tb)−K)+|rt

]

= P (rt, t, s)Θ(rt, t, s, Tf , Tb)χ
2 (ρ2, δ, ξ2)− P (rt, t, s)Kχ2 (ρ1, δ, ξ1)

3Note that the existence of strikes Ki such that (2.23) has a solution is guaranteed as the bond price decreases with

the instantaneous interest rate.
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where χ2(·) denotes the non-central chi-square distribution function and

Θ(rt, t, s, Tf , Tb) =
A(Tf , Tb)e

− 1
2
(ξ1−ξ2)

((
2
δB(Tf , Tb)D(s, Tf ) + 1

) (D(t,s)
δ H(s, Tf , Tb) + 1

)) δ
2

ρ1 =

2δ ln

(
A(Tf ,Tb)

K(2
δ
B(Tf ,Tb)D(s,Tf )+1)

δ
2

)

H(s, Tf , Tb)D(t, s)

ρ2 = ρ1

(
D(t, s)

δ
H(s, Tf , Tb) + 1

)

ξ1 =
δBs(t, s)

D(t, s)
rt

ξ2 =
ρ1
ρ2

ξ1

H(s, Tf , Tb) =
2δB(Tf , Tb)BTf

(s, Tf )

2B(Tf , Tb)D(s, Tf ) + δ

where P (rt, t, s), A(·, ·), and B(·, ·) as given in Proposition 14 and D(·, ·) as in (2.16).

Remark 3 Note that P (rt, t, s)Θ(rt, t, s, Tf , Tb) can be interpreted not as the forward price at time

t, but as the price at time t of an asset paying the forward price at time s.

Corollary 8 For all the above cases, put option prices arise directly from put-call parity.

2.3.3 Interest Rate Derivatives

In this subsection we focus our attention on pricing “pure” interest rate derivatives, that is, deriva-

tives whose underlying is directly the interest rate. We start pricing FRA’s, and then, we move to

more complicated products such as swaps, caps, floors, and collars.

1. Forward Rate Agreement

Consider a FRA with $1 notional value and maturity s, where the investor agrees to pay a

fixed interest rate K and receive a floating rate with tenor Ts − s. The floating rate is set at

time s and the net cash-flow is received at time Tr > s.

Then, under the risk-neutral measure P̃ , the FRA value at time t is given by

FRAt(rt, s, Tr, Ts,K) = Ẽ
[
e−

∫ Tr
t

rudu (R(rs, s, Ts)−K) |rt
]

Applying Proposition 16, the value of this FRA is given by the following Proposition.
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Proposition 21 The value at time t of a FRA with $1 notional value and maturity s, paying

a fixed rate K and receiving a floating rate with tenor Ts − s, is given by

FRAt(rt, s, Tr, Ts,K) = P (rt, t, Tr)E
s [R(rs, s, Ts)−K|rt]

= P (rt, t, Tr)

[
B(s, Ts)

Ts − s
D(t, s)

(
1 +

ξ

δ

)
− ln(A(s, Ts))

Ts − s
−K

]

where

ξ =
δBs(t, s)

D(t, s)
rt

with P (rt, t, Tr) and B(t, s) as given in Proposition 14 and D(t, s) as given by (2.16).

2. Interest rate swap and swaption

An interest rate swap can be interpreted as either the difference between two coupon bonds

or a portfolio of FRA’s. Hence, swap valuation is a straightforward application of Proposition

14 or 21. Moreover, swaptions can be valued applying Proposition 19.

3. Cap, floor, and collar

A cap (floor) contract guarantees to its holder a pay-off if a certain floating interest rate is

above (below) a specified rate, the cap (floor) level. Similarly to swaps, caps and floors involve

a series of regular payments, usually referred as caplets or floorlets. Therefore, a cap (floor)

can be interpreted as a portfolio of caplets (floorlets).

Consider a caplet written on a floating rate with $1 face value and maturity s. If the caplet

is exercised, the investor pays a fixed interest rate K and receives a floating rate with tenor

Ts − s. The floating rate is set at time s and the net cash-flow is received at time Tr > s.

Under the risk-neutral measure P̃ , the price at time t of this caplet is given by

Caplett(rt, s, Tr, Ts,K) = Ẽ
[
e−

∫ Tr
t

rudu (R(rs, s, Ts)−K)+ |rt
]

Under the s-forward measure P s, the caplet price is given by the following Proposition.

Proposition 22 The price at time t of a caplet written on the floating rate with $1 face value

and tenor Ts − s is given as

Caplett(rt, s, Tr, TsK) = P (rt, t, Tr)E
s
[
(R(rs, s, Ts)−K)+ |rt

]

= P (rt, t, Tr)
D(t, s)B(s, Ts)

δ(Ts − s)

[
δ + ξ − 2e−

ξ
2

∞∑

n=0

(
ξ

2

)n Γ
(
δ
2 + n+ 1, ρ2

)

n! Γ
(
δ
2 + n

)
]

−
(
ln(A(s, Ts))

Ts − s
+K

)
P (rt, t, Tr)

[
1− χ2 (ρ, δ, ξ)

]
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where χ2(·) denotes the non-central chi-square distribution function, Γ(·) represents the Gamma

function, and

ξ =
δBs(t, s)

D(t, s)
rt

ρ =

(
K +

ln(A(s, Ts))

Ts − s

)
δ(Ts − s)

B(s, Ts)D(t, s)

with P (rt, t, Tr) and B(t, s) as given in Proposition 14 and D(t, s) as given by (2.16).

In order to price a floorlet, same type of calculations as in this Proposition can be used.

Alternatively, we can use the caplet-floorlet parity.

Cap, floor, and collar prices are a straightforward application of these results.

2.4 Conclusions

This chapter has presented a new continuous-time model for the term structure of interest rates

assuming that the mean reversion level of interest rates and the spot rate volatility follow a cyclic

behaviour modelled by an harmonic oscillator functional form. Under this specification, the model

incorporates a lot of flexibility, allowing it to capture a variety of different shapes of the term

structure. In more detail, considering the possibility of a cyclical long-term level in interest rates,

this model allows us to capture a number of changes in the level, slope, and curvature of the term

structure. Hence, several humps can be easily achieved choosing the appropriate parameters affecting

the mean reversion level, that is, the amplitude of the wave, the temporal frequency, and the offset

phase.

Our model nests the original one presented in Cox it et al. (1985), keeping the same analytical

tractability of the CIR model. Consequently, we can value any contingent claim in a much more

flexible framework while still maintaining the analytical tractability. Under these assumptions, we

have computed closed-form expressions for prices of bonds and several fixed income and interest rate

derivatives. We have also computed some risk management measures for bonds.

