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a b s t r a c t

We compute the charm drag and diffusion coefficients in a hot
pion gas, such as is formed in a heavy ion collision after the
system cools sufficiently to transit into the hadron phase. We
fully exploit heavy quark effective theory (with both D and D∗

mesons as elementary degrees of freedom during the collision)
and chiral perturbation theory, and employ standard unitarization
to reach higher temperatures. We find that a certain friction and
shear diffusion coefficients are almost p2-independent at a fixed
temperature which simplifies phenomenological analysis.

At the higher end of reliability of our calculation, T ≃ 150MeV,
we report a charm relaxation lengthλc ≃ 40 fm, in agreementwith
the model estimate of He, Fries and Rapp.

The momentum of a 1 GeV charm quark decreases about
50 MeV per fermi when crossing the hadron phase.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Heavy ion collisions provide a thriving branch of nuclear and particle physics. Thanks to
technological advances in the last three decades, measurements that once looked too challenging
can now be performed. One of these is the reconstruction of charmed and bottomed mesons flowing
out of the nuclear debris, that modern vertex detectors, together with good particle reconstruction
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and the ability to automatically treat very large data samples have brought to the realm of
measurability.

Heavy flavored hadrons are interesting because the hadron medium is not hot enough to excite
charm pairs. They are produced by hard gluons in the initial stages of the collision and their spectra
will carry a memory of it, unlike pions and kaons that can be produced in the thermal medium at
later stages, and thus show a spectrum close to black-body without much information from the initial
configuration of fields.

However, charmed and bottomed mesons do interact with the hadron gas after the crossover
from the high-energy phase (that, although now known to be strongly coupled, we will continue
naming ‘‘quark–gluon plasma’’ as is customary). The corrections to their properties due to this cooler
medium requires their scattering cross-section with the medium pions and other particles. Given
the scattering amplitudes one can proceed to kinetic simulations following individual particles, or
employ kinetic theory to compute transport coefficients that can be input to bulk hydrodynamic
simulations.

In this article we will be concerned with charmed mesons, of more immediate interest, although
the theory developed can immediately be applied to bottomed mesons too, which we will leave for a
future application.

The scattering amplitudes or cross-sections for heavy mesons cannot be directly accessed by
experiment (since the short life of thesemesonsmakes impossible to focus beams of them on a target)
so their knowledge requires theory constraints. In the past [1] cross-sectionswere only guessed on the
basis of constituent quark counting. Since σpp is about 40mbarn and σψN about 2mbarn, this counting
leads to a charm quark–light quark scattering cross-section which is σcq ≃ 0.3 mbarn, much smaller
than σqq ≃ 4 mbarn, leading to σDπ ≃ 9 mbarn.

As we will see, this old reasoning is not too much off the mark, but the cross-sections can now be
accessed with more reliable theoretical methods [2–8], combining chiral perturbation theory, heavy
quark effective theory, and unitarity.

Given the renewed experimental interest, it appears that several theoretical groups have simul-
taneously been attempting to extract the transport coefficients from the increased understanding of
hadron–hadron interactions.

1.1. Current theoretical understanding and setup

The work of Laine [9] employs canonical perturbation theory in HQET and ChPT and thus focuses
on the lowest possible temperatures. Two simultaneous papers of He et al. [10] and of Ghosh et al. [11]
have attempted to reach higher temperatures, close to the crossover to the quark and gluon plasma,
by including further species of particles (K and ηmesons or nucleons).While the second combines the
perturbative approach of Laine with Born exchange terms, the first relies back on phenomenological
estimates of the cross-sections.

We feel that there is still room for our contribution. There are serious disagreements among the
three works cited. The extension of Ghosh et al. to higher energies does not include unitarity as
a guiding principle, thus likely overestimating the cross-section since the polynomial perturbative
expansion grows very fast with s.

By performing a state of the art computation of the pion-charmed hadron interactions, extending
the work of Laine and Ghosh et al. by providing both the canonical HQET+ChPT perturbation theory
and unitarity, and tying the unknown parameters to experimental D0 and D1 resonances, we believe
we have an interaction that is both solidly grounded in theory, and phenomenologically acceptable,
drawing from the best features of the extant works.

As the charm transport coefficients are concerned, we will consider the drag or friction force F
(variously denoted γ , η or A in the literature), and the two Γ0 and Γ1 momentum-space diffusion
coefficients. Other works have considered only isotropic drag and diffusion, in which case there is
only one diffusion coefficient also denoted as κ or B0. We do not make this hypothesis and provide
both coefficients corresponding to parallel and shear momentum transfers. Finally, in the p → 0
limit, wemake contact with the traditional kinetic theory and compute the space diffusion coefficient
Dx (again, sometimes denoted Ds in the literature, but we avoid this notation to prevent confusion
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with the meson of equal name). We find important to lift the hypothesis of isotropy because of the
interesting elliptic flow observable.

Finally we make an additional contribution, in the philosophy of fully exploiting heavy quark
effective theory (in addition to ChPT) as a starting point. In the heavy quark limit, theD andD∗ mesons
are degenerate and there are four (one spin-zero and three spin-one) propagating modes for the
charm quark in the pion medium. This has beenmissed by all existing approaches, that only attend to
D-propagation in-medium (Laine however considers both B and B∗ in the bottom sector, where the B∗

meson is stable under strong decays).
In the physical world the D∗ meson is unstable and decays to Dπ . However it does so with a small

width (given its closeness to threshold) and thus, for the duration of the hadron gas, expected to be of
the order of 5–10 fm/c at most, it propagates as a stable mode. To settle this point let us realize that,
for a particle to decay within 5 fm of its production point, its width has to be of order 40 MeV, which,
even after accounting for in-medium modifications (see Fig. 1 of [10]), is only reached for D∗ mesons
at temperatures of order the phase transition T ≃ 180 MeV, so that for the entire life of the hadron
gas both D and D∗ mesons need to be taken as elementary degrees of freedom.

We of course include the DD∗π interaction vertex in the effective Lagrangian. However we will
present computations in which the D∗ is thus included as an elementary particle (but also others
without it for ease of comparison with the recent computations). We will generically speak of the
passage of the charm quark through the pion medium, whether hadronized in a D or a D∗ meson. In
the heavy quark limit, the heavy quark is little affected by the specific nature of the light degrees of
freedom hadronizing around it.

Given these theory improvements, and the fact that the other groups have not found very large
effects from including strangeness or nucleons as explicit degrees of freedom in the hadron gas, we
will content ourselves with examining the contribution of pions. A priori one can expect pions to
provide the bulk of the charm-medium interaction, by their large multiplicity (typically one particle
of any other species for every ten pions).

We employ the Fokker–Planck formalism for a heavy Brownian particle subject to the
bombardment of the light pions in the medium. Our approximations will be sensible as long as the
momentum of the heavy particle remains smaller than its mass in natural units, so that p ≥ 2 GeV
is not accessible by our computation (although we show plots at higher momentum for ease of
comparison with future investigations addressing hard heavy flavors). Pairs of heavy quarks rapidly
drift apart and, by the time of the transition to the hadron phase, they are at least three fermi away
from each other and never rescatter in it (unless initially in a bound charmonium state). Since they
are very scarce, we neglect the interactions between charm pairs formed in different points of the
collision.

1.2. Experimental motivation

One could conceive hydrodynamic calculations of the quark–gluon plasma that would result in fits
of F , Γ0 and Γ1 to experimental data under certain assumptions on the initial distribution of heavy
quarks. The information gained would be very valuable to understand how strongly that plasma is
coupled, and perhaps restrict the possible initial state configurations.

However, the extraction of the coefficients is blurred by the hadron phase in the final state, as the
systemmust cool before total freeze out, and charm quarks propagating through the resulting hadron
mediumwill also suffer drag and diffusion. It is like trying to deduce the dispersive properties of a glass
with a beam of light going through an additional lens: both have to be simultaneously understood.

Existing data on nuclear suppression factors and elliptic flow (see Section 6 below) have already
been comparedwith standing calculationswithin the asymptotic quark–gluon plasma phase [12] and,
perhapsmore successfully, with amixed approach that includes resonances surviving into the plasma
phase [13].

Another observable that is being addressed in the literature is the transversemomentum spectrum
of the D mesons, that should be a rough thermometer of the phase transition [1], provided that the
effect of the final stage hadron phase does not blur all information out (it does not, as we will show in
this article).
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Table 1
Charged-average masses and experimental estimates [14] for
the strong widths of the D-meson resonances. Units are MeV.
Errors not quoted are about 1 MeV or less.

Meson JP M (MeV) Γ (MeV)

D 0− 1867 –
D∗ 1− 2008 1
D0 0+ 2360(40) 270(50)
D1 1+ 2422 22(5)
D1 1+ 2427(40) 380(150)
D2 2+ 2460 30

1.3. The D-meson spectrum

A charm quark propagating in the low temperature medium below the deconfinement phase
transition must do so confined in a hadron. In central heavy ion collisions the baryon number is very
small and can be neglected. Therefore one expects the charmquark to form aD-meson or an excitation
thereof. Let us briefly recall what experimental knowledge there is about the D-spectrum.

The ground state D-meson is as usual in meson spectroscopy a pseudoscalar JP = 0− with four
charge states +,−, 0, 0̄ (identified in the quark model as cd̄, dc̄ , cū and uc̄ respectively in a relative
s-wave with spins antiparallel). Since we neglect isospin-breaking terms, we can average the masses
over this quartet to obtainMD ≃ 1867 MeV.

This meson cannot decay by any strong process and we will take it to be absolutely stable.
The first excitation is the vector 1−D∗ meson whose mass average is MD∗ = 2008.5 MeV. In the

heavy quark limit thismeson should degenerate with theD, (and in fact this is seen by glancing higher
to the B-meson whose splitting to the B∗ is much smaller). This mass is barely above Dπ threshold, so
there is only this one strong decay channel, and it is very suppressed.

The width of the charged D∗ is estimated at 1 MeV, and that for the neutral partners has not been
measured but is consistent with Γ ≤ 2 MeV. This means that a D∗ has a mean lifetime in vacuum
of order 100–200 fm. Since the typical freeze-out time of a heavy ion collision is about 20 fm it
is not a bad first approximation to take the D∗ meson as also stable during the fireball’s lifetime:
there is ample room even in medium since the decay time is an order of magnitude larger than
the freeze-out time. As stated above, in-medium corrections do not alter the picture. Thus, most D∗

mesons decay after collisions have ceased. This approximation can be corrected if wished by taking
into account the in-medium inelastic process D∗

→ Dπ with Bose enhancement for the final-state
pion.

