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Abstract. We review our recent analysis of ππ scattering data in terms of Roy equations and
Forward Dispersion Relations, and present some preliminary results in terms of a new set of once-
subtracted coupled equations for partial waves. The first analysis consists of independent fits to the
different ππ channels that satisfies rather well the dispersive representation. In the second analysis
we constrain the fit with the dispersion relations. The latter provides a very precise and model
independent description of data using just analyticity, causality and crossing.
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INTRODUCTION

A precise knowledge of pion-pion scattering is of interest since it provides a test of Chi-
ral Perturbation Theory (ChPT) as well as useful information about quark masses and
the chiral condensate [1]. The reaction, at least in the elastic regime, is also remarkably
symmetric in terms of isospin and crossing symmetries. Unfortunately, the existing ex-
perimental information from ππ scattering has many conflicting data sets at intermediate
energies and no data at all close to the interesting threshold region. For many years this
fact has made it very hard to obtain conclusive results on ππ scattering at low energies
or in the sigma region. However, recent [2] and precise experiments on kaon decays,
related to ππ scattering at very low energies, have renewed the interest on this process.

The dispersive integral formalism is model independent, just based on analyticity
and crossing, and relates the ππ amplitude at a given energy with an integral over the
whole energy range, increasing the precision and providing information on the amplitude
at energies where data are poor, or in the complex plane. In addition, it makes the
parametrization of the data irrelevant once it is included in the integral and relates
different scattering channels among themselves. For all these reasons it is well suited
to study the threshold region or the poles in the complex plane associated to resonances
(see H. Leutwyler and R. García Martín talks on this conference and references therein).

Our recent works make use of two complementary dispersive approaches, in brief:
• Forward Dispersion Relations (FDRs): They are calculated at t = 0 so that the

unknown large-t behavior of the amplitude is not needed. We consider two symmetric
and one asymmetric isospin combinations, to cover the isospin basis. The symmetric

257

CP1030, SCADRON70 - Workshop on Scalar Mesons and Related Topics
edited by G. Rupp, E. van Beveren, P. Bicudo, B. Hiller, and F. Kleefeld
© 2008 American Institute of Physics 978-0-7354-0554-7/08/$23.00



ones, π0π+ and π0π0, have two subtractions and can be written as

F−F(4M2
π) =

s(s−4M2
π)

π
P.P.

N ∞

4M2
π

ds<
(2s<−4M2

π)ImF(s<)
s<(s<− s)(s<−4M2

π)(s<+ s−4M2
π)

(1)

where F stands for the F0+(s, t) or F00(s, t) amplitudes. All contributions to their inte-
grands are positive, which makes them very precise. The antisymmetric isospin combi-
nation It = 1 does not require subtractions:

F(It=1)(s,0) =
2s−4M2

π
π

P.P.
N ∞

4M2
π

ds<
ImF(It=1)(s<,0)

(s<− s)(s<+ s−4M2
π)

. (2)

We have implemented all of them up to
√

s4 1420 MeV
• Roy Equations (RE) [3] : they are an infinite set of coupled equations fully equiv-

alent to nonforward dispersion relations, plus some t− s crossing symmetry, written in
terms of partial waves of definite isospin I and angular momentum l. The complicated
left cut contribution is rewritten as series of integrals over partial waves in the physical
region:

f (I)
l (s) = C(I)

l a(0)
0 +C<l

(I)a(2)
0 + ∑

l<,I<
P.P.

