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Abstract We construct traversable wormholes with anti-
de Sitter asymptotics supported by a phantom field. These
wormholes are massless and symmetric with respect to reflec-
tion of the radial coordinate η → −η. Their circumferential
radius decreases monotonically from radial infinity to their
single throat. Analogous to their asymptotically flat coun-
terparts, these anti-de Sitter wormholes possess an unstable
radial mode.

1 Introduction

Wormholes represent intriguing solutions of the gravita-
tional field equations that feature a minimal surface which is
known as their throat, connecting distant regions in the uni-
verse. In general relativity (GR), the Einstein–Rosen (ER)
bridge is probably the most well-known example of a non-
traversable wormhole. It can be naturally obtained from the
Schwarzschild black hole by maximally extending the solu-
tion [1]. On the other hand, in order to obtain traversable
wormholes, a violation of the null energy condition is neces-
sary. In GR this is typically accomplished by the introduction
of some form of exotic matter (see, e.g., [2–4]).

Here the static asymptotically flat Ellis wormholes [5–
7] represent the classic example of traversable wormholes.
They are supported by a phantom field, which corresponds
to a scalar field with an opposite sign of the kinetic term,
thus violating the null energy condition. Such a phantom
field can be used to describe the accelerated expansion of the
universe [8–11] and can also be employed to construct black
holes [12,13], four-dimensional black rings [14], or star-like
objects [15].
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Static Ellis wormholes have a very simple geometric struc-
ture. They possess a single throat that connects two asymp-
totically flat regions. They have been generalized to higher
dimensions [16], and to include rotation in four dimensions
[17–20] and five dimensions [21]. Also, configurations of
wormholes with phantom fields and ordinary fields have been
constructed as, for example, Ellis wormholes immersed in
bosonic matter [22–25] or mixed neutron star-wormhole sys-
tems [26–30].

Whereas static Ellis wormholes possess an unstable radial
mode in both four and higher dimensions [16,31–34], the
inclusion of rotation might stabilize these wormholes, as sug-
gested by a study of rotating wormholes with equal angular
momenta in five dimensions [21]. Here, at the onset of rota-
tion, a zero mode turns into a second unstable radial mode,
which bifurcates with the first unstable mode at a critical
value of the angular momentum, leaving sufficiently rapidly
rotating wormholes without unstable radial modes.

However, the presence of a phantom field is not mandatory
to obtain traversable wormholes. Numerous such wormholes
have been obtained in alternative theories of gravity, when
the energy conditions have been violated in the gravitational
sector (see, e.g., [35–45]). But even in GR, wormholes can
be supported only by fermions [46], i.e., the constituents of
ordinary matter, which is also sufficient to violate the energy
conditions. In particular, traversable wormholes of Einstein–
Maxwell–Dirac theory have recently been constructed [47].

From an astrophysical perspective, wormholes might
mimic black holes (see e.g. [48,49]). Here, in order to dis-
tinguish them from black holes, a number of astrophysical
signatures of wormholes have been pointed out that might
allow us to search for their existence in the near future.
Examples are their shadows [50–52], gravitational lensing
[53–59], accretion disks around wormholes [60,61], and their
ringdown phase with the associated emission of gravitational
waves [62].
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On the other hand, there has been much interest in
recent years regarding wormholes that connect asymptoti-
cally locally anti-de Sitter (AdS) spaces; indeed, such worm-
holes have been constructed in a variety of gravitational mod-
els [63–70]. However, the generalization of asymptotically
flat Ellis wormholes to AdS asymptotics has not yet been
explored. Hence, in this paper we close this gap and con-
struct Ellis wormholes with a negative cosmological con-
stant. We then investigate the properties of these wormholes
and explore how the AdS asymptotics affects the stability of
the solutions.

