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Abstract

The use of digital photoelasticity permits us to determine the distribution of principal stress
difference by means of the analysis of a photoelastic fringe pattern using a phase measurement
method. However, conventional phase measurement methods for fringe pattern analysis
require the application of an unwrapping process which commonly fails in the presence of
discontinuities. To alleviate this problem, load-stepping methods have been developed. We
present an alternative load-stepping algorithm that is based on a nonlinear sinusoidal least-
squares fitting. The description of this technique together with its verification on simulated and
real experiments are presented in this work.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Photoelasticity is a widely used method for stress analysis to test engineering
structures [1,2]. In this method of analysis the central instrument is the so-called
polariscope that is used to study the polarisation state of the light after crossing the
specimen under test. In photoelasticity, phase measuring algorithms are commonly
used to analyse the stress from a photoelastic fringe pattern. Several methods based
on phase-measuring techniques for analysing photoelastic fringe patterns have been
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proposed [3-6]. Some phase-shifting methods [3-5] require monochromatic
illumination and a series of compensated fringe patterns to compute the phase.
The Fourier technique [6,7] is used to introduce a carrier frequency that makes the
processing simpler; however, apart from the limitations of this method due to the
quartz wedge introduced in the optical set-up and the influence of isoclinics, it can be
used only if the orientation of the carrier fringes coincides with the principal stress
directions in the specimen. A limitation of both the above-mentioned methods is that
the phase value at each image point is wrapped in the range —n to « radians so that
to calculate the stress, a further processing called phase unwrapping must be carried
out.

The phase unwrapping used in phase measuring techniques becomes difficult when
discontinuities are present in the phase data, for example, when the specimen has
cracks, notches or pieces in contact. Recently, load-stepping methods have been
developed to overcome such a problem [8-13]. A particular characteristic of a load-
stepping method is that the phase is evaluated independently at each image point
which permits its application on discontinuous phase fields. The variation of load on
the specimen implies a variation of the irradiance at each image point. Analysing this
variation of irradiance we can determine the load—stress relation. If a linear variation
of load is introduced, the fluctuation of irradiance at each image point has the form
of a sinusoidal function whose frequency defines the slope of the linear load—stress
relation.

The works reported in Refs. [8-10] mix the characteristics of the load-stepping
method with the phase-shifting methodology. The load-stepping method presented
by Ng [11] uses the Fourier algorithm to calculate the isochromatic parameter. This
method requires incremental loads to generate a collection of fringe images. The
Fourier algorithm applied by Ng, however, has an important drawback: it does not
consider the errors introduced when the sinusoidal function of the irradiance
(generated by the load variation) does not correspond to an integer number of cycles,
especially if it is less than one. This is because of the discrete nature of the FFT
algorithm which just considers integers as multiples of the fundamental frequency.

We present an alternative load-stepping method to determine the isochromatic
parameter. Our method is based on a sinusoidal least-squares fitting (SLSF). In this
way the algorithm will determine the frequency that best fits to the irradiance in a
continuous way even in the case that the signal had a number of cycles less than one.

This work is organised in the following way. In Section 2 we describe the
algorithm. We make a discussion of the Fourier method in Section 3. A numerical
experiment and a comparison with the Fourier method appear in Section 4. Results
of our method with real experiments are presented in Section 5. The conclusions are
given in Section 6.

2. Description of the algorithm

Let us consider using the configuration of a diffuse-light circular polariscope as
shown in Fig. 1. In this configuration circularly polarised light is used to obtain the
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Fig. 1. Configuration of the circular polariscope for load-stepping photoelasticity.

stress information. In this case the analyzer makes an angle of +/4 rad relative to
the axes of plate II. The intensities of the dark and bright field isochromatics can be
represented by Egs. (1a) and (1b), respectively (see for example [11]).

La(x,v; F) = a(x, y) + b(x, ) sin> <5(x2yF)> (1a)
Iy(x,y; F) = a(x,y) + b(x, ) cos? (M) . (1b)

In both equations, ¢ and b represent the background intensity and the amplitude
modulation, respectively. The variable § represents the phase retardation that
depends on the object load F and the spatial coordinates x and y. Performing the
subtraction of (1a) from (1b) we will obtain

I(x,y; F) = In(x, y; F) — 1a(x, y; F) = b(x, ) cos(8(x, y; F)). 2)
The phase retardation is related with the stress as [2]
2mh
0 :TC(Ul — 02), 3)

where & represents the thickness of the specimen, 4 the wavelength used, and C the
stress optic coefficient; o1 and ¢, stand for the principal stresses that are linearly
related with the applied force F and depend on the shape of the specimen.