In agreement with quark model expectations, the next-higher excitations of the D system seem to
be a triplet and a singlet of positive parity, with spins 0+, 1+, 2+ and 1+ respectively, corresponding
to 2S+1LJ =3 PJ and 1P1. The two mesons with spin-one and positive parity must mix, and they do so
in an interesting manner: the one with lowest mass, D1(2420) becomes narrow and hence decoupled
from the natural s-wave decay channel D∗π , whereas the higher member D1(2430) is very broad and
seen in that configuration. The situation can be seen in Fig. 1 and in Table 1.

The remaining low-lying resonance, theD2, is again narrow. Since itsmass at 2460MeV is 600MeV
above the ground state Dmeson, and it is quite decoupled due to its moderate width of about 40MeV,
we do not expect this (nor the D1(2420)) to play an important role at small temperatures.

Thus a sensible approach to charm propagation in a heavy ion collision after the phase transition
to a hadron gas has occurred, is to take the D and D∗ mesons as absolutely stable degrees of freedom
for the c-quark, that in collision with the in-medium pions they rescatter into the resonances D0 and
D1(2430).

The experimental knowledge of the resonances D0 and D1 sufficiently constrains the low-energy
effective Lagrangian density for cπ scattering so that we are in possession of a good approximation to
the cross-section.
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Fig. 1. The currently known low-lying D-meson system. The negative parity state D and D∗ are represented as the blue lines.
The four positive parity states have the mass measurement spread throughout the red boxes, while the hollow black boxes
represent current estimates of their width. s-wave pion decays are depicted. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

2. The Fokker–Planck equation

2.1. Derivation

Themomentum-space distribution of charm quarks withmomentum p, fc(p), is not in equilibrium
when the hadron phase of a heavy ion collision forms, and must relax via a Boltzmann equation.

dfc(p)
dt

= C[fc(p)], (1)

The right hand side is called the collision operator, because it describes kinetic collisions of the
charmed particles. The left-hand side, in the absence of external forces, is the advective derivative

∂ fc(p)
∂t

+ v · ∇⃗xfc(p) =

[
∂ fc(p)
∂t

]
coll
. (2)

The density of D and D∗ mesons being very small, we can neglect collisions between D mesons
themselves and concentrate only on the interaction of these charmed mesons with the pion bath,
assumed in thermal equilibrium.

The bath’s distribution function fπ (q) is hence the Bose–Einstein function. Moreover, the gas is
assumed homogeneous and the distribution does not depend on x. For this reason one can average the
Boltzmann equation over the collision volume and understand the one-particle distribution function
for the charmed mesons as the average

fc(t, p) ≡
1
V

∫
dx fc(t, x, p). (3)

The averaged Boltzmann equation becomes then

∂ fc(t, p)
∂t

=

[
∂ fc(t, p)
∂t

]
coll
. (4)
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Charmed mesons may enter and exit the momentum element dp around p by collisions with the
pion bath, so the collision term has two parts associated with gains and losses.

Gains in the momentum distribution around p are proportional to the probability density around
(p + k) times the probability of transferring momentum k from the charmed meson to the bath. It
is therefore convenient to define a collision rate w(p, k) for a charmed meson with initial and final
momenta p and p − k, respectively.

Conversely, losses are proportional to the distribution function around p times the probability of
transferring momentum k to the pion bath.

In principle, the Boltzmann equation should be treated as a quantum Boltzmann–Uehling–
Uhlenbeck equation taking into account Bose enhancement effect in the final state,with factors (1+fc)
that encode the increased probability of a charmed meson scattering into an already occupied state,

∂ fc(t, p)
∂t

=

∫
dk{fc(t, p + k)w(p + k, k)[1 + fc(t, p)]

− fc(t, p)w(p, k)[1 + fc(t, p − k)]}. (5)

However, as the number of c-quarks is very small, we can approximate 1 + fc(t, p) ≈ 1 inside
the collision operator in practice. This approximation however is probably not valid for the pion
distribution function and we keep the (1 + fπ ) factor in Eq. (7) below. As the charmed mesons are
concerned, a classical Boltzmann equation should however be very accurate,

∂ fc(t, p)
∂t

=

∫
dk[fc(t, p + k)w(p + k, k)− fc(t, p)w(p, k)]. (6)

In turn the collision rate can be spelled out in terms of the Lorentz invariant charm quark–pion
scattering amplitude,

w(p, k) = gπ

∫
dq
(2π)9

fπ (q)[1 + fπ (q + k)]
1

2Eπq

1
2Ec

p

1
2Eπq+k

1
2Ec

p−k

× (2π)4δ(Ec
p + Eπq − Ec

p−k − Eπq+k)
−

|Mπc(s, t, χ)|2 (7)

(gπ = 3 is the pion isospin degeneracy, and χ denotes the possible spin degrees of freedom, active
if the c quark finds itself inside a D∗ meson). The scattering amplitude M is normalized according to
standard covariant convention [14]. Note that equation (7) of [10] differs by the Bose enhancement
factor (1 + fπ ) for the pion exiting the collision. We believe that in the temperature range of mπ ≃

T ≃ 150 MeV that we (and those authors) treat, this enhancement should not be neglected.
The Boltzmann equation in this case reduces to a much simpler Fokker–Planck equation because

the mass of the D and D∗ mesons carrying the c-quark is much greater than the mass of the pions and
the temperature of the heat bath. Then, the scale of momentum for which there is a significant change
of fc(p)with themomentum of the Dmeson |p| is greater than the typical transferredmomentum |k|,
that is of the order of T :

|p|fc ≫ |k| ∼ T ∼ 150 MeV. (8)

Because of this separation of scales, it is natural to expand the collision rate inside the collision
operator respect to its first argument p + k,

wf ≡ w(p + k, k) fc(t, p + k) = w(p, k)fc(t, p)+ ki
∂

∂pi
(wf )+

1
2
kikj

∂2

∂pi∂pj
(wf ) . . . (9)

with i, j = 1, 2, 3. The collision integral reads, with this substitution,[
∂ fc(t, p)
∂t

]
coll

=

∫
dk

[
ki
∂

∂pi
+

1
2
kikj

∂2

∂pi∂pj

]
(wf ). (10)
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This suggests defining two auxiliary functions,

Fi(p) =

∫
dkw(p, k) ki, (11)

Γij(p) =
1
2

∫
dkw(p, k) kikj, (12)

whose classical interpretation is that of a drag force acting on the charmed particle, and the
autocorrelation of a random, Brownian force, as will be shown below in Appendix B.

Eq. (9) reduces to the Fokker–Planck equation

∂ fc(t, p)
∂t

=
∂

∂pi


Fi(p)fc(t, p)+

∂

∂pj
[Γij(p)fc(t, p)]


(13)

where meanwhile we can see that Fi behaves as a friction term representing the average momentum
change of the D meson and Γij acts as a diffusion coefficient in momentum space, as it forces a
broadening of the average momentum distribution of the D meson. This interpretation also falls-off
from the one-dimensional solution that we leave for Appendix A.

We will not find necessary to solve the three-dimensional Fokker–Planck equation for fc(p) in full,
but only to calculate the coefficients Fi and Γij that already encode the physics of charm drag and
diffusion.

2.2. Fi and Γij coefficients

In the ideal case where the pion gas is homogeneous and isotropic, and because the coefficients Fi
and Γij only depend on pi, they can be expressed as a function of three scalar functions by means of

Fi(p) = F(p2)pi, (14)

Γij(p) = Γ0(p2)∆ij + Γ1(p2)
pipj
p2
,

where

∆ij ≡ δij −
pipj
p2

(15)

satisfies the handy identity∆ij∆
ij

= 2.
We choose the momenta of the elastic collision between a charmed meson D or D∗ and a pion as

D(p)+ π(q) → D(p − k)+ π(q + k). (16)

The three scalar coefficients in Eq. (14) are then simple integrals over the interaction rate

F(p2) =
piFi
p2

=

∫
dkw(p, k)

kipi

p2
, (17)

Γ0(p2) =
1
2
∆ijΓ

ij
=

1
4

∫
dkw(p, k)

[
k2

−
(kipi)2

p2

]
,

Γ1(p2) =
pipj
p2
Γ ij

=
1
2

∫
dkw(p, k)

(kipi)2

p2
,

where the dynamics is fed-in by the scattering matrix elements |Mπc |. The choice of kinematic
integration variables and the reduction of these integrals is detailed in Appendix D.

We also remind the reader in Appendix B how the interpretation of the friction coefficient times
the quark momentum F p is that of an energy loss per unit length upon propagation of the charm
quark in the plasma, and how the loss of momentum per unit length is simply F E in terms of energy
and momentum of the charmed particle.
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After we numerically control the cross-section and scattering amplitude M for the charm quark in
thepionmedium,weevaluate the three transport coefficients and give the results in Section 5.2 below.
We quote there two different approximations. One in which the D∗ is neglected as a propagating
degree of freedom (akin to what can be found so far in the literature), and one in which the c-quark
can travel also as a D∗ meson (with slightly modified interaction and kinematics).

3. Effective Lagrangian for D, D∗ and π with ChPT and HQET

Now we construct the chiral Lagrangian density that describes the interactions between the
spin-zero and spin-one D-mesons and pseudoscalar Goldstone bosons. The leading order (LO) chiral
Lagrangian L(1) is given by [3–5],

L(1)
= ∇

µD∇µDĎ
− m2

DDD
Ď
− ∇

µD∗ν
∇µD∗Ď

ν + m2
DD

∗µD∗Ď
µ

+ ig(D∗µuµDĎ
− DuµD∗Ď

µ )+
g

2mD
(D∗

µuα∇βD∗Ď
ν − ∇βD∗

µuαD
∗Ď
ν )ε

µναβ , (18)

where D = (D0,D+,D+
s ) and D∗

µ = (D∗0,D∗+,D∗+
s )µ are the SU(3) anti-triplets of spin-zero and

spin-one D-mesons with the chiral limit massmD, respectively. We have also used the quantities
∇µ = ∂µ − Γµ,

Γµ =
1
2
(uĎ∂µu + u∂µuĎ),

uµ = i(uĎ∂µu − u∂µuĎ), (19)
where

u =
√
U = exp


iΦ

√
2F


(20)

is the unitary matrix incorporating the pseudoscalar Goldstone bosons,

Φ =


1

√
2
π0

+
1

√
6
η π+ K+

π−
−

1
√
2
π0

+
1

√
6
η K 0

K− K̄ 0
−

2
√
6
η

 . (21)

F in Eq. (20) is the Goldstone boson decay constant in chiral limit.
The NLO chiral Lagrangian L(2) reads

L(2)
= −h0DDĎ

⟨χ+⟩ + h1Dχ+DĎ
+ h2DDĎ

⟨uµuµ⟩ + h3DuµuµDĎ
+ h4∇µD∇νDĎ

⟨uµuν⟩

+ h5∇µD{uµ, uν}∇νDĎ
+ h̃0D∗µD∗Ď

µ ⟨χ+⟩ − h̃1D∗µχ+D∗Ď
µ − h̃2D∗µD∗Ď

µ ⟨uνuν⟩

− h̃3D∗µuνuνD∗Ď
µ − h̃4∇µD∗α

∇νD∗Ď
α ⟨uµuν⟩ − h̃5∇µD∗α

{uµ, uν}∇νD∗Ď
α . (22)

where
χ+ = uĎχuĎ + uχu, (23)

withχ = diag(m2
π ,m

2
π , 2m

2
K−m2

π ) being themassmatrix. The twelve parameters hi, h̃i (i = 0, . . . , 5)
are the low-energy constants (LECs), to be determined. However, we canmake use of some constraints
to reduce the set of free LECs. First, it should be noticed that in the limit of large number of colors (Nc) of
QCD [15], single-flavor trace interactions are dominant. So, we fix h0 = h2 = h4 = h̃0 = h̃2 = h̃4 = 0
henceforth. Besides, by imposing the heavy quark symmetry (as will become clear in Section 4.1
below), it follows that h̃i ≃ hi.