The results obtained have strong practical applications for pricing and risk management purposes

and should be of special interest for traders, financial institutions, and risk managers.
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Appendix of Proofs

Proof of Proposition 14

To solve equation (2.12), we guess an exponential-affine functional form for the bond price

P (rt, t, T ) = A(t, T )e−B(t,T )rt

with terminal conditions A(T, T ) = 1, B(T, T ) = 0. Then,

Pt =
At

A
P −BtrtP, Pr = −BP, Prr = B2P

where arguments have been omitted and subscripts in functions P, A, and B denote partial deriva-

tives. Replacing these expressions into (2.12), we get

At

A
−Btrt −B [κ(θt − rt)− λtrt] +

1

2
σ2
t rtB

2 − rt = 0

with boundary condition A(T, T ) = 1, B(T, T ) = 0. Since this equation is linear in rt, we obtain

the following system of ordinary differential equations (ODEs)

Bt − (λt + κ)B − 1

2
σ2
tB

2 + 1 = 0 (2.24)

At − kθtAB = 0 (2.25)

Applying standard theory for Ricatti-type equations and defining τ = T−t, the solution of (2.24)

is given as B(τ) = v(τ)
u(τ) where v(τ) and u(τ) are solutions of the system

−v′(τ) + u(τ)− κv(τ) = 0 (2.26)

−u′(τ) + λtu(τ) +
1

2
σ2
t v(τ) = 0 (2.27)

Replacing the derivative of (2.26) into (2.27), we obtain the second-order ODE

v′′(τ) + bv′(τ) + e(τ)v(τ) = 0 (2.28)

where b = κ− λt and

e(τ) = −λtκ− 1

2
Aσ sin

2(ϕ− ωT + ωτ)

Setting v(τ) = g(τ)M(τ), expression (2.28) becomes

g(τ)M ′′(τ) + (2g′(τ) + bg(τ))M ′(τ) + (g′′(τ) + bg′(τ) + e(τ)g(τ))M(τ) = 0

that represents a Mathieu’s differential equation if 2g′(τ) + bg(τ) = 0. Then, we get

g(τ) = ce
1
2
(λ−κ)τ
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with arbitrary constant c. Then, we obtain

v(τ) = e
1
2
(λ−κ)τ (c1MC(a, q, x) + c2MS(a, q, x)) (2.29)

where MC and MS represent the Mathieu cosine and sine functions, respectively, and

a = −Aσ + (λ+ κ)2

4ω2
, q = − Aσ

8ω2
, x = ϕ− ωT + ωτ

The boundary condition B(0) = 0 implies v(0) = 0. Then, choosing c2 = 1 in (2.29) implies

c1 = −MS(a, q, ϕ − ωT )

MC(a, q, ϕ− ωT )

Substituting (2.29) and its derivative into (2.26), we get

u(τ) = e
1
2
(λ−κ)τ

[
1

2
(λ+ κ) (c1MC(a, q, x) +MS(a, q, x)) + ω (c1MCP (a, q, x) +MSP (a, q, x))

]

(2.30)

where MCP and MSP represent the derivatives with respect to x of the Mathieu cosine and sine

functions, respectively. Therefore, using expressions (2.29)-(2.30),we get B(τ).

Finally, equation (2.25) immediately provides A(t, T ) = exp
{
−
∫ T
t κθtB(t, T )dt

}
.

Proof of Proposition 18

From Proposition 16, we know

ct(rt, s, T,K) = P (rt, t, s)E
s

[(
A(s, T )e−

1
δ
B(s,T )D(t,s)̟ −K

)+
|rt
]

where Es represents expectation with respect to the s-forward measure P s. Hence,

ct(rt, s, T,K) = P (rt, t, s)

∫ ∞

0

(
A(s, T )e−

1
δ
B(s,T )D(t,s)̟ −K

)+
dχ2 (̟, δ, ξ1)

= P (rt, t, s)

∫ ρ1

0
A(s, T )e−

1
δ
B(s,T )D(t,s)̟dχ2 (̟, δ, ξ1)−KP (rt, t, s)χ

2 (ρ1, δ, ξ1)

where χ2(·) denotes the non-central chi-square distribution function and

ξ1 =
δBs(t, s)

D(t, s)
rt

ρ1 =
δ

B(s, T )D(t, s)
ln

(
A(s, T )

K

)

Using the expression for the density function of a non-central chi-square distribution, the integral

becomes

P (rt, t, s)A(s, T )

∫ ρ1

0
e−

1
δ
B(s,T )D(t,s)̟

[
2−

δ
2̟

δ
2
−1e−(̟+ξ1)/2

∞∑

n=0

̟n (ξ1)
n

n!4nΓ( δ2 + n)

]
d̟
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Considering the change of variable y =
(
2
δB(s, T )D(t, s) + 1

)
̟ and defining

ρ2 = ρ1

(
2

δ
B(s, T )D(t, s) + 1

)

ξ2 =
ρ1
ρ2

ξ1

we get

P (rt, t, s)F (rt, t, s, T )χ
2 (ρ2, δ, ξ2)

with F (rt, t, s, T ) as given by Proposition 17.

Proof of Proposition 22

From Proposition 16, we know

Caplett(rt, s, Tr, Ts,K) = P (rt, t, Tr)E
s
[
(R(rs, s, Ts)−K)+ |rt

]

= P (rt, t, Tr)

∫ ∞

ρ

B(s, Ts)D(t, s)

δ(Ts − s)
̟dχ2(̟, δ, ξ) −

(
ln(A(s, Ts))

Ts − s
+K

)
P (rt, t, Tr)

[
1− χ2(ρ, δ, ξ)

]

where Es represents expectation with respect to the s-forward measure P s, χ2(·) denotes the non-

central chi-square distribution function, and

ξ =
δBs(t, s)

D(t, s)
rt

ρ =

(
K +

ln(A(s, Ts))

Ts − s

)
δ(Ts − s)

B(s, Ts)D(t, s)

Using the expression for the density function of a non-central chi-square distribution, the integral

becomes
B(s, Ts)D(t, s)

δ(Ts − s)
2−

δ
2 e−

ξ
2

∞∑

n=0

ξn

n!4nΓ( δ2 + n)

∫ ∞

ρ
̟

δ
2
+ne−

1
2
̟d̟ (2.31)

Note that ∫ ∞

ρ
̟

δ
2
+ne−

1
2
̟d̟ = 2

δ
2
+n+1

[
Γ

(
δ

2
+ n+ 1

)
− Γ

(
δ

2
+ n+ 1,

ρ

2

)]

where Γ(α, ̺) =
∫ ̺
0 e−ttα−1dt and Γ(α) ≡ Γ(α,∞). Using the Taylor expansion of the exponential

function and straightforward algebra, (2.31) becomes

B(s, Ts)D(t, s)

δ(Ts − s)

[
δ + ξ − 2e−

ξ
2

∞∑

n=0

(
ξ

2

)n Γ
(
δ
2 + n+ 1, ρ2

)

n! Γ
(
δ
2 + n

)
]
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2.5 Appendix of Figures
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Figure 2.1: Simulation of the Zero-coupon bond price term structure for an arbitrary set of parameters.

Parameter Values CIR Model:

Lightblue line: r0 = 0.015, θ = 0.1, σ = 0.005, κ = 0.1.

Parameter Values Cyclic Model :

Blue line: r0 = 0.015, Aθ = 0.2, Aσ = 0.001, κ = 0.1, ω = 0.08, ϕ = π, λ = 0.

Red line: r0 = 0.015, Aθ = 0.1, Aσ = 0.005, κ = 0.15, ω = 0.2, ϕ = π
2
, λ = 0.

Black line: r0 = 0.015, Aθ = 0.08, Aσ = 0.002, κ = 0.15, ω = 0.15, ϕ = π
4
, λ = 0.

Green line: r0 = 0.015, Aθ = 0.1, Aσ = 0.002, κ = 0.3, ω = 0.10, ϕ = π, λ = 0.
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Figure 2.2: Term Structure of Interest Rates for an arbitrary set of parameters.

Parameter Values CIR Model:

Lightblue line: r0 = 0.015, θ = 0.1, σ = 0.005, κ = 0.1.

