Cosmological tensor perturbations in theories beyond ACDM
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Abstract. We study for the first time a complete analysis of the imprint of tensor anisotropies on the Cosmic Microwave
Background for a class of f(R) gravity theories within the CAMB-PPF framework. Herein we present the most relevant
equations, both for the cosmological background and gravitational wave perturbations, taking care to include all effects
which arise from f(R) modifications. We find that that the dominant contribution to deviations from General Relativity in the
temperature and polarization spectra can be attributed to modifications in the background. This demonstrates the importance
of using the correct background in perturbative studies of f(R) gravity.
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INTRODUCTION

Modified gravity [1] has been shown to be able to mimic
both the dark energy and the inflationary eras [2]. How-
ever the sole use of large scale observations (Ia type su-
pernova, baryon acoustic oscillations, or the cosmic mi-
crowave background), which only depend upon the ex-
pansion history of the Universe is not enough to deter-
mine uniquely the nature and the origin of dark energy.
In other words, identical evolutions for the cosmological
background can be explained by a diverse number of the-
ories. This is the so-called degeneracy problem, whose
breaking requires the use of measurements that are not
only sensitive to the expansion history but, among oth-
ers, the evolution of scalar perturbations [3], the stability
of cosmological solutions against small perturbations [4]
and the existence of GR-predicted astrophysical objects
such as black holes [5].

In this sense, the simplest and in fact the most studied
modification of the Hilbert-Einstein action is generalized
to a general function of the Ricci scalar R, the so-called
f(R) gravities [6]-[7]. In addition to reproducing the en-
tire cosmological history [8] and despite some shortcom-
ings [7], these theories may behave quite well on local
scales, where the GR limit must be recovered [9].

The study of the CMB tensor perturbations in alter-
native gravity theories has not received much interest in
comparison with the study of scalar perturbations. For
the latter case, the required tensor perturbed equations
are usually of higher order and the analysis often relies
on the use of simulations performed by several codes
available such as CAMB [10] or CMB-Easy, both based
on CMBFast [11].

Several attempts have been made for a number of
modified gravity scenarios, namely cosmic strings [12]

and brane-world theories [13, 14]. In the case of f(R)
theories, the only investigation was presented in [15],
where authors considered a flat thick domain wall branes
supplemented with f(R) gravity. Nonetheless the full
calculation of tensor perturbations for f(R) theories in
metric formalism has never been presented before. In
the present investigation we sketch the main features and
steps to study this issue. We refer the reader to [16] for
further and more detailed explanations.

GENERALITIES AND DYNAMICS

The most general action for fourth order gravity [7] can
be written as an analytic function of the Ricci scalar
only :

of = %/d“x\/jg[f(R)Jrme (1)

where .7, represents the matter contribution. Varying the
action with respect to the metric provides the generalized
Einstein equations in the metric formalism:

I 1 .
f,Gab = aZ + 5 (ff Rf/) 8ab + vaaf/ - gabvcvcf/v
(2)
where f = f(R), the prime holds for derivative with
respect to R and T represents the stress-energy tensor
of standard matter. Expression (2) can be recast as,
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where explicit expressions for Ta’z and THIZ can be easily
found from (2). These quantities respectively represent
two effective fluids: the effective matter fluid (associated
with Ta’Z) and the curvature fluid (associated with Taﬁ).
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In the matter frame u, the total energy momentum tensor
can be decomposed as,

T = g up+ phap + Gattp + qp tta + Tap , (€]

where the symbols in the previous expression keep their
usual meanings. In terms of the aforementioned effective
fluids, the thermodynamical quantities can be written as,

u" _p"
u = f/ + uf f’ 7‘1a—f,+Qu7
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Ty = ;/b +717 , ()
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The effective thermodynamical quantities for the curva-
ture fluid are presented in [16].

The background and tensor perturbations dynamics

For homogeneous and isotropic, i.e. Robertson-Walker,
space-time with vanishing 3-curvature and barotropic
perfect fluid — with equation of state p = wp — as the
standard matter source, the independent field equations
for general f(R) gravity can be written as

1
2 [
O+ ®+2f,(u +3p™) + 2f/(“ +3p%) =0,

o= 31} +3uR, w0 u"+p") =0.
The linearization of the exact propagation and constraint
equations around this background for pure tensor pertur-
bations then leads to the system [17]:
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together with the linearized conservation equations for
the effective matter and curvature fluids (see [16] for de-
tailed expressions). Taking the time derivative of equa-
tions (8)-(10) and performing a harmonic decomposition,
the system reduces to
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On the other hand, from equation (6) and for pure tensor
modes, the anisotropic pressure takes the form

k f//
R
7Tk = a I,l, f/ G

(12)

Unlike the scalar counterparts for f(R) theories [3],
where the involved equations are usually fourth order,
the last equation (12) guarantees that the tensor pertur-
bations equations are governed by a second order differ-
ential equation.