In the following, the lowest order of the perturbative expansion of the quantities Γµ, uµ and χ+

in Eqs. (18) and (22) is considered to construct the scattering matrix of the interactions between the
charmed mesons and the pseudoscalar Goldstone bosons.
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4. Scattering matrix for the c quark in the pion gas

From the Lagrangian in Eq. (18) we are able to obtain the scattering amplitudes V for D,D∗Φ →

D,D∗Φ processes. In Fig. 2 we show the tree-level diagrams constructed from the LO and NLO
interactions. These include both contact interactions and Born exchanges. The different scattering
channels are labeled as Va through Vd, where the subscripts refer to the scattering channels as follows

(a) : Dφ → Dφ,
(b) : D∗φ → Dφ
(c) : Dφ → D∗φ

(d) : D∗φ → D∗φ. (24)

Notice that, because of the scarcity of strange quarks in the heavy ion collision debris (kaon
multiplicity is 10% of typical pion multiplicity) we are interested only in channels involving the
scattering between charmed mesons and pions with total strangeness equal to zero. So then we can
simplify φ → π and write down the relevant amplitudes as

Va =
C0

4F 2
(s − u)+

2C1 m2
π

F 2
h1 +

2C2

F 2
h3(p2 · p4)

+
2C3

F 2
h5[(p1 · p2)(p3 · p4)+ (p1 · p4)(p2 · p3)]

+
2i g2

F 2
pµ2 [C4 Dµν(p1 + p2)+ C5 Dµν(p2 − p3)]pν4,

Vb =
i g2

mDF 2
[C4 pα2 (2p

β

1 + pβ2 )p4ρD
νρ(p1 + p2)

+ C5 pα4 (p
β

2 − pβ3 − pβ1 )p2ρD
νρ(p2 − p3)]εαβµνϵµ(p1),

Vc =
i g2

mDF 2
[C4 pα4 (p

β

1 + pβ2 + pβ3 )p2ρD
ρν(p1 + p2)

+ C5 pα2 (p
β

2 − 2pβ3 )p4ρD
νρ(p2 − p3)]εαβµνϵ∗µ(p3),

Vd = −


C0

4F 2
(s − u)+

2C1 m2
π

F 2
h̃1 +

2C2

F 2
h̃3(p2 · p4)

+
2C3

F 2
h̃5[(p1 · p2)(p3 · p4)+ (p1 · p4)(p2 · p3)]


ϵµ(p1)ϵ∗

µ(p3)

+
2i g2

F 2
[C4 D(p1 + p2)+ C5 D(p2 − p3)]p

µ

2 ϵµ(p1)p
ν
4ϵ

∗

ν (p3)

+
ig2

3m2
DF 2

[C6 pα2 (2p
β

1 + pβ2 )p
ρ

4 (p
σ
1 + pσ2 + pσ3 )D

νγ (p1 + p2)

+ C7 pα2 (p
β

2 − 2pβ3 )p
ρ

4 (p
σ
2 − pσ3 − pσ1 )D

νγ (p2 − p3)]εαβµνερσγ δϵµ(p1)ϵ∗δ(p3), (25)

where Ci (i = 0, . . . , 7) are the coefficients of the scattering amplitudes for Dπ,D∗π channels with
total isospin I , done in Table 2, andD(p),Dµν(p) are the propagators ofD andD∗-mesons, respectively,

D(p) =
i

p2 − m2
D
,

Dµν(p) =
−i

p2 − m∗2
D


ηµν −

pµpν

m∗2
D


. (26)

As the two particles in all amplitudes are distinguishable, there is no t-channel type contribution
(as e.g. in Compton scattering) with our relevant fields (open charm mesons and pions), and only
s and u-channel interactions appear. Between a D and a π one could exchange additional, closed
flavor resonances in the t-channel, but a quick examination makes clear that these contributions are
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Fig. 2. Tree-level diagrams relevant to the scattering amplitudes in Eq. (25). The solid, double and dashed lines represent the
D-mesons, D∗-mesons and Goldstone bosons, respectively.

Table 2
Coefficients of the scattering amplitudes for the Dπ,D∗π

channels with total isospin I in Eq. (25).

Constants I =
1
2 I =

3
2

C0 −2 1
C1 −1 −1
C2 1 1
C3 1 1
C4 3 0
C5

1
3

2
3

C6 3 0
C7

1
3

2
3

totally negligible. For example, f0 exchange, while having strong coupling to two pions, has negligible
coupling to two D mesons, so one of the vertices makes the amplitude very small. Similarly, J/ψt-
channel exchange is suppressed because of the small two-pion coupling of the very narrow state (and
similar for other, closed flavor resonances). It does not make sense to include these resonances while
neglecting higher order chiral and heavy quark corrections to the Dπ Lagrangian with the basic fields.

Finally ϵµ(p) is the polarization vector of the vector D∗-meson. If wewere to write the polarization
indices explicitly, ϵµ(p) ≡ ϵ

µ
λ (p), Vb ≡ Vbλ, Vc ≡ Vcλ, Vd ≡ Vdλλ′ , while Va remains a scalar as no

vector mesons appear.
The amplitudes Vb and Vc must be related by time reversal, since they encode D∗π → Dπ

and Dπ → D∗π respectively. Indeed, if one exchanges p1 by p3 and p2 by p4, and employs
energy–momentum conservation p1 + p2 = p3 + p4, they map onto each other as Vb → Vc , Vc → Vb.

4.1. Heavy quark symmetry

Manifesting the spin of the vector meson, but ignoring the isospin index, heavy quark symmetry
should manifest itself [9] by the transformation

δD = −α⃗ · D∗ (27)

δD∗
= α⃗D + α⃗ × D∗. (28)

The Lagrangian density in Eq. (22) has been constructed manifestly maintaining chiral symmetry,
that is then broken only carefully in perturbation theory upon expanding in fields and derivatives
to construct the LO and NLO chiral amplitudes.

However since the charmed quarks are heavy fields, one should recover the heavy quark symmetry
by takingmD → ∞.

Referring to our amplitude in Eq. (25), both Vb and Vc are of order 1/mD. To see it, one needs to
write the denominator of the propagator as

(p2 − m2
D)

−1
≃ ((p0 − mD)× 2mD)

−1
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and notice that in the numerator at most one of the momenta can take the value p0 ≃ mD because of
the antisymmetric Levi-Civita tensor: the other three four-vectors have to take spatial values to avoid
its vanishing. Therefore the term within brackets is of O(1) in the 1/mD counting and the explicit
factor of 1/mD in front of the bracket suppresses the term.

Thus, the spin-changing amplitudes D∗π → Dπ and Dπ → D∗π are of O(1/mD) and vanish in
the heavy quark limit as expected, a collision with a pion cannot change the heavy quark spin that
decouples.

Turning to the elastic D∗π → D∗π amplitude, we notice that the last bracket of Vd (carrying terms
proportional to C6 and C7) is also NLO in the heavy quark counting. We see that because of the two
Levi-Civita ε tensors, only one of the pair of α, β indices and only one of the pair ρ, σ can take the
value 0. Because of the explicit propagator of order 1/mD, the bracket is at most of order mD, and the
1/m2

D factor in front of it suppresses it.
The remaining part of the Vd amplitude is then equal to Va if we impose h̃i = hi aswe have, yielding

the expression of Heavy Quark Symmetry

Va(Dπ → Dπ) = −Vd(D∗π → D∗π),

(the polarization of the D∗ will be handed shortly). That is, in the infinitely heavy quark limit, the
charmed mesons propagate in four states (the D and the three polarizations of the vector D∗) that do
not mix with each other and have equal scattering rates with the pion gas.

In this limit, the masses mD = m∗

D and also the dynamical resonances accessible in the scattering
have equal massmD0 = mD1 and width ΓD0 = ΓD1 .

Further, the Born exchange piece (terms proportional to C4 and C5) in both Dπ and D∗π elastic
amplitudes is subleading in HQET. To demonstrate it, we expand the intermediatemeson propagators

iDµν(p1 + p2) =
1

(p1 + p2)2 − m2
D


ηµν −

(p1 + p2)µ(p1 + p2)ν

m2
D


≃

1
(p01)2 − m2

D + 2p01p
0
2 . . .


ηµν − δµ0δν0

p01p
0
1

m2
D


≃

1
2mDEπ2

(ηµν − δµ0δν0), (29)

suppressed bym−1
D as claimed.

The sum over polarizations also simplifies in the heavy quark limit. The vector-meson polarization
basis then becomes a conventional spacelike spin-one basis tied to a fixed reference frame, in the
Cartesian basis simply

ϵµ(p, λ) ≃ ϵµ(λ) = (0, êλ) (30)

satisfying the closure relation (µ = 0 and ν = 0 no more contributing)

3−
λ=1

ϵ i∗(λ)ϵ j(λ) = δij (31)

and an orthogonality relation

ϵ i(λ1)ϵ
i∗(λ3) = −δλ1λ3 (32)

with the minus sign from the spatial part of the metric. This sign cancels the explicit sign in front of
the brace of the first line of Vd in Eq. (25). Thus, the final amplitude for scattering off a heavy quark
in the pion gas, to next to leading order in the chiral expansion and leading order in the heavy quark
expansion, irrespective of whether the heavy quark is in a D or a D∗ meson, is given by

Va ≃
C0

4F 2
(s − u)+

2C1m2
π

F 2
h1 +

2C2

F 2
h3(p2 · p4)

+
2C3

F 2
h5[(p1 · p2)(p3 · p4)+ (p1 · p4)(p2 · p3)]. (33)
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The 1/mD pieces included in our amplitude equation (25) are of course not the complete amplitude
ofNLOheavy quark counting. It includes only those that are simultaneouslyNLO in the chiral counting;
we are dealing with a double series expansion of the total amplitude. Due to those corrections, and
also for our allowing the physical D, D∗ masses to be slightly different, the properties of the D0 and D1
are not precisely the same. However they are close enough for most purposes.

