
 

Fate of scalar dark matter solitons around supermassive galactic black holes

Philippe Brax and Patrick Valageas
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In scalar-field dark matter scenarios, a scalar-field soliton could form at the center of galactic halos,
around the supermassive black holes that sit at the center of galaxies. Focusing on the large scalar-mass
limit, where the soliton is formed by the balance between self-gravity and a repulsive self-interaction, we
study the infall of the scalar field onto the central Schwarzschild black hole. We derive the scalar-field
profile, from the Schwarzschild radius to the large radii dominated by the scalar cloud. We show that the
steady state solution selects the maximum allowed flux, with a critical profile that is similar to the transonic
solution obtained for the hydrodynamic case. This finite flux, which scales as the inverse of the self-
interaction coupling, is small enough to allow the dark matter soliton to survive for many Hubble times.
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I. INTRODUCTION

In the past few years, there has been an increasing
number of theoretical and experimental analyses inves-
tigating the fundamental nature of dark matter (DM).
A possible candidate which has attracted a lot of attention
is related to ultralight coherent fields. This idea is not new
and dates back to the pioneering studies of the QCD axion
as a DM candidate [1–3]. More generally, axionlike
particles are well motivated by different theories [4,5] with
a broad range of masses and couplings [6–15].
The cosmological interest of these DM candidates is

associated with the fact that their de Broglie wavelength is
of the order of astrophysical scales [16]. This type of
coherent DM is constituted of fast oscillating massive
scalars [17,18] or other higher-spin bosonic fields [19–22].
For large distances, at both the background and perturba-
tion levels, these coherent fields behave as cold DM (CDM)
does [18,23–27]. However, at shorter scales, the matter
power spectrum is highly suppressed [25], and the for-
mation of cusps is replaced by DM cores [28,29]. These
distinctive features of the structure formation associated
with light coherent bosonic fields have attracted a lot of
attention due to long-standing tensions between standard
CDM predictions and different observations on galactic and
subgalactic scales [30–37].
In particular, the cored density profiles that this type of

DM develops [5,28,38–63] are referred to as solitons. They
correspond to stationary or steady solutions of the classical
field equations of the bosonic field. In this context, it
appears to be necessary to take into account that most

galaxies host a supermassive black hole (BH) in their
central region [64–66]. The dynamics and phenomenology
of ultralight scalar fields within the geometry sourced by a
BH have been studied in Refs. [5,54,56,67–74].
In this work, we analyze the impact of anharmonic self-

interactions on scalar DM solitons and their fate in the
presence of a central BH. We focus on the quartic case
where oscillations of the scalar field are given in terms of
elliptic functions that reduce to trigonometric functions in
the absence of interactions. These anharmonic corrections
introduce large deviations with respect to the standard
CDM scenario. They source additional effective pressure
(positive for the repulsive case [58,75–80] and negative for
the attractive one [81,82]), which may alleviate the small-
scale problems of CDM [83] and lead to the existence of
vortices in galaxies [84]. These modifications can be also
used to constrain the parameter space of ultralight coherent
DM. In fact, effects on the cosmic microwave background
anisotropies [37], large-scale structures [37], and gravita-
tional waves [85,86] have been already considered for this
purpose.
Here we focus on the scalar-field profile and behavior

around a central BH. We do not address the formation of
supermassive BHs within such scalar dark matter scenarios.
The existence of these objects is taken as an observational
fact, and we assume that it is consistent with scalar-field
dark matter scenarios. Actually, for standard CDM (such as
weakly interacting massive particles), the formation of
supermassive BHs is not straightforward. It does not follow
from the DM halo profiles found in cosmological
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simulations, which agree with the well-known Navarro-
Frenk-White (NFW) profile [87]. In fact, supermassive
BHs are expected to involve baryonic physics, as cooling
and dissipation allow baryons to fall into gravitational
potential wells. Nonequilibrium physics may also come
into play through the mergers of smaller BHs, whereas the
initial seeds could result from the remnants of massive stars
or the collapse of large gas clouds or of stellar clusters.
See, for instance, Ref. [88] for a recent review of scenarios
for the assembly of supermassive BHs. Similar baryonic
processes should also be present in scalar DM cosmologies;
hence, we expect supermassive BHs to form as well in these
scenarios.
Thus, in this paper, we investigate the smooth accretion

onto the supermassive BH after a solitonic halo profile has
formed on the galactic scale (similar to the NFW halo
profile for CDM scenarios). We find that outside the
Schwarzschild radius and close enough to the black hole
the scalar dynamics are described by a stationary solution
with nonvanishing flux. This corresponds to the infall of
dark matter into the central BH. Far away from the center,
the dynamics reproduce the static soliton behavior, with a
solution whose density is nearly constant in the core before
falling off rapidly towards zero [89]. This selects a unique
solution with constant flux and nearly vanishing velocity
far away from the BH, which is similar to the transonic
solution obtained for the hydrodynamic case. We find
typically that the lifetime of the soliton, despite the falling
of matter into the BH, is larger than the age of the Universe.
Moreover, the constraints on the density profile of dark
matter inferred from the stellar dynamics in the vicinity of
the central BH [90,91] are easily met.
This manuscript is arranged as follows. In Sec. II,

we describe the main equations of a generic model of
scalar DM within a Schwarzschild geometry, in both
isotropic coordinates (Sec. II A 2) and Eddington coordi-
nates (Sec. III D). In Sec. III, we analyze the main features
of the scalar DM solitons for the harmonic case. In Sec. IV,
we extend this analysis to the self-interacting case deter-
mined by a quartic term. In Sec. V, we derive the long
lifetime associated with the scalar-field soliton found in the
previous section. Finally, the main conclusions are sum-
marized in Sec. VI.

II. DARK MATTER SCALAR FIELD

A. Scalar-field action

The scalar-field action is

Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
: ð1Þ

We also write the scalar-field potential as

VðϕÞ ¼ m2

2
ϕ2 þ VIðϕÞ; ð2Þ

where VI is the self-interaction potential. In this work, we
focus on the quartic self-interaction potential

VIðϕÞ ¼
λ4
4
ϕ4: ð3Þ

Such scalar fields can play the role of DM and build scalar
solitons, i.e., static profiles with a finite core, at the center
of galactic halos. These solitons can be the result of the
balance between the self-gravity of the scalar cloud and a
“quantum pressure” (due to the fact that the underlying
equations of motion are the Klein-Gordon equation, or the
Schrödinger equation in the nonrelativistic limit, rather
than the hydrodynamical Euler equation) or to a repulsive
self-interaction, associated with λ4 > 0. In this paper,
following our previous work [89], we focus on the large
scalar-mass limit

m ≫ 10−21 eV; ð4Þ

which ensures that the quantum pressure is negligible from
cosmological to galactic scales. Then, the galactic solitons
are due to the balance between gravity and the repulsive
self-interaction. In the large scalar-mass limit, the analysis
simplifies, and we can derive in the next sections explicit
expressions for the scalar-field profile and its inflow onto
the supermassive BH. Around a Schwarzschild BH, we
shall see below that the large-mass limit becomes defined
by the lower bound (40), which is somewhat larger than (4).

B. Schwarzschild metric

Close to the BH, the contribution from the scalar field is
negligible, and the metric is the standard Schwarzschild
metric [92,93]

ds2 ¼ −
�
1 −

rs
r̃

�
dt2 þ

�
1 −

rs
r̃

�
−1
dr̃2 þ r̃2dΩ⃗2; ð5Þ

where r̃ is the Schwarzschild radial coordinate and rs ¼
2GM is the Schwarzschild radius of the BH of mass M.
Throughout this paper, we work in natural units with c ¼ 1.

C. Isotropic coordinates

We focus on spherically symmetric systems, as we
consider a spherical scalar cloud around a supermassive
Schwarzschild BH. To simplify the matching with the
Newtonian gauge at large scales, we work with the
isotropic radial coordinate r and the time t throughout
this paper, except in Secs. III D, IV F, and IVG. Then, the
static spherically symmetric metric can be written in the
isotropic form
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ds2 ¼ −fðrÞdt2 þ hðrÞðdr2 þ r2dΩ⃗2Þ: ð6Þ

The range of radii from the central BH can be divided in the
following three regimes.