The initial conditions

In the radiation dominated era, the anisotropic stress 7 is
dominated by the radiation fluid contribution. Therefore,
in this scenario and after having assumed homogeneity
of the early universe, i.e. that the radiation anisotropic
stress vanishes, equation (11) can be further simplified
and reduces to

dz(fk

doy
WJr(aAfaH)EJra BGkZO,

(13)
where the coefficients A and B are defined in [18] and
7 holds for conformal time. By performing the variable
change u; = a" oy, equation (13) reads

d?uy N ( 1 f”

2
——— B =0. (14
a P +a >uk 0. 14

where we chose m = %. Note that in the derivation of

the previous equation, the exponent m has been assumed
to be constant as is the case for R” models.

BACKGROUND AND TENSOR
PERTURBATIONS FOR R* MODELS

In order to illustrate the formalism described in the pre-
vious section, we considered the one-parameter class of
gravity theories, given by f(R) = R".

Background and evolution equations

The background setup of these models can be studied
following the dynamical system method [17, 19]. Let us
define the following set of dynamical variables :

_R(n—l) _R(l—n) B
X = HR y Y= 61’!H2 ) d,r —

:u'dr
SHIRT (15)

where L, , are dust and radiation densities respectively.
In terms of these variables, the Friedmann equation in (7)
takes the simple form,

l+x+y—Q,—Q,=0. (16)



Thus, an autonomous system, which is equivalent to the
cosmological equations (7) can be derived by differen-
tiating the dynamical variables defined in (15) [16] and
the constraint equation (16) can be used to reduce the
dimensionality of the system. By imposing initial con-
ditions deep in the radiation-dominated era as the ones
given by ACDM model one can get values of the expo-
nent n that evolve in a similar way to the ACDM. In order
to illustrate this procedure, we chose the value n = 1.29.

Perturbations setup
For f(R) = R" (n # 2), the equation (14) reduces to [18],

@-&-(kz—Zr_z)u =0 (17)
dr? S

where m = zn;” due to the fact that for R" models,
the scale fnactor in the radiation dominated era satisfies
a(t) = t7f [20] and therefore the parameter m is con-
stant as it was assumed in order to obtain (14). The result
in (17) is exactly the same as the one for tensor perturba-
tions in GR [10]. Thus, equation (12) becomes

k (n—1)dR
R_ _ i
="z UR az %

(18)

CMB SPECTRA FOR R" MODELS

We used the latest version of CAMB, known as CAMB-
PPF [21]. The equation of state for the dark energy
contribution is provided to the code through a data file.
In our case, the curvature fluid is expected to play the
role of dark energy in the f(R) theories, thus equation
(7) can be used to generate a data file for the equation
of state. This procedure was usually missing in previous
investigations that for the sake of simplicity assumed GR
background when studying the tensor perturbations of
modified gravity theories. Once the correct background
and perturbation evolution is implemented, there exist
notable differences in both the clTT and CF’E coefficients
which are produced by modifications in the background
and tensor perturbations, when compared to the usual
GR calculations. Let us consider the value n = 1.29 and
summarise the results as follows:

TT ¢
¢ features

According to Figure 1 (left panel), we see that the am-
plitude for the clTT coefficients is suppressed for large
I’s with respect to the usual GR simulations by ap-
proximately one order of magnitude, when passing from
2-1073 (GR) to 5-10~* (f(R)) at [ = 3000. For small
I’s, the amplitude remains approximately at the same
value found in GR. We also observe a horizontal shift
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to smaller /'s for the modified CITT with respect to the
GR simulations at intermediate scales (/ ~ 100 — 200).
Concerning the number of relative maxima and min-
ima, we find they remain invariant although their loca-
tion is shifted to the left. Finally, by studying separately
the simulations involving only modifications in the back-
ground or in the perturbations, we notice that the reduc-
tion can be attributed mainly to the modification of the
background evolution. The modification introduced just
by the f(R)-perturbations is negligible.

EE
¢ features

Unlike the ¢/ patterns, there is a slight amplitude
suppression at the lowest I's with respect to the GR case.
The number of relative maxima-minima remains invari-
ant, although their location is shifted to the left. We note
that the amplitude of thec}EE coefficients is suppressed for
large I’s with respect to GR by about one order of mag-
nitude when passing from 10~ (GR) to 107> (f(R)) at
[ =~ 3000. By studying separately the simulations involv-
ing only modifications in the perturbations and keeping
the background as GR, we note that the reduction can be
attributed mainly to the modification of the background
evolution introduced by the f(R) models. All these fea-
ture can be seen by straightforward comparison with the
right panel in Figure 1.

CONCLUSIONS

In this work we have presented a detailed analysis of the
CMB features for a simple class of f(R) modified gravity
theories using the CAMB-PPF implementation. These
simulations used the correct cosmological background
evolution as provided by these fourth order gravities as
well as the required tensor perturbations equations. Our
results demonstrate the importance of considering the
correct background when alternative theories of gravity
are subjected to this kind of analysis.
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FIGURE 1. The temperature (left panel) and electrical (right panel) power spectra for tensor perturbations in all the possible
background and perturbations scenarios. R” model for n = 1.29: It is observed how the most relevant suppression comes from the

f(R) background consideration.
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