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The interplay of symmetry, topology, and many-body effects in the classification of phases of matter
poses a formidable challenge in condensed-matter physics. Such many-body effects are typically induced
by inter-particle interactions involving an action at a distance, such as the Coulomb interaction between
electrons in a symmetry-protected topological (SPT) phase. In this work, we show that similar phenomena
also occur in certain relativistic theories with interactions mediated by gauge bosons, and constrained
by gauge symmetry. In particular, we introduce a variant of the Schwinger model or quantum
electrodynamics (QED) in 1þ 1 dimensions on an interval, which displays dynamical edge states
localized on the boundary. We show that the system hosts SPT phases with a dynamical contribution to the
vacuum θ-angle from edge states, leading to a new type of topological QED in 1þ 1 dimensions. The
resulting system displays an SPT phase which can be viewed as a correlated version of the Su-Schrieffer-
Heeger topological insulator for polyacetylene due to nonzero gauge couplings. We use bosonization and
density-matrix renormalization group techniques to reveal the detailed phase diagram, which can further be
explored in experiments of ultra-cold atoms in optical lattices.
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I. INTRODUCTION

Global and local symmetries play a crucial role in our
understanding of nature at very different energy scales
[1,2]. At high energies, they govern the behavior of
fundamental particles [3], their spectrum and interactions
[4,5]. At low energies [6], spontaneous symmetry breaking
and local order parameters characterize a wide range of
phases of matter [7] and a rich variety of collective
phenomena [8]. There are, however, fundamental physical
phenomena that can only be characterized by nonlocal
order parameters, such as the Wilson loops distinguishing
confined and deconfined phases in gauge theories [9], or
hidden order parameters distinguishing topological phases
in solids [10]. The former, requiring a nonperturbative
approach to quantum field theory (e.g., lattice gauge
theories (LGTs)), and the latter, demanding the introduc-
tion of mathematical tools of topology in condensed matter
(e.g., topological invariants), lie at the forefront of research
in both high-energy and condensed-matter physics.
The interplay of symmetry and topology can lead to a

very rich, and yet partially-uncharted, territory. For in-
stance, different phases of matter can arise without any
symmetry breaking: symmetry-protected topological (SPT)
phases. Beyond the celebrated integer quantum Hall effect
[11–14], a variety of SPT phases have already been

identified [15–17] and realized [18]. Let us note that some
representative models of these SPT phases [19] can be
understood as lower-dimensional versions of the so-called
domain-wall fermions [20], introduced in the context of
chiral symmetry in lattice field theories [21]. A current
problem of considerable interest is to understand strong-
correlation effects in SPT phases as interactions are
included [22], which may, for instance, lead to exotic
fractional excitations [23,24]. So far, the typical inter-
actions considered involve an action at a distance (e.g.,
screened Coulomb or Hubbard-like nearest or next-to-
nearest neighbor interactions). To the best of our knowl-
edge, and with the recent exception [25], the study of
correlated SPT phases with mediated interactions remains a
largely-unexplored subject.
In this work, we initiate a systematic study of SPT phases

with interactions dictated by gauge symmetries focusing on
the lattice Schwinger model, an Abelian LGT that regu-
larizes quantum electrodynamics in 1þ 1 dimensions
(QED2) [26]. We show that a discretization alternative to
the standard lattice approach [27] leads to a topological
Schwinger model, and derive its continuum limit referred to
as topological QED2. This continuum quantum field theory
is used to predict a phase diagram that includes SPT,
confined, and fermion-condensate phases, which are then
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discussed in the context of the aforementioned domain-wall
fermions in LGTs.
We benchmark our predictions based on bosonization

techniques against exhaustive numerical simulations via the
density-matrix renormalization group (DMRG). Our study
shows that SPT phases also appear in gauge theories, and it
is conceivable that they will lead to a rich playground
where topological effects coexist with nonperturbative
phenomena such as confinement and charge shielding,
or string breaking [28]. We note also that our study can be
relevant for experimental realizations far from the high-
energy-physics domain, as some of the discretized LGTs
can be simulated by state-of-the-art experiments with cold
atoms [29–31]. In particular, previous schemes of Bose-
Fermi mixtures can be adapted to the quantum simulation
of topological QED2 [32].
The Schwinger model [26] describes a Dirac fermion

field ΨðxÞ of mass m coupled to an electromagnetic field
AμðxÞ in a (1þ 1)-dimensional Minkowski spacetime
with coordinates xμ ¼ ðt; xÞ, μ ∈ f0; 1g, and metric η ¼
diagð1;−1Þ. After setting ℏ ¼ c ¼ 1, the Lagrangian den-
sity of the massive Schwinger model (mS) is

LmS ¼ Ψ̄½iγμð∂μ þ igAμÞ −m�Ψ −
1

4
FμνFμν; ð1Þ

where ∂μ ¼ ∂=∂xμ and AμðxÞ ¼ ημνAνðxÞ. We have intro-
duced the adjoint Ψ̄ðxÞ ¼ Ψ†ðxÞγ0, the Dirac matrices γμ

satisfying fγμ; γνg ¼ 2ημν, and the (bare) coupling g of the
fermion current to the gauge field with electromagnetic
field tensor Fμν ¼ ∂μAν − ∂νAμ. The physics of LmS is
periodic in the so-called vacuum θ angle, a term propor-
tional to the background electric field [33,34]. In the
massive case, a continuous phase transition between con-
fined and symmetry-broken phases with a fermion con-
densate occurs for θ ¼ π [35]. Moreover, the Schwinger
model captures some of the significant nonperturbative
effects of higher-dimensional non-Abelian gauge theories
mentioned above [36–38].
Various numerical techniques [39], including finite-

lattice methods [40], exact diagonalization [41],
Monte Carlo [42], DMRG [43] and matrix-product states
[44], have been used to unveil this nonperturbative phe-
nomenology. These methods typically rely on the Kogut-
Susskind discretization [27] [see Fig. 1(a)], where (i) the
spatial coordinates are discretized into a chain x ¼ na of
lattice spacing a, where n ∈ ZNs

labels the number of sites
Ns, (ii) the fields ΨðxÞ are represented by lattice fermions
cn with an alternating staggered mass ms, and (iii) the
gauge field sector is represented by rotor-angle operators
Ln, Θn assigned to the links at x ¼ ðnþ 1