This paper is organized as follows. In Sect. 2, we briefly
introduce our theoretical setup comprising the phantom field
and the metric ansatz. In addition, we derive the set of cou-
pled differential equations, we describe the numerical meth-
ods employed to solve these equations, and we study the
asymptotic behavior of the metric functions. In particular,
we discuss the mass of the wormholes in asymptotically AdS
spacetimes and the geometric properties of the wormholes, as
well as the violation of the energy conditions. In Sect. 3, we
present and discuss our numerical results for the wormhole
solutions. In Sect. 4, we study the stability of the wormholes
by calculating the unstable mode of the radial perturbations
of the metric and the phantom field. Finally, in Sect. 5, we
summarize our work and present an outlook.

2 Theoretical setting

2.1 Theory

We consider the Einstein–Hilbert action including the cos-
mological constant � and the Lagrangian for the matter field
Lm

SEH =
∫

d4x
√−g

[
1

16πG
(R − 2�) + Lph

]
, (1)

where � is related to the AdS length l by � = −3/ l2, and
Lph is the Lagrangian of the phantom field ψ ,

Lph = 1

2
∂μψ∂μψ . (2)

By varying the action with respect to the metric, we obtain
the Einstein equations

Rμν − 1

2
gμνR + �gμν = 2κTμν , (3)

where κ = 4πG, and the stress–energy tensor Tμν is given
by

Tμν = 1

2
gμν∂αψ∂αψ − ∂μψ∂νψ . (4)

We obtain the massless Klein–Gordon equation by varying
with respect to the phantom field,

1√−g
∂μ

(√−g∂μψ
) = 0 . (5)

In order to construct wormhole solutions with AdS asymp-
totics, we employ the following line element with a quasi-
isotropic radial coordinate η,

ds2 = −F(η)N (η)dt2 + p(η)

F(η)

×
[

dη2

N (η)
+ h(η)(dθ2 + sin2 θdϕ2)

]
, (6)

where N (η) = 1 − �η2/3 and h(η) = η2 + η2
0, with η0 the

throat parameter. In pure Einstein gravity (� = 0), the above
metric describes a static Ellis wormhole that possesses two
asymptotically flat regions �± as η → ±∞. The analytical
solution for static Ellis wormholes is given by

p(η) = 1 , F(η) = e f (η) , (7)

with

f (η) = 2M

η0

[
arctan

(
η

η0

)
− π

2

]
, (8)

and M is the mass of the Ellis wormholes on �+. However,
when � < 0, the above metric should possess two asymp-
totically AdS regions as η → ±∞.

2.2 Ordinary differential equations (ODEs)

By substituting the line element Eq. (6) into the Einstein
equations, we obtain a set of second-order nonlinear ODEs
for the metric functions,

F ′′ − F

p
p′′ +

[
p′

2p
+ η(6N − h�)

3hN

]
F ′

−ηF(6N − h�)

3phN
p′ + 3F

4p2 p′2 − 5

4F
F ′2

−6hFN + 3�ph2 − 2h�η2F − 3hF − 3η2FN

3Nh2

= −κFψ ′2 , (9)

�η

3FN
F ′ + η(3N − h�)

3phN
p′ + p′2

4p2 − F ′2

4F2

+3Nη2F + 3�ph2 − 3hF − 2h�η2F

3Fh2N
= −κψ ′2 , (10)

p′′ + η(3N − h�)

3hN
p′ − 2�ηp

3FN
F ′ − p′2

p
+ p

2F2 F
′2

+2p(3hFN − 2h�η2F + 3�ph2 − Fh2� − 3η2FN )

3FNh2

= 2κpψ ′2 , (11)
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where the prime denotes the derivative of the functions with
respect to the radial coordinate η.

From the massless Klein–Gordon equation Eq. (5) for the
phantom field we obtain a first integral,

ψ ′ = D

hN
√
p

, (12)

where D is a constant. In the asymptotically flat case it is
interpreted as the scalar charge of the phantom field. We elim-
inate the term ψ ′2 in Eqs. (9) and (11) by adding Eqs. (9) and
(11), respectively, to Eq. (10). Then we obtain the following
ODEs for the metric functions F and p,

F ′′ = F ′2

F
+ �ηF

3pN
p′ −

(
p′

2p
+ 2η(3N − h�)

3hN

)
F ′

+2�(2η2F + Fh − 3ph)

3Nh
, (13)

p′′ = p′2

2p
− η(3N − h�)

Nh
p′

+2p(3F − 3FN + 4�η2F + �hF − 6�ph)

3hFN
.

