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The single-parameter scaling hypothesis predicts the absence of delocalized states for noninteracting
quasiparticles in low-dimensional disordered systems. We show analytically, using a supersymmetric
method combined with a renormalization group analysis, as well as numerically that extended states
may occur in the one- and two-dimensional Anderson model with a nonrandom hopping falling off as
some power of the distance between sites. The different size scaling of the bare level spacing and the
renormalized magnitude of the disorder seen by the quasiparticles finally results in the delocalization of
states at one of the band edges of the quasiparticle energy spectrum.
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Localization of noninteracting quasiparticles in ran-
dom media with time-reversal symmetry and finite-
range hopping have been extensively studied since the
seminal paper by Anderson [1]. The hypothesis of single-
parameter scaling, introduced in Ref. [2], led to the
general belief that all eigenstates of noninteracting qua-
siparticles were exponentially localized in one (1D) and
two (2D) dimensions (see Refs. [3,4] for a comprehen-
sive review) and that localization-delocalization transi-
tions no longer exist in the thermodynamic limit. Even
though models with finite-range hopping work nicely
in describing a variety of materials, long-range hopping
is often found in different physical systems (e.g., Frenkel
excitons). Random long-range hopping was found to
give rise to delocalization of states not only in three-
dimensional systems [1] but also in any dimension [5—
8]. Recent studies [9] revised the validity of the single-
parameter scaling hypothesis even within the original 1D
Anderson model with nearest-neighbor coupling, al-
though did not question the statement that all eigenstates
in 1D random systems are localized.

In this Letter, we present analytical and numerical
proofs that a localization-delocalization transition may
occur in 1D and 2D systems with diagonal disorder and
nonrandom intersite coupling which falls off according
to a powerlike law. Apart from the importance of this
finding from a general point of view, it may be relevant for
several physical systems. As an example, let us mention
dipolar Frenkel excitons on 2D regular lattices where
molecules are subjected to randomness due to a disor-
dered environment [10]. Biological light-harvesting an-
tenna systems represent a realization of the model we are
dealing with [11,12]. Magnons in 1D and 2D disordered
spin systems provide one more example of interest.
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We consider the Anderson Hamiltonian on a
d-dimensional (d=1,2) simple lattice with N =N?
sites:

H =2 eyln)Xn|+ D Jyyn)ml, (1)

where |n) is the ket-vector of the state localized at site n,
and {e,} are random site energies, assumed to be uncor-
related for different sites and distributed uniformly
within an interval [—A/2,A/2], thus having zero mean
and standard deviation o= A/+/12. The hopping inte-
grals between lattice sites m and n will be taken in the
form Jy,, =J/Im —n|* (Jyum =0), where J >0 without
loss of generality and the lattice constant is set to unity.
We stress that hopping integrals do not fluctuate.

For our qualitative reasoning we rewrite the
Hamiltonian (1) in the Bloch wave representation, |k) =
N-12¥ exp(ikn)[n), with periodic boundary condi-
tions. It then reads

H = Edk)kl + > (8H )elk)K',  (2a)
) eikn K
E = JI;) ] (2b)
(8 FH e = %Z ene! T, (2¢)

where the wave numbers k and k’ run over the first
Brillouin zone. Notice that u > d to ensure the conver-
gence of (2b) in the thermodynamic limit.

The key point of our qualitative arguments is as follows
[13]: We compare the size scaling of the typical magni-
tude of the scattering matrix (8§ )y, with the size
scaling of the level spacing 6F in the bare quasiparticle
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spectrum of the homogeneous Hamiltonian (A = 0). In
particular, we focus our attention on those eigenstates
lying close to the band edges k = 0 (top) and k = m
(bottom), where o = 7 and (1, 7r) for 1D and 2D sys-
tems, respectively. The typical fluctuation of the scatter-
ing matrix (8 H gy is oop = 0/N%/2. Thus, in spite of
the fact that the magnitude of the disorder is o, the
quasiparticle sees an effectively reduced value og. It is
important that o scales inversely proportional to N%/2.
Straightforward calculations of the bare energy spectrum
(2b) close to the band edges give the following results:

Ey = Ey— JA, () |k|#~4, k| — 0, (32)

Ex~E_.+JB,(u) |k — %, k—m (3b)

for w # d + 2, where E, and E; are the band-edge ener-
gies and A,(u) and B,(u) are dimensionless constants.
From (3) it follows that the level spacing scales as 6 E ~
N~#%4 at the top of the band, while at the bottom one
gets SE ~ N 2.

The matrix (8 H )y, couples the bare (extended) qua-
siparticle states to each other and may result in their
localization within a region of size smaller than the
system size. It seems reasonable to assume that the states
will be weakly coupled and consequently will be delo-
calized over the whole system provided the inequality
O << SE holds. It is remarkable that for u < 3d/2, the
level spacing 6E at the top of the band diminishes upon
increasing N slower than the effective magnitude of dis-
order o. Therefore, if the coupling between bare states
is weak for some finite N (o << SE) then it will become
even weaker upon increasing N. Consequently, one may
expect that the state will remain extended in the thermo-
dynamic limit N — oo. It is also reasonable to assume that
disorder of magnitude larger than the bare bandwidth will
localize all the states. From the above arguments we
conjectured the existence of an Anderson transition in
1D and 2D systems with diagonal disorder and nonran-
dom long-range hopping as long as u < 3d/2. Below we
provide analytical and numerical confirmations of this
conjecture.