1. Strong-gravity regime dominated by the BH

Close to the BH, that is, below a radius rNL, we are in the
strong-gravity regime, with nonlinear deviations from the
Minkowski metric, dominated by the BH gravity. There, we
recover the Schwarzschild metric but written in the isotropic
coordinate system (t; r) of (6) instead of the Schwarzschild
coordinate system ðt; r̃Þ of (5). This determines the isotropic
metric functions fðrÞ and hðrÞ as [93]

rs
4
< r < rNL∶ fðrÞ ¼

�
1 − rs=ð4rÞ
1þ rs=ð4rÞ

�
2

;

hðrÞ ¼ ð1þ rs=ð4rÞÞ4; ð7Þ

where r is related to the Schwarzschild radial coordinate r̃ by

r̃ > rs; r >
rs
4
∶ r̃ ¼ r

�
1þ rs

4r

�
2

: ð8Þ

In particular, the BH event horizon (Schwarzschild radius)
reads in these coordinates as

BH horizon∶ r̃ ¼ rs ≡ 2GM; r ¼ rs
4
¼ GM

2
: ð9Þ

2. Weak-gravity regime dominated by the BH

Further away from the BH and up to a radius rsg, we are in
the weak-gravity regime but still dominated by the super-
massive BH gravity. Therefore, the metric is still given by
Eq. (7), where the functions fðrÞ and hðrÞ are close to unity.
Then, we recover the standard Newtonian gauge

r ≫ rNL∶ ds2 ¼ −ð1þ 2ΦÞdt2 þ ð1 − 2ΦÞdr⃗2;
with Φ ≪ 1; f ¼ 1þ 2Φ; h ¼ 1 − 2Φ: ð10Þ

From the explicit expressions of fðrÞ and hðrÞ in (7),
we recover the Newtonian gravitational potential due to
the BH:

rNL ≪ r ≪ rsg∶ Φ ¼ −
rs
2r

¼ −
GM
r

: ð11Þ

3. Weak-gravity regime dominated by the scalar cloud

Beyond the radius rsg, the metric potentials become
dominated by the self-gravity of the DM cloud. This also
corresponds to the radius where metric fluctuations have
decreased down to 10−6 − 10−5, as these values are the
typical depths of the DM potential wells built on galactic

scales. Then, the metric still takes the Newtonian gauge
form (10), whereΦ is now given by the scalar-field Poisson
equation

r ≫ rsg∶ ∇2Φ ¼ 4πGρϕ; ð12Þ

where ρϕ is the scalar-field energy density. This in turn
determines the metric functions fðrÞ and hðrÞ through the
second line in (10).

D. Equation of motion

To summarize, at all radii the metric is given by Eq. (6),
and in most of this paper we work in this framework. We
are dominated by the BH gravity up to radius rsg. At these
small radii, the metric functions fðrÞ and hðrÞ are given by
Eq. (7). Beyond rsg, we are dominated by the scalar cloud
gravity, and the metric functions are determined by the
Poisson equation (12). The range dominated by the BH
gravity can be further split over the strong-gravity regime,
for rs=4 < r < rNL, and the weak-gravity regime, for
rNL ≪ r ≪ rsg, where the metric functions can be approxi-
mated from (11).
Then, in the static spherical metric (6), the scalar-field

Klein-Gordon equation is written

∂2ϕ

∂t2 −
ffiffiffiffiffi
f
h3

r
∇⃗ · ð

ffiffiffiffiffiffi
fh

p ∇⃗ϕÞ þ f
∂V
∂ϕ ¼ 0: ð13Þ

This also directly follows from the action Sϕ written in
spherical coordinates:

Sϕ¼
Z

dtdrdθdφ
ffiffiffiffiffiffiffiffi
fh3

q
r2 sinθ

�
1

2f

�∂ϕ
∂t
�

2

−
1

2h

�∂ϕ
∂r
�

2

−
1

2hr2

�∂ϕ
∂θ
�

2

−
1

2hr2sin2θ

�∂ϕ
∂φ
�

2

−VðϕÞ
�
: ð14Þ

III. FREE SCALAR FIELD

We first consider the scalar-field inflow profile around
the supermassive BH in the free case, without self-
interactions.

A. Equations of motion

In the case of the free massive scalar field, that is, when
the self-interaction vanishes, the same decomposition of the
scalar field as for the nonrelativistic case can be applied.
Thus, we can write the real scalar field ϕ in terms of a
complex scalar field ψ as

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtψ þ eimtψ⋆Þ: ð15Þ

As in the nonrelativistic limit, we assume that the time
derivative of ψ is much smaller than mψ , that is,

FATE OF SCALAR DARK MATTER SOLITONS AROUND … PHYS. REV. D 101, 023521 (2020)

023521-3



_ψ ≪ mψ ; ð16Þ

where we note _ψ ¼ ∂ψ=∂t. Thus, we focus on the
large-mass limit. Then, the scalar-field action reads in
terms of ψ as

Sψ ¼
Z

dtdrdθdφ
ffiffiffiffiffiffiffiffi
fh3

q
r2 sinθ

�
1

2f
ði _ψψ⋆− iψ _ψ⋆þmψψ⋆Þ

−
1

2mh
∂ψ
∂r

∂ψ⋆
∂r −

1

2mhr2
∂ψ
∂θ

∂ψ⋆
∂θ

−
1

2mhr2sin2θ
∂ψ
∂φ

∂ψ⋆
∂φ −

m
2
ψψ⋆

�
: ð17Þ

Here we have discarded the fast oscillating terms with
factors e�2imt, which almost average to zero over a period
2π=m because of the slowly evolving assumption (16). The
action (17) gives the Euler-Lagrange equation of motion

i _ψ ¼ −
1

2m

ffiffiffiffiffi
f
h3

r
∇⃗ · ð

ffiffiffiffiffiffi
fh

p ∇⃗ψÞ þm
f − 1

2
ψ : ð18Þ

In the weak-gravity regime (10), for r ≫ rs, we recover the
usual nonrelativistic equation

r ≫ rs∶ i _ψ ¼ −
∇⃗2

ψ

2m
þmΦψ : ð19Þ

The Madelung transformation [94]

ψ ¼
ffiffiffiffi
ρ

m

r
eis; ϕ ¼

ffiffiffiffiffi
2ρ

p
m

cosðmt − sÞ; ð20Þ

maps the scalar field to an hydrodynamical picture (which
breaks where jψ j vanishes as the phase s becomes ill
defined), where ρ plays the role of a density and the phase s
defines a curl-free velocity field through

v⃗ ¼ ∇⃗s
m

: ð21Þ

The scalar-field action reads in terms of ρ and s as

Sρ;s¼
Z

dtdrdθdφ
ffiffiffiffiffiffiffiffi
fh3

q
r2 sinθ

�
−
ρ_s
mf

−
1

2m2h

×

�
1

4ρ

�∂ρ
∂r
�

2

þρ

�∂s
∂r
�

2
�

−
1

2m2hr2

�
1

4ρ

�∂ρ
∂θ
�

2

þρ

�∂s
∂θ
�

2
�

−
1

2m2hr2sin2θ

�
1

4ρ

�∂ρ
∂φ
�

2

þρ

�∂s
∂φ
�

2
�
þ ρ

2f
−
ρ

2

�
:

ð22Þ

In the large-mass limit, the density ρ and the velocity v⃗
remain fixed, while the phase s grows as m from Eq. (21).
Thus, formally ρ is of the order of m0 and s of the order
of m. Therefore, in the large-mass limit, the action
simplifies to

Sρ;s ¼
Z

dtdrdθdφ
ffiffiffiffiffiffiffiffi
fh3

q
r2 sin θ

�
−

ρ_s
mf

−
ρ

2m2h

�∂s
∂r
�

2

−
ρ

2m2hr2

�∂s
∂θ
�

2

−
ρ

2m2hr2sin2θ
ρ

�∂s
∂φ
�

2

ð23Þ

þ ρð1 − fÞ
2f

�
; ð24Þ

where we kept only the leading contributions in m.
This corresponds to neglecting the quantum pressure term
in the Euler equation. This is valid for small spatial density
gradients:

j∇⃗ρj ≪ mρ: ð25Þ

The Euler-Lagrange equations of motion follow from the
derivatives of the action (24) with respect to s:

_ρþ
ffiffiffiffiffi
f
h3

r
∇⃗ ·

� ffiffiffiffiffiffi
fh

p
ρ
∇⃗s
m

�
¼ 0 ð26Þ

and with respect to ρ:

_s
m
þ f
h
ð∇⃗sÞ2
2m2

¼ 1 − f
2

: ð27Þ

Taking the gradient of the second equation and substituting
the velocity field defined in Eq. (21), we obtain

_ρþ
ffiffiffiffiffi
f
h3

r
∇⃗ · ð

ffiffiffiffiffiffi
fh

p
ρv⃗Þ ¼ 0; ð28Þ

_v⃗þ ∇⃗
�
f
h
v⃗2

2

�
¼ −

∇⃗f
2

: ð29Þ

In the weak-gravity regime, r ≫ rs, we recover the usual
Newtonian limit of the fluid equations:

r ≫ rs∶ _ρþ ∇⃗ · ðρv⃗Þ ¼ 0; ð30Þ

_v⃗þ ðv⃗ · ∇⃗Þv⃗ ¼ −∇⃗Φ: ð31Þ

This pressureless Euler equation also corresponds to the
motion of free particles in the gravitational potential Φ.
The field v⃗ can be identified with a standard velocity

field only in the nonrelativistic regime, thanks to Eq. (31)
that takes the form of the standard hydrodynamical
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Euler equation. In particular, if we expand sðrÞ around
some radius r0, we obtain at lowest order ϕ ≃ ϕ0 ×
cos½mt −mvðr − r0Þ − s0�. For wave equations, with a
propagation speed c, we typically have solutions of the
form fðr−ctÞ. Comparing with cos½mvðt=v−rÞ�, we would
identify c ¼ 1=v, which is clearly incorrect. Thus, v is not
related to the phase velocity nor to the group velocity
associated to the field ϕ. In a steady state, the amplitudeffiffiffiffiffi
2ρ

p
=m of the oscillations at each radius does not depend on

time, in contrast with a wave packet, and ϕ resembles more a
combination of standing waves eimteikr, with the common
frequency m. We also note that the scalar-field energy
density, defined by the energy-momentum tensor as

