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Abstract. We review recent results on the role of light quark states
within the QCD phase diagram. In particular, we will discuss how the
combined use of theoretical techniques such as Effective Theories, Uni-
tarization and Ward Identities helps to shed light on several important
issues regarding chiral symmetry restoration, building bridges with re-
cent lattice analyses. Special attention will be paid to the role of chiral
and U(1)A partners in the interplay between those symmetries, which
is crucial to properly understand the transition pattern. Light scalar
mesons at finite temperature will be shown to be responsible for the
description of susceptibilities encoding chiral and U(1)A restoration
properties.

1 Introduction

Chiral Symmetry Restoration (CSR) under extreme conditions of temperature and
density is one of the most relevant topics concerning our present knowledge of the
Quantum Chromodynamics (QCD) phase diagram, which is schematically depicted
in Fig. 1 1. There is overwhelming evidence of the existence of a QCD transition
where restoration of the chiral symmetry and deconfinement take place, predicted
from lattice simulations [1,2,3,4,5,6,7] which has been recently supported from anal-
yses of experimental data of Relativistic Heavy-Ion Collisions within the so called
Beam Energy Scan (BES) program [8,9]. In those collisions, the system evolves from
an initial Quark-Gluon-Plasma (QGP) phase to a hadron gas, crossing many inter-
esting phases such as CSR and deconfinement, from the initial highly nonequilibrated
regime, which rapidly reaches local thermal equilibrium and passes through chemical
and kinetic freeze out. On the other hand, the region of low temperatures and high
baryon density opens up the possibility of reaching phases of dense quark matter such
as Color Superconductivity [10], realizable in principle in astrophysical systems such
as neutrons stars.

Through the analysis of the main observables involved, lattice and experimental
collaborations have been able to explore quite deeply the phase diagram features for
finite temperature T and not too high baryon chemical potential µB . Since lattice
simulations are affected by the so called sign problem for µB 6= 0, which has been cir-
cumvented by several methods [11,12,13,14,5], the most accurate results are available
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1 Reprinted by permission from [7], Copyright 2019 by Springer Nature.
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for µB = 0, corresponding to the region of central rapidity in a Heavy-Ion Collision.
That regime already encodes the main physical features of the transition and will be
the main subject of the present review. Nevertheless, it is important to point out that
a major advance has come through the BES program, where a significant region of
the phase diagram has been explored as the energy of the collision is varied. In fact,
the phase diagram for low µB as predicted by the lattice within Taylor expansion
methods [5] turns out to overlap with the surfaces of constant baryon number, elec-
tric charge and strangeness, obtained by fitting hadron statistical models of particle
yields and their ratios at chemical freeze-out [9]. This is certainly a reassuring step
forward towards the understanding of that region of the phase diagram, which is par-
ticularly important regarding the possible existence of a critical point separating the
smooth crossover for small µB from a first-order phase transition whose location and
properties constitute one of the important open problems in this field (see [6,7] for
reviews of recent results). In addition, experimental input on fluctuations of conserved
charges offers an additional source of information for the phase diagram, freeze-out
conditions and the critical point [15,16,6].

At µB = 0, lattice simulations have established quite firmly that the transition
is a smooth crossover at Tc ' 155 MeV for physical quark masses [1,2,3,4,5] usually
identified as the peak position of the scalar susceptibility (see below) whereas other
observables could lead to different Tc estimates. As the light chiral limit of vanishing
mu,d masses is reached, the transition is expected to become a true phase transition,
possibly of second order [17,18] and the suppression of the explicit chiral symmetry
breaking quark mass effect leads to a reduction of the transition temperature with
respect to the physical case, as also seen in lattice simulations where it drops down
to T 0

c ' 129 MeV [19].
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Fig. 1. Left: Schematic view of the QCD phase diagram [7]. Right: Free particle density
for pions, kaons and the rest of resonant hadron states below 2 GeV according to the HRG
approach in [26].

It is important to remark that, in addition to the critical point and other issues
related to µB 6= 0, there are important aspects regarding the chiral transition that are
not fully understood and are the subject of current activity in this field, both within
lattice and theoretical approaches. In particular, it remains to properly understand
the nature of the transition, mostly its order and universality class in the light chiral
limit, as well as its interplay with the restoration of the U(1)A symmetry. Those two
aspects are actually intimately connected, as we will discuss in section 4. One of the
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main purposes of the present work is actually to discuss specifically the present status
of those problems.

Chiral symmetry SU(Nf )V × SU(Nf )A, where Nf = 2, 3 is the number of light
quark flavours, is intrinsically linked to the low-energy sector of QCD. In vacuum, that
sector is described by the chiral symmetry breaking pattern to the vector SUV (Nf ),
which governs the lowest energy states and excitations. Therefore, a consistent theo-
retical description of the evolution towards CSR from below the transition has nec-
essarily to involve Effective Theories in the hadron sector, whose lightest states are
the pseudo-Nambu Goldstone Bosons (NGB) of the chiral symmetry, i.e., pions for
Nf = 2 plus kaons and eta (the octet member) for Nf = 3. The low-energy Effective
Theory governing the dynamics of those states is Chiral Perturbation Theory (ChPT)
[20,21,22].

In principle, effects due to heavier hadron states should become gradually impor-
tant as temperature increases, typically weighted by their Boltzmann weight e−Mi/T .
That is actually the case for most relevant thermodynamical observables. As an indi-
cation of this trend, we show in Fig. 1 the free particle density as a function of tem-
perature for pions, kaons and the rest of hadron species below 2 GeV entering within
the so-called Hadron Resonance Gas (HRG) approach, where hadron interactions are
assumed to be dominated by resonant channels and the corresponding resonances are
accounted for essentially as free states in the partition function [23,24,25,26]. The
HRG has actually been quite fruitful to describe the main properties of the transi-
tion. Despite that general trend, there are several quantities of interest for the phase
diagram where the light quark sector provides already the dominant contribution.
Examples of the latter will be specifically discussed in sections 3 and 4.