(14)

In order to study the asymptotic behavior of the metric
functions in the limit η → ∞, we perform the series expan-
sion for Eqs. (13) and (14) to obtain the asymptotic expansion
for the functions

F(η) = F∞ + F∞η2
0

3η2 − F∞η2
0

(
�η2

0 − 12
)

15�η4 + O(η−6) ,

(15)

p(η) = F∞ − F∞η2
0

3η2 + F∞η2
0

(
14�η2

0 + 27
)

45�η4 + O(η−6) .

(16)

We observe that the odd terms vanish identically. With these
expansions, the large-η expansions of gtt and gηη for the
wormhole are given by

− gtt
∣∣∣
η→∞ = −�F∞η2

3
+ F∞

(
1 − �η2

0

9

)

+ F∞η2
0

15η2

(
1 + �η2

0

3

)
+ O(η−4) , (17)

gηη
∣∣∣
η→∞ = −�η2

3
+ 1 − 2�η2

0

9

+η2
0

(
7�η2

0 + 81
)

135η2 + O(η−4) . (18)

Since the odd terms vanish, we find that the metric functions
at η → −∞ have exactly the same asymptotic expansions
as the metric functions at η → ∞. According to the asymp-
totic expansions, the appropriate boundary conditions to be

imposed on the metric functions at infinity are given by

F(±∞) = p(±∞) = 1 , (19)

and thus F∞ = 1.
Considering the expression for the mass of the worm-

holes as, for instance, obtained from the Ashtekar–Magnon–
Das formalism [73–75], the vanishing of the odd terms also
implies that the mass of these symmetric wormholes van-
ishes, as also happens in the symmetric case for an asymp-
totically flat space. Indeed, the mass is read off from a term
of order 1/η, which is not present in the above expansion.
However, other symmetric wormholes depending only on
|η| may feature a term of order 1/|η| and therefore possess a
finite mass (see, e.g., [71]). In addition, the series expansion
at η = 0 is given by

F(η) = F0 + �

3
(F0 − 3p0)η

2 + O(η4) , (20)

p(η) = p0 + �p0(F0 − 6p0)

3F0
η2 + O(η4) . (21)

By using Eq. (12), we may rewrite Eq. (10) as

D2 = N 2 ph2

4F2 F ′2 − Np�ηh2

3F
F ′ − N 2h2

4p
p′2

−1

3
Nηh(3N − h�)p′

−Np(3Nη2F + 3�ph2 − 3Fh − 2h�η2F)

3F
. (22)

This equation can be used to monitor the accuracy of the
numerical computation by ensuring that D is constant on the
grid in the full domain of integration. We note that in GR
without a cosmological constant, for a generic static Ellis
wormhole, the mass M and the scalar charge D are related
by

D2 = M2 + η2
0 . (23)

We solve Eqs. (13) and (14) numerically by using the ODE
solver package COLSYS, which tackles boundary value
problems for systems of nonlinear coupled ODEs based on
the Newton–Raphson method [72]. Employing an adaptive
grid selection procedure and using more than 1000 points,
COLSYS provides the solutions with high accuracy together
with an error estimate. To integrate the ODEs in the full
interval −∞ to +∞, we compactify the radial coordinate η

in the numerical calculations as follows: η = η0 tan(πx/2)

with x ∈ [−1, 1]. Moreover, we change to dimension-
less variables by introducing the following rescaled vari-
ables/parameters in the above ODEs,

ψ̃ = √
κψ , η = η0η̃ , � = �̃

η2
0

. (24)
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In the remaining sections we will omit the tilde for conve-
nience. After the rescaling, the only free parameter left is
�.