Parameter Values Cyclic Model :

Blue line: r0 = 0.015, Aθ = 0.2, Aσ = 0.001, κ = 0.1, ω = 0.08, ϕ = π, λ = 0.

Red line: r0 = 0.015, Aθ = 0.1, Aσ = 0.005, κ = 0.15, ω = 0.2, ϕ = π
2
, λ = 0.

Black line: r0 = 0.015, Aθ = 0.08, Aσ = 0.002, κ = 0.15, ω = 0.15, ϕ = π
4
, λ = 0.

Green line: r0 = 0.015, Aθ = 0.1, Aσ = 0.002, κ = 0.3, ω = 0.10, ϕ = π, λ = 0.
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Figure 2.3: Term structure of interest rates for different values of the speed of mean reversion κ. In both

models, the values of κ are: Blue Line: = 0.05, Lightblue Line: = 0.1, Black Line: = 0.2, Green Line: = 0.4,

and Red Line:= 0.8;

Parameter Values CIR Model : r0 = 0.01, θ = 0.03, σ = 0.0002.

Parameter Values Cyclic Model : r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, ω = 0.20, ϕ = 0, λ = 0.
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Figure 2.4: Term structure of interest rates for different values of the volatility parameter. The values of σ

and Aσ corresponding to CIR and the Cyclic model, respectively, are: Blue Line: = 0.003, Lightblue Line:

= 0.005, Black Line: = 0.007, Green Line: = 0.009, and Red Line:= 0.011;

Parameter Values CIR Model : r0 = 0.01, θ = 0.05, κ = 0.05.

Parameter Values Cyclic Model : r0 = 0.01, Aθ = 0.05, κ = 0.05, ω = 0.08, ϕ = 0, λ = 0.
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Figure 2.5: Term structure of interest rates for different values of the mean reversion level. The values of

θ and Aθ corresponding to CIR and the Cyclic model, respectively, are: Blue Line: = 0.05, Lightblue Line:

= 0.04, Black Line: = 0.03, Green Line: = 0.02, and Red Line:= 0.01;

Parameter Values CIR Model : r0 = 0.01, σ = 0.0002, κ = 0.1.

Parameter Values Cyclic Model : r0 = 0.01, Aσ = 0.0002, κ = 0.1, ω = 0.1, ϕ = 0, λ = 0.
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Figure 2.6: Term structure of interest rates for different values of the frequency and offset phase.

The values of ω in the first graph are: Blue Line: = 0.05, Lightblue Line: = 0.1, Black Line: = 0.15, Green

Line: = 0.2, and Red Line:= 0.5. And r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, κ = 0.1, ϕ = 0, λ = 0.

The values of ϕ in the second graph are: Blue Line: = 0, Lightblue Line: = π
6
, Black Line: = π

4
, Green Line:

= π
2
, and Red Line:= 3π

4
. And r0 = 0.01, Aθ = 0.03, Aσ = 0.0002, κ = 0.1, ω = 0.2, λ = 0.

79



Bibliography

[1] Black, F., E. Dermand and W. Toy (1990). A One-Factor Model of Interest Rates and its

Application to Treasury Bond Options. Financial Analysts Journal, 46, 33–39.

[2] Black, F. and P. Karasinski (1991). Bond and Option Pricing when Short Rates are Lognormal.

Financial Analysts Journal, 47, 52-59.

[3] Brennan, M.J. and E.S. Schwartz (1980). Analyzing Convertible Bonds. Journal of Financial

and Quantitative Analysis, 15, 4, 907-929.

[4] Brigo, D. and F. Mercurio (2006). Interest Rate Models Theory and Practice, Springer-Verlag

Berlin Heidelberg.

[5] Chan, K.C., G.A. Karolyi, F.A. Longstaff, and A.B. Sanders (1992). An Empirical Comparison

of Alternative Models of the Short-Term Interest Rate. Journal of Finance, 47, 3, 1209-1227.

[6] Chen, L. (1996). Interest Rate Dynamics, Derivatives Pricing, and Risk Management. Springer-

Verlag, Berlin.

[7] Cox, J.C., J.E. Ingersoll, and S.A. Ross (1985). A Theory of the Term Structure of Interest

Rates. Econometrica, 53, 2, 385-408.

[8] Duffie, D. and R. Kan (1996). A Yield-Factor Model of Interest Rates. Mathematical Finance,

6, 4, 379-406.

[9] Feller, W. (1951). Two Singular Diffusion Problems. Ann. Math., 54, 173-182.
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Chapter 3

Valuation of commodity derivatives when spot prices revert to a

cyclical mean
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3.1 Introduction

Characterizing the stochastic behaviour of commodity prices constitutes an issue of special relevance

for practitioners in financial markets and it has been deeply analysed in many academic papers

throughout the years. That is hardly surprising, since some commodity markets are very liquid and

they move every day a huge amount of financial investments. Furthermore, many financial contin-

gent claims such as futures, options and options on futures use some commodity as the underlying

asset. Given the seasonal behaviour exhibited by most commodities, this chapter introduces a new

continuous-time model based on an Ornstein-Uhlenbeck process for the logarithm of the commodity

spot price, with a reversion to a time dependent long-run level, the time variation of the long-run

price level being characterized by a Fourier series. The underlying idea behind this assumption is

that the pricing process is driven by market forces and dominated by a strong seasonal component.

Intuitively, some commodity prices are pulled back to a lower mean reversion level whenever the

supply is high or the demand is low, while this reversion level tends to be higher whenever the supply

is low or the demand is high. In other cases, a given commodity may be perceived as a refuge against

bad economic times, and the cyclical behaviour in its price may reflect in part the evolution of the

business cycle in some major economy. Under this framework, we compute closed-form expressions

for the prices of futures, European options and European options on futures.1

In the academic literature we can find a significant number of papers addressing empirically and

theoretically the commodity valuation problem. A pioneer contribution can be found in Schwartz

(1997), who compares three mean-reverting models for the stochastic behaviour of commodity. The

first model is a simple one-factor model based on the logarithm of the commodity spot price, con-

stituting the starting point of our posited model. The second is the two-factor model proposed

in Gibson and Schwartz (1990), where the second factor accounts for the convenience yield of the

commodity. Finally, the third model is an extension of the Gibson and Schwartz (1990) model that

incorporates the stochastic behaviour of interest rates as in Vasicek (1977). An interesting twist of

the two-factor model is presented in Schwartz and Smith (2000), where the log-spot price is described

as the sum of two state variables referred to as the short-term deviation in prices and the equilibrium

price level, respectively. In more detail, short-run deviations are assumed to revert toward zero and

the equilibrium level is assumed to follow a Brownian motion process.

Addressing the possible seasonal behaviour of the commodity price, a simple and clever contri-

bution can be found in Lucia and Schwartz (2002). In this paper the authors use the Scandinavian

electricity market to compare a number of models based on the spot price and the logarithm of the

spot price, where the seasonal component is arbitrary added in the spot (log-spot) price and mod-

elled by a deterministic trigonometric function with annual frequency. An interesting extension of

1In this chapter we make no distinction between futures and forward agreements.
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the one-factor log-spot price model presented in Lucia and Schwartz (2002) can be found in Cartea

and Figueroa (2005), where the stochastic process follows a zero level mean-reverting jump-diffusion

process for the underlying log-spot price and the exponential of the trigonometric function is re-

placed by a Fourier series of order five. For a thorough description of some commodity models see,

for instance, Pilipović (1998).