With all the above motivation in mind, the present work attempts to review recent
advances on the QCD phase diagram, paying special attention to the role of the light
quark sector. Thus, we will discuss in section 2 the main signals for CSR currently be-
ing explored in lattice and theoretical analyses, highlighting recent important results.
In section 3 we will review some of the main theoretical approaches within effective
hadron field theories, emphasizing the importance of thermal interactions and unitar-
ity. Special attention will be paid in those two sections to the role of chiral partners
in the light sector. In section 4 we will tackle the problem of the nature of the chiral
transition, discussing its current status and its connection with the restoration of the
U(1)A symmetry.

2 Footprints of chiral symmetry restoration

The order parameter (in the light chiral limit) of CSR is the light quark condensate

〈q̄q〉l (T ) = 〈ūu+ d̄d〉(T ) =
∂

∂ml
z(T ), (1)

where 〈·〉 denote Euclidean finite-T correlators, ml = mu = md is the light quark
mass (in the isospin limit) and z(T ) = − limV→∞(T/V ) logZ is the free energy
density and Z is the QCD partition function, whose hadron representation would
be given through the effective lagrangian governing the relevant degrees of freedom
(d.o.f). The quark condensate naturally follows the thermal behaviour of the vacuum
expectation value associated to the spontaneous breakdown of the chiral group [27].
It measures the response of the vacuum to the symmetry breaking probed by the
quark mass, pretty much analogously to the mean magnetization in a ferromagnet as
a response to the applied magnetic field. In the light chiral limit 〈q̄q〉l should vanish
at the phase transition as a true order parameter whereas in the physical mass case
it develops an inflection point.
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In addition, one can extract very relevant information from the scalar susceptibility

χS(T ) = − ∂

∂ml
〈q̄q〉l (T ) =

∫
T

dx
[
〈ψ̄lψl(x)ψ̄lψl(0)〉 − 〈q̄q〉2l (T )

]
, (2)

where

∫
T

dx ≡
∫ 1/T

0

dτ

∫
d3~x and ψTl = (u, d), 〈q̄q〉l = 〈ψ̄lψl〉. The scalar susceptibil-

ity measures the order parameter correlations and as such is expected to diverge at
Tc in the light chiral limit while developing a peak in the physical case. Actually, χS
is usually a more efficient way to determine the transition temperature in the lattice,
together with the chiral partners discussed below. It must be taken into account that
in the crossover scenario, the transition temperature may differ from one observable
to another [5]. As explained in the introduction, correlators in the thermal bath are
usually the most efficient way to determine the main thermodynamical properties of
the system and relate them with physically measurable quantities.

In the lattice literature, the main efforts over many years, as long as CSR is
concerned, have concentrated in the measure of the above two quantities. The main
two groups undertaking the task have been the Wuppertal-Budapest [1,2] and the
HotQCD-Bielefeld-BNL one [3,4,5,15]. Using different lattice actions and configura-
tions, both have agreed over the last few years on the main features of the transition.
Let us present some selection of recent results of those groups regarding the quark
condensate and the scalar susceptibility.
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Fig. 2. Left: Subtracted quark condensate for different actions and lattice configurations
[3]. Right: Subtracted scalar susceptibility [1].

In Fig.2, we plot the subtracted quark condensate calculated in [3] 2. It must be
taken into account that lattice quark condensates are affected by T = 0 finite-size
divergences typically scaling as 〈q̄iqi〉 ∼ mi/a with mi the quark mass and a the
lattice spacing and therefore one needs to consider condensate combinations that are
free of those divergences and still conserve the main features of the order parameter.
The combination ∆l,s = 〈q̄q〉l−(ml/ms)〈s̄s〉, plotted in Fig.2 normalized to its T = 0
value, bears that property since the strange condensate 〈s̄s〉 decreases much slower
with T than 〈q̄q〉l due to the stronger chiral symmetry breaking ms � ml. The
inflection point around Tc is clearly seen in the figure, where results corresponding to
different lattice actions (asqtad, HISQ/tree) and temporal extent Nτ are shown for
the ratio ml/ms = 0.05, quite close to the physical value ml/ms ' 0.037 [28]. The

2 Reprinted with permission from [3] Copyright 2012 by the American Physical Society.
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continuum extrapolation is also shown. In the same figure we also plot the subtracted
scalar susceptibility ∆χ = χ(T ) − χ(0) with different normalizations, showing the
expected peak around the transition, now from the lattice collaboration [1] 3. No
significant improvement of these data has taken place in the physical limit over the
last few years.

Considerable progress has also been made in the lattice analysis of the transition as
the light chiral limit is approached. In Fig.3 we show results from the recent analysis in
[19], where χM , defined as the light quark mass derivative of ∆l,s properly normalized,
follows the scalar susceptibility trend: the transition peak is clearly enhanced and its
position moves to lower temperatures as the light-strange quark mass ratio is reduced.
The lattice setup and resolution used in [19] are the same as in previous works of the
same group [3,4].
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Fig. 3. Evolution of the scalar susceptibility towards the light chiral limit from [19].

Let us comment now on another set of observables providing direct information
about CSR, namely the so called chiral partners. The basic idea is that two quark
bilinears representing meson operators that can be connected through a SU(Nf )A ro-
tation would become degenerate (chiral partners) if CSR takes place. Therefore, one
should observe degeneration of observables constructed out of correlators of those bi-
linears, like screening masses and susceptibilities. Actually, following the same guide-
line, the study of particular sets of operators allows to analyze not only their chiral
degeneration but other symmetry patterns such as U(1)A asymptotic restoration, as
we will discuss in section 4.