4.2. Unitarized scattering amplitude

Chiral perturbation theory amplitudes are by construction a series expansion (albeit with
logarithmic corrections and, in our case, Born termswith an intermediate propagator due to theDD∗π
coupling) and by their very nature are unable to describe excited elastic resonances (in our case, D0
and D1).
The key to understanding this limitation is to note that, at fixed order, ChPT violates unitarity as
momentum is increased. Therefore several strategies have been adopted to bypass the shortcoming,
such as the N/D method, the Inverse Amplitude Method, or the K -matrix method.

We pursue the simplest partial wave unitarization by employing on-shell factorization [16] which
is a nice feature of polynomial expansions and leads to algebraic formulas for the unitarized partial
wave amplitudes, capable of reproducing resonances. Our conventions for the expansion of the
perturbative Va and unitarized Ta amplitudes in terms of Legendre polynomials are

V l
a =

1
2

∫ 1

−1
dx Pl(x)Va(s, x) (34)

T l
a =

1
2

∫ 1

−1
dx Pl(x)Ta(s, x) (35)

where x ≡ cos θ and P0(x) = 1 and a is a channel index.
We proceed by projecting the perturbative amplitude into the s-wave, that dominates at low

energies because of the k2l+1 suppression of higherwaves, and is resonant at theD0 (forDπ scattering)
and D1 (for D∗π scattering), thus dominating the entire amplitude at moderate heavy quark velocities
(at higher velocities, boosting to the moving center of mass frame kinematically induces higher
waves). Thus the perturbative amplitude is substituted for

V l=0
a (s) =

1
2

∫ 1

−1
dxVa(s, t(x), u(s, t(x)))P0(x). (36)

The unitarized scalar amplitudes Ta decouple in leading order HQET and read (Eq. (12) of Roca
et al. [17])

T l=0
a (s) =

−V l=0
a (s)

1 − V l=0
a (s) Gl=0(s)

. (37)

This equation manifestly is a relativistic generalization of the Lippmann–Schwinger equation.
The factorized resolvent function is the standard one-loop integral

Gl=0(s) = i
∫

d4q
(2π)4

1
(P − q)2 − M2

D + iϵ
1

q2 − m2
π + iϵ

. (38)

We employ dimensional regularization of the divergent integral to read (Eq. (14) from Ref. [17])

Gl=0(s) =
1

16π2


a(µ)+ ln

M2
D

µ2
+

m2
π − M2

D + s
2s

ln
m2
π

M2
D

+
q

√
s
[ln(s − (M2

D − m2
π )+ 2q

√
s)+ ln(s + (M2

D − m2
π )+ 2q

√
s)

+ ln(s − (M2
D − m2

π )− 2q
√
s)− ln(s + (M2

D − m2
π )− 2q

√
s)− 2π i]


, (39)
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where the imaginary part of the logarithms above Dπ threshold reads

ℑ Gl=0(s) = −
q

8π
√
s
, (40)

with q the modulus of the pion’s three-momentum in the CM frame.
Introducing the conventional two-body phase space

ρπD(s) =


1 +

(mπ + mD)2

s

 
1 −

(mπ − mD)2

s


(41)

or, in terms of q,

ρπD(s) =
2q
√
s
, (42)

this imaginary part is

ℑ Gl=0(s) = −
ρπD(s)
16π

. (43)

With these ingredients it is straightforward to show that, by construction, the complex Ta’s satisfy
single-channel unitarity relations

ℑ T l=0
a (s) = −|T l=0

a (s)|2
ρπD(s)
16π2

(44)

(providing a convenient numerical check of our computer programs). The amplitude can be
parametrized in terms of the phase-shift

T I0
a (s) =

sin δI0(s)eiδI0(s)

ρπD(s)
, (45)

that are then extracted via

tan δI0(s) =
ℑ T I0(s)
ℜ T I0(s)

(46)

with I = 1/2, 3/2. (The tangent extraction should automatically resolve the phase-shift sign). Finally,
the isospin averaged amplitude for the LO-HQET decoupled single-channel problem becomes

|T a|
2

=
1
6
(2|T 1/2,0

a |
2
+ 4|T 3/2,0

a |
2). (47)

Heavy quark spin symmetry dictates that, whether D or D∗ in any spin state, the scattering cross-
section will be the same, and since an s-wave cannot flip the spin upon interaction, no further spin
averaging is needed in leading order HQET. One can then use−

|Mπc(s, t, χ)|2 = |T a|
2 (48)

in Eq. (7).
Going beyond LO in HQET we need to distinguish between Dπ → Dπ and D∗π → D∗π scattering.

To implement it, we assume that a charm quark propagates as a linear combination of both states

|c⟩ = α|D⟩ + β⃗ · |D∗
⟩. (49)

The moduli of the complex numbers α and βi are determined by thermal Bose–Einstein distribution
factors, since the mass difference between D and D∗ slightly suppresses the latter. We then average
over the relative (quasi-random) phases of α and β⃗ upon squaring to construct

∑
|Mπc(s, t, χ)|2.
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For ease of comparison with other systems, we will also quote numerical results for the cross-
sections given by

σ(s)πD =
1

16πs
|MπD|

2 (50)

and

σ(s)πD∗ =
1

16πs
|MπD∗ |

2, (51)

although what is substituted in the Fokker–Planck integrals is the squared matrix element of M.

4.3. Value of the low-energy constants

In the philosophy of low-energy effective theories, after all the symmetries have been used to
constrain the Lagrangian density, the remaining free constants have to be fit to experimental data.
Eventually these constants should also be accessible to lattice QCD.

To the order that we areworking, the pion decay constant in the chiral limit F can be approximated
by its physical value, fπ = 92 MeV, the difference being of one higher order in the chiral expansion.

The renormalization scale for the NLO ChPT constants is to be understood as µ = 770 MeV, and
the scheme is such that the subtraction constant a(µ) = 1.85 is fixed as in Oset et al. [17].

The authors of Ref. [5] quote a value of g = 1177 ± 137 MeV for the heavy–light pseudoscalar-
vector coupling constant g , that can be obtained by reproducing the decay of D∗+-mesons. We
reproduce this elementary calculation with the Lagrangian density in Eq. (18) and obtain

Γ = g2
|pπ |

3/(12πF 2M2
D∗) (52)

in agreement with [5], whose value and error band we adopt.
In his recent paper [9], Laine quotes the value gπ ∼ 0.5 for his effective Lagrangian. This Lagrangian

is worked out in detail in the textbook of Manohar and Wise [18], where they quote an early value of
gπ = 0.42 from a lattice Monte Carlo simulation by the UKQCD Collaboration.

However both references employ a representation based on a heavy-hadron spinor field Ha with
dimension 3/2,whereas in our Lagrangian theD-field’s dimension is 1. For these reason their gπ has no
dimension whereas our g has dimension = 1. Direct comparison in the Lagrangian is not transparent,
but instead one can easily compare theD∗ tree-level decaywidth, and find the relation among the two
couplings. The decay width employing the convention of Manohar and Wise reads

Γ = g2
π |pπ |

3/(6πF 2)

yielding g =
√
2gπMD∗ ∼ 1190 MeV, in agreement with the value from [5].

Turning now to the NLO constants, we have repeatedly stated that h̃i = hi is a requirement of
heavy quark symmetry tying the D and D∗ amplitudes at LO in heavy quark effective theory. We, in
this article, set therefore h̃i − hi = 0 from the start. Likewise we have set h0 = h2 = h4 = 0 based
purely on large-Nc counting. These constants well deserve being revisited in future work, but we are
content here with accepting a 1/Nc systematic error as customary in the current literature.

Another useful constraint is offered by the mass differences between the D-mesons [3,5], which
fixes h1 ≈ −0.45. Thus, the remaining free LECs to be estimated are h3 and h5.We have at our disposal,
in theDπ channel corresponding to the Ta scattering amplitude, twopieces of knowndata (theD0 mass
and width) to which we can tie h3 and h5. If a calculation including the subleading order in HQET is
performed, then theD1 andD0 parameters differ and the constants become overconstrained by known
data. We will find in Section 5 that reasonable values are (h3, h5) = (7 ± 2,−0.5 ± 0.2 GeV−2)with
correlated errors, that is, an increased h3 needs to be used with a more negative h5.

A word of caution seems convenient about the numerical value of h3 and h5. In [4] it has been
proposed that h5 = (h′

5/m
2
D) ∼ O(1/m2

D) since h′

5 is assumed there to be of order 1. However we
think this is unnaturally small and that h5 = O(g2/Λ2

QCD) should be expected.1 Our reasoning is

1 We thank Feng-Kun Guo for warm discussion on this point after sending him our first preprint.



L.M. Abreu et al. / Annals of Physics 326 (2011) 2737–2772 2751

based on resonance saturation. Instead of unitarizing the amplitude and fitting the constants to the
dynamically generated resonances, we could have introduced the resonances as additional fields and
eliminated them from the low-energy theory [19] by employing

g
−i

p2 − m2
D0

g →
ig2

(mD + mπ )2 − m2
D0

near threshold. It is clear that the denominator is proportional to the off-shellness of theD0 resonance
and not to its total mass. Of course, the analogous quantities coincide in the traditional case of ππ
scattering since pions are so light as compared to the ρ for example, mπ = 138 MeV ≪ mρ =

770 MeV. Then pππ ≃ 0. However the mass of the ground state charmed meson cannot be neglected
in D-pion scattering and the low-energy constants do not vanish in the heavy quark limit. Thus we
would expect the denominator to be of orderΛ2

QCD or at most mπmD (but not m2
D).

Actually we think that the issue has to do with the order of the limits. If one takes first the limit
mπ → 0 (and later studies the expansion around mc → ∞) then the denominator is proportional
to m2

D0
− m2

D ∝ Λ2
QCD. However if first mc → ∞ is taken with mπ held fixed, then the term of order

mDmπ remains (note this term is of the form ∞ × 0 and the double limit would have to be resolved).
Some additional discussion about the hi constants can be found in a recent paper in the heavy quark

limit [20]. We think that this issue is far from solved and deserves being revisited in a future work.
Since our goal is to provide an estimate of transport coefficients for physical values of mD and mπ ,
the precise scaling behavior of these constants is not of urgent need. However, their extraction from
lattice computations assisted by effective theories will need this scaling clarified.