2
Þa. The angle

operator is related to the gauge field Θn ¼ agA1ðxÞ, while
the rotor corresponds to an angular-momentum operator
related to the electric field Ln ¼ EðxÞ=g ¼ F01ðxÞ=g,
which is diagonal in the basis jli, i.e., Lnjli ¼ ljli for

l ∈ Z. In this way, the LGT Hamiltonian for the massive
Schwinger model becomes

HmS ¼ a
XNs

n¼1

�
−1
2a

ðic†nUncnþ1 þ H:c:Þ

þmsð−1Þnc†ncn þ
g2

2
L2
n

�
: ð2Þ

Here, we have introduced the link operators Un ¼ eiΘn ,
which act as unitary ladder operators Unjli ¼ jlþ 1i. In
the continuum limit a → 0, one recovers the Hamiltonian
quantum field theory associated with Eq. (1) with a Dirac
mass m ¼ ms [27].
In this work, we introduce an alternative discretization,

which not only reproduces Eq. (1) in the continuum limit,
but also hosts an SPT phase where the fermions interact via
the gauge field. Note that the discretized model (2) has a
two-site unit cell, as the staggered mass breaks explicitly
the lattice translational invariance. An alternative discreti-
zation that maintains this property follows from the
dimerization of the tunnelings with a two-site periodicity
[see Fig. 1(b)], yielding the topological lattice Schwinger
model

(b)

(a)

FIG. 1. Discretizations for standard and topological QED2:
(a) Staggered-fermion approach to the massive Schwinger model.
The relativistic Dirac field is discretized into spinless lattice
fermions subjected to a staggered on-site energy �ms, repre-
sented by filled/empty circles in a one-dimensional chain with
alternating heights. The gauge field is discretized into rotor-angle
operators that reside on the links, depicted as shaded ellipses with
various levels representing the electric flux eigenbasis. The
gauge-invariant term c†nUncnþ1 involves the tunneling of neigh-
boring fermions, dressed by a local excitation of the gauge field in
the electric-flux basis Unjli ¼ jlþ 1i, represented by the zig-
zag grey arrow joining two neighboring fermion sites, via an
excitation of the link electric-flux level. (b) Dimerized-tunneling
approach to the topological Schwinger model. The previous
staggered mass is substituted by a gauge-invariant tunneling with
alternating strengths ð1 − δnÞc†nUncnþ1, where δn ¼ 0, Δ for
even/odd sites. This dimerization of the tunneling matrix ele-
ments is represented by alternating big/small ellipses at the odd/
even links.
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HtS ¼ a
XNs

n¼1

�
−1
a

ðið1 − δnÞc†nUncnþ1 þ H:c:Þ þ g2

2
L2
n

�
;

ð3Þ

where the dimerization satifies δ2n ¼ 0 and δ2n−1 ¼ Δ.

II. TOPOLOGY IN THE CONTINUUM LIMIT

It is now natural to ask if the continuum limit of Eq. (3)
indeed contains the Hamiltonian of the massive Schwinger
model (1). To this end, let us first set g ¼ 0, such that
HtS ¼ HSSH þ a

P
nEðxÞ2=2, where HSSH corresponds to

the Su-Schrieffer-Heeger (SSH) model of polyacetylene in
the limit of a static lattice [45,46], a paradigmatic example
of an SPT Hamiltonian [47] displaying edge states for
Δ ∈ ð0; 2Þ. To find the continuum limit of the interacting
HtS (3), the existence of these edge states must be taken
into account (see Appendix A). In particular, for
0 < Δ ≪ 1, one finds HSSH ¼ R aNs

0 dxHtD, where

HtD¼ Ψ̄ðxÞ
�
−iγ1∂xþ

Δ
a

�
ΨðxÞþ

X
η¼L;R

εηjχηðxÞj2η̂†η̂: ð4Þ

Here, in addition to the bulk Dirac fermions of mass Δ=a,
we have also included the left L̂ and right R̂ topological
edge states with energy εL;R. These states have wave
functions

χLðxÞ ∼ e−
x
ξ sinðkFxÞ;

χRðxÞ ∼ e−
ðLs−xÞ

ξ sinðkFðLs − xÞÞ ð5Þ

where ξ ¼ a=Δ is a localization length of the exponential
decay, Ls ¼ aNs is the length of the system, and kF ¼
π=2a is the momentum around which the continuum limit
is computed. Let us note that these edge states can be
interpreted as lower-dimensional versions of the domain-
wall fermions [20], which becomes apparent [48] after
connecting the SSH-type discretization [45] to the Wilson-
type approach [49].
The Hamiltonian of Eq. (4) forms the matter sector of the

topological Schwinger model (3), which in the Coulomb
gauge A1 ¼ 0 becomes HtS ¼ R

dxHtS, where

HtS ¼ HtD − gA0ðxÞΨ̄ðxÞγ0ΨðxÞ þ
1

4
FμνðxÞFμνðxÞ: ð6Þ

The gauge field theory (4)–(6) is a new type of topological
QED2 describing the interaction of the bulk relativistic
fermions and the topological edge modes with the gauge
field, according to the Uð1Þ local symmetry characteristic
of QED.

III. BOSONIZATION ANALYSIS

Bosonization has been used [34–36] to prove that the
massless Schwinger model is described by a Klein-Gordon
field theory of mass μ ¼ g=

ffiffiffi
π

p
. Here, we apply bosoniza-

tion to obtain quantitative results about the phase diagram
of Eq. (6), unveiling an interesting interplay of the edge
states and the vacuum θ angle discussed above.
The bosonization dictionary relating fermionic fields

ΨðxÞ, Ψ̄ðxÞ to bosonic ones ϕðxÞ, ΠðxÞ is given by

−i∶Ψ̄ðxÞγ1∂xΨðxÞ∶Δ ⟶ ∶
1

2
Π2ðxÞ þ 1

2
ð∂xϕðxÞÞ2∶μ;

∶Ψ̄ðxÞΨðxÞ∶Δ ⟶ −cμ∶ cos ð2 ffiffiffi
π

p
ϕðxÞÞ∶μ;

∶Ψ†ðxÞΨðxÞ∶Δ ⟶ ∂xϕ=
ffiffiffi
π

p
: ð7Þ

where c ¼ eγ=2π with Euler’s constant γ ≈ 0.5774, and
∶ðÞ∶m denotes normal ordering of the Fermi or Bose fields
with respect to the fermion (boson) mass m ¼ Δ=a
(μ ¼ g=

ffiffiffi
π

p
). The first two relations can be used to trans-

form the matter sector of Eq. (6). The last expression can be
used, in combination with Gauss’s law ∂xEbulkðxÞ ¼
g∶Ψ†ðxÞΨðxÞ∶Δ, to bosonize also the gauge-field contri-
bution. This leads directly to EbulkðxÞ¼gðϕðxÞþ θ