Concerning the parabolic range of the energy spectrum
(close to the bottom of the band), we notice that the level
spacing diminishes as N~2 upon increasing the lattice
size, i.e., faster than the effective magnitude of disorder
oorr- Now, even if oy < OF for a small lattice size and
the states are delocalized, the above inequality will be
reverted for larger N, resulting finally in the localization
of those states. The same conclusion holds for both band
edges within the nearest-neighbor approximation, where
the level spacing is always 8E ~ N 2.

A supersymmetric method for disorder averaging
[14,15], combined with a renormalization group (RG)
analysis, provide support to the above arguments. In short
(the details will be published elsewhere), the sequence of
our steps is as follows. As a first step, we consider the one-
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particle Green’s function with the fermionic partition
function Z; and the bare action S, defined as

Zy = f l—[dtpndg_bne_sﬂ =det(H — &), (4a)
SO = Z”zln(j-[ - Sl)nm¢m’ (4b)

nm

where &= E +i0" and [ is the identity matrix.
Introducing bosonic ghosts 8, 8 and expressing 1/Z, as
a path integral [15], we then average the one-particle
Green’s function using the Gaussian probability distribu-
tion of site energies, P(s,) = (1/7g)"/? exp(—€%/g), in-
stead of the box distribution introduced in the beginning.
This allows us to perform the integration over site ener-
gies explicitly. The effective action

Seff = iZ[’Z/n(Jnm - ganm)lr//m + Bn(Jnm - 55nm):8m]
g _ _
t g2 Wt t Ba Bo)” 5)

which appears after averaging, will be the main object of
our RG analysis. For doing this, it is convenient to rewrite
the action in the k representation and to regroup the terms
as follows: S¢rp = Syjp + Se + S, where

Sn = — iJAy f ARG ) () + Bk)BK)]
(6a)

Se = — i€ f AL )P(K) + BK)BK)] (6b)
4
S, = %]Hd"kié(kl +ky — k3 — ky)

X [¢h(ky)p(k,) + Bky)B(Kk,)]
X [h(k3)p(ky) + B(k3)B(ky)]. (6¢)

We have absorbed the constant E,, into £ in (6b). Note as
well that the integration over momenta are restricted to a
d-dimensional sphere of radius A, ie., |[k| <A, with A
being an ultraviolet cutoff.

The action (6) is the starting point of our RG analysis,
which is inspired by Shankar’s approach [16] to fermionic
condensed matter systems. The key observation is that
the kinetic part of the action, Sy;,, is invariant under the
following scaling transformation of the cutoff A, the
momenta Kk and the fields:

A— A = A/b, k— k' =bKk, b>1 (7a)

¢(k'/b) = b2 (K), b =¢.9.B B (7b)

For generic values of w > d, Eq. (7a) is a nonstan-
dard scaling law which emerges from the unusual kinetic
term (6a).
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Driven by (7), the mass term S¢ also transforms into
itself with a new coupling constant £ given by & =
b*~4 £ Thus £ is a relevant perturbation of the free
action Sy;,, as it is always the case of mass terms [16].

The term S, also transforms onto itself under the fol-
lowing RG transformation g’ = b?*~3¢g. This equation
implies that g eventually goes to zero upon increasing b
provided that u < 3d/2. Hence, randomness vanishes
in the low energy effective theory for u <3d/2. On
the contrary, g runs to stronger coupling whenever
o> 3d/ 2.

Finally, the coupling g is marginal at tree level for u =
3d/2, and one has to consider the one-loop effects to see
its fate. This can be done using the techniques developed
in Ref. [16]. Let us present our main results. The RG flows
of the constants g and &, up to one loop, are given by

dg

s = (2u — 3d)g + &% (8a)

d&

d— = (P« d)é’ g (8b)
K

where s is the RG parameter defined as b = exp(s), and g
and & are related to g and £ as follows:

g= i(JAd)ZAzf‘_Mg, &= lJAdA“_"E', 9
with ), being the volume of the d-dimensional sphere.

Equation (8a) has an unstable fixed point g, = 3d —
2u provided that u < 3d/2 [see Fig. 1(a)]. Below this
point, the coupling g goes to zero asymptotically, while
above g grows. For u > 3d/2 the critical point disap-
pears and the system always flows to strong coupling [see
Fig. 1(b)]. This signals about some changes in the density
of states and the different nature of the eigenfunctions
when passing from u < 3d/2to u > 3d/2.We would like
to remark the fact that the critical value u = 3d/2 that
appeared in the present RG analysis coincides with that
found on the basis of our qualitative arguments.