N ∞

4M2
π

ds<Kl,l<;I,I<(s
<,s)Im f (I<)

l< (s<). (3)

where the C(I)
l , C<l

(I) constants and Kl,l<;I,I< kernels are known. In practice, the calculation
is truncated at J < 2 and at some cutoff energy s0. The J ≥ 2 waves and the high energy
are treated as input. RE are well suited to study poles of resonances but are limited to√

s≤ 8mπ 4 1120MeV. At present, we have implemented them up to
√

s4 2mK .
The use of RE has gained interest with three aims: to improve the precision of

scattering data, to test ChPT, or to use ChPT to obtain the subtraction constants at low
energies, which can be recast in terms of the scattering lengths a(0)

0 and a(2)
0 , and obtain

precise predictions on ππ scattering. In particular a series of RE analysis in [4] using
ππ data parametrizations for the l > 2 waves and above 800 MeV for the rest, as well
as some Regge input, was performed with and without ChPT constraints. The latter
provided, a(0)

0 = 0.220± 0.005m−1
π and a(2)

0 = −0.0444± 0.0010m−1
π , an extremely

precise claim, together with predictions for other scattering lengths and the S and P
wave phase shifts up to 800 MeV. Some of the input, particularly the Regge theory and
the D waves, was questionable [5], but it certainly seems to have a very small influence
in the threshold region of the scalar waves [6].

In recent years the Krakow-Paris [7] and Paris [8] groups have performed other RE
analysis. The former resolved the long-standing ambiguity, discarding the so-called
"up"’ solution, including in their analysis an study using polarized target data. The latter
checked the calculation in [4] and claimed an small discrepancy in the Olsson sum rule.

OUR ANALYSIS

The approach followed in the series of works by our group [9] can be summarized as
follows: (1) We first obtain simple fits to each ππ channel independently, that we call
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"‘Unconstrained Data Fits"’ (UDF). In this way all waves are uncorrelated and can be
easily changed if new, more precise data becomes available. This actually happened,
for example, in one of our most recent works [10] where we have included the newest
Kl4 data [2], which is very precise. At different stages of our approach we have also
fitted Regge theory to ππ high energy data, and as our precision was improving, we
have improved some of the UDF fits with more flexible parametrizations. (2) Next,
we check how well these UDF satisfy the dispersion relations. Surprisingly some of
the most widely used parametrizations fail to satisfy the FDRs. We then select the
data parametrizations in better agreement with FDRs. (3) Finally, we impose in the
fits the dispersion relations. This provides very precise data fits where all waves are
correlated – thus we call them "‘Constrained Data Fits"’ (CDF)– which are consistent
with analyticity, unitarity, crossing, etc... Initially we only considered FDRs but in our
most recent work, whose results we review next, we have included RE.

In Fig.1 we show our unconstrained fits to data (UFD) for several waves. The de-
tails of their simple parametrizations can be found in [9]. We only plot explicitly the
constrained fits (CDF) for the isospin-2 waves since in all other cases they are indistin-
guishable from the UDF, showing their remarkable stability. Actually, all CDF waves
differ from the UDF waves by less than one σ , except for l = 2, I = 2 that deviates by
1.5 standard deviations from the unconstrained case. In the bottom row of Fig.1 we show
in greater detail both the UFD and CFD results for the S0 wave, which is probably very
controversial and the relevant one for this conference.

In order to quantify how well the dispersion relations are satisfied, we define six Δi as
the difference between the left and right sides of each dispersion relation in Eqs.(1),(2)
and (3), whose uncertainties we call δΔi. Next, we define the average discrepancies

d̄2
i ≡

1
number of points ∑

n

B
Δi(sn)

δΔi(sn)

:2

, (4)

where the values of sn are taken at intervals of 25 MeV. Note the similarity with an
averaged χ2/(d.o. f ) and thus d̄2

i ≤ 1 implies fulfillment of the corresponding dispersion
relation. In Table 1 we show the average discrepancies of the UDF for each FDR, up to
two different energies, and each RE up to∼ 2mK . Although the total average discrepancy
of the UDF set is practically one, they can be clearly improved in the high energy region
of the antisymmetric FDR and in the scalar isospin-2 RE. This is actually done in the
CDF set, which is obtained by minimizing:

χ2 ≡ O
d̄2

00 + d̄2
0+ + d̄2

It=1 + d̄2
S0 + d̄2

S2 + d̄2
P

(
W + d̄2

I + d̄2
J +∑

i

B
pi− pexp

i

δ pi

:2

. (5)

where pexp
i are all the parameters of the different UDF parametrization for each wave or

Regge trajectory, thus ensuring the data description, and dI and dJ are the discrepancies
for a couple of crossing sum rules. The weight W = 9 was estimated from the typical
number of degrees of freedom needed to describe the shape of the dispersion relations.