2.3 Geometric properties

To study the geometric properties of the wormholes, we now
define the circumferential radius Rc as

Rc(η) =
√

ph

F
. (25)

A wormhole throat is a minimal surface of the wormhole.
Therefore, it has to satisfy the following conditions,

dRc

dη

∣∣∣∣
η=ηth

= 0 ,
d2Rc

dη2

∣∣∣∣
η=ηth

> 0 , (26)

where ηth is the radial coordinate of the throat. If a wormhole
has an equator with radial coordinate ηeq, this requires

dRc

dη

∣∣∣∣
η=ηeq

= 0 ,
d2Rc

dη2

∣∣∣∣
η=ηeq

< 0 . (27)

An equator is typically located between two throats, and thus
signals a double-throat configuration.

A wormhole throat can be visualized by embedding the
equatorial plane (θ = π/2) in Euclidean space (ρ, ϕ, z).
Using cylindrical coordinates, this implies for the above met-
ric parametrization

ds2 = p

FN
dη2 + ph

F
dφ2 (28)

= dρ2 + dz2 + ρ2dφ2 . (29)

We then obtain the expression for z by comparison,

z = ±
∫ √

p

FN
−

(
dρ

dη

)2

dη , ρ ≡ Rc , (30)

where the sign of z depends on the sign of the radial coordi-
nate η. For the special case of the massless symmetric Ellis
wormhole without cosmological constant (� = 0, F = p =
1), this yields

z =
∫ η

0

√
1 − η′2

η′2 + η′2
0

dη′ = arcsinh

(
η

η0

)
. (31)

2.4 Null energy condition (NEC)

As noted above, the construction of wormholes requires the
violation of the energy conditions. Here, we focus on the
NEC, which states that

Tμνk
μkν ≥ 0 , (32)

for all (future-pointing) null vectors kμ which satisfy kμkμ =
0. We note that the violation of the NEC also implies the
violation of the weak and strong energy conditions.

Since the wormhole spacetime is spherically symmetric,
there are two choices of null vector [44],

kμ =
(
gtt ,

√
− gtt
gηη

, 0, 0

)
, and

kμ =
(

1, 0,

√
− gtt
gθθ

, 0

)
, (33)

which yield two expressions to test NEC violation,

− T t
t + T η

η ≥ 0 , −T t
t + T θ

θ ≥ 0 . (34)

Evaluating the above expressions explicitly,

− T t
t + T η

η = − D2F

p2h2N
< 0 , −T t

t + T θ
θ = 0 ,

(35)

shows that the NEC is always violated.

3 Results and discussion

We have systematically constructed asymptotically AdS
wormhole solutions for values of the cosmological constant
� in the range −100 ≤ � ≤ 0. These wormholes are
symmetric with respect to η → −η. In the limit � → 0
the asymptotically flat Ellis wormhole is obtained, where
F = p = 1. We illustrate our results in Figs. 1, 2 and 3.

The metric components gtt and gηη are shown in Fig. 1a,
b, respectively, for a set of values of the cosmological con-
stant, including the asymptotically flat case (black). As �

decreases from zero, the asymptotic behavior changes to
AdS. This is reflected in the asymptotic ∼ η2 and ∼ η−2

dependence of gtt and gηη, respectively. The component gtt
has its global maximum at η = 0. As � decreases from zero,
the global maximum of gtt increases slightly from −1 to a
maximal value, and then decreases with further decreasing
�, as demonstrated in Fig. 1c.

The metric component gηη is shown in Fig. 1b. When �

decreases from zero it develops a local minimum at η = 0.
This local minimum is, however, surrounded symmetrically
by two degenerate maxima. As � decreases further, the max-
ima move toward η = 0, until they merge with the minimum.
Finally, a single maximum at η = 0 remains, which decreases
in size with further decreasing �. Figure 1d shows the phan-
tom field function ψ(x) versus the compactified coordinate
x for the same set of values of the cosmological constant as
shown in Fig. 1a, b.