Energy and power markets present a perfect framework to analyse the suitability of this kind

of models with a seasonal component. By its own nature, any source of energy is difficult to store

or transport. For instance, natural gas low density makes highly impractical its storability and

transportation, and has a deep impact on its price, specially in those periods of high demand or

production shortages. Additionally, there is a bunch of seasonal variables driving the commodity

price, such as business activity, weather conditions, market regulations, etc. There is a rich aca-

demic literature focused on energy markets and the corresponding pricing issues. Some interesting

contributions on this area can be found in Clewlow and Strickland (2000), Eydeland and Wolyniec

(2003), Geman (2005), Burger, Graeber, and Schindlmayr (2007), Forsythe (2007), Weron (2007),

and Carmona and Coulon (2012), among many others.

In this chapter, we focus our analysis on natural gas as a source of energy, taking Henry Hub

as the pricing point for natural gas futures contracts. We compare the fitting ability of our model

to market data against two alternative benchmarks. In particular, we use the one-factor models

proposed in Schwartz (1997) and Lucia and Schwartz (2002) for the logarithm of the commodity

spot price. Since the seasonal component varies among commodities and it could even be different

for the same commodity at different maturities, it will be crucial to identify those underlying periods

driving the market forces. We use spectral analysis to identify such frequencies, and in particular,

the fundamental frequency.

This chapter is organized as follows. Section 3.2 presents the benchmark models and their main

features. Section 3.3 derives the posited model and the futures pricing formula. Section 3.4 provides

closed-form expressions for prices of different derivatives. Section 3.5 presents the empirical analysis.

Finally, Section 3.6 summarizes the main findings and provides some concluding remarks.

3.2 Benchmark models

This Section introduces the benchmark models presented by Schwartz (1997) and Lucia and Schwartz

(2002), Model 1 and Model 2, respectively.
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3.2.1 Model 1

This model assumes that the commodity spot price St follows a stochastic process given by,

dSt = κ (µ− ln(St))Stdt+ σStdWt

where κ, µ, and σ are constant parameters, and Wt is a standard Wiener process.

Moreover, defining Xt = ln(St), assuming a constant market price of risk λ, and applying Ito’s

Lemma, the log price can be represented by the following risk-neutral process

dXt = κ (α̃−Xt) dt+ σdW̃t

where

α̃ = µ− σ2

2κ
− λσ

κ

where α̃, κ and σ are constant parameters and W̃t = Wt+λt is a standard Wiener process under

the risk-neutral measure P̃ . In addition, under this measure, the solution to equation (3.2.1) is given

as

Xs = e−κ(s−t)Xt +
(
1− e−κ(s−t)

)
α̃+ σ

∫ s

t
e−κ(s−u)dW̃u

which is normally distributed with mean and variance at time T as follows

Ẽ[XT |Ft] = e−κ(T−t)Xt +
(
1− e−κ(T−t)

)
α̃

Ṽ [XT |Ft] =
σ2

2κ

(
1− e−2κ(T−t)

)

Since the spot price of the commodity at time T is log-normally distributed, the forward price

of the commodity is given as

F (St, t, T ) = Ẽ [ST |Ft] = exp

{
Ẽ [XT |Ft] +

1

2
Ṽ [XT |Ft]

}

= exp

{
e−κ(T−t) ln(St) +

(
1− e−κ(T−t)

)
α̃+

σ2

4κ

(
1− e−2κ(T−t)

)}

Alternatively,

ln(F (St, t, T )) = e−κ(T−t) ln(St) +
(
1− e−κ(T−t)

)
α̃+

σ2

4κ

(
1− e−2κ(T−t)

)
(3.1)

3.2.2 Model 2

Proposed by Lucia and Schwartz (2002), we find another one factor model based on the log spot

price. However, this model incorporates an interesting feature to capture the seasonal effect in the
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pricing process. Particularly, model 2 incorporates a deterministic function of time, f(t), in more

detail

lnSt = f(t) + Yt

f(t) = α+ ϑDt + γ cos

(
(t+ ϕ) · 2π

365

)

where α, ϑ, γ, and ϕ are constant parameters, Dt = 1 if date t is holiday or weekend, Dt = 0

otherwise, and Yt is a zero level mean-reverting stochastic process given as

dYt = −κYtdt+ σdW

where κ and σ are positive and constant parameters. Under the risk-neutral measure, that is,

defining a constant market price of risk Λ(t) = λ , the risk-neutral process is given as

dYt = κ(α∗ − Yt)dt+ σdW̃

where α∗ = −λσ/κ is a constant parameter.

In addition, defining Xt = ln(St) and applying some basic algebra we find that the solution for

Xs under the risk-neutral measure is given as

Xs = f(s) + Yte
−κ(s−t) +

(
1− e−κ(s−t)

)
α∗ + σ

∫ s

t
e−κ(s−u)dW̃

Again, since the spot price of the commodity at time T is log-normally distributed, the forward

price of the commodity is given as

F (St, t, T ) = Ẽ [ST |Ft] = exp

{
Ẽ [XT |Ft] +

1

2
Ṽ [XT |Ft]

}
(3.2)

= exp

{
f(T ) + e−κ(T−t)(ln(St)− f(t)) +

(
1− e−κ(T−t)

)
α∗ +

σ2

4κ

(
1− e−2κ(T−t)

)}

with α∗ = −λσ/κ

3.3 A New Model for the Commodity Price

This section introduces the new valuation model of commodity prices and develops the corresponding

expression for pricing futures contracts.

3.3.1 The New Model

Let St denote the commodity spot price available at time t. Then, the evolution of the commodity

spot price, St, is given by the stochastic differential equation

dSt = κ (f(t)− ln(St))Stdt+ σStdWt (3.3)
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where κ, σ ∈ R
+ and Wt is a standard Wiener process. The main assumption made in this model

is that the mean reversion level, f(t), follows a time-dependent periodic function characterized by a

Fourier series, in more detail

f(t) =

∞∑

n=0

Re
[
Ane

inwt
]

where it is only considered the real part of the series since it is the part that makes economic

sense. Note that, ∀n | An ∈ C, so that there is a phase factor contained in An. In more detail,

consider An = Ax,n + iAy,n where Ax,n, Ay,n ∈ R. Hence, Ax,n and Ay,n denote the amplitude

and phase of each term in the Fourier expansion, respectively. Note that this model nests model 1

presented in Schwartz (1997) by taking An = 0, ∀n ∈ N− {0}.
Moreover, defining Xt = ln(St), assuming a constant market price of risk, that is Λ(St, t) = λ,

and applying Ito’s Lemma, the log price can be represented by the following risk-neutral process

dXt = µtdt+ σdW̃t (3.4)

where

µt = κ (α̃+ g(t)−Xt) (3.5)

α̃ = A0 −
σ2

2κ
− λσ

κ
(3.6)

g(t) =

∞∑

n=1

Re
[
Ane

inwt
]

(3.7)

where A0 ∈ R and W̃t = Wt + λt is a standard Wiener process under the risk-neutral measure

P̃ .

The following Proposition establishes the solution of the stochastic differential equation (3.4).

Proposition 23 The solution of the risk-neutral process followed by the logarithm of the commodity

spot price is given as

Xs = e−κ(s−t)Xt+
(
1− e−κ(s−t)

)
α̃+

∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
+σ

∫ s

t
e−κ(s−u)dW̃u

Figure 3.1 presents the evolution of the spot price time series for four different set of parameters.

In the first graph we only consider the drift process, that is σ = 0. We can see how flexible this model

is, in fact, any scenario can be replicated increasing the number of terms in the Fourier expansion.