2
ffiffi
π

p Þ= ffiffiffi
π

p
,

where one sees how the vacuum angle θ ¼ 2πEext=g
originates from a constant field after the integration of
Gauss’s law.
The novel ingredient for the bosonization of topological

QED2 (6) is to consider that Gauss’s law must be modified
as, in the SPT phase, the edge states can also contain
charges. Focusing on the regime 0 < Δ ≪ 1, where the
edge-state localization length is very small, one can
consider that the boundary charge only penetrates into
a small region close to the edges. Considering the boundary
conditions for the electromagnetic field across this
region, which imply that the normal component of the
electric field must be discontinuous, we find that
EedgeðxÞ¼gðsignðxÞL̂†L̂þsignðx−LsÞR̂†R̂Þ=2. Essentially,
the regions that contain a charge contribute with a constant
electric field of þg=2 to its right and −g=2 to its left, as is
known already for one-dimensional classical electrody-
namics [50].
Substituting EðxÞ ¼ EbulkðxÞ þ EedgeðxÞ with the boso-

nization identities into HtS, we find

HtS ¼
X
η

εηjχηðxÞj2η̂†η̂þ
1

2
Π2ðxÞþ1

2
ð∂xϕðxÞÞ2

þ g2

2π

�
ϕðxÞþ 1

2
ffiffiffi
π

p θ̂

�
2

−cμ
Δ
a
cosð2 ffiffiffi

π
p

ϕðxÞÞ; ð8Þ

where normal ordering with respect to the mass μ is
assumed. Here, the vacuum angle has turned into a dynami-
cal operator
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θ̂ ¼ θ þ πðsignðxÞL̂†L̂ − signðx − LsÞR̂†R̂Þ: ð9Þ

Equations (8) and (9) are the main result of this work: they
show that the newvacuumangle is not simply a c-number, or
an adiabatic classical field [51], but a quantum-mechanical
operator depending on the constant external field via
θ ¼ 2πEext=g, and on the density of the topological edge
states. Moreover, HtS incorporates the interplay of θ̂ with
the one-dimensional electromagnetic field, which is not an
external field, but rather obeys its own dynamics. Aswe now
show, the combination of these ingredients leads to exotic
effects in topological QED2.

IV. TOPOLOGICAL PHASE DIAGRAM

Let us now discuss the phase diagram of topological
QED2 at θ ¼ π for generic ðΔ; gaÞ. To this end, we define
an effective potential VðϕÞ by shifting the scalar field
ϕðxÞ → ϕðxÞ − θ̂=2

ffiffiffi
π

p
in (8)

VðϕÞ ¼ g2

2π
ϕ2ðxÞ − cμ

Δ
a
cos ð2 ffiffiffi

π
p

ϕðxÞ − θ̂Þ; ð10Þ

and treat it semiclassically for a small g. The potential VðϕÞ
will make the noninteracting critical point Δc ¼ 0 ¼ gc
flow to other critical points depending on g, Δ and θ̂.
For 0 < Δ ≪ ga (in the SPT phase), hθ̂igs ¼ 0 (mod 2π)

and the cosine term in VðϕÞ will renormalize the mass of ϕ
as μðg;ΔÞ ¼ gð1þ 2

ffiffiffi
π

p
eγΔ=gaÞ1=2= ffiffiffi

π
p

at leading order.
Thus, a new critical line is found when μðg;ΔÞ vanishes,
i.e., Δc;1ðgÞ ¼ −gae−γ=2

ffiffiffi
π

p
[red dashed line in Fig. 2(a)],

such that the correlated SPT phase with gauge-field
couplings extends to the region Δ≳ Δc;1ðgÞ. When Δ≲
Δc;1ðgÞ (out of the SPT phase), hθ̂igs ¼ π and the quadratic
term in VðϕÞ dominates yielding a ground-state with
hϕigs ¼ 0. This is a confined phase [C in Fig. 2(a)]

displaying fermion trapping, as the spectrum only shows
massive bosonic excitations understood as mesons, i.e.,
strongly bound fermion-antifermion pairs [35]. On the
other hand, when Δ ≪ Δc;1ðgÞ, the cosine in VðϕÞ domi-
nates, yielding a ground-state with hϕigs ≠ 0 that sponta-
neously breaks the Z2 symmetry ϕðxÞ → −ϕðxÞ. This
phase is a fermion condensate [FC in Fig. 2(a)] as it
displays both hEðxÞi ≠ 0 and hΨ̄ðxÞiγ5ΨðxÞi ≠ 0 [43]. The
C-FC phase transition must be analogous to the one in
the standard massive Schwinger model for θ ¼ π (2). Using
the results of this well-studied model [43], we conjecture
that the second critical line is Δc;2ðgÞ ¼ −ga=3 [dashed
blue line in Fig. 2(a)].
Using these bosonization predictions and considering

that, at very strong couplings, the SPT phase disappears in
favor of the confined phase, we draw the qualitative phase
diagram of topological QED2 in Fig. 2(a), taking into
account the symmetry around Δ ¼ 1. Let us now discuss
this phase diagram in the context of domain-wall fermions
in LGTs [20,52]. As advanced above, the connection [48]
of the SSH-type discretization to a Wilson-type approach
[49] indicates that the above SPT phase corresponds to the
parameter region where domain-wall fermions are expected
[21]. The bosonization phase diagram is qualitatively
similar to the phase diagram in lattice field theories with
Wilson fermions [53]. In such theories, fermion conden-
sates that spontaneously break the parity symmetry are
known as Aoki phases, and are believed to be mere lattice
artefacts due to the Wilson-type discretization. Note that, in
our model, the parity-broken fermion condensate is not a
discretization artefact, as it also appears in the continuum
limits of the standard Schwinger model [35] and, as argued
above, in our topological Schwinger model.