In Fig. 2 we address some properties of the asymptotically
AdS wormhole solutions. In Fig. 2a we show the phantom
field constant D2 versus the cosmological constant �. When
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(a) (b)

(c) (d)

Fig. 1 Metric functions a gtt and b gηη vs. the radial coordinate η for −100 ≤ � ≤ 0; c global maximum of gtt vs. the cosmological constant �;
d phantom field function ψ(x) vs. the compactified coordinate x for −100 ≤ � ≤ 0

� = 0, D represents the phantom field charge, which is unity
(given the scaling relations (24)) for a massless Ellis worm-
hole. With decreasing �, the constant D2 at first decreases
slightly to a minimum value, and then increases almost lin-
early as � decreases further.

Turning to the geometric properties of the wormholes, we
show the circumferential radius Rc versus the radial coor-
dinate η in Fig. 2b for several values of �. Rc has a sin-
gle minimum at η = 0, from where it rises monotonically
toward infinity on both sides. This minimum corresponds to
the throat of the respective wormhole. Thus the wormholes
possess a single throat.

The circumferential radius Rc of the throat is shown ver-
sus the cosmological constant in Fig. 2c. The throat radius
is largest when � = 0, which corresponds to the Ellis
wormhole. The throat radius decreases monotonically as �

decreases. Note that the circumferential coordinate Rc tends
to the modulus of the radial coordinate η.

The violation of the NEC as expressed via condition (35)
is demonstrated in Fig. 2d. The violation is minimal when
� = 0, and thus for the Ellis wormhole. The NEC violation
increases significantly at the throat when � decreases.

The wormhole throat can be clearly visualized with the
help of embedding diagrams as shown in Fig. 3. The figures
also demonstrate that the size of the throat radius decreases
as � decreases. (Note the change in the grid size.)

4 Linear stability

The investigation of the stability of wormholes is of consid-
erable relevance. It is well known that the asymptotically flat
static Ellis wormholes in GR possess an unstable radial mode
[16,31,32]. Therefore, we will now address the stability of
static Ellis wormholes with AdS asymptotics by studying
radial perturbations on these new background solutions.
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(a)

(c)

(b)

(d)

Fig. 2 Properties of wormhole solutions: a phantom field constant D2 vs. �; b circumferential radius Rc vs. radial coordinate η for several values
of �; c circumferential throat radius vs. �; d NEC violation vs. radial coordinate η for several values of �

We start by introducing the following ansatz for the line
element

ds2 = −eν(t,η)N (η)dt2 + e−λ(t,η) p(η)

N (η)
dη2

+p(η)h(η)e−σ(t,η)(dθ2 + sin2 θdϕ2) , (36)

where

ν(t, η) = ν0(η) + εν1(η)e−iωt ,

λ(t, η) = λ0(η) + ελ1(η)e−iωt ,

σ (t, η) = σ0(η) + εσ1(η)e−iωt , (37)

and the relation with the background metric is

eν0 = e−λ0 = e−σ0 = F . (38)

For the phantom field we employ the ansatz

�(t, η) = ψ(η) + ε�1(η)e−iωt . (39)

A mode with eigenvalue ω2 is unstable and increases expo-
nentially when ω2 < 0.

Inserting the Ansätze into the scalar field equation, we find

� ′′
1 +

(
p′

2p
+ 2η

h
− 2�η

3N

)
� ′

1 + ω2 p�1

F2N 2 = 0 , (40)

when choosing the simple gauge-fixing

λ1 = −ν1 + 2σ1 . (41)

Inserting the ansatz into the Einstein equations, we obtain the
following set of first-order ODEs when again making use of
the gauge-fixing (41)

ν′
1 = q1

6phNq0
ν1 − q2

18phFN 2q0
σ1

−2DF(−6ηpN − 3hNp′ + 2�ηph)

3h
√
pN 2q0

�1 + 4DF
√
p

Nq0
� ′

1 ,

(42)
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Fig. 3 Isometric embeddings of wormhole solutions for several values of �: a � = 0.0; b � = −1.0; c � = −10.0; d � = −100.0