ρϕ ≡ −T0
0 ¼

1

2f

�∂ϕ
∂t
�

2

þ 1

2h

�∂ϕ
∂t
�

2

þm2

2
ϕ2; ð32Þ

reads in the large-mass limit as

ρϕ ¼
ρ

f
½sin2ðmt− sÞþfcos2ðmt− sÞ�þ ρ

h
v2 sin2ðmt− sÞ:

ð33Þ
Averaging over the fast oscillations gives

hρϕi ¼ ρ

�
f þ 1

2f
þ v2

2h

�
: ð34Þ

In the nonrelativistic limit, we recognize the part associated
with the kinetic energy, ρv2=2, but in the relativistic case the
identification of ρ and v is not so clear. In the following, we
refer to ρ and v⃗ as (effective) density and velocity fields,
respectively, but one must keep in mind that this identi-
fication strictly applies only in the nonrelativistic regime.

B. Steady state

We can look for stationary solutions of the equations of
motion (26) and (27); that is, the density and the velocity
fields do not depend on time, but s can have a uniform time
dependence. This corresponds to a steady inflow of DM
from infinity into the central BH. Restricting to spherically
symmetric solutions, the continuity equation (28) givesffiffiffiffiffiffi

fh
p

r2ρvr ¼ F; ð35Þ
where F < 0 is the constant inward flux per unit solid
angle, which does not depend on the radius in a steady
state. The Euler equation (29) gives

vr ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð1 − fÞ

f

s
;

∂s
∂r ¼ mvr; ð36Þ

where we choose the boundary condition vr → 0 at r → ∞
to obtain the integration constant. Then, there is no addi-
tional uniform time dependence for s, we can choose

sðrÞ ¼
Z

r
drmvr; ð37Þ

and the complex scalar field ψ is given by Eq. (20). We can
check that it satisfies the equation of motion (18) at the
leading order in m, that is, when we neglect the quantum
pressure.
In this large-mass limit of the free scalar field, we recover

the infall of independent massive particles, which start at
rest at infinity. Their free-falling velocity does not depend
on the density, because there are no self-interactions. Then,
the density is simply set by Eq. (35), that is, by the
requirement of a constant flux

ρ ¼ −
F

r2h
ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p : ð38Þ

In particular, the density at the Schwarzschild radius,
r ¼ rs=4, is finite, ρðrs=4Þ ¼ −F=r2s , while the velocity
vr diverges as −1=

ffiffiffi
f

p
∼ −1=ðr − rs=4Þ.

We can now check the validity of our large scalar-
mass limit. The assumption of small time derivative (16) is,
of course, satisfied, as ψ does not depend on time. We
can see that the density gradient dρ=dr remains finite down
to the Schwarzschild radius. Therefore, the assumption
(25) of small density gradients is valid, as long as the
Schwarzschild radius is large enough:

rs ≫ m−1: ð39Þ

Using rs ¼ 2GM, this reads as

m ≫ 6.7 × 10−19
�

M
108 M⊙

�
−1

eV: ð40Þ

This lower bound is somewhat larger than the lower bound
(4) associated with the growth of cosmological structures.
Thus, in this article, we focus on scalar-field masses in the
range 10−19 ≪ m≲ 1 eV. Our results also apply to the case
of an astrophysical BH, withM ∼ 1 M⊙, ifm ≫ 10−11 eV.

C. Behavior at the Schwarzschild radius in
isotropic coordinates

In the regime dominated by the BH gravity, r ≪ rsg, we
can use the explicit expressions of fðrÞ and hðrÞ of Eq. (7).
This gives for the density ρ and radial velocity vr,
respectively,

ρ¼−
64Fr2ffiffiffiffiffiffi

rsr
p ð4rþ rsÞ3

; vr¼−
ffiffiffiffiffi
rs
r3

r ð4rþ rsÞ2
4ð4r− rsÞ

: ð41Þ

Integrating vr gives the phase s up to an integration
constant:
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s ¼ −
m
2

ffiffiffiffi
rs
r

r �
4rþ rs − 4

ffiffiffiffiffiffi
rsr

p
ln
�
2
ffiffiffiffiffiffiffiffiffi
r=rs

p þ 1

2
ffiffiffiffiffiffiffiffiffi
r=rs

p
− 1

��
: ð42Þ

Expanding around the Schwarzschild radius, we obtain

ρ¼−
F
r2s
þ3Fð4r− rsÞ2

8r4s
þ�� � ;

vr¼−
8rs

4r− rs
þ4þ��� ;

s¼−2mrs

�
1þ ln

�
4r−rs
4rs

��
þmð4r− rsÞþ �� � : ð43Þ

We recall here that from Eq. (9) the horizon corresponds to
r̃ ¼ rs for the Schwarzschild radial coordinate but to r ¼
rs=4 for the isotropic radial coordinate. Thus, the velocity
vr and the phase s diverge at the horizon, while the
amplitude of the scalar field remains finite. The divergence
of the velocity vr at the Schwarzschild radius can seem
surprising. Indeed, the velocity of a test particle falling
from infinity at rest actually vanishes at the horizon when it
is measured by a distant observer. This is due to a strong
redshift effect, which makes a distant observer find that the
particle takes an infinite amount of time to reach the
horizon (whereas nothing strange occurs in the frame of
the moving particle as it crosses the horizon). Because the
effective velocity field v⃗ can be identified with a standard
velocity only in the nonrelativistic regime via the Euler
equation, as discussed below Eq. (31), we do not try to
relate explicitly vr or the phase swith test particle velocities
in the relativistic regime, close to the horizon. In particular,
the divergence of vr does not contradict the vanishing at the
horizon of the velocity of a test particle measured by a
distant observer.
We shall check in the next section that this divergence is

an artificial singularity, due to the choice of the isotropic
coordinates, and that the scalar field becomes regular at the
horizon by changing to the Eddington time coordinate.

D. Using the Eddington time coordinate

1. Definition of the Eddington time

The Schwarzschild and isotropic coordinates lead to a
coordinate singularity at the Schwarzschild radius rs. As is
well known, this is not a true geometrical singularity, and
one can choose coordinate systems that describe all space
down to the physical singularity at r̃ ¼ 0. We shall check
that the scalar field is indeed regular at the horizon when we
use the better-behaved coordinate system associated with
the Schwarzschild radial coordinate r̃ and the Eddington
time t̃, defined by [93]

t̃ ¼ tþ rs ln

				 r̃rs − 1

				: ð44Þ

This gives the metric

ds2 ¼ −
�
1 −

rs
r̃

�
d t̃2 þ 2

rs
r̃
d t̃dr̃þ

�
1þ rs

r̃

�
dr̃2

þ r̃2dΩ⃗2; ð45Þ

which is regular over all r̃ > 0. These coordinates ðt̃; r̃Þ are
directly related to the Eddington-Finkelstein coordinates
[93]. Then, we shall check that within the metric (45) the
energy-momentum tensor of the scalar field remains finite
at the Schwarzschild radius, r̃ ¼ rs. In particular, in the
coordinates ðt̃; r̃Þ and for spherically symmetric configu-
rations, the density defined by the time-time component of
the energy-momentum tensor reads

ρ̃ϕ ≡ −T̃0
0 ¼

2 − f
2

�∂ϕ
∂ t̃
�

2

þ f
2

�∂ϕ
∂r̃
�

2

þ V; ð46Þ

and the partial derivatives are related by

∂ϕ
∂ t̃ ¼ ∂ϕ

∂t ;
∂ϕ
∂r̃ ¼ ∂ϕ

∂r
1ffiffiffiffiffiffi
fh

p þ ∂ϕ
∂t
�
1 −

1

f

�
: ð47Þ

2. Behavior at the Schwarzschild radius in
Eddington coordinates

Substituting the results (43) into the Madelung decom-
position (20) and using the Eddington time (44) with the
Schwarzschild radial coordinate, as in the metric (45), we
obtain at leading order for r̃ → rs