V. DMRG ANALYSIS

We explore the properties of the ground state jgsi of
Eq. (3) via a DMRG algorithm [54] that uses an alternative
to the U(1) gauge fields: the ZN approach [55,56] (see
Appendix B). We will focus on the case N ¼ 3, while the
details ofN > 3will be discussed elsewhere [32]. The phase
diagram can be characterized by computing the electric-field
order parameterΣ ¼ PNs

n¼1hgsjEnjgsi=Ns, and a topological
order parameter (introduced for the SSHmodel in Ref. [57])
O− ¼ 2

PNs=2
n¼1 hgsjOð2n−1Þ

− jgsi=Ns with

OðjÞ
− ¼3

2
ðc†jcjþ1þc†jþ1cjÞþaρjρjþ1−

1

2
ðρjþρjþ1Þ; ð11Þ

where ρj ¼ c†jcj is the number of fermions at each site.
If the electric field Σ is positive (negative), the ground

state is dominated by mesons (anti-mesons), while a
positive (negative) O− signals a topologically nontrivial
(trivial) phase. Figure 3 shows Σ in panel (a) and O− in
panel (b) as a function of g, for a system with Ns ¼ 80 sites

(b) (a)

FIG. 2. Phase diagram of topological QED2: (a) obtained from
the bosonized Hamiltonian (8). We predict three distinct phases:
a symmetry-protected topological phase (SPT), a confined phase
(C) and a symmetry-broken fermion condensate (FC); (b) obtained
by DMRG confirming the analytical phase diagram in (a).
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for Δ ¼ 0.5. At small g, the ground-state consists of a
superposition of the anti-meson states (with negative
electric field between couples) and the Dirac vacuum,
which follows from the standard interpretation of the
Kogut-Susskind discretization. Moreover, the positive val-
ues for O− show that the system is in a nontrivial SPT
phase. By increasing g, the ground state becomes even-
tually the topologically-trivial Dirac sea without electric or
matter/antimatter excitations (Σ ≈ 0; O− < 0). By a finite-
size scaling analysis of Σ and O− (see Appendix C), we
identify the critical points ðgc;ΔcÞ of the transitions SPT-C
and FC-C, and determine the complete phase diagram of
theZ3 topological Schwinger model [Fig. 2(b)], which is in
perfect agreement with the analytical prediction previously
described [Fig. 2(a)].
In order to understand the robustness of the SPT phase

for different ZN algebras, we also computed the critical
point gcðNÞ related to the transition SPT-C on the line
Δ ¼ 1 for the Z5 and Z7 models. As reported in (see
Appendix E), the critical value gcðNÞ grows with N and
approaches a finite value in the N → ∞ limit given by
gcð∞Þa ¼ 2.979, showing that the SPT phase has a finite
region of stability, in accordance to the previous analytical
results.
We give further numerical evidence of the topological

nature of the SPT phase by computing the entanglement
spectrum and the wave functions of the many-body zero-
energy edge modes. The entanglement spectrum [58] is
defined as the set of the logarithm of the eigenvalues λi of
the reduced density matrix ρ̃A of one of the two comple-
mentary halves A or Ā in which we partition the system.

According to Refs. [59,60], an even degeneracy of
the entanglement spectrum is a hallmark for a nontrivial
topological phase. As shown in the left panel of Fig. 3(c),
for a small gauge coupling g, we find doublets in this
spectrum, thus confirming that jgsi lies in an SPT phase.
On the contrary, this degeneracy disappears for a larger g
(right panel), which corresponds to the trivial confined
phase. For the edge-mode wave functions, we follow (see
Appendix D) and we obtain Fig. 3(d). The two insets show
the squares of the left-most ΨL and right-most ΨR wave
functions that, similar to Eq. (5), decay exponentially with
the lattice site n from the boundaries of the system. By
fitting ΨL and ΨR with an exponential function, we extract
the localization length ξ as a function of Δ [main panel of
Fig. 3(d)]. ξ is very small deep in the topological phase,
while ξ grows as we approach the critical points where the
edge states delocalize into the bulk.

VI. COLD-ATOM QUANTUM SIMULATORS

As advanced previously, and detailed in [32], Bose-Fermi
mixtures may allow for the realization of the topological
Schwinger model (3). Let us now summarise the main
ingredients of our scheme, starting from a previous proposal
for the quantum simulation of the standard Schwinger
model [61]. We consider two-component fermionic atoms
that are trapped in a blue-detuned tilted optical lattice,
representing the matter sector of the topological Schwinger
model (3), while two-component bosons are confined by a
much deeper red-detuned optical lattice, and will be
employed to simulate the gauge field. As such, the bare
tunneling of the bosons is inhibited, such that the s-wave
scattering yields the electric energy of the lattice model (3)
by using the Schwinger-boson representation of the link
operators [61]. For a sufficiently-large tilting, the bare
fermionic tunnelling is also inhibited, and one must only
consider the fermion-fermion and fermion-boson s-wave
scattering. Whereas the former are irrelevant for certain
initial states, the latter must be exploited to achieve the
gauge-invariant dimerized tunneling of Eq. (3). The pos-
sibility considered in our work is to use a state-dependent
time-periodic modulation of the bosonic on-site energies,
resonant with the fermionic tilting, to assist the fermion-
boson spin-changing collisions from the s-wave scattering
that exactly correspond to the gauge-invariant tunnelling. It
can be shown that, under certain conditions [32], the
dimerization of the gauge-invariant tunnelling can be con-
trolled via the modulation parameters, whereas spurious
terms can be neglected or compensated.

VII. CONCLUSIONS AND OUTLOOK

In this work, we have introduced an alternative discre-
tization of themassiveSchwingermodel hosting a correlated
SPT ground-state where the interactions between the fer-
mions are mediated by gauge bosons. Using bosonization,

(a) (b)

(c) (d)

FIG. 3. (a) Electric field order parameter Σ as a function of g,
forΔ ¼ 0.5 and Ns ¼ 80. (b) Topological order parameterO− for
the same parameters as (a). (c) Entanglement spectrum for Δ ¼
0.5 and (left) g ¼ 0.2 within the SPT phase, showing an accurate
double degeneracy, and (right) g ¼ 5.0 within the confined trivial
phase. (d) Many-body edge states: (main panel) Localization
length ξ for the zero-energy edge modes as a function of Δ.
(insets) Probability density of the left and right-most edge modes
(Δ ¼ 0.5, ga ¼ 0.2).
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we have shown that the underlying topology of the SPT
phase upgrades the vacuum θ angle into a quantum operator
that depends on the edge-state densities, and leads to a richer
phase diagram in comparison to the standard Schwinger
model. By DMRG simulations, we have carefully bench-
marked the bosonization predictions by computing the
complete phase diagram of the model and the relevant
fingerprints of the correlated SPT phase, such as the
entanglement spectrum and many-body edge states, finding
perfect agreement with the bosonization results.
The connection of these SPT phases to the so-called

domain-wall fermions in LGTs point to an interesting
avenue of research: the exploitation of topological features
(e.g., degeneracies in the entanglement spectrum) to unveil
the rich phase structure in LGTs. In this context, the
appearance of parity-breaking condensates in the con-
tinuum limit of our model contrast with the so-called
Aoki phases in LGTs, which are typically considered as
mere lattice artefacts not present in the continuum QFT.
Another interesting difference with respect to the conjec-
tured phase diagram of non-Abelian LGTs displaying Aoki
phases [53] is that our parity-broken condensate is not
directly connected to the SPT region hosting domain-wall
fermions. Our bosonization and DMRG results indicate that
the confined phase, which preserves parity, extends all the
way down to g ¼ 0, separating the SPT phase from the
parity-broken fermion condensate. In the future, it would
be very interesting to understand these connections/
differences in more detail, and explore how the tools used
to characterize SPT phases might be useful for the under-
standing of QCD-like lattice theories in higher dimensions.
Another interesting topic is the study of dynamical effects
that can evidence the interplay of topological features in
SPT phases and nonperturbative effects in LGTs.
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APPENDIX A: TOPOLOGICAL QED2:
NONINTERACTING LIMIT

