ELECTRONIC SUPPLEMENTARY INFORMATION FOR

From theory to experiment: $BaFe_{0.125}Co_{0.125}Zr_{0.75}O_{3-\delta}$, a highly promising cathode for intermediate temperature SOFCs

Elena Sánchez-Ahijón,^a, Rafael Marín-Gamero,^a Beatriz Molero-Sánchez,^b David Ávila-Brande,^a Alicia Manjón-Sanz,^c M.Teresa Fernández-Díaz,^d Emilio Morán,^a Rainer Schmidt,^e Jesús Prado-Gonjal*^{a,f}

^{b.}SeeO2 Energy Inc, 3655 36 St NW, Calgary, AB T2L 1Y8, Canada

e. GFMC, Dpto. Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

* corresponding author: jpradogo@ucm.es

- SI1 Synchrotron X-ray diffraction
- SI2 Neutron diffraction
- SI3 –X-ray thermodiffraction and Thermal Expansion Coefficient (TEC)
- SI4 Impedance Spectroscopy of the cells (Heating and cooling)

^a Dpto. Química Inorgánica, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

^{c.} CELLS–ALBA synchrotron, Cerdanyola del Vallés, Barcelona, E-08290 (Spain)

^{d.}Institute Laue Langevin, BP 156X, Grenoble F-38042, France

^{f.} Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, E-28049, Madrid, Spain

SI1 – Synchrotron X-ray diffraction

Table SI1.1. Refined structural parameters obtained from synchrotron X-ray diffraction for BaFe_{0.125}Co_{0.125}Zr_{0.75}O_{3- δ} (BFCZO) at room temperature in the space group $Pm\overline{3}m$. Occupancy values for the BFCZO phase are fixed to the result obtained by neutron diffraction data. Information about the secondary phase, BaZrO₃ (BZO) is also added.

Phases	BFCZO	BZO			
Lattice parameter, <i>a</i> / Å	4.1863(1)	4.1798(1)			
Occ. Ba	0.3333	0.3333			
Occ. Fe	0.042	0			
Occ. Co	0.044	0			
Occ. Zr	0.248	0.3333			
Occ. O (1)	0.966	1			
$R_{p}(\%)$	3.77				
R_{wp} (%)	5.09				
R_{exp} (%)	1.49				
Bragg <i>R</i> -factor	3.33	1.2			

SI2 – Neutron diffraction

Fig SI2.1. Anisotropic atomic displacement analysis of oxygen atoms from Neutron powder diffraction data: Illustration of the perovskite crystal structure including 95% probability displacement ellipsoids for room temperature and 700 °C data.

SI3 –X-ray thermodiffraction and Thermal Expansion Coefficient (TEC)

X-ray thermodiffraction was performed from room temperature to 1100 °C on a PANalytical modelo X'Pert PRO diffractometer using Cu radiation.

Figure SI3.1. X-ray thermodiffraction of $BaFe_{0.125}Co_{0.125}Zr_{0.75}O_{3-\delta}$

Table SI3.1. Temperature dependence of the cell parameters obtained from Le Bail analysis.

T (°C)	a (Å)			
25	4.1878(1)			
100	4.1916(1)			
300	4.1980(1)			
500	4.2051(1)			
700	4.2098(1)			
900	4.2181(1)			
1100	4.2245(1)			

The thermal expansion coefficient was determined using the lattice parameters at different temperatures by the expression:

$$TEC = \frac{\frac{(a_{T2} - a_{T1})}{\Delta T}}{\Delta T}$$

where a_{Tx} is the lattice parameter at a selected temperature and ΔT corresponds to the difference of temperature. A TEC value of 8.0 x 10⁻⁶ K⁻¹ is found from room temperature to 1100 °C.

SI4 – Impedance Spectroscopy of the cells (Heating and cooling)

Table SI4.1. Area specific polarization resistance (ASRp) and ohmic resistance (ASRs) for the symmetrical cells tested in stagnant air in a 2-electrode configuration (heating process).

T (°C)	500	550	600	650	700	750	800		
BFCZO Cell									
ASR _p (Ω·cm²)	7.19	3.39	1.47	0.66	0.33	0.22	0.13		
ASR _s (Ω·cm ²)	7.21	4.85	3.37	2.50	1.97	1.48	1.18		
BFCZO-GDC cell									
ASR _p (Ω·cm²)	5.89	2.13	0.83	0.33	0.13	0.08	0.05		
ASR _s (Ω·cm ²)	7.64	4.82	3.28	2.35	1.78	1.31	1.02		

BFCZO cell:

Fig SI4.1. Impedance spectroscopy data from a BFCZO symmetrical cell in a 2-electrode configuration from 500 °C to 700 °C during heating and cooling. Insets show the spectra at 650 °C and 700 °C zoomed in.

Figure SI4.2. Temperature dependence of the resistivity for BFCZO cell during heating and cooling processes.

Fig SI4.3. Impedance spectroscopy data from a BFCZO-GDC symmetrical cell in a 2-electrode configuration from 500 °C to 700 °C during heating and cooling. Insets show the spectra at 650 °C and 700 °C zoomed in.

Figure SI4.4. Temperature dependence of the resistivity for BFCZO-GDC cell during heating and cooling processes.