Consider for instance the quark bilinears for the following isospin channels for
total angular momentum J = 0 corresponding to the pseudoscalar and scalar meson
nonets:

I = 0→ ηl = iψ̄lγ5ψl, ηs = is̄γ5s, σl = ψ̄lψl, σs = s̄s

I = 1→ πa = iψ̄lγ5τ
aψl, δa = ψ̄lτ

aψl (a = 1, 2, 3)

I = 1/2→ Ka = iψ̄λaψ, κa = iψ̄λaψ (a = 4, 5, 6, 7) (3)

with ψT = (u, d, s) and τa, λa Pauli and Gell-Mann matrices respectively. The lowest
energy states in the hadron spectrum corresponding to the quantum numbers of the

3 Reprinted with permission from [1], Copyright 2009 by Institute of Physics Publishing.
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above operators are, on the one hand, the light/strange components of the η/η′, the
pion an the kaon for the pseudoscalars ηl, ηs, π

a,Ka respectively, and on the other
hand the light/strange components of the f0(500)(or σ)/f0(980), the a0(980) and the
K∗(800) (or κ) for the scalars σl, σs, δ

a, κa respectively.
With a proper chiral SU(2)A transformations on the quark fields one can connect

the bilinears πa
SU(2)A←−−−→ σ, δa

SU(2)A←−−−→ ηl, which would become chiral partners,

while a U(1)A rotation connects πa
U(1)A←−−→ δa, σ

U(1)A←−−→ ηl. In particular, under
the SU(2)A transformation ψl → exp(iαbAτ

bγ5/2)ψl the above bilinears transform
infinitesimally as

δπa(y)/δαbA(x) = −δabδ(x− y)σl(x), δσl(y)/δαbA(x) = δ(x− y)πb(x),

δδa(y)/δαbA(x) = δabδ(x− y)ηl(x), δηl(y)/δαbA(x) = −δ(x− y)δb(x) (4)

with a, b = 1, 2, 3, whereas for U(1)A transformations ψl → exp(iαAγ5/2)ψl one has

δπa(y)/δαA(x) = −δ(x− y)δa(x), δδa(y)/δαA(x) = δ(x− y)πa(x),

δσl(y)/δαA(x) = δ(x− y)ηl(x), δηl(y)/δαA(x) = −δ(x− y)σl(x). (5)

As we will discuss in section 4, the interplay between chiral SU(2)V × SU(2)A ≈
O(4) and U(1)A symmetries plays a crucial role regarding the nature of the transition.
Therefore, the above I = 0, 1 set of operators and their corresponding correlators are
suitable probes in that context. Actually, the difference of susceptibilities χ5,disc =
1
4 [χπP − χηlP ] is customarily used in the lattice as the parameter measuring O(4) ×
U(1)A restoration. As for the I = 1/2 sector, the K − κ bilinears would degenerate
both with a SU(2)A and a U(1)A rotation, which, as we will see in section 4, offers
additional interesting possibilities for studying the interplay between chiral and U(1)A
restoration, regarding in particular the role of strangeness.

Chiral partners have been explored in lattice collaborations over recent years for
different channels, mostly through susceptibilities, defined by the integral of the cor-
relator over euclidean space-time at finite T , analogously to (2), and screening masses
measuring the inverse of the screening length in the exponential falloff with distance
of euclidean correlators. We select here some recent relevant results. In Fig.4 4 we
show the results obtained by the HotQCD collaboration [29,30] for Nf = 2+1 flavours
for the different susceptibilities involved and for physical quark masses. On the one
hand, CSR degeneracy of the π − σ partners is clearly seen, although at a slightly
higher temperature than the Tc ' 155 MeV value corresponding to the peak of the
scalar susceptibility. As commented in the Introduction, this is a consequence of the
crossover nature of the transition. On the other hand, the δ − η one is subject to
much larger relative uncertaintites. We also show the results of that collaboration for
U(1)A partners, which under those conditions degenerate at larger temperatures.

The vector and axial-vector channels I = J = 1, corresponding to the ρ(770)
and a1(1260) as lowest mass states, show also degeneracy at CSR, as it can be clearly
seen for instance in the screening masses analysis performed by the Bielefeld-HotQCD
group in [31] and more recently in [32]. These works contain also results for other
channels with partners of interest, such as the K − κ sector corresponding to I =
1/2, J = 0, whose role we will discuss in section 4. Selected results from [32] are shown
in Fig.5. Screening masses for chiral partners have also been analyzed for Nf = 2 in
[33], where, apart from the I = J = 1 sector, masses for the scalar-pseudoscalar I = 1
channel are also analyzed, showing that U(1)A restoration might be actually effective

4 Reprinted with permission from [29] Copyright 2014 by the American Physical Society.
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Fig. 4. Results from [29] for chiral- (left) and U(1)A- (right) partners susceptibilities.
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Fig. 5. Results from [32] for lattice screening masses (continuum extrapolation).

at the CSR temperature as the chiral limit is approached. This is shown in Fig.6.
Preliminary analysis by that group with larger volumes are still showing that trend
but with larger U(1)A breaking [34]. These results regarding U(1)A restoration at Tc
are in accordance with those analyzed for Nf = 2 in [35], where the correlators of
the four I = 0, 1 partners discussed above are shown to degenerate at Tc at the light
chiral limit, and in [36] where χπP − χδS vanishes at Tc also for Nf = 2 in the light
chiral limit. In section 4 we will discuss about this issue in more detail.

3 Theoretical tools

Ever since the early proposals of a chiral restoration phase transition, many theoretical
analyses have been developed to explore its main features. In this sense, the range of
masses, temperatures and energies involved calls for Effective Theories and models
for which hadron fields and states constitute the main d.o.f [37]. As explained above,
higher temperatures usually implies that heavier states have to be taken into account,
although a description solely based on the lightest modes captures the main Physics
for many relevant situations, as we will see below.