In this section, we review the properties of the Su-
Schrieffer-Heeger (SSH) model of polyacetylene [45,46]
that corresponds to the discretized noninteracting
Schwinger model we introduced. We place a special
emphasis to the connection to one-dimensional topological
insulators, a paradigmatic example of an SPT phase and we

also show how the nontrivial topological properties of the
SSHmodel have to be considered to compute its continuum
limit properly.

1. SSH Model—SPT phase and topological invariant

In the limit of vanishing coupling g ¼ 0, the Hamiltonian
of the discretized Schwinger model of Eq. (3) of the main
text reduces to HtS ¼ HSSH þ a

P
nEðxÞ2=2, such that the

matter sector decouples from the gauge-field sector and can
be described by

HSSH ¼ −i
XNs=2

n¼1

ð1 − ΔÞa†nbn þ b†nanþ1 þ H:c:; ðA1Þ

where we have rewritten the even (odd) fermionic operators
c2n ðc2n−1Þ using a two-site unit cell notation bn (an). By
performing a Fourier transform for periodic boundary
conditions, one obtains HSSH ¼ P

k∈BZΨ
†
khðkÞΨk, where

hðkÞ ¼ dðkÞ · σ is the single-particle Hamiltonian, and
Ψk ¼ ðak; bkÞt is defined within the first Brillouin
zone BZ ¼ ½−π=a; π=aÞ. In this expression, dðkÞ ¼
ð− sin ka; ð1 − Δ − cos kaÞ; 0Þ=a, and σ is the vector of
all three Pauli matrices σ ¼ ðσx; σy; σzÞ. Note that the
dimerization leads to a momentum-dependent mass
mtðkÞ ¼ ð1 − Δ − cos kaÞ=a, a so-called topological mass
that plays a crucial role in the appearance of the SPT phase.
A naïve long-wavelength approximation would yield

HSSH ¼ R
dxHmD, where

HmD ¼ Ψ̄ðxÞð−iγ1∂x þmÞΨðxÞ ðA2Þ

is the Hamiltonian density for a massive Dirac field with
γ0 ¼ σy, γ1 ¼ iσz, and mass m ¼ −Δ=a for dimerizations
Δ ≪ 1.
Here, we have introduced the effective Dirac spinor

ΨðxÞ ¼ ðψuðxÞ;ψdðxÞÞt for a small region around the
origin of the Brillouin zone jkj < Λc with components
defined by

ψuðxÞ ¼
ffiffiffiffiffi
2

Ls

s X
jkj<Λc

e−ikxak;

ψdðxÞ ¼
ffiffiffiffiffi
2

Ls

s X
jkj<Λc

e−ikxbk; ðA3Þ

where ak, bk are momentum operators obtained from the
odd- and even-site fermionic operators, respectively.
Therefore, this long-wavelength approximation focuses
on local aspects of the bands, and one might be loosing
relevant information about global topological features that
would require the knowledge of the complete band struc-
ture. Indeed, one finds that the Berry connection for the
lowest-energy band A−ðkÞ ¼ h−εkji∂kj − εki of the full
SSH model (A1) is
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A−ðkÞ ¼
1 − ð1 − ΔÞ cos ka

2ð1þ ð1 − ΔÞ2 − 2ð1 − ΔÞ cos kaÞ : ðA4Þ

The ground-state of the SSH model at half filling jgsi ¼
⊗k∈BZ j − εki displays a polarization proportional to a
nontrivial topological invariant [62]: the so-called Zak’s
phase [63]. This invariant is obtained by integrating the
Berry connection over all the occupied momenta

φZak ¼
Z
BZ

dkA−ðkÞ ¼ πðϑðΔÞ − ϑð2 − ΔÞÞ; ðA5Þ

where we have introduced Heaviside’s step function
ϑðxÞ ¼ 1 for x > 0, and zero otherwise. Therefore, this
Zak’s phase can be associated with a gauge-invariant
topological Wilson loop W ¼ eiφZak , which becomes non-
trivial W ¼ −1 when the dimerization lies in Δ ∈ ð0; 2Þ.
This is precisely the region where the SSH model hosts an
SPT phase, a topological insulator in the BDI symmetry
class: the ground-state is characterized by a nonvanishing
topological invariant respecting the symmetries of the
underlying Hamiltonian. These correspond to time-reversal
T σzhð−kÞ�σz ¼ hðkÞ, particle-hole C hð−kÞ� ¼ −hðkÞ,
and sub-lattice S σzhðkÞσz ¼ −hðkÞ symmetry, such that
T2 ¼ C2 ¼ þ1 [47].
As announced above, in order to capture the correct

topological features, one cannot naïvely restrict to long-
wavelengths jkj < Λc (A2), since the information about the
topological mass mtðkÞ at the borders of the Brillouin zone
jk − π=aj < Λc is also important. In the following section,
we use the bulk-boundary correspondence for such SPT
phase to derive the correct long-wavelength approximation.