If we rewrite Eq. (3) as d(x,y; F) = f(x,y)F, where = 2nhC(o, — 02)/(AF) and
supposing that we make a linear load increment in such a way that we can represent
the sequence as F, = u(n — 1) where n=1,2,3,...,N, pt = Fax /(N — 1) and Fyax
represents the maximum load to be applied; we can now represent Eq. (2) as a set of
images for n different loads as

I, = bcos(BF,), n=1,23,...,N. 4)

In this equation, the spatial dependence is present but it was dropped for
simplicity. We can observe that, to evaluate the retardation, we just have to
determine the value of f§ for every point of the image, that is, the frequency of the
cosine function in Eq. (4).
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We may consider the determination of parameters b and f as a nonlinear least-
squares problem, that is, find the values b and f that best fit the model given by
Eq. (4) to the data [F), I,]. In this case the least-squares problem is defined as [14]

N
minimise U(f) = > [cos(BF,) — I,}. (5)

n=1

For simplicity, we use I,(b = 1) that is a normalised version of I, which facilitates
the minimisation operation. In our experiments, we obtained good results using a
single normalisation based on the determination of the amplitude of the signal.

Minimisation of U as given by Eq. (5) is a nonlinear problem that eliminates the
possibility of applying direct methods. Function (5) can be minimised by applying an
iterative algorithm such as the Newton method [14].

U’
Uy
where U’ and U” represent the first and second derivatives, respectively.

Once we calculate f for every image point, we can compute the retardation with
the desired value of load F. It can be observed that the one-dimensional unwrapping
process is not required as with the Fourier one if the SLSF method is applied.

An important detail when the SLSF method was applied in the experiments is that
the image subtraction described in Eq. (2) would not be necessary if we had used just
the bright field represented by Eq. (1b). In this case we used a simple algorithm to
normalise the signal in the range [—1,1] to eliminate the @ and b terms of Eq. (1b).
Using just the bright fields we did not introduce noticeable errors in the calculation.
This is an important advantage because we reduce the quantity of images and the
movements of the analyzer in the polariscope.

In load stepping it is important to have it into a count that if the extension of the
signal represented by (4) has a large number of cycles (larger range of load
increments) the measurement will have a bigger accuracy. On the other hand, the
sampling must be done with phase increments of less than 7w radians [11], that is, with
a sampling bigger than the Nyquist frequency. As the phase depends on the stress
difference, it is not possible to predict if the phase will be sampled correctly, however,
if we capture the image sequence starting from the maximum load to the decrease of
the force applied, we can estimate the minimum number of images multiplying by
two the number of fringes in the field.

ﬂkJrl _ ﬁk _

(6)

3. Discussion

In the load-stepping method by Ng [11], the parameter of interest is the phase of
the sinusoidal signal generated when the load is incremented. The load-stepping
method proposed by Ng detects the phase by use of the discrete Fourier transform.
In this technique one of the side lobes of the Fourier spectrum of the signal is filtered
out, then, an inverse Fourier transformation is applied to obtain a complex function.
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In this way, the phase is computed using the arctan function. Finally, the continuous
phase is obtained applying a phase unwrapping process.

If we consider a sinusoidal signal with frequency w, its discrete Fourier transform
is a pair of impulses at +wy and —wy. In the treatment of sinusoidal signals using the
DFT, windowing plays an important role because it smears or broadens the impulses
in the theoretical Fourier representation and thus the exact frequency is less sharply
defined. The spectral sampling inherent in the DFT is also important because it has
the effect of giving a misleading or inaccurate shape of the true spectrum of the
sinusoidal signal [15].

We will analyse the Fourier procedure to detect the phase of a sinusoidal signal.
Supposing that we can represent the signal as the sequence

2n 1 2n
I, =cos (ﬁkcn) =5 exp (1 ~ kcn)

1 2
+§exp<—iﬁnkcn>, n=0,1,2,...,N — 1, 7

where k. defines the number of cycles. Then the discrete Fourier transform of this
sequence is represented by

N fld .2n
I, = ; I, exp (—1ﬁkn)

- ljil exp( —i 2%k — k)
T2 TP T N
1= 2
N exp (_' N”(k + kc)n> . (8)
n=0

When the second term of the right side of the equation is filtered out we obtain
Jrittered _ ljf exp| —i E(k — k)n 9)
k 2 pa N C 9
and the inverse Fourier transform of this expression is represented as
Filtered 1 = sFiltered .2n
I! :NZIk exp| iz hn ). (10)

k=0

Finally, the phase of the signal is computed using

Im{IFiItered}
-1 n
¢, = tan (Re{lmﬂed» an

To avoid errors caused by the addition of harmonics of different frequency, we are
particularly interested in the case when IFl“d represents a single complex
exponential signal. Analysing Eq. (9) we can see that undesirable harmonics vanishes
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when k. =integer which is the following particular case:

N

I“Ilziltered ~ ? if (k = kc)s

(12)

0 otherwise.