First attempts in that direction came from the O(4) or Linear Sigma Model (LSM)
where the d.o.f are pions and the explicit σ field forming a generic O(4) field with
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Fig. 6. Results from [33] for the π − δ screening mass difference.

the quantum numbers corresponding to the (πa, σl) bilinears in (3). The interaction
lagrangian can be chosen to develop spontaneous symmetry breaking O(4) ≈ SU(2)×
SU(2) → O(3) ≈ SU(2), whose restoration can be examined in terms of the finite-
temperature dependence of the relevant quantities, such as the effective potential or
the in-medium spectral modifications of the O(4) field. It was actually within that
approach that the first discussions about the transition, including its order and the
connection with U(1)A restoration, were carried out [17]. In [27], a detailed analysis of
CSR was carried out within the LSM, comparing it with the Non-linear Sigma Model
approach, which is nothing but the leading order in the ChPT framework discussed
below. In particular, the role of 〈σ〉(T ) as order parameter compared to 〈q̄q〉l (T ),
as well as the interpretation of the pion decay constant fπ(T ) in that context, are
examined in that work. A detailed analysis within the LSM including the evolution
of the pion and sigma self-energies with temperature can be found in [38] while in the
recent work [39] an analysis of the scalar susceptibility and its connection with the σ
self-energy is provided within that model.

The Nambu-Jona-Lasinio (NJL) model has also been extensively used to analyze
properties related to CSR. Thus, the degeneracy of π − σ chiral partners at finite
temperature and baryon density, through the analysis of their respective self-energies
within the NJL, has been studied in [40,41]. Coupling the NJL model to the Polyakov
loop (PNJL model), the order parameter for deconfinement, has also recently allowed
to study degeneration of the chiral and U(1)A partners [42] as well as many more
properties of the QCD phase diagram including the critical point [43].

A more rigorous approach to the meson gas and its properties has been provided
by the ChPT scheme. The main ideas of the ChPT approach rely on the construction
of the most general effective lagrangian to every order in the generic energy expansion
in pn powers (meson derivatives, momenta, masses and temperature) together with a
consistent chiral power counting for loop contributions and the determination the cor-
responding Low Energy Constants (LEC) associated to every term [20,21,22]. Thus,
the lightest mesons π, K, η are described within this scheme as pseudo NGB of chiral
symmetry breaking and the same formalism can be extended to heavier states such
as vector mesons or nucleons [44]. Likewise, the η′ can be incorporated adding the
1/Nc counting since the η′ mass comes from the chiral anomaly and is therefore sup-
pressed for large Nc, giving rise to the so-called U(3) ChPT scheme [45,46]. The main
advantages of the ChPT framework are its consistency and model-independency, thus
avoiding some of the usual difficulties of model descriptions such as the large coupling
of the LSM needed to reproduce the observed f0(500) I = J = 0 pole compatible with
scattering data [47]. Another benefit of the ChPT scheme is that one has analytic
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control over the light quark masses, since the theory is built upon the massless theory
with just chiral symmetry requirements. This is particularly useful for the analysis of
CSR where the light chiral limit is determinant, as described in section 2 above. The
main ChPT limitation is that the temperature applicability range lies well below the
transition, although for certain observables a description in terms of the lightest d.o.f
can be fruitful enough when combined with additional tools such as Ward Identities
(WIs) and Unitarity, as we will describe here.

Thus, within the ChPT framework, various finite-temperature analyses concerning
the meson gas have been developed, confirming in particular the main trends expected
from CSR. Thus, early works studied the temperature dependence of the quark con-
densate to lowest order [48] showing the expected decrease, which was extended up to
O(T 8) (NNLO) in a thorough analysis in [49]. One of the main conclusions of the lat-
ter work is that interactions among the meson gas components in the thermal bath,
which show up essentially at NNLO, are quite relevant, reducing in particular the
quark condensate to values closest to the lattice expectations, while the LO analysis
corresponds to an ideal gas and the NLO corrections can be absorbed in the renor-
malization of the LO. In addition, as mentioned above, meson thermodynamics can
be consistently studied in the chiral limit in that framework, showing in particular the
expected reduction of the quark condensate and hence of the extrapolated transition
temperature. In Fig.7, we show the results for the light quark condensate at different
ChPT orders. In order to calibrate the effects of higher mass states, we also show the
result of a fit to lattice data of the subtracted quark condensate ∆l,s using the HRG
approach in [26] with resonant states of masses up to 2 GeV, where the quark mass
dependence of the light mesons (π,K,η) is taken from the ChPT predictions while
for the higher mass states, the PNJL model in [50] is used. We have allowed for an
overall normalization of the free energy z → Bz, fitting B to lattice data below the
transition, in order to account in a simple manner for the inherent HRG uncertainties
such as the light mass dependence or the number of resonant states considered. The
result in that figure shows that the value of B obtained in the fit is compatible with
unity, revealing the robustness of the HRG approach below Tc. However, an important
observation to be taken into account is that the HRG usually predicts monotonically
changing functions, as it does the ChPT approach, and hence the HRG curve for quark
condensate does not have the inflection-point character around Tc. Nevertheless, it
clearly shows that for this particular observable the effect of higher states is important
to achieve a description compatible with lattice data. Other relevant results for the
meson gas at finite temperature include corrections to the NGB dispersion relation
where a thermal dispersive contribution defines their mean free path [51,52,53,54],
analyses within the low-density virial expansion which rely on scattering amplitudes
and agree with perturbative ChPT [49,55,56,57,58,59], as well as the calculation of
transport coefficients and phenomenological related effects [60].

It is also worth mentioning that the T -dependence of the pion decay constant
within ChPT reveals that at NLO [51] it holds

F 2
π (T )M2

π(T )

〈q̄q〉l (T )
=
F 2
π (0)M2

π(0)

〈q̄q〉l (0)
6= −ml (6)

i.e, the Gell-Mann-Oakes-Renner (GOR) relation is broken at that order only by
T = 0 terms and since the Mπ(T ) dependence is softer, Fπ(T ) still follows a de-
creasing trend linked to that of the quark condensate, even though Fπ itself cannot
be considered an order parameter [27]. A similar trend was found in models with
explicit resonance fields [61]. At NNLO the situation qualitatively changes: the space
and time components of the axial current give rise to two different F s,tπ (T ), which in
addition develop an imaginary part. The ratio of their real parts is directly related to
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the velocity of pions in the heat bath, whereas their imaginary parts arise from the
pion thermal width [54,62]. GOR holds to NNLO only in the chiral limit, including
temperature effects [62].
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Fig. 7. Left: Light quark condensate to various orders in the ChPT framework [49]. Right:
HRG fit to the subtracted condensate from the analysis in [26] and the lattice data in [1].
The uncertaintiy bands correspond to the 95% confidence level of the fit.