2. SSH Model—Continuum limit

In this subsection, we derive the correct long-wavelength
approximation that is valid for the noninteracting
Schwinger model of Eq. (3) in the main text. We build
on the bulk-edge correspondence, which states that the
nonvanishing bulk topological invariant φZak in Eq. (A5) is
related to the presence of robust zero-energy modes
localized to the boundaries of the sample, the so-called
topological edge states. Our goal now is to revisit the
continuum limit in a way that these edge states appear
naturally.
Instead of considering periodic boundary conditions as

in the previous subsections, we impose Dirichlet boundary
conditions for an open finite chain. In the continuum limit,
where a → 0 and Ns → ∞ with a fixed length Ls ¼ Nsa,
we can express the fermionic lattice operators as fields
cn → ΨðxÞ ¼ ffiffiffiffiffiffiffiffiffiffi

2=Ls

p P
k sinðkxÞck, where k ¼ π

Ls
j and

j ∈ N. Such fields fulfill directly the boundary conditions
Ψð0Þ ¼ ΨðLsÞ ¼ 0.
In order to unveil the low-energy excitations that resemble

Dirac fermions, the standard approach in one-dimensional

models is to break the field operator into right- and left-
moving components ΨðxÞ ¼ eikFxΨ̃RðxÞ þ e−ikFxΨ̃LðxÞ,
where fΨ̃ηðxÞgη¼R;L are slowly-varying envelopes that allow
for a gradient expansion [64]. For an open chain, however,
these right- and left-moving fields are not independent, but
must instead fulfill Ψ̃Lð−xÞ ¼ −Ψ̃RðxÞ by imposing the
Dirichlet boundary conditions [65] (see Fig. 4). Accordingly,
the left-moving component can be obtained from the right-
moving one, and one can focus on the right movers in a
doubled chain with periodic conditions Ψ̃Rð−LsÞ ¼
Ψ̃RðþLsÞ.
In the present case, we are interested in the universal

properties of Eq. (3) for 0 < Δ ≪ 1, which are obtained by
making a long-wavelength approximation around kF ¼
π=2a (i.e., wave vector where the dispersion relation for
open boundary conditions crosses the zero of energies). We
can then restrict to momenta around the origin of the
Brillouin zone jk − π=2aj < Λc ≪ 1=a, and perform a
gradient expansion of the fermionic fields that yields a
matter sector governed by

HSSH ¼
Z

Ls

0

dx
X
η¼L;R

sηðΨ̃†
ηðxÞi∂xΨ̃ηðxÞ þ imΨ̃†

ηðxÞΨ̃η̄ðxÞÞ;

ðA6Þ

where we have introduced sη ¼ ð1 − 2δη;RÞ, η̄ ¼ L;R for
η ¼ R;L, and we recall that m ¼ −Δ=a. Here, the right-
and left-moving fermions can be related to the original
spinor components as follows Ψ̃R ¼ ðΨ̃u − Ψ̃dÞ=

ffiffiffi
2

p
, Ψ̃L ¼

ðΨ̃u þ Ψ̃dÞ=
ffiffiffi
2

p
.

We can now use the condition Ψ̃Lð−xÞ ¼ −Ψ̃RðxÞ to get
rid of the left-moving fields, and obtain the following
continuum field theory for the right movers HSSH ¼RþLs
−Ls

dxHtD, where

HtD¼−Ψ̃†
RðxÞi∂xΨ̃RðxÞþ imsgnðxÞΨ̃†

RðxÞΨ̃Rð−xÞ: ðA7Þ

Therefore, the naïve continuum limit with massive Dirac
fermions (A2), must be replaced by this effective
Hamiltonian field theory where the Dirac fermions display
a nonlocal mass that changes sign at x ¼ 0. This can be

FIG. 4. Chiral modes for Dirichlet boundary conditions: For a
finite open chain, the right- and left-moving modes satisfying
Ψ̃ηð0Þ ¼ Ψ̃ηðLsÞ ¼ 0, must fulfill Ψ̃RðxÞ ¼ −Ψ̃LðxÞ, such that
one may study modes of a fixed chirality living in an annulus,
i.e., enlarged chain with periodic boundary conditions
Ψ̃RðLsÞ ¼ Ψ̃Rð−LsÞ.
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interpreted as a nonlocal version of the Jackiw-Rebbi
quantum field theory, where fermionic zero-modes are
localized within a kink excitation of a scalar field, which
effectively changes the sign of the local mass term [66]. In
fact, this continuum field theory (A7) can be exactly
diagonalized, and leads to two types of solutions: (i) bulk
energy levels with εðkÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
, where we recall

that momentum is quantized k ¼ πj=Ls with j ∈ N, such
that the solutions fulfill the Dirichlet boundary conditions.
Accordingly, these plane-wave solutions are delocalized
within the bulk of the chain, and have a relativistic
dispersion relation: they correspond to the previous mas-
sive Dirac field in the naïve continuum limit (A2).
Additionally, in the thermodynamic limit, we find
(ii) a zero-energy mode localized at x ¼ 0 with wave
function χ̃0ðxÞ ≈ Ce−jxj=ξ, where ξ ¼ a=Δ ≪ Ls → ∞
and C ¼ ffiffiffiffiffiffiffi

Δa
p

. Therefore, provided that Δ > 0 (otherwise
the solution is not normalizable), we find a zero-mode
exponentially localized to x ¼ 0. This coincides precisely
with the topological edge state localized at the left
boundary at x ¼ 0, while the remaining edge state at x ¼
Ls can be recovered by means of inversion symmetry.
After going back to the physical un-doubled chain, and

introducing the fast-oscillating terms components to these
envelopes, the zero-energy solutions εL ¼ εR ¼ 0 can be
expressed as

χLðxÞ ¼ Ce−
x
ξ sinðkFxÞ;

χRðxÞ ¼ Ce−
ðLs−xÞ

ξ sinðkFðLs − xÞÞ; ðA8Þ

which, in addition to the exponential decay from the
boundaries, also show an oscillating character sinðπj=2Þ
[sinðπðN − jÞ=2Þ] such that the left-most [right-most] edge
state only populates the even (odd) sites. As a consistency
check, we note that this exponential decay and alternating
behavior has been also found for the SSH model using
completely different approaches (see e.g., [67]).
With these results, the naïve continuum limit for the SSH

model in Eq. (A2) gets superseded by HSSH ¼ R Ls
0 dxHtD,

where

HtD ¼ Ψ̄ðxÞð−iγ1∂x þ Δ=aÞΨðxÞ
þ

X
η¼L;R

εηjχηðxÞj2η̂†η̂; ðA9Þ

which is valid for 0 < Δ ≪ 1 and corresponds to the
Hamiltonian of Eq. (4) of the main text.