From the Table it is clear that the CDF set satisfies remarkably well all dispersion
relations within uncertainties, and hence can be used directly and inside the Olsson sum
rule to obtain the following precise determination from data: a(0)

0 = 0.223± 0.009m−1
π
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FIGURE 1. Unconstrained fits to different ππ partial waves. Almost all constrained fits are indistin-
guishable except those for S2, D2 and S0 waves that are also shown here.

TABLE 1. Average discrepancies d̄2 of the UDF and CDF for each FDR and RE. On aver-
age, the UDF are consistent with dispersion relations. Note the remarkable CDF consistency.

Unconstrained Data Fits (UDF)DF Constrained Data Fits (CDF)

s1/2 ≤ 932MeV s1/2 ≤ 1420MeV s1/2 ≤ 992MeV s1/2 ≤ 1420MeV
π0π0 FDR 0.12 0.29 0.13 0.31
π+π0 FDR 0.84 0.86 0.83 0.85
It=1 FDR 0.66 1.87 0.13 0.70

s1/2 ≤ 992MeV s1/2 ≤ 992MeV
Roy eq. S0 0.54 0.23
Roy eq. S2 1.63 0.25
Roy eq. P 0.74 0.002
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and a(2)
0 =−0.0444±0.0045m−1

π . This is in remarkable agreement with the predictions
of RE and ChPT of [4]. Nevertheless, the agreement is fairly good only up to roughly
450 MeV, but from that energy up to 800 MeV those predictions deviate from our data
analysis. We should stress that we are nevertheless talking about a disagreement of a few
degrees at most and would affect the determination of the sigma mass by tens of MeV at
most, which is a remarkable improvement compared with the situation just a few years
ago and the huge and extremely conservative uncertainties quoted in the PDG for the σ
mass and width, of hundreds of MeV.

The other waves are of less relevance for this conference and we comment them
very briefly, since the details can be found in [9]. The best determination of threshold
parameters is obtained by using the CDF set inside appropriate sum rules [9]. In brief, we
agree with [4] in the P-wave scattering length, but find disagreements of 2 to 3 standard
deviations in the P-wave slope, and also in some D wave parameters.

In summary the CDF set provides a model independent and very precise description
of the ππ scattering data consistent with analyticity and crossing.

OUTLOOK

The upper row plots in Fig.2 show that, despite the small uncertainties, the CDF set satis-
fies remarkably well the FDRs up to 1420 MeV. The same happens for the RE, although
now the uncertainties, small close to threshold, become, for the scalar channels, rather
large around 800 MeV. This is due to the polynomial factors in the RE that multiply
the scalar scattering lengths, particularly a(2)

0 . In order to avoid this, we have derived a
modified set of once-subtracted Roy-like equations (GMKPY for brevity). Actually, the
plots of the bottom row of Fig.3 show our preliminary results for a constrained fit includ-
ing also the GMPKY. Note that close to threshold the resulting GMKPY uncertainties
are larger than for the standard RE, but the uncertainties are dramatically reduced at
intermediate energies, the region of interest for scalar spectroscopy and this conference
(see the talk by R. García-Martín). Obviously, these tiny uncertainties will force us to
improve the region around 850 to 1 GeV with more flexible parametrizations, and in par-
ticular the matching of the low and intermediate energy regions for the scalar-isoscalar
channel, not sufficiently smooth at the moment (see Fig 1, bottom). Work is in progress
in these directions.
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FIGURE 2. Fulfillment of Forward Dispersion Relations (upper row) and RE (middle row) for the CDF
set. In the lower row we show preliminary fits constrained to our modified set of once-subtracted Roy-
like equations (GMKPY). Although we expect to improve the central values, these plots illustrate the
remarkable improvement in the resulting uncertainties.
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