Unitarization has been shown to become an important ingredient to improve
the ChPT predictions in hadron phenomenology [63,64,65,47] and in particular to
dynamically generate the lightest resonant states such as f0(500), ρ(770), a0(980),
K∗0 (700) and so on, with resonance parameters consistent with the expectations from
the Particle Data Group [66]. The extension of that program to finite temperature
has proven to be quite useful. Thus, finite temperature pion scattering in ChPT [67]
and its unitarization [68] generate the thermal modification of the ρ, σ resonances
spectral properties, through their poles in the second Riemann sheet parametrized as
spole(T ) = [Mp(T )− iΓp(T )/2]

2
. Thus, for the ρ(770), which is a narrow resonance so

that Mp and Γp roughly correspond to its mass and width, a significant broadening
of Γp(T ) is obtained, compatible with the expectations from other models and from
the dilepton excess around the ρ region observed in heavy-ion collisions [69]. Actu-
ally, the in-medium modifications of the spectral properties of vector and axial-vector
mesons and their theoretical and phenomenological implications has been the subject
of very intensive work over recent years within different models describing those me-
son states explicitly in the lagrangian, such as Vector Meson Dominance, gauged LSM
or Hidden Local Symmetry [70,71]. Particularly important for the issues analyzed in
the present review is the analysis of the degeneration of the chiral partners ρ-a1 and
therefore of their spectral functions. As a highlight of those analysis, we show in Fig.8
5 the temperature evolution for µB = 0 of the propagator pole masses corresponding
to those states, as given in the recent work [71]. Note that the trend is similar to
the corresponding lattice screening masses in Fig.5. Actually, recent analysis confirm
small deviations between screening and pole masses below Tc within the PNJL model
combined with lattice results [72].

The case of the scalar channels is particularly important as far as CSR is con-
cerned, since those include the quark condensate and the scalar susceptibility, directly
reflecting the response of the vacuum to symmetry breaking. In that context, a rel-
evant role has been shown to be played by the thermal f0(500) pole generated in
ππ scattering at finite temperature. Thus, from the thermal pole, one can define the

5 Reprinted with permission from [71] Copyright 2017 by the American Physical Society.



Will be inserted by the editor 11

0 50 100 150 200 250 300
0

500

1000

1500

T [MeV]

[M
e

V
]

μ = 0 MeV

mρ
p

m
a1

p

Fig. 8. Modification of the ρ and a1 pole masses from [71].

scalar mass M2
S(T ) = M2

p (T ) − Γp(T )2/4 = Re sp(T ) = ReΣ(sp) with Σ the self-
energy of the f0(500) state. Therefore, we expect such thermal mass to inherit the
CSR properties expected from the σ mode [27,39]

In Fig.9 we show the results for M2
S(T ) from the so-called Inverse Amplitude

Method (IAM) at finite temperature, for which the unitarized I = J = 0 partial wave
of the ππ scattering amplitude reads [67,68]

tU (s;T ) =
t2(s)2

t2(s)− t4(s;T )
(7)

with s the Mandelstam variable and t2(s)+ t4(s;T )+ . . . the ChPT expansion, where
temperature enters through the one-loop diagrams in t4. The above amplitude satisfies
the thermal unitarity relation Im tU (s;T ) = σT (s)|tU (s;T )|2 for s ≥ 4M2

π , where the
thermal phase space is related to the T = 0 one as σT (s;T ) = σ(s; 0) [1 + 2n(

√
s/2)]

and n(x) =
(
ex/T − 1

)−1
is the Bose-Einstein distribution function. The latter has

a neat interpretation in terms of two-particle states created and annihilated in the
thermal bath [73].
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Fig. 9. Unitarized scalar mass (left) and scalar susceptibilty (right) within the IAM thermal
f0(500) pole approach. The lattice points come from [1]. In the right panel the normalization
of χS(0) is chosen to match the ChPT value in [58].
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As it can be seen in Fig.9, M2
S(T ) decreases in the physical pion mass case, ap-

proaching the pion mass squared as a clear hint of partner degeneration. Recall that
the pion mass is expected to depend softly on T from ChPT-based analysis of the
pion dispersion relation [53]. On the other hand, in the chiral limit, the temperature
drop is more abrupt and tends to vanish at a temperature compatible with the lattice
expectations discussed in section 2.

Furthermore, since the scalar susceptibility, as defined in (2), corresponds to the
scalar field propagator at vanishing momenta, it is expected to scale as the inverse
squared scalar mass, which can be explicitly shown within the LSM context [39].
Thus, saturating χS with the lightest thermal f0(500) state leads to the unitarized
or saturated susceptibility [74,39]

χUS (T )

χUS (0)
=
M2
S(0)

M2
S(T )

(8)

which, as can also be seen in Fig.9, is able to capture the essential behaviour of
the lattice results, in particular the expected peak due to the crossover transition,
within the uncertainties of the LEC involved [39]. The underlying assumptions are
the smoothness of the p-dependence in the self-energy and of the T -dependence in the
correlator normalization, the associated uncertainty lying within those of the LEC.
This approach describes lattice points in a very competitive way, compared for in-
stance with the HRG case. Fits with both approaches are considered in [39], the fits
of the saturated case describing better the points around Tc than the HRG, which
captures well the behaviour below the transition but gives rise to a monotonically
increasing function, whereas the approach based on the thermal f0(500) reproduces
clearly the expected peak, highlighting the importance of considering thermal interac-
tions to understand the essential features of CSR, even though at those temperatures
one would not expect such a description in terms of only the lightest d.o.f to work
so accurately. In addition, the HRG is in conflict when trying to jointly fit the quark
condensate and the scalar susceptibility. A similar scaling law as (8) has been found to
hold for the lattice screening masses in the π, K, s̄s and κ channels, which combined
with the use of WIs (see below) allow to explain quantitative and qualitatively the
temperature dependence below and around Tc [74,75,76,37]. The latter opens addi-
tional interesting possibilities of connection with lattice analyses, which measure only
screening masses, not expected to differ much from pole masses below the transition
as commented above.