σ ′
1 =

(
− p′

2p
− η

h
+ F ′

2F

)
ν1

+
(

η

h
− �η

3N
+ p′

2p

)
σ1 − 2D

hN
√
p
�1 , (43)

where

q0 = −2ηpF − hFp′ + phF ′ , (44)

q1 = −12hFp2 + 12η2 p2FN + 3FNh2 p′2

+12�h2 p3 − 4�η2hFp2 + 12ηpNhFp′

−3pNh2F ′ p′ − 6ηhNp2F ′

+2�ηp2h2F ′ − 2�ηpFh2 p′ (45)

q2 = 36η2 p2F2N 2 + 9N 2h2F2 p′2 − 36hNp2F2

−12�ηpNh2F2 p′ + 4�2η2 p2h2F2

+36p3h2ω2 + 36ηhpF2N 2 p′

−24�η2hNp2F2 + 72�FNh2 p3 . (46)

We now first analyze Eq. (40) for the scalar field pertur-
bation �1. By multiplying Eq. (40) by a factor hN

√
p and

making use of the product rule, we can combine the two

derivative terms on the left-hand side to obtain

(
hN

√
p� ′

1

)′ + ω2 hp
3/2�1

NF2 = 0 . (47)

We then multiply the new ODE by �1, and integrate by parts
over the full interval (−∞,∞). Hence we obtain

(
hN

√
p�1�

′
1

) ∣∣∣∞−∞ =
∫ ∞

−∞
h
√
p

(
N� ′2

1 − ω2 p�2
1

NF2

)
dη.

(48)

Since we require � to be normalizable, the left-hand side of
this equation vanishes. Therefore, the integral on the right-
hand side must also vanish. However, the integrand is non-
negative if an unstable mode (ω2 < 0) exists. Consequently,
�1 has to be zero, so that the integral will vanish identically.

Next we consider Eqs. (42) and (43). They can be com-
bined into a single master equation which is Schrödinger-like
when written in terms of the perturbation function Z = Gsσ1,

d2Z

dr2∗
+ (ω2 − VR(η))Z = 0 , (49)

123
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where r∗ is the tortoise coordinate and VR(η) is the radial
effective potential,

dr∗
dη

=
√
p

FN
, VR(η) = Q1

12h2 p3Q0
, (50)

with

1

Gs

dGs

dη
= − 1

2η2hpN Fq0

× (−4η3hpN F2 p′ + 12FNh2 p3 − 12Fh2 p3

−4η4Np2F2 + 4η2hp2F2 − Nη2h2F2 p′2

−η2Nh2 p2F ′2+2η2 pFNh2 p′F ′+4η3hFNp2F ′) ,

(51)

Q0 = p2h2F ′2 − 4ηhFp2F ′ − 2pFh2 p′F ′ + 4η2 p2F2

+4ηphF2 p′ + h2F2 p′2 , (52)

Q1 = −48N 2η4 p4F4 − 3N 2h4F4 p′4 + 96�2F2h4 p6

−192�h3F3 p5 + 144η2h2N 2 p3F3F ′ p′

+72ηp2N 2h3F3F ′ p′2

+48η�NF3h3 p4 p′ − 72ηF2N 2h3 p3 p′F ′2

−3N 2 p4h4F ′4 + 36NF2h3 p4F ′2 − 64�2η2h3F3 p5

+64�η2h2 p4F4 − 12Np2h3F4 p′2

−48hNη2 p4F4 + 12pN 2F3h4F ′ p′3

−48ηNh2 p3F4 p′ − 48ηNh2F3 p4F ′

−24NF3h3 p3 p′F ′ + 32η�2F2h4 p5F ′

−36�FNh4 p5F ′2 − 32η�2F3 p4h4 p′

−32�ηF3h3 p4F ′ + 32�ηh3 p3F4 p′

+12FN 2 p3h4 p′F ′3 + 24ηFN 2h3 p4F ′3

−72η2h2F2N 2 p4F ′2

+48�η2Nh2F3 p5 + 96hN 2η3F3 p4F ′

−96hN 2η3 p3F4 p′ − 72η2h2N 2 p2F4 p′2

+12�Nh4F3 p3 p′2

−18p2N 2F2h4 p′2F ′2 − 24ηpN 2h3F4 p′3

+48�ηNF2h3 p5F ′ + 24�NF2h4 p4F ′ p′

+96h2 p4F4,

(53)

where we have used F ′′ and p′′ to simplify the above expres-
sions.