APPENDIX B: ZN-TOPOLOGICAL SCHWINGER
MODEL ON THE LATTICE

The goal of this section is to explain in more detail the
Hamiltonian approach to lattice gauge theories for the
discrete Abelian gauge group ZN , which gives access to

the properties of compact QED in the large-N limit [68].
For the massive Schwinger model of Eq. (1) of the main
text, this offers an alternative [55] to the Kogut-Susskind
approach based on the Hamiltonian

HZN
mS ¼ a

XNs

n¼1

�
−1
2a

ðic†nŨncnþ1 þ H:c:Þ þmsð−1Þnc†ncn

þ aðṼn þ Ṽ†
n − 2Þ

�
; ðB1Þ

where we have introduced two types of unitary link
operators Ũn, Ṽn that obey the ZN algebra. Accordingly,
instead of using the rotor-angle operators of the Kogut-
Susskind approach, one uses link operators fulfilling
ŨN

n ¼ ṼN
n ¼ I, and Ṽ†

nŨnṼn ¼ ei2π=NŨn. In analogy to
the Kogut-Susskind approach, using the electric-flux eigen-
basis Ṽnjvi ¼ vjvi with v ∈ ZN , the remaining link
operators act as ladder operators that raise the electric flux
by one quantum Ũnjvi ¼ jvþ 1i. The main difference is
that, in contrast to the Kogut-Susskind approach, the ladder
operators have a cyclic constraint ŨnjNi ¼ j1i.
We note that these link operators can be defined in terms of

the vector potential and the electric field Ũn ¼ expfiagAng,
Ṽn ¼ expfi 2πN En

g g. In this way, the ZN algebra ½Ũn; Ṽn� ¼
ei2π=N can be satisfied by imposing the usual canonical
commutation relations ½En; Am� ¼ iδn;m=a, which have the
correct continuum limit ½EðxÞ; AðyÞ� ¼ iδðx − yÞ. Note also
that the gauge-group condition ŨN

n ¼ ṼN
n ¼ I requires that

the electric-flux eigenvalues of L̃n ¼ En=g should span
σðL̃nÞ¼f−1

2
ðN−1Þ;…;1

2
ðN−1Þg. This yields σðL̃nÞ → Z

in the large-N limit, which corresponds to the spectrum of
the rotor operator Ln of the Kogut-Susskind approach. In
the same manner, the eigenvalues of the vector potential
should lie in σðagAnÞ¼f−πðN−1Þ=N;…;πðN−1Þ=Ng→
½−π;π�, corresponding to the basis of the angle operatorΘn in
the Kogut-Susskind approach, and leading to compact
QED2. We remark that, as emphasized in [55], the elec-
tric-energy term inEq. (B1) can be substituted by an arbitrary
function ðVn þ V†

n − 2Þ → fðVnÞ ¼ f†ðVnÞ, and we will
focus on fðVnÞ ¼ 1

2
g2L̃2

n [56,69].
As shown in [56], the properties of the massive

Schwinger mode with vacuum angle θ ¼ π can be recov-
ered from a large-N scaling of the ZN massive Schwinger
model (B1).
By introducing our alternative discretization presented

in this paper, we arrive to the lattice Hamiltonian of Eq. (3)
of the main text, i.e.,

HZN
tS ¼ a

XNs

n¼1

�
−1
a

ðið1 − δnÞc†nŨncnþ1 þ H:c:Þ þ g2

2
L̃2
n

�
;

ðB2Þ
where δ2n ¼ 0 and δ2n−1 ¼ Δ.
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In order to take into account Gauss’s law, we also
introduce the operator

Gn ¼ c†ncn þ
1

2a
½ð−1Þn − 1� − 1

a
ðL̃n − L̃n−1Þ: ðB3Þ

Accordingly, jψi is a physical state if it satisfies the
condition Gnjψi ¼ 0 ∀ n. This is a very important con-
straint that allows us to construct the physical Hilbert space
of the topological ZN model for numerical simulations by a
DMRG algorithm.

APPENDIX C: CRITICAL LINES:
SCALING ANALYSIS

In this section, we show the finite-size scaling analysis
for determining the exact location of the critical lines
separating the SPT, the confined and the fermionic con-
densate phases in the phase diagram of the discretization of
the Schwinger model we introduced.

1. Finite-size scaling: Topological order parameter

The critical line separating the SPT from the trivial
confined phase in the thermodynamic limit can be deter-
mined by a finite-size scaling of a topological order
parameter O− recently introduced in Ref. [57] for the
SSH model and defined as O− ¼ 2

Ns

PNs=2
n¼1 hgsjOð2n−1Þ

− jgsi
with

OðjÞ
− ¼ 3

2
ðc†jcjþ1þc†jþ1cjÞþρjρjþ1−

1

2
ðρjþρjþ1Þ; ðC1Þ

where ρj ¼ c†jcj are fermion density operators. Throughout
this section, we will set the lattice spacing a ¼ 1.
Finite-size scaling theory predicts that there exist a

universal function λðxÞ and two critical exponents ν and
β such that the quantity O− will behave as

Nβ=ν
s O− ¼ λðN1=ν

s ðg − gcÞÞ ðC2Þ

for coupling g close enough to the critical point gc. Since in
the SSH model, the quantum phase transition between the
topological and the trivial phase has critical exponents
β ¼ 1=8 and ν ¼ 1, we assumed these values in Eq. (C2).
We note that for g ¼ gc, the value λð0Þ and thus the value

Nβ=ν
s O−, because of Eq. (C2), become independent of

the system size and one expects to find a crossing of the
curves representingNβ=ν

s O− for differentNs precisely at the
critical point. Therefore, after fixing Δ, we determined gc
by plotting the l.h.s of Eq. (C2) as a function of g and for
different system sizes and by looking at the point gc where
the curves intersected.
We computed O− by using our DMRG algorithm for

open boundary conditions, where we keepm ¼ 1000 states

in the iterative diagonalization and coarse graining of a
lattice of different sizes (up to Ns ¼ 80 sites).
The main panel of Fig. 5 shows examples of the quantity

Nβ=ν
s O− as a function of g for different values of Ns and

Δ ¼ 0.5. It is possible to see that the crossing of the curves
allows us to predict a critical point at gc ≈ 1.384=a.
Morever, to check the initial hypothesis concerning the
values of the critical exponents β ¼ 1=8 and ν ¼ 1, we
analyze the quantity Nβ=ν

s O− as a function of the argument
N1=ν

s ðg − gcÞ. In this case, for different system sizes, we
should observe a universal behavior when g ≈ gc (i.e., a
collapse of the different curves into a single one). This is
exactly what is shown in the inset of Fig. 5, confirming in
this way the initial hypothesis about the universality class
of the SPT-C phase transition.
In the same spirit, we can now fix a particular value of g,

and calculate the topological order parameter by varying
the dimerization Δ to compute the critical dimerization
ΔO−

c . By varying g we determined the critical points related
to the transition SPT-C. The resulting values are shown
Table I.
As can be observed in the last row of this table, when the

gauge coupling g is sufficiently large the topologica SPT-C
transition is absent. This means that the SPT phase
disappears for large g, as conjectured in this paper.