5. Numerical results

5.1. Cross-section for Dπ elastic scattering

We now present numeric computations of the unitarized and squared amplitudes in Eq. (37), and
of the cross-section.

In the first place, and to compare with the work of Gamermann and Oset [6], we keep only the
(s− u) term in the Dπ elastic amplitude Va. The square amplitudes with isospin I = 1/2 and I = 3/2
and l = 0 are depicted in Fig. 3. The figure shows how the exotic I = 3/2 is non-resonant (this will
also be the case for all the calculations presented below), which could have been guessed because no
qq state exists with such isospin, so there is no intrinsic strength at low energies in exotic waves.
The non-exotic I = 1/2 channel presents a clear s-wave resonance, with approximate mass and
width M ≃ 2140 MeV and Γ ≃ 170 MeV. These values are somewhat too low if compared with
the experimental MD0 = 2360(40) MeV and ΓD0 = 270(50) MeV taken from the Review of Particle
Physics.

We do not deem this a problem since there is room for theNLO terms containing the hi constants to
modify the computation. But how can then Gamermann and Oset obtain reasonable agreement with
the experimental state, employing only the leading order amplitude in ChPT?

We believe to have identified the reason in their substituting one of the powers of fπ by fD,
C0(s − u)

4f 2π
→

C0(s − u)
4fπ fD

.

This suppresses the strength of Va such that Ta saturates unitarity at a higher center of mass–energy√
s, in better agreement with experimental data. Reducing Va by a factor 2 displaces the maximum of

the cross-section to about 2320 MeV with width about 250 MeV.
The substitution of fπ by fD can be tracked to those authors employing SU(4) symmetry to construct

the effective Lagrangian, treating D mesons on equal footing with pions. However we believe this is
a questionable procedure since SU(4) is not even an approximate symmetry, and we have instead
constructed the chiral coupling of pions to the heavy D-meson source.

The LO interaction is therefore somewhat too strong in our case. We could weaken it by modifying
the subtraction constant of the loop function a(µ), but instead we proceed to the next order in chiral
perturbation theory, which should be equivalent as shifts in a(µ) should be absorbed in the NLO hi
constants.
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Fig. 3. Top: square amplitudes for Dπs-wave elastic scattering employing only the (s− u) term of the interaction potential Va
(as in Gamermann and Oset). Bottom: isospin averaged cross-section associated to those amplitudes.

Next we add one by one the NLO constants h1, h3, h5. Because the h1 term does not increase with
momentum, but is multiplied by a smallm2

π constant, it does not change the amplitudes appreciably.
We include it but do not discuss it any further.

We examine then the sensitivity to h3 in Fig. 4. For small, positive values of h3 the D0 peak moves
to larger masses, with h3 = 2 the shift is of order 50 MeV. The resonance also becomes broader. Then,
for larger values h3 ≥ 3, the mass starts falling again, and a cancelation with the s − u term sets in,
forcing a zero of the amplitude at energies 2.5 GeV or above.

If we now add the h5 term, we observe that its presence (if the sign is chosen negative as in Guo
et al., for example h5 = −0.25 GeV−2) narrows the resonance shifting it to slightly lower masses. If
positive, h5 forces a cancelation (as did a large h3) giving a zero near threshold (for h5 ≃ 1 GeV−2,
h3 ≃ 2) or at 2.4 GeV and above (for the same h3 but h5 ≃ 0.25–0.5 GeV−2).

Therefore a strategy to improve agreement with the experimental D0 data is to combine a positive
h3 with a negative h5 to increase the resonance mass without distorting the line-shape unacceptably.

Our best computation is then shown in Fig. 5.
The maximum of the squared amplitude, employing (h3, h5) = (7,−0.5 GeV−2) as central value,

gives a reasonable MD0 = 2300 MeV, just slightly below the experimental value, and a width
just slightly above Γ = 350 MeV. The two parameters are very correlated, so that varying one
significantly requires varying the other simultaneously to maintain reasonable agreement with the
experimental resonance. Shown in the figure are two more lines with the error band∆h3 = ±2 and
∆h5 = ±0.2 GeV−2. It is this squared amplitude, leading order in heavy quark effective theory, that
we adopt in our Fokker–Planck equation for the transport coefficients.
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Fig. 4. Squared isospin 1/2 amplitude for Dπ scattering for various values of h3 , from top to bottom being 0, 1, 2, 3, 4. In this
graph h5 is kept fixed at zero.
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Fig. 6. Cross-section for Dπ elastic scattering with (h3, h5) = (7,−0.5 GeV−2) (central value).

Although the diffusion and drag coefficients require the | M|
2 square amplitude, it is convenient

for the discussion to also plot the resulting cross-section, which we do in Fig. 6.
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Fig. 7. Effect of adding the hi counterterms to the s − u basic Dπ amplitude for isospin 3/2.
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Fig. 8. Effect of including the Born terms associated with the D∗ . The bottom line (purple) is the cross-section associated to the
Born term alone, as in the model of [11]. The top line (red squares) is the resulting cross-section combining the Born termwith
the contact terms, without modifying the hi constants from Fig. 6, and then unitarizing. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

The maximum of the cross-section is about 13.5 ± 1 mbarn, and for the entire range of center of
mass energies

√
s ∈ (2 − 3) GeV we find σ ≥ 5 mbarn. In fact, for a large window between 2.1 and

2.5 GeV we have σ ≥ 10 mbarn, which is slightly larger but in reasonable agreement with the guess
by the authors of [10], that assume 7–10 mbarn, or by Svetitsky and Uziel [1] of 9 mbarn.

For the sake of completeness, we separately quote the effect of adding the hi constants on the non-
resonant isospin 3/2Dπ elastic amplitude. The corresponding plot is number 7.

As can be seen in the figure, the effect is moderate at all energies.
Next, we proceed to the next-to-leading order in heavy quark effective theory. We only consider

for now the Born s and t-channel exchange terms due to D∗ exchange between the Dπ pair.
The effect of adding these terms is akin to making h5 more negative, that is, a narrowing of the D0
resonance, as shown in Fig. 8.

However, a renormalization of the hi constants effectively brings back the pole position in better
agreement with experimental data. We now refer the reader to Fig. 9. Shown in the figure are lines
with (h3, h5) = (7.5 ± 2.5, 0.4 ± 0.3 GeV−2), together with the result of Fig. 6 without including
the Born terms. As can be seen, the effect of the D∗ exchanges can be largely absorbed in the hi
counterterms (for fixed mc mass of course, since they scale differently) so we will ignore the Born
terms in this computation. However a certain uncertainty should be understood, of order 30% in the
cross-section, that could be larger than our estimate in the region of the D0 resonance.
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Fig. 9. Effect of including the Born terms associated with the D∗ , but leaving the hi coefficients free. The red, solid line is the
central value with h3 = 8, h5 = 0.35 GeV−2 . The black, dashed line coincides with the cross-section in Fig. 6 without the
Born terms. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 10. Elastic cross-section for D∗π scattering computed replacing mD by m∗

D in Fig. 6. The resonance should now be
interpreted as the broad D1(2427).

It is also worth commenting that the addition of the Born terms causes a dip in the high-mass
Dπ spectrum that can be brought down by minimum changes in the hi parameters. Since we do not
think that such an interference dip between D∗ Born exchange and the D0 tail has been reported
in experimental data, we keep the contact parameters in a band such as not seeing this dip in the
momentum range of relevance.

Finally, we return to the computation in Fig. 6, but substitute mD by m∗

D (an NLO effect in HQET)
as only modification to obtain Vd instead of Va. We interpret the resulting cross-section as that
corresponding to D∗π scattering, and plot the result in Fig. 10. The cross-section including both 1/2
and 3/2 isospin channels is clearly resonant, with the D1 well visible. As was the case for the D0, the
mass is slightly below the data. The cross-section peak is about 15 mbarn.

Thus we have performed an exhaustive study of the LO-HQET interaction and now proceed to
compute transport coefficients equipped with the interaction leading to Figs. 6 and 10.

5.2. Diffusion and drag coefficients

Wenow proceed to computing, with the square amplitude so numerically computed, the F , Γ0 and
Γ1 transport coefficients. The three panels of Fig. 11 shows them as function of squared momentum
p2 for fixed temperature T = 150 MeV. One should not trust these results above charm momenta of
order p = 1.5 GeV, but we spell them out for completeness.
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Fig. 11. We show all three coefficients in the Fokker–Planck equation as a function of charm quark momentum, at a reference
temperature of 150 MeV in the pion gas. The low-energy constants in the Dπ → Dπ amplitude are fixed to h1 = −0.45,
g = 1177 MeV, and h3 and h5 fit to describe the mass and width of the D0 resonance. Top: F including and not including the
possible propagation of the c quark as a D∗ meson. Middle: Γ0 and Γ1 including D-like propagation alone. Bottom: Γ0 and Γ1
including also propagation as a D∗ meson.

In the top panel of this figure we show the drag coefficient F(p) in fm−1, which exhibits a
momentum dependence of about 10% within the range of p ∈ (0, 2.5) GeV. From this coefficient
one can extract the relaxation length for a charm quark propagating in the pion medium that turns
out to be around 40 fm at p = 1 GeV.

Quite strikingly, one can see in the figure that Γ0 has a very mild momentum dependence, its
value can very well be approximated by a constant for the entire momentum range. Γ1 is seen to
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Fig. 12. Momentum-space drag coefficient as function of temperature for a stopped charm quark in the hadron gas. We obtain
the coefficient by employing the Einstein relation in taking the limit of p → 0.

Table 3
Value of the drag coefficient at p → 0 and T = 100 MeV.

Authors F (fm−1)

Laine 0.05
He, Fries, Rapp 5 × 10−3

Ghosh et al. 0.11
This work 3.5 × 10−3

growwithmomentum, increasing the difference Γ1 −Γ0, and thus favoring diffusion at higher typical
momenta.

In Figs. 12 and 13 we show the dependence with the temperature of the drag coefficient at fixed
momentum. Since the direct computation of F(p2 → 0) is rather unstable, the plot in Fig. 12 is
computed from Γ by employing the Einstein relation, Eq. (103) in the Appendix C.

The drag coefficient is seen to increase by a factor of about 4 in the range from 100 to 150 MeV, so
that most of the drag in a heavy ion collision is expected in the hotter stages, with the charm quarks
freezing out progressively until they freely stream outwards till they decay.