The radial effective potential is illustrated in Fig. 4a versus
the compactified radial coordinate x for several values of
the cosmological constant. It is symmetric with respect to
η → −η, exhibiting symmetric minima. The larger � is, the
farther away from the throat are these minima of the potential.

Similarly to what happens in the asymptotically flat case,
the potential diverges at the throat η = 0, as indicated in
Fig. 4a. The analytical expansion of the potential around the
throat shows that it diverges like η−2,

VR(η) = 2F2
0

p0η2 + O(η0) . (54)

However, a difference with respect to the asymptotically
flat case is that the potential also diverges at the two spatial
infinities when the cosmological constant is not zero, as also
indicated in Fig. 4a. The expansion of the potential at infinity
shows that the potential diverges like η2,

VR(η) = 2

9
F∞�2η2 + O(η) . (55)

We compute the unstable mode numerically by using
COLSYS to solve Eq. (49), which is an eigenvalue problem
with ω2 as the eigenvalue. In general, the perturbation func-
tion Z does not vanish at the infinities (this is the case because
these are spherical perturbations of an asymptotically AdS
configuration). However the perturbation equation requires
that the derivative of the perturbation function vanishes at the
boundaries, ∂ηZ(−∞) = ∂ηZ(∞) = 0. We impose these
as boundary conditions. Since Eq. (49) is homogeneous, in
order to obtain a nontrivial and normalizable solution for Z ,
we introduce an auxiliary equation d

dη
ω2 = 0 that allows us

to impose the condition Z(ηp) = 1 at some point ηp which
we typically choose to be above the throat. The eigenvalue ω2

is found when Z satisfies all the asymptotic boundary con-
ditions. With this method, the estimated error of the modes
reported in the following is typically 1% or smaller.

We present the eigenvalue ω2 versus the cosmological
constant in Fig. 4b. We show two different modes. In pur-
ple we show the unstable mode with ω2 < 0. This unstable
mode is found for any value of the cosmological constant,
and in particular, as � → 0, it tends to the value of the unsta-
ble mode for the asymptotically flat massless Ellis solution
(as seen in the inset). Hence, we conclude that the change of
asymptotics does not stabilize the wormhole, since the unsta-
ble mode of the asymptotically flat solution can be continued
smoothly for arbitrary values of the cosmological constant.
In fact, note that the larger the magnitude of the cosmologi-
cal constant (i.e., the shorter the AdS length), the larger the
absolute value of the unstable mode becomes.

In this figure we also show in green a nodeless normal
mode with ω2 > 0. This mode corresponds to stable pertur-
bations. Because of the AdS asymptotics, gravitational waves
are reflected by the conformal boundary, acting in practice
like a box. This is different from the asympotically flat case,
where the perturbations oscillate while being damped expo-
nentially in time (quasinormal modes). With AdS asymp-
totics, however, the oscillation is not damped, but reflected at
the boundaries, and it is possible to find normal modes like the
one we include in the figure. Note that the frequency grows
as we decrease the AdS length. And in the limit � → 0, it
vanishes with ω2 = 0.
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(a) (b)

Fig. 4 a Radial effective potential VR vs. compactified radial coordinate x for several values of �; b eigenvalue ω2 of the unstable mode vs. �

5 Conclusion and outlook

We have numerically constructed the globally regular solu-
tions of static Ellis wormholes with AdS asymptotics. The
wormhole solutions are symmetric with respect to η → −η

and consequently massless. Our numerics indicate that these
solutions exist for any value of the negative cosmological
constant, although in this work we have focused the discus-
sion on the range −100 ≤ � < 0. The AdS asymptotics of
the metric is reflected in the corresponding dependence of
the metric components, where the gtt component behaves as
∼ η2 at spatial infinity, while gηη behaves as ∼ −η−2.