2. Finite-size scaling: Electric order parameter

As conjectured in this paper, the phase transition sepa-
rating the confined phase (C) from the fermion condensate
(FC) should be analogous to the one of the standard massive

FIG. 5. Finite-size scaling for the topological correlator of the
Z3 topological Schwinger model. (main panel) Scaling quantity
Nβ=ν

s O− for the topological correlator (C1) calculated for Δ ¼ 0.5
as a function of the gauge coupling for various system sizes Ns ∈
f24; 28; 32; 36; 40g (top to bottom). The crossing point of all
curves yields a value of the critical point separating the SPTand C
phases of gc ≈ 1.384. (inset) Universal scaling of the topological
correlator within the Ising universality class ν ¼ 1 and β ¼ 1=8,
i.e., data collapse of the curvesNβ=ν

s O− as function ofN1=ν
s ðg − gcÞ

displayed in the shaded region.
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Schwinger model. In the context of the ZN approach [56],
such a transition can be detected numerically by the electric
field order parameter Σ ¼ PNs

n¼1hgsjEnjgsi=Ns.
Following the scheme of the previous transition SPT-C,

we can compute the critical dimerization ΔΣ
c by performing

a finite-size scaling analysis with

Nβ=ν
s Σ ¼ λðN1=ν

s ðΔ − ΔΣ
c ÞÞ; ðC3Þ

where we use the critical exponent of the universality class
of the massive Schwinger model, which is the 2D Ising
class β ¼ 1=8, ν ¼ 1 [35,40,43].
Examples of the quantity Nβ=ν

s Σ are plotted in Fig. 6 as a
function of Δ for different system sizes Ns and for g ¼ 0.6.
The two critical points ΔΣ

c ≈ −0.215 and ΔΣ
c ≈ 2.216

(symmetrical with respect to the value Δ ¼ 1 as expected)
are found at the crossing point of all the lines.

Thus, the behavior of Nβ=ν
s Σ when varying g can be used

to determine the critical points ΔΣ
c related to the transition

C-FC. The resulting values are shown in Table I.

APPENDIX D: WAVE FUNCTION
OF THE EDGE MODES

In this section, we explain how to compute the wave
functions of the two zero-energy edge modes by DMRG
simulation.
Let us start by considering the SPT phase in the non-

interacting limit g ¼ 0, where two zero-energy edge modes
are present. Since the Hamiltonian commutes with the
number operator, the Hilbert space can be divided into
sectors with a fixed number of particles. Neglecting small
finite-size corrections to their energies, which will even-
tually disappear in the thermodynamic limit, there will be
four degenerate states in the ground-state manifold:
jgsNs−1i in the sector with Ns − 1 particles; jΦLi and
jΦRi in the sector with Ns particles with the leftmost or
rightmost edge modes populated; jΦL;ΦRi in the sector
with Ns þ 1 particles hosting both populated edge modes.
Let now Φ†

L represent the operator that excites the leftmost
zero-energy mode, i.e.,Φ†

L ¼ P
nα

nc†n for some α < 1, and
analogously for the rightmost zero-energy mode Φ†

R.
Accordingly, we can obtain the ground-state with Ns

particles as jΦLi ¼ Φ†
LjgsNs−1i (or equivalently jΦRi ¼

Φ†
RjgsNs−1i), and the ground state with Ns þ 1 particles as

jΦL;ΦRi ¼ Φ†
LΦ

†
RjgsNs−1i. Using the DMRG algorithm,

we can numerically target the lowest energy state in sectors
with a generic number of particles, and we can thus
calculate the following expectation value

Bn ¼ hΦL;ΦRjc†ncnjΦL;ΦRi: ðD1Þ
Note that in the noninteracting limit, by applying Wick’s
theorem, this observable becomes

Bn ¼ jhgsNs
jcnjΦLij2 þ jhgsNs

jcnjΦRij2
þ hgsNs−1jc†ncnjgsNs−1i: ðD2Þ

Interestingly, given the above expression of the edge
operators, the first two terms of the above expression
contain the probabilities associated with the edge-state
wave functions. These wave functions can thus be obtained
by calculating numerically

ψ2
n ¼ Bn − hgsN−1jc†ncnjgsN−1i: ðD3Þ

Recalling that the operator ΦL (ΦR) has support only on
even (odd) sites (A8), it is possible to reconstruct the
amplitude of the left-most (right-most) edge mode by
plotting the quantity ψ2

n as a function of even (odd) n.
We expect that the behavior of the observable (D1) will

hold in the interacting regime, giving us amethod to compute

FIG. 6. Finite-size scaling for the electric order parameter of the
Z3 topological Schwinger model: Scaling quantity Nβ=ν

s Σ=g for
the electric-field order parameter Σ, calculated for g ¼ 0.6 as a
function of the dimerization for various system sizes Ns ∈
f24; 28; 32; 36; 40g (top to bottom). The two crossing points
of all curves yield the values of the critical dimerizations of ΔΣ

c ≈
−0.215 and ΔΣ

c ≈ 2.216 that are symmetric with respect to the
line Δ ¼ 1.

TABLE I. Critical values of Δ (related to the two transitions
FC-C and SPT-C) obtained for different values of g. The
numerical error is equal to 10−3.

g ΔO−
c ΔO−

c ΔΣ
c ΔΣ

c

0.01 −0.009 1.994 −0.008 1.995
0.05 −0.022 2.028 −0.024 2.030
0.10 −0.062 2.069 −0.064 2.072
0.20 −0.120 2.118 −0.121 2.119
0.60 −0.162 2.160 −0.215 2.216
1.00 −0.051 2.052 −0.257 2.259
3.00 // // −0.210 2.211
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the many-body zero-energy edge modes of the topological
Schwinger model, as reported in the plots of Fig. 3(d).

APPENDIX E: ROBUSTNESS OF THE SPT
PHASE IN THE LARGE-N LIMIT

In this work, we studied the Z3 topological Schwinger
model, leaving to a follow-up study the complete analysis
of the phase diagram of the models with N > 3.
However, in order to understand the robustness of the

SPT phase when the link operators belong to different ZN
algebras we also computed the critical points gc related to
the transition SPT-C for the particular line Δ ¼ 1 for the Z5

and Z7 models. We noticed that the critical value gcðNÞ
grows with N and the points can be fit with an exponential
function of the form gcðNÞ ¼ Ae−B=N þ C, as shown in
Fig. 7. Thus, the critical point gcðNÞ for Δ ¼ 1 approaches
a finite value in the N → ∞ limit given by gcð∞Þ ≈ 2.979.
This shows that the SPT phase has a finite region of
stability, in accordance to the analytical results obtained for
the Uð1Þ topological Schwinger model.
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