We compare with other authors, choosing a reference temperature of 100 MeV where all existing
works make a statement, and show the drag coefficient for each recent work in Table 3. It can be seen
that the phenomenologicalmodel of He, Fries and Rapp is of the same order ofmagnitude of our result,
with Ghosh et al. and Laine quoting amuch larger value in their Fig. 2, and Laine a smaller value by one
order of magnitude.We believe that we have a larger control of the charm-pion scattering amplitudes
at moderate temperatures, but the reader would be cautious to employ a factor 2 as error band to our
result.

The spatial diffusion coefficient is then plotted in Fig. 14 as function of temperature.
At low temperatures it correctly takes the non-relativistic limit

Dx =
3T 3/2

σP
√
m

(53)

with m the particle mass, σ the cross-section, and P the pion gas pressure, that is temperature
dependent. We also note that, during the lifetime of the pion gas after the crossover from the
quark–gluon plasma phase, the interactions between pions are almost entirely elastic, so that pion
number is effectively conserved and one should introduce a pion chemical potential, not included in
the very recent works by other groups. Introducing this approximate pion chemical potential µ,

P ∝ m3/2
π T 5/2e

µ−mπ
T (54)

makes the product TDx diverge at low temperature and vanishing chemical potential (which just
means that gas particles are too cold and slow to stop the charm quark from diffusively moving inside
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Fig. 13. Momentum-space drag and diffusion coefficients as function of temperature for a slow charm quark with momentum
p = 1 GeV, 0.6 GeV, 0.3 GeV and 0.1 GeV. Note that the intensity of the drag force is roughly proportional to the temperature.

the pion gas). However, at chemical equilibrium with µ → mπ (that is not expected in the hadron
phase of a heavy ion collision, but is relevant to make contact with the non-relativistic limit), the
exponential becomes unity and TDx becomes a constant at low temperature. We further show the
effect of this pion chemical potential in Fig. 15.

We find the effect sizable. At a reference temperature of 120 MeV, the ratio between Dx atµπ = 0
and µπ = 138 MeV is a factor of about 5.

To assist in the physical interpretation of these results, we have plotted in Figs. 16 and 17 the loss
of energy and momentum per unit length discussed in Appendix C and derived from our results for
the drag coefficient F , for various momenta p2.
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Fig. 14. Spatial diffusion coefficient as a function of temperature.

Fig. 15. Same as in Fig. 14 but as a function of the chemical potential.

Fig. 16. Loss of energy of a charmedmeson as function of the energy in a pion gas at a fixed temperature of 150MeV, assuming
it can travel as a D or a D∗ meson during the few fermi of the gas’s lifetime.

From Fig. 17 one can estimate that a reference charm quark in a D or D∗ meson with momentum
1 GeV measured in the rest frame of the pion fluid surrounding it, will deposit about 50 MeV per
fermi traveled in the fluid. Thus, if the pion gas is in existence for, say, 4 fm, the D meson measured
in the final state with a momentum of 800 MeV will have been emitted from the quark–gluon plasma
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Fig. 17. Loss of momentum per unit length as function of momentum of a charmed meson in a pion gas, same as in Fig. 16.

Fig. 18. A dimensionless ratio with the viscosity over entropy density, proposed in Ref. [13]. The top dashed line corresponds
to a ‘‘weakly coupled’’ quark–gluon plasma, the bottom line to a ‘‘strongly coupled’’ quark–gluon plasma. The solid line at the
bottom, for charm propagating in our pion gas, is more suggestive of the second than of the first.

phase with a GeV. This result is similar to the 20% effect recently quoted by He et al. [10] and means
that, while the D and D∗ mesons can be used as probes of the quark–gluon plasma, their distributions
should be shifted up in momentum (or alternatively both the quark–gluon plasma and hadron phases
have to be treated in hydrodynamic simulations).

The authors of Ref. [13] proposed to divide the temperature times the spatial diffusion coefficient
by the shear viscosity over entropy density ratio η/s, producing a dimensionless quantity that should
give an idea of how strongly coupled is the quark–gluon plasma, and they quote two estimates based
on AdS-CFT that we plot in Fig. 18. In the figure we also plot our computation based on charm quarks
traveling through the pion gas, together with our computation of viscosity over entropy density in
the pion gas presented in [21]. It seems that, according to this criterion, the charm quark is somewhat
strongly coupled to the pion gas, although it is not clear what the precise value of these AdS-CFT based
estimates is.

6. Experimental discussion

While we are not directly computing the experimentally observed quantities in this article, it is
worth looking ahead onto what impact our results have for the heavy ion collision program at RHIC
and at the LHC.

A commonly quoted observable is the nuclear suppression factor RAA obtained by dividing the
number of electrons from heavy meson decays in a nucleus–nucleus collision by the number in
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proton–proton collisions times the number of constituent nucleons,

RAA =
NAA

A2 × Npp
.

At high pT of order 5–7 GeV this ratio reaches 0.3, showing substantial effects due to the medium. At
low transversemomentumup to 2GeV this suppression factor is close to 1 (small effect). At the lowest
pT of few hundredMeV the ratio is even larger than unity, there being an enhancement of the number
of heavy mesons in ion–ion collisions [22] over proton–proton. This pile-up of heavy mesons at low
momentum can be interpreted as they being slowed down by the medium. The F and Γ1 coefficients
are relevant for this process, with Γ1 broadening the pT distribution and F equating the velocity of
the heavy quarks to the velocity of the fluid medium that they are crossing, as can be seen in Eq. (58)
below.

Another important observable is the elliptic flow [23] ν2 defined by the distribution of particles
with the azimuthal angle φ taken around the collision axis, with the collision plane at φ = 0,

1
N

dN
dφ

=
1
2π
(1 + 2ν1 cosφ + 2ν2 cos 2φ + · · ·).

Substantial elliptic flow for heavy flavored mesons has been measured at RHIC [22], meaning that
the heavy quarks are partly equilibrating with the medium. This elliptic flow can potentially provide
sensitivity to the combination of diffusion coefficients Γ1 − Γ0. In Section 5.2 we showed that this
difference grows with quark momentum, which may help explain why the elliptic flow grows in the
pT 0–2 GeV range.

As for the actual spectrum of D-mesons deduced by STAR [24], although the errors are very large,
they quote an average velocity of β = 0.35–0.47, sufficiently smaller than 1 to make HQET a
reasonable starting point, especially taking into account that part of this velocity is due to the local
fluid rest frame being in motion in the laboratory frame, with the actual charm velocity respect to
that Eulerian frame being even smaller. The STAR collaboration also quotes a rough temperature of
120 MeV as fitting their spectrum, but given that they have only three points in the plot and the large
error bars, a larger temperature (or a poor thermal fit) would not be surprising at all. We should wait
for future data to clarify this point.

These observables have not yet been provided by direct reconstruction of theD or Bmesons (maybe
ALICE can provide a measurement with its Internal Tracking System assisting the secondary vertex
reconstruction), but indirectlywithmeasurements of the (presumed) secondary electrons fromheavy
flavor decays. Copious D-meson counts have already been informally reported in the Kπ and Kππ
channel and we look forward to the publication of this data.

However we feel that the measurements are very encouraging and that we should expect these
charm drag and diffusion coefficients to become accessible. Then it will be necessary to disentangle
the conventional diffusion in the hadron phase from the more exotic quark and gluon phases, and
our results will be useful here insofar as they greatly reduce the uncertainty in the hadron, low
temperature phase.

In Fig. 20 of the appendix we show the solution to a one-dimensional version of the Fokker–Planck
equation that comes handy for this discussion (assuming mid-rapidity and no azimuthal flow, the
charm diffusion, although more complicated, is reminiscent of that one-dimensional case).

From that figure one can see that if the initial distribution of charm quarks would peak at some
p0 ∈ (1, 2) GeV, for every femtometer spent in the pion gas, the charm quark distribution would peak
50 MeV lower (friction), and the distribution would be about 100 MeV broader (diffusion).

In fact, the ALICE collaboration has already published an analysis for proton–proton collisions to
serve as benchmark [25] for what is to come in Pb–Pb. As usual, themid-rapidity ptD-meson spectrum
has an exponential shape[

dN
dpt

]
y<0.5

∝ e−
pt
Λ (55)

with a scale Λ ≃ 1.5 GeV and it will be interesting to convolute our Fokker–Planck kernel with this
input experimental spectrum.
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Fig. 19. We compare our computation of the diffusion coefficient with other estimates. The possibility of a minimum of the
charm relaxation time at the phase transition seems to bewell possible. The leftmost dashed line is pure perturbation theory [9],
to which our result seems to tend asymptotically at low temperature. In addition, we have plotted two curves below and above
the crossover [10,26].

7. Summary and conclusions

If we take 150 MeV as the highest temperature at which our approach is reliable (as we do not
include strange mesons), and we examine a charm quark traveling as a meson with momentum
1 GeV, the relaxation length read off from the top plot in Fig. 11 is

λc(p = 1 GeV, T = 150 MeV) ≃
1

0.025 fm
= 40 fm.

This is much larger than the expected lifetime of the hadron gas λ ≃ 5–10 fm. He, Fries and Rapp have
reported relaxation times as short as 25–40 fm in the 150–180 MeV region, in good agreement with
our estimate. It should be taken into account that the hadron gas cools down to lower temperatures in
the last stages, with longer relaxation times. Thus, charm quarks will not completely relax during the
lifetime of the pion gas and will indeed carry information from the crossover from the quark–gluon
plasma phase.

In Fig. 19 we show a comparison of our computation with the best existing ones and with the
estimate of [13] that employs a mixed plasma plus resonance approach above the crossover. All
existing information points out to that the minimum relaxation time of the charm quark happens
around the phase crossover, where the interactions also have longest range and intensity. Thus charm
quarks can be potentially used as a probe of the phase transition if theoretical uncertainties on the
hadron gas side can be reduced. We believe that we have produced a very reliable estimate of the
hadron coefficients in the temperature region T ≤ 150 MeV.2

Laine finds a formula for the momentum-space diffusion coefficient

Γ0 ∝
T 7

f 4π
provided that mπ/π ≪ T ≪ fπ , which is a very restrictive range of temperatures around 60 MeV.
We have shown that this growth with temperature is way too fast and that properly unitarizing the
interaction tames this high power of the temperature.We also qualify the statement that, in this range,
the coefficients are dependent only on the pion mass and decay constant; this should be understood
as valid in the infinite quark mass limit, while in the charm sector we find that the m∗

D − mD mass
difference brings about non-negligible corrections.