4 The nature of the chiral transition

One of the open challenges regarding the QCD diagram is to properly understand the
nature or pattern of CSR. In particular, both the universality class and the order of
the transition strongly depend on the strength of U(1)A breaking at Tc. Asymptotic
restoration of the U(1)A symmetry with temperature, and therefore vanishing of
the chiral anomaly, is certainly a well-established theoretical possibility, a possible
mechanism being the vanishing of the instanton density [77]. It must be pointed out
that in any case, U(1)A symmetry breaking is by definition a short-distance or UV
phenomenon, as it stems from its anomalous character. Therefore, there is no actual
restoration transition at a given temperature, but a gradual fading away. Precisely,
the relevant question is to what extent U(1)A is broken near the region of CSR. If such
breaking is sizable, a second order transition in the O(4) universality class is expected
for Nf = 2 in the chiral limit, whereas partial or full U(1)A restoration at Tc as the
chiral limit is approached would lead to a U(2)×U(2) universality class corresponding
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to O(4) × U(1)A restoration [17,78,79,80] and could even turn the transition into a
first order one. In the massive case, a residual U(1)A breaking is expected with respect
to massless quarks [81].

This problem has been studied in several theoretical and lattice works and there
is still no full consensus about it. Most of the effort has been put on the fate of the
chiral and U(1)A partners discussed in section 2. Thus, within LSM-like models,the
interplay between chiral and U(1)A restoration and partner degeneration for the I =
0, 1 nonstrange states in (3) under different restoring scenarios has been studied in
[82,83] but results are not fully conclusive in what concerns U(1)A breaking at CSR.
In addition, detailed studies of the different partners have been recently conducted,
within the PNJL model combined with lattice results for the pole and screening masses
[42,84,72] and within the U(3) ChPT scheme for the different susceptibilities involved
[76]. The latter are in reasonable agreement with the lattice findings described in
section 2, pointing to a sizable U(1)A breaking at Tc for Nf = 2 + 1 flavours in the
physical limit, which should decrease or even disappear in the limit of two massless
flavours. In Fig.10 we show the result in [76] for the change with the pion mass of the
pseudocritical temperatures at which the different O(4) and O(4) × U(1)A partners
degenerate, clearly showing their convergence in the chiral limit. It is also remarkable
that K−κ degeneration almost coincides with the π−δ one in this analysis, therefore
confirming the I = 1/2 sector as an alternative candidate to study U(1)A restoration.
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Fig. 10. Results from the U(3) ChPT analysis in [76] for the evolution towards the chiral
limit of pseudocritical temperatures corresponding to chiral and O(4)×U(1)A degeneration
(left) and for the dependence of the relevant susceptibilities near the chiral limit (right).

As commented in section 2, Nf = 2+1 lattice simulations in the physical mass case
observe a sizable gap between the degeneration of O(4) and U(1)A partners, whereas
for Nf = 2 such gap is considerably reduced, being compatible with zero in the light
chiral limit. In addition, a very recent Nf = 2 + 1 analysis of the HotQCD group
closer to the chiral limit [85] shows preliminary results indicating U(1)A breaking at
Tc based on the following relation:

χ5,disc(T ) = χdisS (T ) +
1

4
[χπP (T )− χS(T )] +

1

4

[
χδS(T )− χηlP (T )

]
. (9)

where χS = 2χconS +4χdisS = χδS+4χdisS is the decomposition of the scalar susceptibility
into quark connected and disconnected parts [86,76]. Thus, in [85] it has been argued
that the peak in χdisS coming from CSR would prevent the vanishing of χ5,disc near
Tc since χπP (Tc) = χS(Tc) and χδS , χηlP are not meant to peak.
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However, the ChPT analysis in [76] near Mπ → 0+ shows that there would be no
actual contradiction between χ5,disc peaking at Tc and vanishing at χ5,disc(Tc3) = 0,
where Tc3 = Tc + O(M2

π) around the chiral limit. Actually, χ5,disc(Tc) and χdisS (Tc)
do share the same leading O(Tc/Mπ) coefficient in the expansion around Mπ → 0+,
consistently with both quantities peaking at T = Tc, since that coefficient is an
indication of the critical behaviour within ChPT. However, at T = Tc3 the O(Tc3/Mπ)
coefficients that match are now those of χdisS and −χS/4, rendering the right hand
side in eq.(9) regular (and actually vanishing) in the chiral limit at T = Tc3. In Fig.10
we show the behaviour of those susceptibilities at a very small but nonzero pion mass,
confirming the previous analysis. Therefore, near the chiral limit, χdisS does not really
provide information about O(4)×U(1)A restoration, which should be rather analyzed
through other observables like χ5,disc itself, as we will discuss below.

In any case, it must be borne in mind that the lattice analyses of U(1)A-related
quantities carry a great deal of uncertainty, mostly in connection to the proper de-
termination of near-zero modes of the Dirac operator, which dominate correlators
involving the anomaly operator like the topological susceptibility (see below). For
that reason, it is usually less noisy for lattice collaborations to measure differences of
susceptibilities or screening masses connected by U(1)A rotations, such as χ5,disc.

A significant advance in this issue has come from the use of WIs derived from the
QCD generating functional and relating in a nontrivial and model-independent way
susceptibilities and quark condensates [74,75,87,88,76,37]. A particularly important
WI among susceptibilities is the following:

χlsP (T ) = −2
ml

ms
χ5,disc(T ) = − 2

mlms
χtop(T ) (10)

where χlsP =
∫
T
dx〈ηl(x)ηs(0)〉 , which is nonzero in the physical limit due to η − η′

mixing, and the topological susceptibility is defined as χtop = − 1
36

∫
T
dx〈A(x)A(0)〉

with A(x) = 3g2

32π2 εµναβG
µν
a Gαβa the anomaly operator and Gµνa the gluon strength

field tensor. The connection between χ5,disc and χtop in eq.(10) has actually been
used in the lattice as a check of the uncertainties involved [30].