The second graph considers the drift and diffusion process, this representation presents a simulated

spot price walk considering each underlying scenario. For illustrative purposes, Figures 3.2 and 3.3

show how the spot price responds to different values of α̃, κ, An,x, An,y, and ω with n = 1, σ = 0.
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From Proposition 23, it is clear that the conditional distribution of the logarithm of the com-

modity spot price at time T follows a normal distribution where the mean and variance under the

risk-neutral probability measure P̃ are given as

Ẽ [XT |Ft] = e−κ(s−t)Xt +
(
1− e−κ(s−t)

)
α̃+

∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
(3.8)

Ṽ [XT |Ft] = Ṽ

[
σ

∫ T

t
e−κ(T−u)dW̃u

]
=

(
σ

∫ T

t
e−κ(T−u)dW̃u

)2

= σ2

∫ T

t
e−2κ(T−u)du

=
σ2

2κ

(
1− e−2κ(T−t)

)
(3.9)

where we have applied the isometry property for stochastic integrals in the variance.

Since Xt = ln(St), the forward price of a commodity maturing at time T is a straightforward

application of the properties of the log-normal distribution under the risk-neutral measure. Hence,

the following proposition arises

Proposition 24 Assuming a constant interest rate, the forward price of a commodity maturing at

time T is given by

F (St, t, T ) = Ẽ [ST |Ft] = exp

{
Ẽ [XT |Ft] +

1

2
Ṽ [XT |Ft]

}

= exp

{
e−κ(T−t) ln(St) +

(
1− e−κ(T−t)

)
α̃+

σ2

4κ

(
1− e−2κ(T−t)

)

+

∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]}

Alternatively,

ln(F (St, t, T )) = e−κ(T−t) ln(St) +
(
1− e−κ(T−t)

)
α̃+

σ2

4κ

(
1− e−2κ(T−t)

)

+

∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
(3.10)

3.4 Option Pricing

This section focuses on option pricing. In more detail, we compute closed-form expressions for the

prices of European options written on the commodity and the forward commodity price under the

new model framework.
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• European option on the commodity

Consider a call option maturing at time T with strike K, written on a commodity. Let

ct(St; t;T ;K) denote the price at time t of this call option. Then, the terminal condition

to this call option is given by

cT (ST ;T ;T ;K) = max{F (ST ;T ;T )−K; 0}

Hence, under the risk-neutral measure P̃ , the price at time t of this option will be given by

ct(St; t;T ;K) = Ẽ
[
e−r(T−t)(F (St; t;T )−K)+|Ft

]

The call option price is given by the following Proposition.

Proposition 25 The price at time t of a European call option with maturity T written on a

commodity is given by

ct(St, t, T,K) = Ẽ
[
e−r(T−t)(ST −K)+|Ft

]

= e−r(T−t)

∫ ∞

−∞
(ST −K)+ρ(µ,Σ)dXT

= e−r(T−t)
[
eµ+

1
2
Σ2
Φ(d1)−KΦ(d2)

]

where ρ(µ,Σ) defines the normal density function and

µ = Ẽ[XT |Ft]

Σ = Ṽ [XT |Ft]

d1 =
µ+Σ2 − ln(K)

Σ
d2 = d1 − Σ

with Ẽ[XT |Ft] and Ṽ [XT |Ft] given by equation (3.8) and (3.9), respectively.

• European option on the commodity forward

Consider a European forward call option that matures at time T with strike K. If this option

is exercised, the call-holder pays K and receives a forward maturing at time s on a commodity.

Let ct(St; t;T ; s;K) denote the price at time t of this option. The terminal condition of this

option is given as

cT (ST ;T ; s;K) = max{F (ST ;T ; s)−K, 0}
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Under the risk-neutral measure P̃ , the price at time t of this option is given as

ct(St; t;T ; s;K) = Ẽ
[
e−r(T−t)(F (ST ;T ; s)−K)+|Ft

]

Hence, the following proposition arises.

Proposition 26 The price at time t of a European forward call option with maturity T on a

forward contract expiring at time s written on a commodity is given by

c(St, t, T, s,K) = Ẽ
[
e−r(T−t)(F (ST , T, s)−K)+|Ft

]

= e−r(T−t)

∫ ∞

−∞
(F (ST , T, s)−K)+ρ(µ,Σ)dXT

= e−r(T−t)

[
exp

{
Ω+ µe−κ(s−T ) +

1

2
Σ2e−2κ(s−T )

}
Φ(d1)−KΦ(d2)

]

where ρ(µ,Σ) denotes the normal density function and

µ = Ẽ [XT |Ft]

Σ2 = Ṽ [XT |Ft]

Ω =
(
1− e−κ(s−T )

)
α̃+

(
1− e−2κ(s−T )

) σ2

4κ
+

∞∑

n=1

Re

[
κAn

κ+ inw

(
einws − e−κ(s−T )+inwT

)]

ν = (ln(K)− Ω) eκ(s−T )

d1 =
µ+Σ2e−κ(s−T ) − ν

Σ

d2 =
µ− ν

Σ

with Ẽ[XT |Ft] and Ṽ [XT |Ft] given by equation (3.8) and (3.9), respectively.

3.5 Empirical Analysis

3.5.1 Data

The data set used for the empirical study consist of daily observations of futures contracts written on

natural gas. In more detail, we take Henry Hub as the pricing point for natural gas futures contracts,

which is traded on the New York Mercantile Exchange (NYMEX). We have complete data for the

spot prices and the twelve contracts closest to maturity from 02/02/1998 to 07/03/2011. In this

analysis we are going to take into consideration the Ng5, Ng8 and Ng12, where Ng5 is the fifth

contract closest to maturity, and so on.
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Since the models for the forward price have the form given as in the previous Sections, we

estimate the structural parameters by minimizing the fitting error of each model as:

Yt =

6∑

i=1

βizit + ut

where ut can be interpreted either as a measurement or as an approximation error in the pricing

formula. For every model we follow a non-weighted least-squares approach to obtain the parameter

estimates.

Model 1

We hope to identify the values of the structural parameters: θ = (α̃, κ, σ).

Yt = ln(F (St, t, T )) − e−κ(T−t) ln(St)

z1t = 1− e−κ(T−t)

z2t =
(
1− e−2κ(T−t)

)
/4κ

β1 = α̃; β2 = σ2; β3 = β4 = β5 = β6 = 0

Model 2

Neglecting ϑ, considering trading days and with some basic algebra we reorganized model 2. In

this case, we hope to identify the values of the structural parameters: θ = (α̃, κ, σ, γ, ϕ).

Yt = ln(F (St, t, T ))− e−κ(T−t) ln(St)

z1t = 1− e−κ(T−t)

z2t =
(
1− e−2κ(T−t)

)
/4κ

β1 = α̃ = α+ α∗; β2 = σ2; β3 = γ; β4 = 0

f1(t, T ) = cos ((T + ϕ) · 2π)− e−κ(T−t) cos ((t+ ϕ) · 2π)

Model 3

This model assumes only one term in the Fourier expansion, hence we hope to identify the values

of the structural parameters θ =
(
α̃, κ, σ,A(x,n1), A(y,n1), ω

)
.