2 Our numerical data for scattering amplitudes or transport coefficients is at the disposal of interested colleagues who want
to pursue kinetic or hydrodynamic simulations by contacting fllanes@fis.ucm.es or j.torres@fis.ucm.es.

mailto:fllanes@fis.ucm.es
mailto:j.torres@fis.ucm.es
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Fig. 20. One-dimensional evolution of a drop of charm f (t, p) from Eq. (60) with well-defined momentum p0 = 1, 1.5 and 2
GeV (top to bottom), at a reference temperature of 150 MeV. Time evolution drags the momentum toward zero from the initial
condition, Dirac’s delta function in Eq. (59), and the shape broadens to adopt the Boltzmann equilibrium function.

Svetitsky and Uziel (Fig. 1 in [1]) found that a c-quark with initial transverse momentum 2 GeV
would have come down to 1 GeV by the time of freeze-out. What our results show is that all this
decrease needs to be assigned to the quark and gluon plasma phase and, especially, to the phase
transition, but that the loss of momentum in the pion gas is amoderate-sized correction. For example,
a 1 GeV charm quark entering the pion gas at 150MeV and traveling four femtometers through it, will
have lost about 200 MeV at freeze-out.

Wehave found that the F drag coefficient and theΓ0 diffusion coefficient depend onlymildly on the
charm quark momentum, implying that the nuclear suppression factor for charm in the pion gas can
be reasonably modeled. On the contrary, we find that the Γ1 diffusion coefficient strongly depends
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on momentum, so that anisotropic observables such as the elliptic flow will have a more involved
dependence with momentum.

Moreoverwehave shown that the thermal relaxation time at 150MeV is about 40 fm, implying that
the charm quarks do carry memory of the phase transition upon exiting the hadron gas. Our results
also suggest that the spatial diffusion coefficient is likely to have a minimum at the crossover to the
quark and gluon plasma.
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Appendix A. Static Fokker–Planck equation and one-dimensional solution

Suppose that the three scalar coefficients F , Γ0, Γ1 in Eq. (14) do not depend on p (limit of
momentum independence or static limit). Then one can speak of constant F(p2) = F (we will now
show that this is simply a friction coefficient), and Γ0(p2) = Γ1(p2) = Γ (diffusion coefficient).

The Fokker–Planck equation reads

∂ fc
∂t

= F∇p · (pfc)+ Γ∇
2
p fc (56)

that can be compared with the standard diffusion equation for the concentration C of a solute

∂C
∂t

= −µ∇ · (CF)+ D∇
2C, (57)

where µ is the mobility, D is the diffusion coefficient and F is the external force. Einstein’s relation
D = µT relates the diffusion coefficient and the mobility.

For clarity let us concentrate on one dimension. In this simpler case, the equation

∂ fc
∂t

= F
∂

∂p
(pfc)+ Γ

∂2fc
∂p2

(58)

is known as Rayleigh’s equation and describes the momentum distribution equation for a Brownian
particle.

With the initial condition

fc(p, t = 0) = δ(p − p0) (59)

the analytic solution reads

fc(p, t) =

[
F

2πΓ
(1 − e−2Ft)

]−1/2

exp
[
−

F
2Γ

(p − p0e−Ft)2

1 − e−2Ft

]
. (60)

This solution can be easily plotted, and we do so in Fig. 20 for momentum p0 = 1, 1.5 and 2 GeV (top
to bottom), at a reference temperature of 150 MeV.

We can identify the large-time behavior of this functionwith theMaxwell–Boltzmann equilibrium
function

lim
t→∞

f (t, p) = fMB(p), (61)
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provided that an analogous to Einstein’s relation holds

Γ = FmT , (62)

and the two coefficients F , Γ are not independent but rather related by this fluctuation–dissipation
relation (as shown below in Eq. (103) where we have derived this relation from the momentum-
dependent fluctuation–dissipation theorem independently of the number of spatial dimensions).
Moreover, in Appendix Bwe show that themomentumdiffusion coefficient,Γ , is related to the spatial
diffusion coefficient, Dx, as:

Dx =
Γ

m2F 2
=

T 2

Γ
. (63)

Appendix B. Classical Langevin equation for charm diffusion

The purpose of this appendix is to show the relation between the diffusion coefficient in space
Dx (that appears in Fick’s diffusion Law) and the momentum diffusion coefficient D, that we have
estimated through the Fokker–Planck equation. This discussion iswell known from classical statistical
physics, but it is enlightening to review it and makes the article self-contained. Since we use this
material mostly to give the various quantities a physical interpretation, we believe that it is sufficient
to limit ourselves to a purely classical discussion (as appropriate for a dilute gas).

We begin by rederiving the Fokker–Planck equation from the Langevin equations. Several
manipulations of Dirac delta distributions are easier to follow discretizing the time variable, to avoid
resource to somewhat advanced functional analysis, and we will thereafter take again the continuum
limit δt → 0. Then the classical solution to the Langevin will allow us to identify the space diffusion
term and relate it to the Fokker–Planck coefficient of diffusion in momentum space.

The charm quark (Brownian particle) moves in the pion gas and it is diffused because of collisions
with these mesons. The position and momentum of the charm quark can be regarded as stochastic
variables depending on time. The classical, non-relativistic stochastic differential equations that
govern their motion are:

dxi

dt
=

pi

mD
(64)

dpi

dt
= −F i(p)+ ξ i(t), (65)

where the index i = 1, 2, 3 labels the space component of x and p. This equation is called the Langevin
equation. The F i(p) is a deterministic drag force which depends on momentum through the collision
processes and ξ(t) is a stochastic term called white noise. It verifies

⟨ξ i(t)⟩ = 0, (66)

⟨ξ i(t)ξ j(t ′)⟩ = Γ ij(p)δ(t − t ′). (67)

In an isotropic gas one has Γ ij(p) = Γ (p)δij.
We now discretize the time variable

tn ≡ nδt; xn ≡ x(tn); pn ≡ p(tn); n = 0, 1, 2, . . . (68)

and choose a mid-point discretization for F [27]

F i
n(p) = F i

[
pn + pn+1

2

]
. (69)

The discretized Langevin equation reads then

xn+1 = xn +
pn

mD
δt, (70)

pn+1 = pn − Fnδt + Lnδt, (71)
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with a time average over the random noise

Lin =
1
δt

∫ tn+1

tn
dt ξ i(t). (72)

From (66) and (67), Lin verifies:

⟨Lin⟩ = 0. (73)

⟨LinL
j
n′⟩ =

Γ

δt
δijδnn′ . (74)

(With somewhat more work one can show that the variable Lin ∼ O(δt−1/2)).
The average ⟨⟩ is takenwith respect to the probability associatedwith the stochastic process. Since

the stochastic variables are positions and momenta, this probability is nothing but the one-particle
classical distribution function, f (t, x, p). Averages are then computed by means of

⟨T (t)⟩X,P ≡

∫
dxdpT (t, xn, pn)f (t, xn, pn), (75)

where T (t, xn, pn) is any function of the stochastic variables and time.
In the Fokker–Planck equation we look for the time evolution of the distribution function itself, so

we need to calculate the probability that a particle at time tn+1 is at x, p

f (tn+1, x, p) = ⟨δ(3)(xn+1 − x)δ(3)(pn+1 − p)⟩, (76)
from the distribution function at a prior time.

We introduce the discretized Langevin equation inside the deltas in (76):

δ(xn+1 − x) = δ


xn − x +

pn

mD
δt


, (77)

δ(pn+1 − p) = δ(pn − p + [Fn + Ln]δt). (78)
Expanding the deltas up to O(δt),

δ(xin+1 − xi) = δ(xin − xi)+

−
j

∂

∂xjn
δ(xin − xi)

pjn
mD
δt, (79)

δ(pin+1 − pi) = δ(pin − pi)+

−
j

∂

∂pjn
δ(pin − pi) [F j(pn)+ Ljn]δt

+
1
2

−
j

−
k

∂2

∂pjn∂pkn
δ(pin − pi)LjnL

k
n (δt)

2, (80)

and introducing these expansions inside Eq. (76), we see that
f (tn+1, x, p) = ⟨δ(3)(xn − x)δ(3)(pn − p)⟩

+

−
j

∂

∂xjn
δ(3)(xn − x) pjn δ

(3)(pn − p)


δt
mD

+


δ(3)(xn − x)

−
j

∂

∂pjn
δ(3)(pn − p) [Ljn − F j(pn)]


δt

+
1
2


δ(3)(xn − x)

−
j

−
k

∂2

∂pjn∂pkn
δ(3)(pn − p)LjnL

k
n


(δt)2. (81)

In order to obtain f (tn, x, p) in the left-hand side, we introduce the following identity

δ(3)(xn − x)δ(3)(pn − p) =

∫
dzdqδ(3)(xn − z)δ(3)(z − x)δ(3)(pn − q)δ3(q − p) (82)
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and replace the definition in Eq. (76)

⟨δ(3)(xn − z)δ(3)(pn − q)⟩ = f (tn, z, q). (83)

One obtains

f (tn+1, x, p) =

∫
dzdq δ(3)(z − x)δ(3)(q − p) f (tn, z, q)

+

∫
dzdq δ(3)(q − p)

−
i

∂

∂z i
δ(3)(z − x)qi f (tn, z, q)

δt
mD

−

∫
dzdq δ(3)(z − x)

−
i

∂

∂qi
δ(3)(q − p)F i(q) f (tn, z, q)δt

+

∫
dzdq δ(3)(z − x)

−
ij

∂2

∂qi∂qj
δ(3)(q − p)

Γ ij(q)
2

f (tn, z, q)δt (84)

where the average operation has been factorized because pin only depend on Lin′ with n′ < n.
Now integrate by parts and finally, over z and q:

f (x, p, tn+1) = f (tn, x, p)−
p
mD

·
∂

∂x
f (tn, x, p)δt +

−
i

∂

∂pi
F i(p)f (tn, x, p)δt

+
1
2

−
ij

∂2

∂pi∂pj
Γ ij(p)f (tn, x, p)δt.

Now we can return to the continuum limit δt → 0:

∂ f (t, x, p)
∂t

+
p
mD

∂

∂x
f (t, x, p) =

−
i

∂

∂pi
F i(p)f (t, x, p)+

1
2

−
ij

∂2

∂pi∂pj
Γ ij(p)f (t, x, p). (85)

Taking the average in space

∂ fc(t, p)
∂t

= −
∂

∂pi
[F i(p)fc(t, p)] +

1
2

∂2

∂pi∂pj
Γij(p)fc(t, p), (86)

that coincides with the Fokker–Planck equation in Eq. (13). Nowwe see that the diffusion coefficients
Γ0, Γ1, stem from the random force in the Langevin equations, and the drag coefficient from the
deterministic friction force there.