ϕ ¼
ffiffiffiffiffiffiffiffiffiffi
−2F
m2r2s

s
cos½mðt̃þ r̃þ rsð1 − ln 4ÞÞ� þ � � � : ð48Þ

Thus, the scalar field is well defined at the horizon,
provided we use regular coordinates, and as expected
we recover a fully ingoing solution. The divergence of
the “velocity” vr and the phase s at the horizon in the
Schwarzschild and isotropic metrics is due to the fact that
the time t is not an appropriate coordinate at the horizon. As
noticed above, for the infall of test particles, this short-
coming of the Schwarzschild and isotropic metrics leads to
the fact that a distant observer never sees the particles cross
the horizon. For the scalar field, it gives rise instead to a
divergence of vr and s. This divergence of the phase sðrÞ in
isotropic coordinates precisely combines with the expo-
nential factor e−imt in Eq. (15) so as to give a regular
expression in terms of ðt̃; r̃Þ, once we use an appropriate
time coordinate.
In a similar fashion, the energy-momentum tensor

associated with the Schwarzschild or isotropic metrics
diverges at the Schwarzschild radius, but the one associated
with the Eddington metric (45) remains finite.
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3. Density profile

From Eqs. (20) and (46), the energy density associated
with the Eddington coordinates is given, at leading order in
the large-m limit, by

ρ̃ϕ ¼ ρ

�
sin2ðmt − sÞ

�
2 − f þ 1

f
ð1 − f −

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
Þ2
�

þ cos2ðmt − sÞ
�
: ð49Þ

In terms of the flux F, we obtain using Eq. (38)

hρ̃ϕi ¼ −
F
r2s

r2s
2r2h

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
�
3 − f þ 1

f
ð1 − f −

ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
Þ2
�
;

ð50Þ

where we took the average over the fast oscillations of
period 2π=m. As expected, this scalar-field energy density
remains finite at the Schwarzschild radius, with

r̃ ¼ rs; r ¼ rs
4
∶ hρ̃ϕi ¼ −

3F
2r2s

: ð51Þ

At larger radii that are still dominated by the BH gravi-
tational potential, this gives

rs ≪ r ≪ rsg∶ hρ̃ϕi ∝ r−3=2 and vr ∝ r−1=2: ð52Þ

The scaling vr ∝ r−1=2 corresponds to the free fall from rest
at infinity, which also gives v2r ∼Φ ∼ GM=r. The require-
ment of constant flux through spherical shells then implies
ρϕ ∝ r−3=2. The density ρϕ grows linearly with jFj, as there
are no self-interactions (and we neglect self-gravity near
the BH).
The unit velocity obtained in the ingoing wave (48), or of

the order of unity in Eq. (51) if we define an effective
velocity by F ¼ hρ̃ϕir2ṽeffr , shows that as expected the
scalar-field dynamics are strongly relativistic at the
Schwarzschild radius. In particular, the phase s is not
small, and the exponent eis of the wave function ψ cannot
be expanded over, as it must precisely combine with the
factor e−imt to give the regular solution (48). Also, whereas
ρ given by Eq. (41) remains finite at the Schwarzschild
radius, s given by Eq. (42) diverges. This means that,
whereas density gradients remain small, as compared with
the scalar mass, as long as the bound (39) is fulfilled, the
radial derivatives of the phase s and of the wave functions ψ
and ϕ are not small and even diverge at the Schwarzschild
radius. Again, this means that one cannot use a perturbative
approach in the scalar field, even in the large scalar-mass
limit. One must keep the nonlinearities of the scalar-
field phase.

IV. QUARTIC INTERACTION

We now consider the scalar-field inflow profile around
the supermassive BH in the case of quartic self-inter-
actions (3).

A. Large-mass approximation

For spherical modes and the quartic self-interaction (3),
the nonlinear Klein-Gordon equation (13) reads

∂2ϕ

∂t2 −
ffiffiffiffiffi
f
h3

r
1

r2
∂
∂r
� ffiffiffiffiffiffi

fh
p

r2
∂ϕ
∂r
�
þ fm2ϕþ fλ4ϕ3 ¼ 0:

ð53Þ

If we discard the radial derivatives, we recognize the
standard Duffing equation, which describes a nonlinear
oscillator with a cubic nonlinearity [95]. Its solution can be
written as ϕ0cnðωt − β; kÞ, where cnðu; kÞ is the Jacobi
elliptic function [96,97] of argument u and modulus k. The
angular frequency ω and the modulus k are functions of the
amplitude ϕ0, as for anharmonic oscillators the frequency
depends on the amplitude of the oscillations. The harmonic
case λ4 ¼ 0 corresponds to k ¼ 0 as cnðu; 0Þ ¼ cosðuÞ. For
general k, the Jacobi elliptic function cnðu; kÞ is a periodic
function of u with period 4K, where KðkÞ is the complete
elliptic integral of the first kind, defined by [96,97]

0 ≤ k < 1∶ KðkÞ ¼
Z

π=2

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p ; ð54Þ

and Kð0Þ ¼ π=2.
Taking into account the radial dependence, we can look

for a solution of the form

ϕ ¼ ϕ0ðrÞcn½ωðrÞt −KðrÞβðrÞ; kðrÞ�; ð55Þ

where we noted KðrÞ≡K½kðrÞ�. This is understood as the
leading-order approximation in the limit m → ∞, where
spatial gradients of the amplitude ϕ0 and the modulus k are
much below m, while both ω and β are of the order of m.
The amplitude ϕ0, the angular frequency ω, the phase β,
and the modulus k are slow functions of the radius. Thus,
Eq. (55) is a generalization of the free-scalar solution (20)
to the case of nonzero quartic self-interaction, in the same
large-mass approximation.
We could absorb the factor KðrÞ in Eq. (55) in βðrÞ and

write the solution as ϕ0cnðωt − β; kÞ. However, it is
convenient to introduce the factor K in the definition of
β to simplify the Fourier expansion (57) below, which also
simplifies the radial derivative (59) below. Removing the
factor K in Eq. (55) would make new factors K and K0
appear in Eqs. (57) and (59) below.
The factors ϕ0, ω, β, and k are then determined by the

equation of motion (53). This will relate them to the
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scalar-field physical parameters m and λ4, and to the mass
of the BH, through Eqs. (62) and (63) below.
First, to ensure that spatial gradients do not increase with

time, we note that the field at each radius must oscillate in
phase. Otherwise, the phase difference between the fields at
two arbitrarily close radii would eventually become large,
giving rise to a secular growth of radial gradients. Denoting
the common period of the oscillations by T ¼ 2π=ω0,
where ω0 is the common angular frequency, we can see
from Eq. (55) that we must have at each radius
ωðrÞT ¼ 4KðrÞ, because the period of the Jacobi function
of modulus k is 4K. Therefore, the function ωðrÞ is set by
the modulus kðrÞ according to

ωðrÞ ¼ 2KðrÞ
π

ω0: ð56Þ

This synchronous oscillation can also be seen from the
Fourier series expansion of the Jacobi elliptic function
[96,97]. Substituting into Eq. (55), we obtain

ϕ¼ϕ0

2π

kK

X∞
n¼0

qnþ1=2

1þq2nþ1
cos½ð2nþ1Þðω0t−πβ=2Þ�; ð57Þ

with q ¼ e−πK
0=K, where K0 ¼ Kðk0Þ with k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p
.

This expression explicitly shows the global oscillation of
the field, with the common fundamental angular fre-
quency ω0.
From Eq. (55), the time derivative is

∂ϕ
∂t ¼ ϕ0ω

∂cn
∂u : ð58Þ

At leading order in the large-m limit, the radial derivative
reads from Eq. (57) as

∂ϕ
∂r ¼ −ϕ0Kβ0

∂cn
∂u þ � � � ; ð59Þ

where the dots stand for subleading terms, as we assume
that the phase β is formally of the order of m. Here,
β0 ¼ dβ=dr. Substituting into the nonlinear Klein-Gordon
equation (53) gives

ϕ0

�
ω2 −

f
h
ðKβ0Þ2

� ∂2cn
∂u2 þ fm2ϕ0cnþ fλ4ϕ3

0cn
3 ¼ 0;

ð60Þ

where we kept only the term of the order of m2 among the
radial derivative contributions. Thus, at this order, we can
see that the radial derivatives do not change the structure of
Eq. (60). This is why it again admits the Jacobi elliptic
function as a solution. Thus, using the property

∂2cn
∂u2 ¼ ð2k2 − 1Þcn − 2k2cn3; ð61Þ

the Klein-Gordon equation (60) is satisfied as soon as the
coefficients of the factors cn and cn3 vanish. This gives the
two conditions

π2f
4h

β02 ¼ ω2
0 −

fm2π2

ð1 − 2k2Þ4K2
; ð62Þ

λ4ϕ
2
0

m2
¼ 2k2

1 − 2k2
: ð63Þ

We recover in Eq. (63) that the free scalar case λ4 ¼ 0
corresponds to k ¼ 0. Equation (62) is the generalization of
the Euler equation (27), πβ0=ð2mÞ plays the role of the
radial velocity vr ¼ m−1ds=dr, and πβ=2 plays the role of
the phase s. More precisely, Eq. (62) can be rewritten as a
relativistic dispersion relation for a particle of mass m, i.e.,

E2 ¼ p2
r þm2, where we identify pr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2k2

h K
q

β0 and

E ¼
ffiffiffiffiffiffiffiffiffi
1−2k2

f

q
2K
π ω0 in the local Minkowski frame. In the

large-radius limit, as we shall see in Sec. IV B 1 b corre-
sponding to k ≪ 1, this reduces to the dispersion relation of
the nonrelativistic particles as identified thanks to the Euler
equation, and we have pr ≃ πβ0=2. In the general case, we
can identify the velocity field as vr ≡ pr

E . In the relativistic
regime close to the BH, this velocity goes to unity.
However, the connection between the dispersion relation
and a velocity field is mostly formal, as beyond the
nonrelativistic regime there is no direct link between the
profile of the solution ϕ given by Eq. (55) and a particle
interpretation.