Yt = ln(F (St, t, T ))− e−κ(T−t) ln(St)

z1t = 1− e−κ(T−t)

z2t =
(
1− e−2κ(T−t)

)
/4κ

β1 = α̃; β2 = σ2

and Re

[
(A(x,n1) + iA(y,n1))

κ

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
derives in β3z3t + β4z4t.
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Model 4

In this case we assume two terms in the Fourier expansion, which leads us to identify the values

of the structural parameters θ =
(
α̃, κ, σ,A(x,n1), A(y,n1), A(x,n2), A(y,n2), ω

)
.

Yt = ln(F (St, t, T ))− e−κ(T−t) ln(St)

z1t = 1− e−κ(T−t)

z2t =
(
1− e−2κ(T−t)

)
/4κ

β1 = α̃; β2 = σ2

where
∑

n=n1,n2
Re

[
(A(x,n) + iA(y,n))

κ

κ+ inw

(
einws − e−κ(s−t)+inwt

)]
derives in

∑6
i=3 βizit.

3.5.2 In-Sample Analysis

The key assumption in this chapter is that there is a seasonal pattern in futures prices, besides being

non-stationary. Table 3.1 presents the Augmented Dickey-Fuller (ADF) test for the time series for

the log-spot price as well as for the log-price of each of the futures contracts considered, and the first

differences of each of these series. Clearly, the existence hypothesis that a unit root exists cannot

be rejected in any case, meaning that both, the spot and futures price series are non-stationary. On

the other hand, the presence of a unit root is rejected when considering the first difference of each

price. Figures 3.4 to 3.7 present the autocorrelation and partial autocorrelation function for each

time series.

Table 3.2 shows the estimation results for the long-run relationship between the futures and the

spot price:

lnFt(τ) = α+ β lnSt + at

where τ corresponds to each futures tenor, Ng 5, 8, and 12, respectively. Table 3.3 presents

the Augmented Dickey-Fuller test for each residual time series and its first difference. In every

case we reject the existence of a unit root. Figures 3.8 to 3.10 present the residual and its first

difference time series corresponding to the estimation of Ng 5, 8, and 12. Figures 3.11 to 3.13

present the autocorrelation and partial autocorrelation function for each residual time series and

its first difference time series. Hence, the logarithm of each futures price is cointegrated with the

logarithm of the spot price, as it is usually the case in most liquid futures markets.

The expected seasonal pattern suggests that it is reasonable to study the spectral density of

futures prices, bearing in mind that for any such time series the spectral density should be expected

to have a maximum at the zero frequency, due to the presence of a unit root. Figures 3.14 to 3.16

present the logarithm of the price of gas natural for Ng 5, Ng 8 and Ng 12 futures contracts, and the
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associate spectral density, where f(Hz) = ω
2π . These figures confirm that intuition, the maximum

spectral density corresponding to the zero frequency. However, an additional interesting result arises

in these spectra: for the three time series of futures prices the maximum spectral density, other than

the global maximum at the zero frequency, is found for a rather low frequency, which should be

interpreted as the fundamental frequency. The fundamental frequency is indicating that there is an

underlying long-run period driving the behaviour of futures prices, of about 15 to 16 years.

This result is quite interesting for our purposes. However, since the three models we consider are

driven by the commodity spot price, we are specifically interested in the spectral component which

is not explained by the spot price. The reason is that we are interested in the seasonal period that is

specific to futures prices and hence, on the seasonal component that it is not inherited through the

dependence of futures prices from the spot price. This is a not trivial endeavour because, according

to our model, the relationship between spot and futures prices is not very straightforward. In fact,

it depends on the reversion parameter κ, which should be estimated for each model. In addition,

we should remember that our proposed model has been developed under the assumption that the

mean reversion level follows over time an evolution characterized by a Fourier series. Alternatively,

the model posited by Lucia and Schwartz (2002) assumes a zero level mean-reverting process and

arbitrarily adds a trigonometric function with an annual frequency. Therefore, relaxing the annual

frequency assumption will not collapse Lucia and Schwartz model into our model.

The estimated spectra are precisely very important to conduct the specification of our model for

estimation purposes. We need to truncate the infinite Fourier series, and it is important to have

some idea about how many terms may be needed to fit the futures price data, and which frequencies

should be incorporated into the chosen terms of the Fourier expansion. At this point, we already

know that to appropriately capture the dynamics in natural gas futures prices it is necessary to

include in the model the detected fundamental frequency.

To detect the frequencies that are relevant to explain the dynamics in futures prices, we create

a grid of frequencies and fit our model to the observed time series for each value of ω in the grid.

These estimations will provide us with a measure of the fitting errors for each frequency, thereby

exposing the cyclical component not captured by the spot price. Figure 3.17 shows the residual sum

of squares of estimating our model for a fixed value of ω in (0, 2π). The results are quite conclusive:

there is a well defined minimum fitting error at a point very close to the fundamental frequency

obtained in estimated spectrum, indicating an underlying long run period of 15 to 16 years. This

analysis reveals another interesting feature: the second relevant term in the Fourier series for the

Ng 5 and Ng 8 is the annual frequency, which of course is a multiple of the fundamental frequency

(n · ω = 2πn · f(Hz)). However, the importance of the annual frequency decreases with maturity,

completely disappearing beyond the futures expiring in one year, Ng 12. This may be reasonable:
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since the Ng 12 expiration date is exactly one wavelength of the annual frequency, then it makes

sense that the annual frequency has a negligible effect on the Ng 12 time series. Since the analysis

considers the relation between the spot and futures prices, it is fair to say that this frequency is

indicating a cyclical behaviour in the futures price which is not captured by the spot price.

To obtain the spectrum of the component of futures prices which is not explained by spot prices,

we use the estimated parameters associated with this fundamental frequency to compute the function

ŝ(Ft, St), given as

ŝ(Ft, St) = ln(F (St, t, T ))− e−κ̂(T−t) ln(St)− ˆ̃α
(
1− e−κ̂(T−t)

)
− σ̂2

4κ̂

(
1− e−2κ̂(T−t)

)

The spectrum of this function will expose the underlying component that is not fully explained

by the spot price or by any trend. Figures 3.18 to 3.20 present the spectrum of the ŝ-function for

each futures price, suggesting that at most three terms in the Fourier expansion should be enough to

attain a good fit of the ŝ-function. As expected, the frequencies identified in each spectrum match

exactly the frequencies detected in the graphs of the residual sum of squares for fixed values of ω,

confirming that we certainly have spotted the frequencies we need to obtain accurate estimates.

Tables 3.4 to 3.6 present the estimated parameters and the corresponding standard deviation

for each chosen futures price and for the whole sample, as well as goodness of fit measures for each

model. For the whole period we present the minimized value of the function
∑

i,tmin SR(θ̂i,t) and∑
i,t |ûi,t|, the sum of the absolute value of pricing errors for the whole period, to represent how well

each model fits the observed futures prices. In addition, Figures 3.21 to 3.23 present the Ng 5, 8 and

12 adjustment error time series for Model 2, 3, and 4. To keep the graphs as clear as possible we

have intentionally excluded Model 1. On February 25, 2003 every model shows a particularly poor

fit. That day, United States, Britain and Spain presented to the UN Security Council a resolution

stating that Iraq “has failed to take the final opportunity” to disarm. Rumors of an imminent

war plunged stock markets all over the world, while many commodities prices raised till historical

maximums. Henry Hub spot price has closed at 19.38$, when average spot price oscillated at 5$.