The wormholes possess a single throat which, because
of the symmetry and the radial coordinate that we have
used, is located at the position η = 0. By decreasing �,
the (scaled) circumferential radius of the throat decreases
monotonically, approaching zero in the limit of infinite cos-
mological constant. In this case the circumferential coordi-
nate tends towards the modulus of the radial coordinate η.
The wormholes violate the null energy condition, as implied
by the presence of a phantom field.

In addition, we have also studied the stability of these
wormholes against spherically symmetric perturbations.
Using the same approach as for the asymptotically flat Ellis
wormholes, we have shown that the asymptotically AdS
wormholes are also unstable against radial linear perturba-
tions. The unstable mode tends to the value of the asymptot-
ically flat case when � → 0, and it increases in magnitude
as the AdS length is decreased. We have also shown the exis-
tence of normal modes, which are allowed by the box-like
properties of the spacetime.

It will be interesting to construct the rotating generaliza-
tions of these new Ellis wormholes with AdS asymptotics
and observe how the negative cosmological constant will

affect their properties. The asymptotically flat wormholes
form families of solutions that tend to an extremal Kerr
black hole in the rapidly rotating limit. If asymptotically AdS
wormholes show an analogous feature, they should approach
extremal Kerr-AdS black holes. Moreover, it will be impor-
tant to investigate the stability of these rotating asymptoti-
cally AdS wormholes to see whether rotation may possibly
stabilize the solutions also in the AdS case.

Let us end with some remarks in yet another direction
[76]. Recently, wormholes with AdS asymptotics have also
been considered in the context of ER = EPR conjecture [77]
(where EPR stands for Einstein–Podolsky–Rosen and ER for
Einstein–Rosen). Such wormholes might provide an alterna-
tive to introducing nonlocal interactions between the inside
and outside of the horizon [78,79] without violating known
principles of quantum mechanics, in order to resolve the
information loss paradox of black holes [80]. There have been
numerous candidate proposals (see, e.g., [81] for a review),
but many of them were not successful, and several candidates
have been criticized, for example black hole complementar-
ity [82,83] or the firewall conjecture [84]. According to the
conjecture, for a given entangled particle (EPR), there exists
its dual geometry as ER bridge [1]. This implies that through
the ER bridge, there can exist a conspiracy between the earlier
part of Hawking radiation and the inside degrees of freedom.

We expect that wormhole solutions in AdS, similar to the
ones we have studied in this work, can also be constructed
in more general gravity theories, in particular string-inspired
models. The existence of these wormhole solutions in such
models might open a new window toward the study of the
information loss paradox. In these models, can the philos-
ophy of the ER = EPR conjecture still be true? When the
ER = EPR conjecture was first proposed, people assumed
that the ER bridge must be non-traversable, because there
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is no information transfer via EPR pairs. However, it was
later noticed that the ER bridge can become traversable if
one considers non-perturbative effects [85] or correlations
between two asymptotic boundaries [86]. If one constructs a
traversable wormhole from a well-defined dual field theory,
it might be consistent with the ER = EPR conjecture. On the
other hand, if a traversable wormhole can be obtained from a
more classical or semiclassical construction, it may indicate
that the original proposal of the ER = EPR conjecture may be
inconsistent or that the proposal should be restricted. In order
to do this, the violation of the averaged null energy condition
would be required [87], which would be possible if one did
not consider the expectation value of the energy-momentum
tensor of the entire histories [85] (i.e., if one would consider
only a specific non-perturbative process [84,88–90]) or if
the theory would violate causality somewhat due to modifi-
cations of gravity (e.g., [35–45]).

What is the physical meaning of the violation of the causal-
ity in such a theory? Can the same method of [91] be appli-
cable in this theory? We leave these interesting questions for
future projects.
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