B. Boundary conditions

1. Large-radius boundary condition

At large radii, r ≫ rsg, the gravitational field is small and
set by the self-gravity of the scalar cloud. Therefore, we
match the solution (55) to the soliton profile obtained for
the self-gravitational nonrelativistic scalar cloud [89].

Scalar-field soliton.—In this regime, we can decompose the
scalar field ϕ as in Eq. (15) and use the Madelung
transformation (20) for the complex field ψ . Taking into
account the quartic self-interaction, which is subdominant
with respect to the quadratic potential m2ϕ2=2, the
continuity equations (26) and (28) take again the usual
form (30)

_ρþ ∇⃗ · ðρ∇⃗sÞ
m

¼ 0; _ρþ ∇⃗ · ðρv⃗Þ ¼ 0; ð64Þ

whereas the Euler equations (27) and (29) become
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_s
m
þ ð∇⃗sÞ2

2m2
¼ −ðΦþΦIÞ;

_v⃗þ ðv⃗ · ∇⃗Þv⃗ ¼ −∇⃗ðΦþΦIÞ; ð65Þ

where ΦI is given by [89]

ΦIðρÞ ¼
ρ

ρa
; ρa ≡ 4m4

3λ4
: ð66Þ

This pressure associated with the self-interaction ΦI allows
the scalar cloud to reach an hydrostatic equilibrium, where
this repulsive self-interaction balances the self-gravity. This
gives the soliton profile [89]

ρðrÞ ¼ ρsð0Þ
sinðr=raÞ
r=ra

; ΦIðrÞ ¼ ΦIsð0Þ
sinðr=raÞ
r=ra

;

ð67Þ
with v⃗ ¼ 0 and

ra ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4πGρa
p : ð68Þ

The soliton has a flat inner core and a finite radius
Rs ¼ πra. Inside the soliton, the hydrostatic equilibrium

condition (65) gives ∇⃗ðΦþΦIÞ ¼ 0, and we have

r ≤ Rs∶ ΦþΦI ¼ α; ð69Þ
where α is a constant, given by the value of the Newtonian
potential at the boundary of the soliton,

α ¼ ΦðRsÞ; ð70Þ
as ΦIðRsÞ ¼ 0. In terms of the scalar fields ψ and ϕ, this
gives

ψ ¼
ffiffiffiffi
ρ

m

r
e−iαmt; hence; s ¼ −αmt; ð71Þ

and

ϕ ¼
ffiffiffiffiffi
2ρ

p
m

cos½ð1þ αÞmt�: ð72Þ

Large-radius solution.—At large radii but within the
soliton radius, rsg ≪ r ≪ Rs, we are in the weak-gravity
regime and we approach the soliton core solution, with
Φ ≃Φsð0Þ ≲ 10−5 and ρ ≃ ρsð0Þ. We also have ΦI ¼ α−
Φ ≃ −Φsð0Þ, and the self-interaction potential VI ∼ ρΦI ≪
ρ is much smaller than the quadratic part; hence,
λ4ϕ

4 ≪ m2ϕ2. Therefore, we can see from Eq. (63) that
we have at leading order

k2 ¼ λ4ϕ
2
0

2m2
þ � � � ≪ 1; ð73Þ

where the dots stand for higher-order terms. From the
expansion (57) and the series expansions [97]

KðkÞ ¼ π

2

�
1þ k2

4
þ � � �

�
; ð74Þ

qðkÞ ¼ k2

16

�
1þ k2

8
þ � � �

�
; ð75Þ

we obtain at leading order

k ≪ 1∶ ϕ ¼ ϕ0 cosðω0t − πβ=2Þ þ � � � : ð76Þ

The comparison with Eq. (72) gives

rsg ≪ r ≪ Rs∶ ϕ0ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρsð0Þ

p
m

; β ≃ 0; ð77Þ

and

ω0 ¼ ð1þ αÞm: ð78Þ

Indeed, as the soliton solution (72) corresponds to hydro-
static equilibrium with v⃗ ¼ 0, the velocity β must become
negligible at large radii in order tomatchwith the soliton.We
can now check that this is consistent with Eqs. (62) and (63).
Equation (62) with β ¼ 0 gives, at leading order inΦ and k2,

ω0 ¼ m

�
1þΦþ 3

4
k2
�
: ð79Þ

On theother hand, Eq. (63) gaveEq. (73).UsingEq. (77), this
yields

k2 ¼ λ4ρ

m4
¼ 4

3
ΦI: ð80Þ

Then, Eq. (79) reads ω0 ¼ mð1þΦþΦIÞ ¼ mð1þ αÞ,
where we used the hydrostatic result (69), and we recover
Eq. (78). This shows that this large-radius asymptote is self-
consistent, provided β is negligible. This gives the large-
radius asymptotic values of ϕ0ðrÞ and kðrÞ, from Eqs. (77)
and (80), in the constant-density core of the soliton. The
uniform oscillation frequency ω0 is then set by this large-
radius boundary condition in Eq. (78). Note that typically
α≲ 10−5 from Eq. (70). Thus, the angular oscillation
frequency ω0 remains very close to m.

2. Small-radius boundary condition

Close to the Schwarzschild radius, we can expect the
self-interaction pressure to be negligible and to recover the
free-scalar infall (36) (but we shall see below that the self-
interaction plays a role for the scalar profile down to the
Schwarzschild radius, as it dictates the constant flux of
the steady state). Indeed, as long as k remains below 1=

ffiffiffi
2

p
,
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the last term in the generalized Euler equation (62) becomes
negligible as f → 0 at the Schwarzschild radius, and
Eq. (62) gives

r →
rs
4
∶

π

2
β0 ¼ −ω0

ffiffiffi
h
f

s
: ð81Þ

This agrees indeed with Eq. (36) (except for the prefactor α
associated with the finite soliton size).

C. Steady state and constant flux

So far, any profile kðrÞ with the outer boundary con-
dition (80) and kðrÞ < 1=

ffiffiffi
2

p
at all radii provides a leading-

order solution (55). Indeed, given kðrÞ, Eq. (62) provides
the velocity β0, while Eq. (63) provides the amplitude ϕ0,
i.e., the “density.” Clearly, we do not expect such a large
space of physical solutions. It would seem more natural to
recover a specific profile, such as the unique transonic
solution found for hydrodynamics in nonrelativistic [98]
and relativistic [99] infall. In fact, at this stage we miss a
constant flux constraint associated with a continuity equa-
tion, as in Eq. (35). In the relativistic case, the continuity
equation is associated with the component ν ¼ 0 of the
conservation equations ∇μT

μ
ν ¼ 0. The energy-momentum

tensor of the scalar field ϕ gives

ρϕ ≡ −T0
0 ¼

1

2f

�∂ϕ
∂t
�

2

þ 1

2h

�∂ϕ
∂r
�

2

þ V ð82Þ

and

Tr
0 ¼

1

h
∂ϕ
∂r

∂ϕ
∂t : ð83Þ

At leading order in the large-mass limit, we obtain from
Eqs. (55), (58), (59), (62), and (63)

ρϕ ¼ ð1 − k2Þm2ϕ2
0

2ð1 − 2k2Þ þ ϕ2
0

ðKβ0Þ2
h

× ½1 − k2 þ ð2k2 − 1Þcn2 − k2cn4� ð84Þ

and

Tr
0 ¼ −ϕ2

0ω
Kβ0

h

�∂cn
∂u
�

2

: ð85Þ

Then, using again Eqs. (58), (59), and (61), we can check
that the conservation equation ∇μT

μ
0 ¼ 0, which reads

_ρ −
1ffiffiffiffiffiffiffiffi
fh3

p
r2

∂
∂r
� ffiffiffiffiffiffiffiffi

fh3
q

r2Tr
0

�
¼ 0; ð86Þ

is satisfied at the leading order. We can note that ρϕ is not
constant with time, as the terms cn2 and cn4 in the bracket

in Eq. (84) oscillate with the frequency ω0. At the leading
order, the continuity equation (86) is governed by the fast
oscillation of these terms. However, to ensure that sub-
leading orders do not show secular terms that grow with
time, we clearly require that in the steady state the averaged
value of ρϕ over one oscillation period does not depend on
time. This gives the condition of constant flux

F ¼ −
ffiffiffiffiffiffiffiffi
fh3

q
r2hTr

0i ¼
ffiffiffiffiffiffi
fh

p
r2ϕ2

0ωKβ0

�∂cn

∂u
�

2
�
; ð87Þ

where h…i denotes the average over one oscillation period
T ¼ 2π=ω0. Using Eqs. (56), (62), (63), and (78), we can
write the flux in terms of kðrÞ:

F ¼ Fsx2h

�
2K
π

�
2

�∂cn

∂u
�

2
�

2k2

1 − 2k2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

π2f
ð1þ αÞ24K2ð1 − 2k2Þ

s
; ð88Þ

where we defined the dimensionless radial coordinate

x ¼ r
rs

>
1

4
ð89Þ

and the characteristic flux

Fs ¼ −
r2sm4ð1þ αÞ2

λ4
≃ −

r2sm4

λ4
; ð90Þ

as typically α≲ 10−5. The average value of ð∂cn∂u Þ2 is


�∂cn
∂u
�

2
�

¼ 1 − k2 þ ð2k2 − 1ÞC2 − k2C4 ð91Þ

with [95]

C2 ≡ hcn2i ¼ 1

k2

�
E
K

þ k2 − 1

�
; ð92Þ

C4 ≡ hcn4i ¼ 1

3k2
ð2ð2k2 − 1ÞC2 þ 1 − k2Þ; ð93Þ

where EðkÞ is the complete elliptic integral of the second
kind, defined by [96,97]

0 ≤ k < 1∶ EðkÞ ¼
Z

π=2

0

dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p
: ð94Þ

We can see from Eq. (90) that the flux diverges as 1=λ4.
This is not surprising, since for a vanishing self-interaction
we must recover the free-scalar case studied in Sec. III,
where the flux is arbitrary and has no upper bound. We also
find that the flux scales as r2sm4, which is also natural, as we
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can expect F ∼ ρr2vr, with r ¼ rs=4, vr ∼ 1 at the
Schwarzschild radius, and ρ ∼m4 from dimensional
analysis.

D. Critical solution

1. Function Fðk; xÞ
For each radius x, Eq. (88) gives the flux F as a function

of k. We show in Fig. 1 the normalized flux F=Fs as a
function of the modulus k for several values of the radial
coordinate x. The modulus k is constrained to range
between 0 and the value kþðxÞ < 1=

ffiffiffi
2

p
where the square

root vanishes. The flux vanishes at both boundaries, k ¼ 0
and k ¼ kþ, and shows a single maximum jFmaxðxÞj at a
position kmaxðxÞ somewhat below kþðxÞ. The upper bound
kþ and the peak at kmax shift to lower values as x grows.
The maximum jFmaxðxÞj grows at both small and large x
and shows a minimum at x⋆ ≃ 2.43 with

Fc ≡ Fmaxðx⋆Þ ¼ F⋆Fs with F⋆ ≃ 0.66: ð95Þ

We show FmaxðxÞ=Fs in Fig. 2. In Figs. 1 and 2, we use for
the metric functions hðxÞ and fðxÞ the Schwarzschild
functions (7). At the transition radius rsg, the gravitational
potential receives equal contributions from the central BH
and the scalar cloud, and at a larger radius inside the soliton
core it remains almost constant, equal to the soliton core
value Φsð0Þ. Therefore, beyond rsg the factors h and f are
almost constant, and the flux function Fðx; kÞ keeps a
constant shape in k, with a simple multiplicative factor x2.
Thus, beyond rsg the peak value jFmaxðxÞj keeps increasing
as x2.
This behavior of Fðk; xÞ selects a unique value for the

flux, in a fashion similar to the unique transonic solution
found in the case of hydrodynamical infall onto a BH

[98,99]. First, we can see that jFj must be smaller than or
equal to the critical value jFcj; otherwise, there would exist
no solution kðxÞ to the flux constraint equation (88) around
x⋆. If jFj < jFcj, there exist two distinct solutions k1ðxÞ <
k2ðxÞ at each radius, on either side of the peak kmaxðxÞ, and
a continuous function kðxÞmust remain on the same side of
the peak throughout. It is only for the critical value F ¼ Fc
that the function kðxÞ can switch from the branch k1ðxÞ to
k2ðxÞ, at the radius x⋆where both solutions coincidewith the
peak. The two solutions k1ðxÞ < k2ðxÞ are shown in Fig. 3
forF ¼ Fc=3 (the upper and lower dashed curves that do not
meet) and for F ¼ Fc [the inner dotted curves that meet at
x⋆ ≃ 2.43, which coincide with the critical solution kcðxÞ,
shown by the solid line, on either side of x⋆].
As we shall see below, the boundary conditions require

that k ¼ k2ðxÞ at large radii and k ¼ k1ðxÞ close to the
Schwarzschild radius. Therefore, the function kðxÞ must
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FIG. 2. Peak value FmaxðxÞ=Fs as a function of the radial
coordinate x. The horizontal dotted line is the minimum value
F⋆ ≃ 0.66.
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FIG. 3. Moduli k1ðxÞ and k2ðxÞ for a constant flux Fc=3
(dashed lines) and Fc (dotted lines). The critical modulus kcðxÞ
(solid line) is equal to k1 for x < x⋆ and to k2 for x > x⋆, with
F ¼ Fc.
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change branches at some intermediate radius. This selects
the flux F ¼ Fc as the only physical value and the solution
kcðxÞ that switches from k1 to k2, as shown by the solid line
in Fig. 3. This is similar to the hydrodynamical case
[98,99], which selects the only value of the flux that
provides a transonic solution that connects the subsonic
(i.e., low-velocity) branch at large radii with the supersonic
(i.e., high-velocity) branch at low radii.

2. Boundary conditions

To obtain the boundary condition at a large radius for the
modulus kðxÞ, we consider the behavior of Fðk; xÞ at small
k. Indeed, as seen in Fig. 1, at large radii the upper
boundary kþðxÞ becomes much smaller than unity. Then,
Eq. (88) gives at leading order

k ≪ 1∶
F
Fs

¼ x2hk2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

fð1þ 3k2=2Þ
ð1þ αÞ2

s
: ð96Þ

At large radii inside the soliton core, we obtain

r ≫ rsg; k ≪ 1∶
F
Fs

¼ x2k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2

�
λ4ρ

m4
− k2

�s
ð97Þ

at lowest order in k2, Φ, and α, and we used Eqs. (66) and
(69). Since at these radii λ4ρ=m4 ≪ 1, the small-k expan-
sion is valid up to kþ, which is thus given by

r ≫ rsg∶ kþ ¼
ffiffiffiffiffiffiffi
λ4ρ

m4

r
≪ 1: ð98Þ

We can see from Eq. (80) that the large-radius boundary
condition is, in fact, kðrÞ ¼ kþ, when we neglect the
velocity as in the analysis of Sec. IV B 1 b. In agreement
with Eq. (97), we find that this boundary condition with a
zero velocity implies a zero flux F. In practice, the
matching to the static soliton is not perfect, and there
remains a nonzero velocity β0, associated with a nonzero
flux F. This approximate matching is meaningful as long as
the velocity at the outer boundary of the core, r ∼ Rs=10, is
sufficiently small. In other words, it must be much smaller
than the free-fall velocity at that radius, and the mass loss
onto the BH should remain much smaller than the soliton
mass over the time of interest. We shall check below in
Sec. V that this is indeed the case. This also means that at
large radii the modulus kðxÞ must be on the upper branch
k2ðxÞ, close to the upper boundary kþðxÞ:

x ≫ rsg=rs∶ kðxÞ ¼ k2ðxÞ: ð99Þ

At the Schwarzschild radius, x → 1=4, hðxÞ → 16, and
fðxÞ → 0. Therefore, the square root in Eq. (88) goes to
unity (unless k → 1=

ffiffiffi
2

p
). More physically, the square root

comes from the velocity factor β0 of Eq. (87), through
Eq. (62). Close to the Schwarzschild radius, the velocity
should be large and close to unity, as found in Eq. (81), and
the self-interaction becomes negligible as we recover the
free fall onto the BH. This means that the square root in
Eq. (88) goes to unity. Then, the small value of the flux F as
compared with the local peak value FmaxðxÞ is reached by
having a small value of k, thanks to the prefactor k2, rather
than by having a large value of k close to the upper
boundary kþ where the square root vanishes. This means
that at small radii the modulus kðxÞ must be on the lower
branch k1ðxÞ, close to zero:

x ≃ 1=4∶ kðxÞ ¼ k1ðxÞ: ð100Þ
Thus, as announced above, the boundary conditions (99)
and (100) imply that the physical solution kðxÞmust change
from the upper to the lower branch, as we get closer to the
BH. As explained in Sec. IV D 1, this selects the unique
value Fc for the flux and a unique function kðxÞ.