Regarding the goodness of fit the results are conclusive. Compared with the benchmark models,

both representations of our model dramatically improve the in-sample fit of every observed futures

time series. Model 3, the model with just one term in the Fourier expansion, reduces the aggregate

sum of squares of Model 2 by 28%, 54% and 79%, for Ng 5, 8 and 12, respectively. Comparing Model

3 with Model 1, the improvement is of 48%, 61% and 79% for Ng 5, 8 and 12, respectively. It is

encouraging to know that we do not need to go farther away in the Fourier expansion to achieve a

good fitting, even though increasing the number of terms in the Fourier expansion would eventually

allow for fitting arbitrarily well the observed time series. On this regard, it is interesting to point

out that the annual frequency proposed by the Schwartz and Lucia model has little impact by itself.
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In fact, for the futures contract expiring in one year, Model 2 provides no further improvement from

the model with no seasonal component. In fact, there is an annual frequency in the process driving

the futures price, but that annual fluctuation is mostly explained by the spot price. On the other

hand, the long run frequency, between 15 and 16 years, explains the seasonality in futures prices

that is not captured by the spot price. This frequency might well be related to the business cycle.

Although the main improvement comes with the incorporation of the fundamental frequency,

adding a second term in the model still provides further improvements. Comparing Model 4 against

Model 3, i.e., the models with two and one term in the Fourier expansion, the relative improvement

is given as 45%, 40% and 27% for Ng 5, 8 and 12, respectively. For contracts Ng 5 and Ng 8, the

second term incorporates the annual frequency, while the second term for the Ng 12 futures contract

suggests a period of 4 years.

Figures 3.24 to 3.26 show Models 3 and 4 fitting error spectra of each futures estimation. As it

should be, the fundamental frequency has been completely removed from the spectrum. Model 3

fitting error of futures series Ng 5 and 8 is dominated by the annual frequency, and it is completely

eliminated from the model 4 fitting error spectra. Model 4 fitting error spectra reveals no domi-

nating frequency, although we can spot some frequencies standing from the noise which could be

incorporated in further term of the Fourier expansion. On this respect, adding a third term in the

Fourier expansion provides a relative improvement over the model with two term of 11.5%, 20.5%

and 20% for the estimation of Ng 5, 8, and 12, respectively.

3.6 Conclusions

This chapter has introduced a continuous-time model for the logarithm of the commodity spot

price, assuming that it reverts to a mean level that follows a cyclical behaviour over time that is

characterized by a Fourier series. Under this assumption, our model nests the original one-factor

model presented in Schwartz (1997), while allowing for a more flexible evolution of the commodity

spot price and preserving the analytical tractability of the Schwartz model. Under this framework,

we have obtained analytical expressions for the prices of futures, European option on the commodity

and European options on commodity futures.

Considering Natural gas as the underlying asset of the futures contract, we have also analysed

the empirical performance of two versions of our model against two different one-factor benchmarks,

those proposed in Schwartz (1997) and Lucia and Schwartz (2002). In order to identify the funda-

mental frequency and the underlying period driving the futures contract price, we have conducted

a spectral analysis of three futures with different tenors, in particular Ng 5, Ng 8 and Ng 12. The

spectrum revealed that there is a short frequency driving the futures price behaviour of about 15
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to 16 years. Although the annual frequency has some relevance in Ng 5 and Ng 8, it tends to

decrease with maturity. Considering the effect of the fundamental frequency, even in its simplest

representation based on a single term of the Fourier expansion, our model outperforms both bench-

mark models, providing a better and more reliable in-sample fitting of the commodity futures price.

Adding a second term in the Fourier expansion provides an improvement relative to the one term

representation, although the improvement tends to be lower for longer maturities. On this respect, it

is worth poniting out that increasing the number of terms in the Fourier expansion would eventually

allow for fitting the observed time series arbitrarily well. These results are very relevant, suggesting

that our proposed Fourier model provides a simple and powerful tool for portfolio management, risk

management and derivative pricing on commodities.
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3.7 Appendix of Tables

Table 3.1: Augmented Dickey-Fuller test

ADF(Level) ADF(First Difference)

Lags t-stat (p-value) Lags t-stat (p-value)

Spot 26 -2.2492(0.189) 25 -13.0611(3.833e-29)

Ng 5 25 -2.0527(0.264) 24 -10.5281(6.566e-21)

Ng 8 23 -1.9750(0.298) 22 -9.7038(2.933e-18)

Ng 12 19 -1.6753(0.444) 25 -12.3007(1.096e-26)

Note: Augmented Dickey-Fuller test for the log spot and futures price, and the first differences of each of

these series.

Table 3.2: Estimation results

Ng 5 Ng 8 Ng 12

α 0.2311(0.0089) 0.2703(0.0101) 0.3046(0.0109)

β 0.9095(0.0056) 0.8945(0.0063) 0.8721(0.0068)

Log-likelihood function 1422.346 1024.496 775.8086

R2 0.890935 0.860997 0.834877

Note: Estimation results for the long-run relationship between the futures and the spot price given by

process 3.5.2. Standard errors in parentheses

Table 3.3: Augmented Dickey-Fuller test

ADF(Level) ADF(First Difference)

Lags t-stat (p-value) Lags t-stat (p-value)

at(Ng 5) 30 -4.6453(1.025e-4) 29 -11.2560(2.803e-23)

at(Ng 8) 30 -3.8854(2.156e-3) 26 -13.6307(5.906e-31)

at(Ng 12) 27 -3.1480(2.323e-2) 26 -14.3477(3.446e-33)

Note: Augmented Dickey-Fuller test for each residual time series and its first difference.
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Table 3.4: Parameters estimates. In-Sample Estimation Ng 5

Parameter Model 1 Model 2 Model 3 Model 4

β̂1 -14.7756(7.0527) 2.4228(0.0337) 0.4320(0.3487) 1.4190(0.2193)

β̂2 9.2165(10.2398) 0.1134(0.0271) 3.8248(1.0256) 0.8830(0.5870)

κ̂ 0.2539(0.1846) 0.2309(0.0079) 1.2085(0.0210) 1.1148(0.0129)

β̂3 - 0.0661(0.0085) - -

ϕ̂ - 0.0607(0.0032) - -

Â(x,n1=1) - - -0.2224(0.0279) -0.1561(0.0107)

Â(y,n1=1) - - 0.4984(0.0228) 0.5529(0.0087)

Â(x,n2=15) - - - -0.3117(0.0109)

Â(x,n2=15) - - - -0.3839(0.0092)

ω̂0 - 2 · π 0.4152(0.0032) 0.4175(0.0003)
∑

i,tmin SR(θ̂i,t) 80.0594 57.9226 41.7740 22.9802
∑

i,t |ûi,t| 346.6403 309.4022 291.4021 205.9710

Note:
∑

i,t min SR(θ̂i,t) represents the least squares pricing error,
∑

i,t |ûi,t| shows the pricing errors in

absolute value.
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Table 3.5: Parameters estimates. In-Sample Estimation Ng 8

Parameter Model 1 Model 2 Model 3 Model 4

β̂1 -7.1126(6.5074) 2.5991(0.1140) 0.9698(0.4022) 1.6985(0.0039)

β̂2 3.6508(2.7470) 0.0000(0.0000) 1.7696(0.9716) 0.0000(0.0000)

κ̂ 0.1787(0.0219) 0.1721(0.0209) 0.9308(0.0152) 0.9223(0.0132)

β̂3 - -0.0557(0.0284) - -

ϕ̂ - 0.5826(0.0827) - -

Â(x,n1=1) - - -0.0928(0.0313) -0.1979(0.0116)

Â(y,n1=1) - - 0.6017(0.0250) 0.5228(0.0101)