The relevance of eq.(10) comes from the observation that a SU(2)A rotation allows
to transform the bilinear ηl → δ and since 〈δηl〉 is a scalar-pseudoscalar correlator
vanishing by parity, the conclusion is that χlsP should vanish in the regime of exact
CSR and then, according to (10), both χ5,disc and χtop should vanish as well. We
have seen in section 2 that χ5,disc measures O(4)×U(1)A breaking. Hence, for exact
CSR, the U(1)A symmetry should also be restored (at least for the above partners)
and the topological susceptibility should vanish. Those findings are in agreement with
the Nf = 2 lattice simulations in the chiral limit at the critical point, where CSR
is meant to be exact. In addition, they are reproduced by the U(3) ChPT analysis
[76]. Moreover, the vanishing of the ls correlator discussed above, implies ideal η− η′
mixing [88,76], i.e, η ∼ ηl, η

′ ∼
√

2ηs and actually the mixing angle approaches the
ideal value as temperature increases, both in ChPT [76] and in PNJL calculations
[72]. This is also consistent with the idea that the anomalous contribution to the η′

mass vanishes at ideal mixing [89].
As we have just seen, the vanishing of the topological susceptibility with tem-

perature is another sign of U(1)A restoration [87,88,76] and such vanishing is indeed
obtained in the lattice [90,91,92] as well as theoretically, e.g, in ChPT both for Nf = 2
[93] and Nf = 2 + 1 including the η′ [94], and in the PNJL model [42]. The tem-
perature dependence of this quantity has also important cosmological implications,
given the direct relation between the topological susceptibility and the axion mass,
namely m2

a = χtop/f
2
a with ma the axion mass, to leading order in 1/fa, the coupling

of the axion field four-divergence to the U(1)A current [93]. Likewise, a reduction
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of the η′ mass is expected around the transition region, becoming a ninth NGB in
that regime with phenomenological implications [95]. An indication of such reduction
has been indirectly observed experimentally [96] from the analysis of charged pion
Bose-Einstein correlation data at low transverse momentum, that can be fitted with
an enhanced η′ multiplicity consistent with a Mη′ reduction via thermal models. In
addition, a decreasing behaviour for Mη′(T ) has been found in the lattice [97] and is
also reproduced in model calculations [72].

Additional insight can be gained from the I = 1/2 sector regarding the role of
strangeness and hence aiming to reconcile the Nf = 2 and Nf = 2 + 1 lattice results
[98]. Thus, the following two WIs for the susceptibilities in that sector

χKP (T ) = −〈q̄q〉l (T ) + 2〈s̄s〉(T )

ml +ms
, χκS(T ) =

〈q̄q〉l (T )− 2〈s̄s〉(T )

ms −ml
, (11)

imply, on the one hand, that χKP (T ) should decrease monotonically, driven by the joint
decrease of 〈q̄q〉l (T ) and 〈s̄s〉(T ). On the other hand, the minus sign between the light
and strange quark condensates in χκS(T ) gives rise to a peak for that susceptibility
at a temperature above the transition at which the decreasing behaviour of 〈s̄s〉(T )
becomes stronger than the 〈q̄q〉l (T ) one. The decreasing trend after the peak leads
χκS(T ) towards the degeneration with χKP (T ) expected at O(4) × U(1)A restoration,
as commented before.

The above behaviour for the K,κ susceptibilities can actually be observed for
the corresponding quark condensate combinations in the lattice and explains in a
quantitative way the role of strangeness in the gap between chiral and U(1)A restora-
tion, ultimately controlled by the ml/ms ratio. Thus, near the light chiral limit, for
vanishing ml/ms, the χκS(T ) would flatten above the maximum as the 〈s̄s〉 decrease
weakens and degeneration with χK becomes closer to Tc, thus recovering the Nf = 2
chiral limit result for O(4) × U(1)A restoration. For smaller strange quark mass, it
would peak more abruptly, resembling the χS behaviour in Fig.9. In Fig.11 we show
results from [98] displaying such trends. We also show the result of a unitarized anal-
ysis performed in [98] where the κ susceptibility is saturated by the thermal K∗0 (700)
pole generated in πK scattering, pretty much in the same spirit as in the case of the
scalar susceptibility discussed in section 3. The thermal evolution of the K∗0 (700) pole
within the unitarized framework has actually been discussed recently in [99]. Finally,
note that the minimum observed for the screening masses in this channel [31,32,72,76]
is the counterpart of the maximum of the κ scalar susceptibility discussed here, thus
revealing an interesting global pattern for the scalar channels.

5 Conclusions

The light quark sector plays an essential role to properly understand Chiral Symmetry
Restoration. We have reviewed past and present knowledge about this key feature of
the QCD phase diagram, mostly from lattice simulations and theoretical approaches.
We have focused in some hot topics that nowadays remain challenging, like the in-
terplay between chiral and U(1)A restoration and the role of the different partners
involved, whose theoretical description has been investigated thoroughly over recent
years through various techniques such as Effective Theories and Ward Identities. The
Effective Theory framework captures the essential features of the chiral transition
and supplemented with additional physical requirements such as unitarity allows to
describe quite accurately the main observables involved. In fact, the role of thermal
interactions ultimately leading to modifications of the spectral properties of particles
and resonances, turns out to be a crucial feature. The latter has allowed in particu-
lar to describe the peak of the scalar susceptibility around the transition saturating



16 Will be inserted by the editor

HISQ/tree, Nσ=32, Nτ=8

χS
κ ms=20ml

χS
κ ms=40ml

χP
K ms=20ml

χP
K ms=40ml

χS
κ ms=20ml

χS
κ ms=40ml

150 200 250 300

0.95

1.00

1.05

1.10

1.15

1.20

T (MeV)