3. Critical solution

Thus, the unique function kcðxÞ, shown by the solid line
in Fig. 3, verifies

F ¼ Fc; kcðxÞ ¼ k1ðxÞ for x < x⋆;
kcðxÞ ¼ k2ðxÞ for x > x⋆: ð101Þ

At the Schwarzschild radius, we obtain

r ¼ rs=4∶ kcð1=4Þ≡ ks ≃ 0.54; ð102Þ
while kcðxÞ decreases at a large radius. From Eq. (97), with
F ¼ Fc, we obtain at large radii

r ≫ rsg∶ kcðxÞ2 ¼
λ4ρ

m4
−

2

3x4

�
F⋆m4

λ4ρ

�
2

: ð103Þ

Equation (62) gives

vr ≡ πβ0

2m
¼ −

ffiffiffi
h
f

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ αÞ2 − π2f

ð1 − 2k2Þ4K2

s
; ð104Þ

where we made the identification vr ¼ πβ0=2m, which
holds in the weak-gravity nonrelativistic limit, as explained
below Eq. (63). The density ρϕ defined in Eq. (84) reads

hρϕi
ρa

¼ 3k2

4ð1 − 2k2Þ
�
1 − k2

1 − 2k2
þ 8K2v2r

π2h
½1 − k2

þ ð2k2 − 1ÞC2 − k2C4�
�
; ð105Þ

where we took the average over the fast oscillation period
and the characteristic density ρa was defined in Eq. (66).
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Because the metric function fðrÞ goes to zero at the
Schwarzschild radius, as fðrÞ ∼ ðr − rs=4Þ2, the velocity
vr ∼ ðr − rs=4Þ−1 and the density hρi ∼ ðr − rs=4Þ−2
diverge at the Schwarzschild radius. On the other hand,
at a large distance, Eq. (104) gives

r ≫ rsg∶ vr ¼ −
F⋆m4

λ4ρx2
: ð106Þ

E. Behavior at the Schwarzschild radius in
isotropic coordinates

As for the case of the free scalar field studied in Sec. III,
the radial velocity vr (104) and the density ρϕ (105),
defined by the energy-momentum tensor associated with
the isotropic metric, diverge at the Schwarzschild radius
because of the metric factor 1=f. Thus, from Eq. (104) we
obtain close to the Schwarzschild radius

r → rs=4∶
πβ0

2m
∼ −

16ð1þ αÞmrs
πð4r − rsÞ

; ð107Þ

β ∼ −
4ð1þ αÞmrs

π
ln

�
4r − rs
4rs

�
: ð108Þ

F. Behavior at the Schwarzschild radius in
Eddington coordinates

Again, the divergence at the horizon is an artifact due to
the choice of coordinates, and by going to the more
appropriate Eddington metric (45) we obtain finite quan-
tities. Thus, substituting the result (108) into Eq. (55) and
using the Eddington coordinates as in the metric (45), we
obtain

r̃ → rs∶ ϕ ¼ ϕscn

�
2Ks

π
ð1þ αÞmðt̃þ r̃Þ; ks

�
; ð109Þ

where the modulus ks at the Schwarzschild radius was
obtained in Eq. (102) and the amplitude ϕs is given by
Eq. (63) in terms of ks. As for the free scalar (48), the scalar
field is well defined at the horizon, and we recover an
ingoing solution with unity velocity. However, the self-
interactions remain relevant down to the horizon, as (109)
differs from the cosine (i.e., harmonic) expression (48) of
the free case. We now obtain a nonlinear radial wave, with
higher-order harmonics as given by the expansion (57).

G. Density profile

From Eqs. (46) and (55), using Eqs. (58) and (59), the
energy density associated with the Eddington coordinates is
given, at leading order in the large-m limit, by

ρ̃ϕ ¼
m4

λ4

k2

1−2k2

�
½1−k2þð2k2−1Þcn2−k2cn4�

×

"
2−fþ 1

f

 
1−f−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

π2f
ð1−2k2Þ4K2ð1þαÞ2

s !2#

×

�
2Kð1þαÞ

π

�
2

þ cn2þ k2

1−2k2
cn4
�
: ð110Þ

This is the generalization of Eq. (49) to the case of quartic
self-interaction. In terms of the flux Fc, we obtain, using
Eq. (90) and averaging over the fast oscillations,

hρ̃ϕi¼−
Fc

F⋆r2s
k2

1−2k2

�
½1−k2þð2k2−1ÞC2−k2C4�

×

2
42−fþ1

f

0
@1−f−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

π2f
ð1−2k2Þ4K2ð1þαÞ2

s 1
A2
3
5

×
�
2K
π

�
2

þ 1

ð1þαÞ2
�
C2þ

k2

1−2k2
C4

��
; ð111Þ

which generalizes Eq. (50). Again, this energy density
remains finite at the Schwarzschild radius. Neglecting α≪1
and using ks ≃ 0.54, we obtain

r̃ ¼ rs; r ¼ rs
4
∶ hρ̃ϕi ≃ 1.2

m4

λ4
≃ 0.9ρa: ð112Þ

Contrary to the case of the free scalar, the flux Fc and the
density ρ̃ϕ cannot grow arbitrarily large and take only one
specific value, determined by the self-interactions. As could
be expected, the density (112) is set by the characteristic
density ρa defined in Eq. (66), which measures the strength
of the self-interactions. The unboundedness of the free case
is recovered by the fact that hρ̃ϕi → ∞ when λ4 → 0.
We can see that all terms in Eq. (110) are of the same

order. This means that the terms associated with the self-
interaction potential are of the same order as those
associated with the quadratic part. Thus, close to the
BH, the self-interaction potential can no longer be treated
as a perturbation, which was the case on cosmological and
galactic scales. This also corresponds to the fact that the
modulus kc becomes of the order of unity close to the
Schwarzschild radius [see (102)], and the Jacobi elliptic
function significantly deviates from a cosine. Moreover, we
can see that the slope of the density profile is different from
the exponent −3=2 obtained in the free case in Eq. (52).
Indeed, from Eq. (96), we obtain

rs ≪ r ≪ rsg∶ k ≃ kþ ≃
ffiffiffiffiffiffiffi
2rs
3r

r
: ð113Þ

This leads to
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rs ≪ r ≪ rsg∶ hρ̃ϕi ∝ r−1 and vr ∝ r−1: ð114Þ

As compared with the free case (52), the density falls off
more slowly at large radii while the velocity decreases
faster.
We show in Fig. 4 the scalar-field profiles of the free and

interacting cases, for the same value Fc of the flux. Both
densities are of the same order at the Schwarzschild radius,
but we can clearly see the two different slopes for r ≫ rs,
with the slower falloff for the interacting case. This
corresponds in turns to a faster decay of the radial velocity.
This is not surprising, since the pressure support provided
by the self-interaction balances gravity and stabilizes the
scalar-field soliton obtained at large radii, as recalled in
Sec. IV B 1, and slows down the infall onto the central BH
at smaller radii. On the other hand, near the Schwarzschild
radius, gravity cannot be resisted, and the radial velocity
becomes of the order of unity in both cases.

H. Transition radius

From Eq. (114), we obtain the more explicit scalings

rs < r < rsg∶ ρ̃ϕ ∼ ρa
rs
r
; vr ∼ −

rs
r
: ð115Þ

This BH-dominated regime stops at the radius rsg where the
scalar-field density has decreased down to the soliton core
density ρs. This gives

rsg ¼ rs
ρa
ρs

: ð116Þ

From Eqs. (11) and (66), we find at this radius

r¼ rsg∶ΦBH ¼−
ρs
2ρa

; ΦI ¼
ρs
ρa

; vr∼−
ρs
ρa

; ð117Þ

where ΦBH is the Newtonian potential associated with the
central BH. Normalizing the scalar-field Newtonian poten-
tial Φϕ at large radii, beyond the soliton radius, it follows
the soliton profile (69) down to rsg, where the mass
distribution starts to deviate from the flat soliton solution.
Thus, we also have

r ¼ rsg∶ Φϕ ¼ α −ΦI ∼ −
ρs
ρa

: ð118Þ

Then, we can check that we indeed have Φϕ ∼ΦBH at the
transition radius rsg given by Eq. (116). From Eq. (106), we
find that at larger radii, up to the soliton radius Rs, we have

rsg < r < Rs∶ ρ̃ϕ ∼ ρs; vr ∼ −
ρs
ρa

r2sg
r2

: ð119Þ

Of course, the spherical flux r2ρ̃ϕvr scales as r0, that is,
remains constant, in both small and large radii regimes
(115) and (119).
For this analysis to be valid, we must check that the

transition radius rsg is smaller than the soliton radius Rs.
Using Eqs. (68) and (116), with Rs ∼ ra, we find that rsg <
Rs corresponds to M < Ms, whereMs ∼ ρsr3a is the soliton
mass. The ratio M=Mh of the supermassive central BH
mass to the halo dark matter mass is of the order of 10−5 −
10−4 [100]. On the other hand, the ratio Ms=Mh of the
soliton mass to the halo dark matter mass is of the order of
10−3 − 1 [89]. Therefore, we typically have M ≪ Ms, and
the radius rsg that marks the central region dominated
by the BH gravitational potential is significantly smaller
than the soliton radius Rs.