Â(x,n2=16) - - - -0.4101(0.0124)

Â(x,n2=16) - - - -0.3657(0.0130)

ω̂0 - 2 · π 0.4020(0.0027) 0.3901(0.0003)
∑

i,tminSR(θ̂i,t) 102.1405 86.6176 39.8256 23.9565
∑

i,t |ûi,t| 406.3963 390.8210 285.4515 205.1990

Note:
∑

i,t min SR(θ̂i,t) represents the least squares pricing error,
∑

i,t |ûi,t| shows the pricing errors in

absolute value.
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Table 3.6: Parameters estimates. In-Sample Estimation Ng 12

Parameter Model 1 Model 2 Model 3 Model 4

β̂1 2.3811(0.8887) 1.8400(0.0839) 1.3963(0.5728) 1.1713(0.2376)

β̂2 0.0000(0.0000) 0.1640(0.0179) 0.5359(1.2134) 1.1805(0.5932)

κ̂ 0.1431(0.4613) 0.1464(0.0051) 0.7846(0.0120) 0.8904(0.0085)

β̂3 - 0.0858(0.0101) - -

ϕ̂ - 0.3240(0.0179) - -

Â(x,n1=1) - - -0.1175(0.0299) -0.1913(0.0224)

Â(y,n1=1) - - 0.5820(0.0253) 0.5116(0.0178)

Â(x,n2=3) - - - -0.4965(0.0206)

Â(x,n2=3) - - - -0.4196(0.0206)

ω̂0 - 2 · π 0.3758(0.0031) 0.3723(0.0021)
∑

i,tmin SR(θ̂i,t) 118.9080 117.6984 24.4762 17.7831
∑

i,t |ûi,t| 490.5892 480.9532 217.4176 188.5439

Note:
∑

i,t min SR(θ̂i,t) represents the least squares pricing error,
∑

i,t |ûi,t| shows the pricing errors in

absolute value.
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3.8 Appendix of Figures
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Figure 3.1: Spot price time series simulation for an arbitrary set of parameters. The first graph represents

the drift process, that is setting σ = 0. The second graph represents the whole process with σ = 0.2

Red line: α̃ = 1, κ = 0.5, An=1,x = 0.4, An=1,y = 0, An=3,x = 0, An=3,y = 0, ω = 1.5.

Black line: α̃ = 2, κ = 0.5, An=1,x = 1, An=1,y = π
2
, An=3,x = 0, An=3,y = 0, ω = 0.4.

Lightblue line: α̃ = 2, κ = 0.5, An=1,x = 0.8, An=1,y = 0, An=3,x = 0.4, An=3,y = 0, ω = 0.5.

Blue line: α̃ = 1.5, κ = 0.5, An=1,x = 0.6, An=1,y = 0, An=3,x = 0.5, An=3,y = 0, ω = 2
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Figure 3.2: Spot price time series simulation for an arbitrary set of parameters and no diffusion process,

σ = 0. For both graphs: An=1,x = 0.8, An=1,y = 0, n = 1, ω = 0.5.

The first graph represents the spot price time series for κ = 0.5 and different values of α̃:

Red line: α̃ = 0.5, Violet line: α̃ = 1, Black line: α̃ = 1.5, Lightblue line: α̃ = 2, Blue line: α̃ = 2.5.

The second graph represents the spot price time series for α̃ = 2 and different values of κ:

Red line: κ = 0.1, Violet line: κ = 0.3, Black line: κ = 0.5, Lightblue line: κ = 0.7, Blue line: κ = 1.
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Figure 3.3: Spot price time series simulation for an arbitrary set of parameters and no diffusion process,

σ = 0. For the three graphs: α̃ = 2, κ = 0.5, n = 1, σ = 0.

The first graph represents the spot price time series for An=1,y = 0, ω = 0.5 and different values of An=1,x:

Red line: An=1,x = 0.1, Violet line: An=1,x = 0.5, Black line: An=1,x = 0.8, Lightblue line: An=1,x = 1.2,

Blue line: An=1,x = 2.

The second graph represents the spot price time series for An=1,x = 0.8, ω = 0.5 and different values of

An=1,y:

Red line: An=1,y = −0.5, Violet line: An=1,y = −0.1, Black line: An=1,y = 0, Lightblue line: An=1,y = 0.1,

Blue line: An=1,y = 0.5.

The third graph represents the spot price time series for An=1,x = 0.8, An=1,y = 0 and different values of ω:

Red line: ω = 0.1, Violet line: ω = 0.5, Black line: ω = 1, Lightblue line: ω = 2, Blue line: ω = π.
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Figure 3.4: Autocorrelation and Partial autocorrelation function for the logarithm of the spot price series

and its first difference series
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Figure 3.5: Autocorrelation and Partial autocorrelation function for the logarithm of the Ng 5 futures price

series and its first difference series
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Figure 3.6: Autocorrelation and Partial autocorrelation function for the logarithm of the Ng 8 futures price

series and its first difference series
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Figure 3.7: Autocorrelation and Partial autocorrelation function for the logarithm of the Ng 12 futures price

series and its first difference series
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Figure 3.8: at(Ng 5) time series and its first difference series
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Figure 3.9: at(Ng 8) time series and its first difference series
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Figure 3.10: at(Ng 12) time series and its first difference series
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Figure 3.11: Autocorrelation and Partial autocorrelation function for the at(Ng 5) time series and its first

difference series
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Figure 3.12: Autocorrelation and Partial autocorrelation function for the at(Ng 8) time series and its first

difference series
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Figure 3.13: Autocorrelation and Partial autocorrelation function for the at(Ng 12) time series and its first

difference series

114



0 2 4 6 8 10 12 14
0.5

1

1.5

2

2.5

3

Time

Time domain signal Ng 5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

100

Frequency (Hz)

Power spectral density

Figure 3.14: Log(Ng 5) Spectral Density
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Figure 3.15: Log(Ng 8) Spectral Density
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Figure 3.16: Log(Ng 12) Spectral Density
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Figure 3.17: Residual sum of squares for log futures prices estimating model 3 for a fixed frequency, indicated

in the horizontal axis
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Figure 3.18: Spectral density for the ŝ -function corresponding to Ng 5 futures contract. The green line in

the first graph shows how one term in Fourier expansion fits the s-function. Similarly, the red line in the first

graph shows how two term in Fourier expansion fits the s-function.
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Figure 3.19: Spectral density for the ŝ -function corresponding to Ng 8 futures contract. The green line in

the first graph shows how one term in Fourier expansion fits the s-function. Similarly, the red line in the first

graph shows how two term in Fourier expansion fits the s-function.
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Figure 3.20: Spectral density for the ŝ -function corresponding to Ng 12 futures contract. The green line in

the first graph shows how one term in Fourier expansion fits the s-function. Similarly, the red line in the first

graph shows how two term in Fourier expansion fits the s-function.
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Figure 3.21: Fitting errors from Models 2, 3 and 4 for Ng 5 futures prices
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Figure 3.22: Fitting errors from Models 2, 3 and 4 for Ng 8 futures prices
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Figure 3.23: Fitting errors from Models 2, 3 and 4 for Ng 12 futures prices
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Figure 3.24: Spectral density for fitting errors for the Ng 5 futures prices from models 3 and 4
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Figure 3.25: Spectral density for fitting errors for the Ng 8 futures prices from models 3 and 4
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Figure 3.26: Spectral density for fitting errors for the Ng 12 futures prices from models 3 and 4
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