150 200 250 300

1.0

1.2

1.4

1.6

1.8

2.0

2.2

T (MeV)

χS
κ,U(T)

χS
κ,U(0)

Method 2, MK = 400 MeV

Method 2, MK = 350 MeV

Method 2, Mπ → 0

Method 2, physical point

0 50 100 150 200 250

1.0

1.5

2.0

2.5

3.0

T (MeV)

Fig. 11. Results for susceptibilities in the K − κ sector [98]. Left panel: Susceptibilities
extracted from the WIs in (11) and the quark condensate lattice values in [3,4]. Right panel:
Unitarized κ susceptibility saturated by the thermal K∗

0 (700) pole in πK scattering, for
different pion and kaon masses.

it with the thermal f0(500) state generated in ππ scattering at finite temperature,
accurately fitting lattice points and even improving over the Hadron Resonance Gas
description around the transition. Following the same ideas, the peak of the I = 1/2
scalar susceptibility expected from Ward Identities can be reproduced within the
saturated approach with the K∗0 (700) thermal pole in unitarized πK scattering.

The possibility of a significant U(1)A restoration around the chiral transition
has concentrated most of recent efforts in this field, since it would have important
theoretical and phenomenological implications regarding e.g. the universality class of
the transition and the dependence with temperature of the topological susceptibility
and of the η′ mass. Theoretical and lattice analyses point to a significant U(1)A
restoration if only two light flavours are considered, which would become complete in
the chiral limit. However, the situation in the physical case of Nf = 2+1 case is not so
clear, both the chiral limit and the role of strangeness needing a better understanding
in that case. We have provided strong theoretical evidence based on Ward Identities
and Effective Theories, which on the one hand support full U(1)A restoration for
exact chiral symmetry restoration, as for the case of two massless flavours at Tc, and
on the other hand allow to quantitatively describe the role of strangeness through
the influence of the strange quark condensate, connecting with well-measured lattice
quantities.
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036018.
40. T. Hatsuda and T. Kunihiro, Phys. Rev. Lett. 55, 158 (1985).
41. V. Bernard, U. G. Meissner and I. Zahed, Phys. Rev. Lett. 59, 966 (1987).
42. P. Costa, M. C. Ruivo, C. A. de Sousa, H. Hansen and W. M. Alberico, Phys. Rev. D
79 (2009), 116003.

43. P. Costa, M. C. Ruivo, C. A. de Sousa and H. Hansen, Symmetry 2 (2010), 1338-1374.
44. A. Pich, Rept. Prog. Phys. 58, 563 (1995).
45. P. Herrera-Siklody, J. I. Latorre, P. Pascual and J. Taron, Nucl. Phys. B 497, 345 (1997).
46. R. Kaiser and H. Leutwyler, Eur. Phys. J. C 17, 623 (2000).
47. J. R. Pelaez, Phys. Rept. 658, 1 (2016).
48. J. Gasser and H. Leutwyler, Phys. Lett. B 188 (1987), 477-481.
49. P. Gerber and H. Leutwyler, Nucl. Phys. B 321, 387 (1989).
50. D. Blaschke, P. Costa and Y. L. Kalinovsky, Phys. Rev. D 85, 034005 (2012).
51. J. Gasser and H. Leutwyler, Phys. Lett. B 184, 83 (1987).
52. J. L. Goity and H. Leutwyler, Phys. Lett. B 228, 517 (1989).
53. A. Schenk, Phys. Rev. D 47, 5138 (1993).



18 Will be inserted by the editor

54. R. D. Pisarski and M. Tytgat, Phys. Rev. D 54, R2989 (1996).
55. R. Venugopalan and M. Prakash, Nucl. Phys. A 546, 718 (1992).
56. A. Dobado and J. R. Pelaez, Phys. Rev. D 59, 034004 (1999).
57. J. R. Pelaez, Phys. Rev. D 66, 096007 (2002).
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73. A. Gómez Nicola, J. R. Pelaez, A. Dobado and F. J. Llanes-Estrada, AIP Conf. Proc.
660 (2003) no.1, 156-169, [arXiv:hep-ph/0212121 [hep-ph]].

74. A. Gomez Nicola, J. Ruiz de Elvira and R. Torres Andres, Phys. Rev. D 88 (2013),
076007.
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76. A. Gómez Nicola and J. Ruiz De Elvira, Phys. Rev. D 98, no. 1, 014020 (2018).
77. D. J. Gross, R. D. Pisarski and L. G. Yaffe, Rev. Mod. Phys. 53, 43 (1981).
78. E. V. Shuryak, Comments Nucl. Part. Phys. 21, 235 (1994).
79. T. D. Cohen, Phys. Rev. D 54, R1867 (1996).
80. A. Pelissetto and E. Vicari, Phys. Rev. D 88, 105018 (2013).
81. S. H. Lee and T. Hatsuda, Phys. Rev. D 54, R1871 (1996).
82. E. Meggiolaro and A. Morda, Phys. Rev. D 88, no. 9, 096010 (2013).
83. M. Heller and M. Mitter, Phys. Rev. D 94, no. 7, 074002 (2016).
84. M. Ishii, K. Yonemura, J. Takahashi, H. Kouno and M. Yahiro, Phys. Rev. D 93, 016002

(2016).
85. O. Kaczmarek, F. Karsch, A. Lahiri, L. Mazur and C. Schmidt, [arXiv:2003.07920 [hep-

lat]].
86. A. Gómez Nicola and R. Torres Andres, Phys. Rev. D 83, 076005 (2011).
87. V. Azcoiti, Phys. Rev. D 94, no. 9, 094505 (2016).
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[arXiv:2012.12279 [hep-ph]].

99. R. Gao, Z. Guo and J. Pang, Phys. Rev. D 100, 114028 (2019).

http://arxiv.org/abs/hep-ph/0212121
http://arxiv.org/abs/2003.07920
http://arxiv.org/abs/2012.12279

	1 Introduction
	2 Footprints of chiral symmetry restoration
	3 Theoretical tools
	4 The nature of the chiral transition
	5 Conclusions