It has been analysed why the Fourier method can introduce errors when a non-
proper windowing is used, that is, when the extension of the signal under test does
not correspond to an integer number of cycles. To diminish this error Quiroga and
Gomez-Pedrero [16] proposed a preprocessing algorithm based on interpolation and
cropping to reduce the error when the Fourier algorithm is applied in temporal
evaluation of fringe patterns with carrier. An important improvement can be
obtained by applying this algorithm in load-stepping photoelasticity, however, this
improved method cannot evaluate the phase when the signal has less than one cycle.

4. Numerical experiments

As mentioned above, the load-stepping method proposed by Ng [11] does not
consider an important error source caused by the application of the Fourier method,
that is, when the extension of the signal represented by Eq. (4) is not an integer
number. A more critical problem is when the extension is less than one cycle. In this
case, for the discrete Fourier algorithm, the fundamental frequency cannot be
determined properly. On the other hand, the application of the SLSF method detects
the frequency of the signal in a continuous way even when the signal extension has
less than one cycle.

To test our method we have simulated a photoelastic experiment using the model
of a circular disc under diametral compression to evaluate the relative retardation.
The dimensions of the disc were of 25 mm radius and 5mm thickness. The value of
the stress-optic coefficient and the wavelength were 51.6x 10~">m?*N and
546 x 10~°m, respectively. The image size in the simulation was 200 x 200 pixels
with 256 grey levels. The loads simulated ranged from 0 to 430 N at increments of
10 N. The image of the bright field for n = 44 (430 N) is shown in Fig. 2.

Fig. 3 shows the phase retardation along lines A—B of Fig. 2. In the graphic, the
theoretical phase retardation is compared with the obtained one using the Fourier
algorithm [16] and with the SLSF. It can be seen that the Fourier algorithm cannot
work properly in zones of low stress, that is, where the signal extension is less than
one cycle. As an example, in Fig. 4 we can observe that in this zone (point C of
Fig. 2) the signal extension does not have a complete cycle which produces an error
on applying the Fourier algorithm. The maximum error in this experiment using the
proposed method was 0.006 rad. It can be seen in the results that, theoretically, there
is no minimum phase retardation that this method can detect, however, in practice, it
will depend mainly on the experimental conditions.
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Fig. 3. A profile of the theoretical relative retardation compared with that obtained using the SLSF and
the Fourier method.

5. Results with real experiments

We tested the proposed method with images obtained in a real experiment. The
description of the specimen under analysis is shown in Fig. 5. The value of the
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Fig. 5. Description of the transparent object under analysis for a real experiment. The thickness in this
case is & = 3.18 mm.

stress-optic coefficient of the material was C = 84.1 x 1072m?/N. We used a
TIEDEMANN polariscope model AE-131 in the circular configuration as described
in Section 2. The light source used was a sodium lamp of A = 589 nm. The CCD
camera was a JAI model CV-M10 with 50 mm focal length lens. The image size used
was of 256 x 150 pixels with 256 grey levels. We computed the phase retardation
using a sequence of images with load ranging from 0 to 430 N at increments of 10 N.

Fig. 6 shows the bright field generated when a load of 430 N was applied on the
specimen. Of course, the greater the force applied, the higher is the number of
fringes. Fig. 7 shows the mesh of the phase retardation obtained with the SLSF
method for a load of 430 N. A profile of the phase retardation along lines A-B in
Fig. 6, recovered with the SLSF and the Fourier method, is shown in Fig. 8. It can be
observed that in zones of low frequency the Fourier method could not compute the
phase properly.
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Fig. 6. Bright field isochromatic generated when a load of 430 N was applied on the specimen.

th = =
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Fig. 7. Distribution of the phase retardation obtained with the SLSF method.

6. Conclusions

We have proposed a load-stepping algorithm to determine the retardation in
digital photoelasticity. The proposed method has the advantage compared with the
Fourier one that it is not strongly influenced by the conditions of symmetry of the
signal; furthermore, it can properly process the signal when it has less than one cycle.
We have made a simulated experiment to verify the performance of the proposed
algorithm and to compare it with the Fourier algorithm. We have also tested our
method on images obtained in a real experiment.
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Fig. 8. Profile of the phase retardation along lines A-B of Fig. 6, recovered with the SLSF and the Fourier
method. It can be observed that Fourier method cannot properly evaluate the retardation in low frequency
zones.
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