I. Scalar dark matter mass at small radii

Some scalar-field dark matter models can be constrained
by the measurement of stellar dynamics at small radii, near
the central supermassive BH. For instance, an extended
dark matter distribution around the BH can affect the orbits
of local stars and lead to significant precession. This
requires accurate measurements at very small radii, which
start to be available for a few cases, such as the Sgr A* BH
in the MilkyWay or the M87* BH in the M87 galaxy. In the
first case, the mass distribution is known up to the few
percent level [90], whereas for the latter one, the distribu-
tion is constrained at the order of 10% [91]. This type of
observation has been recently studied in this context
[71,72,101].
In our case, where the scalar dark matter is supported by

the self-interaction pressure, the orders of magnitude are
significantly different from the fuzzy dark matter scenario.
Let us consider the case ρa ∼ 1 eV4 and Rs ≃ 20 kpc. For
theMilkyWay, with a darkmatter halomassMh ∼ 1012 M⊙
and a soliton mass ratio Ms=Mh ∼ 0.03 [89], we obtain a
scalar soliton mass Ms ≃ 3 × 1010 M⊙. On the other hand,

10-5

10-4

10-3

10-2

10-1

100

101

10-1 100 101 102 103 104

λ4=0

λ4>0

〈~  
 

ρ φ
〉 /

 |F
/r

s2 |

x

FIG. 4. Scalar-field energy density computed in the Eddington
metric, from the Schwarzschild radius up to 104rs, where the
metric potentials are still dominated by the central BH. We show
the free case (50) (dashed line) and the self-interaction case (111)
(solid line), for the same value Fc of the flux.
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the central supermassiveBH has amassM ≃ 4.3 × 106 M⊙.
This gives a Schwarzschild radius rs ≃ 4 × 10−7 pc and a
transition radius rsg ≃ 0.1 pc. From Eq. (119), we have
in the large-radius regime rsg < r < Rs the scaling
Mϕð< rÞ ∝ r3. Therefore, we obtain at the transition radius
Mϕð< 0.1 pcÞ ≃ 4 × 10−6 M⊙. From Eq. (115), we have in
the small-radius regime rs < r < rsg the scaling
Mϕð< rÞ ∝ r2. This gives, in particular,Mϕð< 0.005 pcÞ≃
10−8 M⊙. The observational constraints areMϕ < 105 M⊙
within 0.005 pc andMϕ < 106 M⊙ within 0.3 pc. Thus, the
soliton mass at small radii is far below the observational
upper bounds. On the other hand, thesemeasurements could
constrain scalar-field models such as the one studied in this
paper but with very different parameters, which would then
play no role on galactic scales and only become relevant at
milliparsec scales.

V. LIFETIME OF THE SCALAR-FIELD SOLITON

At the typical soliton radius ra ¼ Rs=π, Eqs. (116) and
(119) give for the radial velocity vr and the evolution
timescale tc, respectively,

vrðraÞ ∼ −
ρa
ρs

r2s
r2a

; tc ≡ ra
jvrj

∼ ra
ρs
ρa

r2a
r2s

: ð120Þ

To compare the time tc with cosmological timescales,
we define the Hubble time tH and Hubble radius RH as,
respectively,

tH ¼ 1=H; RH ¼ 1=H; ð121Þ

and we obtain

tc ∼ tH

�
ρ̄c
ρa

�
5=2 ρs

ρ̄c

�
RH

rs

�
2

; ð122Þ

where ρ̄c ¼ 3H2=ð8πGÞ is the cosmological critical density.
This also reads at z ¼ 0 as

tc ∼ 103tH
ρs
ρ̄c

�
ρa

1 eV4

�
−5=2

�
M

108 M⊙

�
−2
: ð123Þ

For the soliton to have a radius of 20 kpc, so that it shows a
significant departure from the CDM profiles on galactic
scales, we must have ρa ∼ 1 eV4 [89]. Larger characteristic
densities lead to smaller soliton radii. We typically have
ρs=ρ̄c ∼ 105 for the DM overdensity in the soliton core.
Therefore, we find that tc ≫ tH. This means that the DM
solitonic cores can easily survive until today, despite the
infall of their inner layers onto the central supermas-
sive BH.
We also find that astrophysical stellar mass BHs cannot

eat a significant fraction of the galactic DM soliton. Indeed,

for N BHs of unit solar mass, the typical timescale for the
soliton depletion reads

tN ∼ 1019
tH
N

ρs
ρ̄c

�
ρa

1 eV4

�
−5=2

: ð124Þ

Since we typically have N < 1011, as only a fraction of the
galactic baryonic mass can be within stellar BHs, we obtain
tN ≫ 108tH and the soliton mass loss is negligible.

VI. DISCUSSION AND CONCLUSION

In this work, we have analyzed steady solutions of
coherent scalar fields in galactic centers that harbor a
supermassive central BH. Neglecting the central BH, such
ultralight scalar DM typically builds a stationary coherent
profile, called a soliton, with a finite radius Rs and a flat
core. This soliton is also embedded in an extended halo of
fluctuating density granules, with a spherically averaged
density profile that is similar to the NFW profile [87] found
in numerical simulations of standard collisionless dark
matter. If Rs is of the order of a few kiloparsecs, this
flattened dark matter profile can have interesting observa-
tional consequences for cosmological and galactic studies.
In contrast with the fuzzy dark matter scenarios, with a
scalar mass m ∼ 10−22 eV, where the soliton is due to the
balance between gravity and the quantum pressure (asso-
ciated with the wave features of the scalar field), we focus
on the case of large scalar mass, typically m ≫ 10−18 eV,
where gravity is instead counterbalanced by the repulsive
self-interaction associated with a quartic potential and the
quantum pressure is negligible.
In this paper, we have considered the impact of the

central supermassive BH on the profile of this soliton and
its lifetime, as it gradually falls onto the BH. As we focus
on the limit of large scalar mass, we are able to perform a
fully nonrelativistic study, from the radius Rs of the soliton
down to the Schwarzschild radius rs. For simplicity, we
discard baryonic effects, but the main features of both the
relativistic infall at small radii and the soliton core at large
radii should remain valid. Baryonic matter will increase
only somewhat the soliton density at intermediate radii,
where it dominates over both the central BH and scalar
gravitational fields. Then, our analysis extends from the
large-radius regime r≲ Rs dominated by the scalar dark
matter self-gravity down to the small-radius regime r ∼ rs
dominated by the BH gravity. The boundary conditions at
both ends determine the profile and the steady infall onto
the supermassive central BH.
First, we have studied the free massive case, associated

with a quadratic scalar potential. As the scalar-field
equation of motion is linear, this behaves in a fashion
similar to a collection of independent particles, with a flux
onto the central BH that is arbitrary and unbounded,
proportional to the density at large radii. As expected, at
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the Schwarzschild radius, the scalar field takes the form of a
harmonic ingoing wave.
Then, we have extended the analysis to the self-interact-

ing case defined by a repulsive quartic interaction. The limit
of large scalar mass allows us to perform a fully nonlinear
study, at all orders in the coupling constant. These non-
linear dynamics generate harmonics of all orders. The
effective pressure associated with the repulsive quartic
interaction slows down the infall onto the central BH. In
a fashion similar to the hydrodynamical case of polytropic
fluids, general relativity actually selects a unique critical
value Fc for the flux of the steady infall onto the BH. This
is similar to the transonic solution of the hydrodynamical
case, with a continuous switch from a low-velocity branch
at large radii, which converges to the soliton solution with a
negligible radial velocity, to a high-velocity branch at small
radii, with a radial velocity that becomes relativistic. At the
Schwarzschild radius, the scalar field takes again the form
of an ingoing wavewith unit velocity, as the self-interaction
pressure cannot resist the BH gravity, but it is now a
nonlinear wave that contains harmonics of all orders. We
find that in the central region, dominated by the BH gravity,
the scalar density profile and the radial velocity decay as
1=r. Beyond a transition radius rsg, the scalar self-gravity
becomes dominant, and the scalar density follows the flat
core ρs of the soliton, while the negligible radial velocity
decays as 1=r2.
The critical flux Fc gives a lifetime tc of the soliton that

is much longer than the age of the Universe. This implies
that the soliton solutions generated by this scalar DM
scenario are not destroyed by the supermassive central BH
and are relevant. However, because of the large soliton
radius Rs (as we focus on models that could have some
impact on galactic scales), the scalar dark matter mass at

small radii is very small and much below the observational
upper bounds provided by stellar dynamics close to the
central supermassive BH.
By increasing the scalar mass or decreasing the quartic

coupling constant, the core density of the soliton becomes
greater while its radius diminishes. This would, in turn,
increase the scalar density near the black hole and lead to
stronger effects on the stellar dynamics in this central
region. Better constraints on the mass of scalar dark matter
in this regime would certainly require one to calibrate the
models from large to small scales using dedicated numeri-
cal simulations, in particular, to estimate the expected mass
of such small solitons. More generally, simulations of self-
interacting scalar dark matter would help understand the
complex scalar dynamics from cosmological scales, outside
of coherent solitons, down to small subgalactic scales,
which involve soliton collisions and possible relaxation
processes that are difficult to predict in nonlinear regimes.
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