It is usually argued that the average one-particle
Green’s function does not carry information about the
spatial extent of the eigenfunctions. Therefore, we chose
the generalized inverse participation ratios (GIPR) as the
relevant quantities to characterize localization properties
of the states. The standard definition reads IS,") =
S, |P,,1%9), where W, is the probability amplitude of
the normalized eigenstate v at site n, and the brackets
denote disorder averaging. As is well known, the GIPR

0 2,=3d-2y.

a) L <3d2 | . g
0

b) u>3d/2 | 8

FIG. 1. RG flows for the coupling constant g, Egs. (8a) and
(9), depending on the value of the exponent w.
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scales as 1(;” ~ N 4% for delocalized states (g # 1),
while it shows no size scaling for localized ones.

Our main steps in calculating the GIPR are as follows:
We estimated the uppermost eigenfunction, W,,, using
perturbation theory with respect to the random term
S (8FH )|k )XK’| in (2a), namely, considering the
on-site energies small compared to the hopping parameter
J, len] << J. Then, W, can be written in real space as

e¢n
Won = DI (10a)
=> SumEm: (10b)
m
1 eik(m—n)
Sem =757 D> ——— (10c)
N & Ey— Ex

In order to compute the GIPR we again made use of the
the supersymmetric method for disorder averaging (as
described above) with the bare action given by Eq. (5),
as well as the replica trick introduced in Ref. [17]. The
latter reads

1 T 26,
I(q) _}’E’I(])Ndnnzn <ezq¢n l:[le ¢n!>‘ (11)
e y—g J

In doing so, we found that I(()q) ~ N~@=Dd provided when
d < p < 3d/2;in other words, the generalized dimension
equals the space dimension so that the uppermost state is
delocalized, in full agreement with our qualitative pic-
ture. In particular, notice that the so-called inverse par-
ticipation ratio (IPR) scales as I ~NL

Since the previous analytlcal study of the GIPR was
perturbative, we have also carried out a numerical study
of the model to support the validity of our conclusions. We
took advantage of the Lanczos method [18] as well as the
density matrix renormalization group approach [19], al-
lowing one to calculate some few eigenstates of the
Hamiltonian (1) for rather large system size. In Fig. 2
we plotted the IPR (¢ = 2) of the uppermost state as a
function of the system size N = N¢ for different degrees
of disorder A. The behavior of the other top states is
similar to that which manifests the uppermost state.
Observing Fig. 2 we conclude that the uppermost state
is delocalized even for a moderately high value of the
degree of disorder (A = 8J in 1D systems and A = 40/ in
2D system), provided d < u < 3d/2. For comparison, the
1D (2D) bandwidth for w = 5/4 (u = 9/4) in the ab-
sence of disorder is of the order of 10.5J (28J). However,
for a large degree of disorder the IPR remains constant on
increasing the system size (see Fig. 2 for u = 5/4,d = 1
and A = 40J), indicating that the uppermost eigenstate is
localized. Therefore, the top eigenstates undergo the
Anderson transition on increasing A whenever d < u <
3d/2. 1t is to be noticed the absence of scaling of the IPR
and the subsequent localization for d =1, u = 3, and
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FIG. 2. Scaling of the IPR of the uppermost eigenstate as a
function of the number of sites N = N¢ for different magni-
tudes of disorder A in 1D (d = 1) and 2D (d = 2) lattices.

A = 8J. This result is in full correspondence with the
analytical analysis stating that no transition is expected
in this case.

In summary, we have shown analytically and numeri-
cally that a powerlike nonrandom intersite hopping,
Jom = J/In—m|#, may act towards delocalization of
quasiparticle states in low-dimensional systems. In par-
ticular, the states of the top of the band may be delocal-
ized at rather high magnitudes of disorder (A ~ J) and
undergo a localization-delocalization transition as the
magnitude of disorder increases. Scaling arguments pro-
vide a clear physical picture of the underlying mechanism
responsible for the delocalization of the states, in spite of
the low-dimensional (d = 2) geometry of the system. The
different size scaling of the bare level spacing, 6F ~
N~ #%4_ and the magnitude of disorder seen by a quasi-
particle, oo ~ A/N%2, is the feature of the model re-
sponsible for this unusual behavior. E decreases slower
than o upon increasing the system size as long as d <
< 3d/2, resulting in the delocalization of the corre-
sponding quasiparticle states in the thermodynamic limit.
We stress that the main finding of our study, namely, the
existence of the Anderson transition in a physically rele-
vant model, has been concluded on the basis of three
different approaches and the conclusions obtained are
self-consistent. Most important, the validity of the scal-
ing analysis is not limited to the present model. Indeed, it
is established on solid grounds that the standard, three-
dimensional Anderson model manifests the localization-
delocalization transition at the band center. Within this
model, the bare level spacing at the band center dimin-
ishes proportionally to N~!, while the magnitude of ef-
fective disorder goes down faster, ~N /2 thus being
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unable to localize the states at the band center for a mod-
erate disorder. A strong disorder (large compared to the
bandwidth) localizes the states, giving rise a localization-
delocalization transition. We can then be confident that
this kind of scaling argument may provide physical in-
sight in several localization problems.
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