In the static limit p → 0, we can solve the Langevin (or, in this limit, also Uhlenbeck–Ornstein)
equation

dp
dt

= −Fp + ξ(t), (87)

whose solution is

p(t) = p0e−Ft
+ e−Ft

∫ t

0
dτeFτ ξ(τ ). (88)

Taking the average one can see that due to the drag force, the friction term makes the particle
eventually stop in the fluid’s rest frame.

⟨p(t)⟩ = p0e−Ft . (89)

The second of Hamilton’s equations

dx
dt

=
p
mD
, (90)
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is then solved by

x(t) = x0 +

∫ t

0
dτ

p(τ )
mD

. (91)

Or, on average,

⟨x(t)⟩ = x0 +
p0

FmD
(1 − e−Ft). (92)

To make the connection with the spatial diffusion coefficient we can show the mean quadratic
displacement of the Brownian particle (r =


x2 + y2 + z2)

⟨(r(t)− r0)2⟩ = ⟨(x(t)− x0)2 + (y(t)− y0)2 + (z(t)− z0)2⟩, (93)
that, from Fick’s diffusion law, is simply

⟨(r(t)− r0)2⟩ = 6Dxt. (94)
From the averaged solution to the Langevin equation (91),

⟨(x(t)− x0)2⟩ =
1
m2

D

∫ t

0

∫ t

0
dτdτ ′

⟨px(τ )px(τ ′)⟩. (95)

With the help of (88) and (67) and carefully performing the integral [27] one obtains the leading
term of this expression when t ≫ F−1 as

⟨(x(t)− x0)2⟩ =
2Γ t
m2

DF 2
, (96)

so that

Dx =
Γ

m2
DF 2

=
T 2

Γ
, (97)

where finally we have used Einstein’s relation. Thus, the calculation of the momentum diffusion
coefficient automatically entails an estimate for the space diffusion coefficient.

Appendix C. Fluctuation–dissipation relations

Not all three coefficients F(p2), Γ0(p2) and Γ1(p2) appearing in the Fokker–Planck equation are
independent, but rather related by a fluctuation–dissipation relation. This just means that thermal
equilibrium requires the damping force F to match the fluctuations of the charm quark momentum
distribution so as tomaintain energy equipartition, with kBT

2 per degree of freedom. Since we consider
the p-dependence of the three coefficients, the fluctuation–dissipation relation will be momentum
dependent, although we also expose the p → 0 limit. More details on deriving such relations can be
found in standard textbooks [28].

A transparent procedure is to match the asymptotic solution of the Fokker–Planck equation to the
thermal equilibrium distribution function, thus guaranteeing energy equipartition.

First of all, the Fokker–Planck equation can be written as an equation of continuity

∂ fc(t, p)
∂t

= −
∂

∂pi
ni, (98)

where

ni ≡ −Fi(p2)fc(t, p)−
∂

∂pj
[Γij(p2)fc(t, p)] (99)

is the particle flux density in momentum space. At statistical equilibrium, this flux is zero, and the
equilibrium distribution function is the Bose–Einstein function,

fc ∼
1

e−p2/2MT − 1
. (100)



L.M. Abreu et al. / Annals of Physics 326 (2011) 2737–2772 2769

Fig. 21. Momentum-space transport coefficients as function of temperature. Dotted: Γ0(p2 → 0). Dashed: Γ1(p2 → 0). The
very good agreement in our computer program, as appropriate in this limit, makes the curves barely distinguishable.

Fig. 22. Momentum-space transport coefficients as function ofmomentum at fixed temperature 150MeV. The two coefficients
converge at low p.

Employing again the approximation 1+ fc ≈ 1 valid for small charm quark number, one can obtain

Fi(p2)+
∂Γij(p2)
∂pj

=
1
MT

Γij(p2)pj. (101)

This momentum-dependent fluctuation–dissipation relation can be recast for the functions
F(p2),Γ0(p2) and Γ1(p2) as:

F(p2)+
1
p
∂Γ1(p2)
∂p

+
2
p2

[Γ1(p2)− Γ0(p2)] =
Γ1(p2)
MT

. (102)

For low-momentum charm quarks, Γ1(p2),Γ0(p2) → Γ , F(p2) → F . The equality of the two Γ
coefficients in the limit of zero momentum is numerically checked in Figs. 21 and 22.

We then recover the well-known Einstein relationship

F =
Γ

MT
(103)

which is the same result derived above in Appendix A for the one-dimensional solution of the Rayleigh
equation.

Thus, in the static limit two coefficients take the same value and the third is obtained from them
by Eq. (103), and we are left with only one independent diffusion coefficient.
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The Langevin equation also allows us to directly obtain the classical interpretation of F as a loss of
energy per unit length. Ignoring the fluctuating force,

dγmv
dt

= −F (104)

can be multiplied by v to yield after some reshuffling the obvious expression for the power

dmγ
dt

= −F · v (105)

and remembering the definition F = Fp in Eq. (14), the loss of energy per unit length is simply F |p |,
as in the non-relativistic theory.
The loss of momentum per unit length can then be expressed as

dp
dx

=
dp
vdt

= −FE (106)

in terms of the energy and momentum of the charmed particle.

Appendix D. Kinematics

In the evaluation of the drag and diffusion coefficients in Eq. (17) we need to calculate integrals of
the generic type

gπ

∫
dk

dq
(2π)9

fπ (q)[1 + fπ (q + k)]
1

2Eπq

1
2Ec

p

1
2Eπq+k

1
2Ec

p−k

× (2π)4δ(Ec
p + Eπq − Ec

p−k − Eπq+k)
−

|M2
πc(s, t, χ)|

2G(ki, pi) (107)

where the various cases differ in the choice of G kinematic function

G(ki, pi) =



kipi

p2
for F(p2)

1
4

[
k2

−
(kipi)2

p2

]
for Γ0(p2)

1
2
(kipi)2

p2
for Γ1(p2).

(108)

The collision momenta are labeled as

c(p)+ π(q) → c(p − k)+ π(q + k) (109)

so that Pµ = (Ec
p, p) is the four-momentum of the incoming c quark, Qµ

= (Eπq , q) the four-
momentum of the incoming pion, and k the transferred momentum from the c quark to the pion.
The c quark can be in a D or in a D∗ meson states, degenerate in leading order heavy quark effective
theory. We generically use an averagemD for the transport code, although we distinguish the masses
in the scattering amplitude to correctly position theD0 andD1 resonances. For example, the outgoing-

particle energies are Ec
p−k =


m2

D + (p − k)2 and Eπq+k =

m2
π + (q + k)2 respectively.

The resulting transport coefficients obtained after integrating Eq. (107) depend only on the
modulus of p. However we will introduce a (trivial) dΩp angular integration in the p-coordinates∫

dk dq →

∫
dk dq

dΩp

4π
, (110)

in order to increase our freedom in the choice of axes.
Wealso find convenient to change the integration variables from the incomingpion and transferred

momenta, q andk respectively, to the totalmomentumP = p+q and the outgoing charmmomentum
p3 = p − k. The Jacobian determinant associated to these translations is unity.



L.M. Abreu et al. / Annals of Physics 326 (2011) 2737–2772 2771

Now, without loss of generality, we choose the total momentum P vector along the OZ axis, and
the incoming charm momentum p lying on the OZX plane. Automatically q is in this plane as well.
Finally, the outgoing charm momentum p3 has in general all three Cartesian projections,

P = (0, 0, P) (111)

p = (p

1 − x2p, 0, pxp) (112)

q = P − p = (−p

1 − x2p, 0, P − pxp) (113)

p3

p3
= (


1 − x23 cosφ3,


1 − x23 sinφ3, x3). (114)

Here xp is the cosine of the polar angle of p, that is, of the relative angle between p and P; x3 and φ3
the cosine of the polar angle and azimuthal angle associated with p3. The transferred k = p − p3 and
outgoing pion pπ4 = q + k = P − p3 momenta are then dependent variables.

The angular integrals associated with P are then trivial (the scattering matrix is rotation-
invariance) and yield 4π (they have de facto being exchanged for dΩp that is now non-trivial). The
system has one more rotational invariance, as holding the P axis fixed, one can rigidly rotate all other
vectors around it [29] (so our choice of OX axis does not imply any loss of generality). This trivializes
the φp integration.

With such choice of axes the integration measure can be explicitly written down as∫
dk dq

dΩp

4π
=

∫
dP dp3

dΩp

4π

=

∫
4πP2dP p23dp3dφ3dx3

1
4π

2πdxp

= 2π
∫

dPP2dp3p23dφ3dx3dxp. (115)

Energy conservation imposes an additional restriction, which is very nonlinear in terms of the
momentum variables

Ec
p =


m2

D + p2 (116)

Eπq =


m2
π + P2 + p2 − 2Ppxp (117)

Ec
p−k =


m2

D + p23 (118)

Eπq+k =


m2
π + P2 + p23 − 2Pp3x3. (119)

To solve the restriction we introduce a further auxiliary variableW , which is an off-shell extension of
the total energy [30], by means of

δ(Ec
p + Eπq − Ec

p−q − Eπq+k) =

∫
dWδ(Ec

p + Eπq − W )δ(W − Ec
p−q − Eπq+k). (120)

The square roots are now easier to handle two at a time, and the Dirac delta functions can be used to
eliminate the two polar cosines, leaving behind only an integration over the auxiliaryW variable and
no deltas.

The first delta

δ(Ec
p + Eπq − W ) =

Eπq
Pp
δ(xp − xp0)
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can be used to integrate over xp and fix it to

xp0 =
P2

+ m2
π − m2

D + W (2Ec
p − W )

2Pp
(121)

and likewise, the second one

δ(W − Ec
p−q − Eπq+k) =

Eπq+k

Pp3
δ(x3 − x30)

provides the x3 integration and fixes the variable to

x30 =
P2

+ m2
π − m2

D + W (2Ec
p−q − W )

2Pp3
. (122)

With this kinematic work, the integrals in Eq. (107) have been reduced to a four-dimensional
integration

gπ
256π4

∫
dPdWdp3dφ3

p3
pEc

pE
c
p−q

fπ (P − p)[1 + fπ (P − p3)]
−

|M(s, t, χ)|2 G(ki, pi). (123)

We employ standard Monte Carlo methods in a computer program to numerically calculate these
integrals. In particular we employ the well-known VEGAS algorithm as coded by Lepage [31]. The
ultraviolet integration is cutoff by the Bose–Einstein factors, and sincewe retain the pionmasses there
are no infrared enhancements. Convergence is rapidly achieved.
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