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In this paper, we address the problem of identification of fuzzy measures through differ-
ent representations, namely the Md&bius, the Shapley and the Banzhaf interaction rep-
resentations. In the first part of the paper, we recall the main results concerning these
representations, and give a simple algorithm to compute them. Then we determine the
bounds of the Mobius and the interaction representations for fuzzy measures. Lastly, the
identification of fuzzy measures by minimizing a quadratic error criterion is addressed.
We give expressions of the quadratic program for all the considered representations, and
study the uniqueness of the solution.
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1. Introduction

Recently, the analysis and use of fuzzy measures have been enriched by different
equivalent representations of a fuzzy measure,* that are obtained through invertible
linear transformations applied on the fuzzy measure. The most important ones are
the Mdbius, the Shapley interaction and the Banzhaf interaction representations. A
difficult problem occurring in the practical use of fuzzy measures (e.g. classification®
or multicriteria decision making®), has always been the identification of fuzzy mea-
sures from learning data. It is known that the minimization of a squared error
criterion leads to a quadratic program, but usually solutions found by this means
appear to be unsatisfactory and rather counter-intuitive.

We believe that performing the optimization through either the M&bius or the
interaction representation should lead to better results. The reason is that these
representations are more meaningful that the usual one, so it is easier to control
how the solution is obtained.

The paper presents the different expressions of the quadratic program with re-
spect to the representations. In the last part, we elaborate about the uniqueness of
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the solution.
Throughout the paper, X will denote an index set of n elements X = {1,...,n}.

2. Basic concepts

2.1. Definitions

In this section we deal with basic definitions that we will need all over the paper.
Definition 1 A ( discrete) fuzzy measure® on X is a set function p: P(X) —
[0,1] satisfying

(i) p@) =0, pX)=1.
(i) A C B implies p(A) < u(B) (monotonicity).

A fuzzy measure needs 2" coefficients to be defined, which are the values of p for
all the different subsets of X. However, we have two of these values fixed, namely
n(@) =0, u(X) = 1.
Definition 2 A pseudo-Boolean function is a real valued function f : {0,1}" —
R.
If we identify any subset A of X wiht a point (21, ...,2,) in {0,1}" defined by z; =1
iff i € A, it is clear that fuzzy measures can be considered as a particular case of
pseudo-boolean functions.

It can be shown that any pseudo-Boolean function can be put under a multilinear
polynomial of n variables. If z = (1, ..., z,) then

= > lar [ =, vz € {0,1}", (1)
TcX €T
and with ar being a real number, VT' C X. In fact, ar coincides with the Mdbius
transform.
Definition 3 Let u be a fuzzy measure on X. The Mobius transformation of u
is defined by
a(T) == Y (-1))"\EIu(K),vT c X. (2)
KCT

Definition 4 Let p be a fuzzy measure on X. The Shapley interaction index*
of u is defined by

Z élTIZ |T| |L| w(LUK) (3)

KCX\T LCT

with & = %.

Definition 5 Let p be a fuzzy measure on X. The Banzhaf interaction index
for any subset T C X is deﬁned by

J(T) = 5m m S Y ()T uK). (4)

KCX\TLCT
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Note that I(@) and J(@) are not 0 in general.

Definition 6 A fuzzy measure p is said to be k-additive if its Mébius transfor-
mation satisfies a(A) = 0 if |[A| > k and there exist at least a subset B such that
|B| =k and a(B) # 0.

Definition 7 The Choquet integral of a measurable function f : X — R™ with
respect to a fuzzy measure p is defined by

© [ fau= [ uttalf(@) > )y ®)

When X is finite as in our case, the expression reduces to:

() / fdp:= Z(f(i) - f(i—l))H(Ai) (6)

=1

where f; stands for f(i), and where parentheses mean a permutation such that 0 =
foy < fay < v < fny and A; = {(i), ..., (n)}.
We will denote the Choquet integral in the finite case by

Culfrs o ) = () / fdp. 1)

Chateauneuf and Jaffray' have established an equivalent expression for the Choquet
integral in terms of the Md&bius representation. This expression is:

Calfiyes fu) = Y a(K) min{f;}. (8)

KCX

2.2. Different representations of a fuzzy measure

It has been proved that a fuzzy measure is uniquely characterized by its Mdbius
transformation or its Shapley interaction or its Banzhaf interaction. For this reason,
we call them representation of a fuzzy measure.

Proposition 1 Let yu be a fuzzy measure, and let a, I and J be its Mébius trans-
formation, its Shapley interaction and its Banzhaf interaction respectively. Then the
following holds:

wT) = > aS),VTI'cX (9)
ScT
1
Ir) = KZD:TWG(K) (10)
J(T) = Zﬁa(K) (1)
KDOT
a(T) = Y BgIEUT) (12)

KCX\T
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A = Y B4s1B) (13)
BCX

al) = Y (~5)TIK). (14
KDOT

where By are the Bernoulli numbers which can be computed recurrently through

=0

starting from Bo = 1, and the 3% are given by

k
k
Bri=> ( .)Bl—j- (16)
=0 M
The proofs of these results’*” are not restricted to fuzzy measures, but can be
applied to any set function vanishing on .

2.3. Monotonicity constraints on a, I and J

As there are pseudo-Boolean functions which are not fuzzy measures, it is clear
that not all Mdbius representations nor Shapley interactions correspond to the
transformation of a fuzzy measure, i.e. a monotonic set function. The following
can be proven:

Theorem 1 A set of 2" coefficients a(T), T C X corresponds to the Mobius
representation of a fuzzy measure if and only if:

(i) a®) =0, Y, cxa(Ad) =1
(i) Yiepcaa(B) >0 for all AC X, for all i € A.

Theorem 2 A set of 2" coefficients I(A), A C X corresponds to the Shapley
interaction representation of a fuzzy measure if and only if

(i) ZAcX B|A|I(A) =0.
(ii) Yiex I{i}) =1
(i) X acx\iBanp [(AU{i}) >0, Vie X, VBC X\{i}.

These results are due to Chateauneuf and Jaffray,! and Grabisch.* The following
one is due to Roubens.®

Theorem 3 A set of 2" coefficients J(A), A C X corresponds to the Banzhaf
interaction representation of a fuzzy measure if and only if

(i) Yacx(—3)4J(A)=0.
(ii) Yacx(HAI(A) =1
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(iii) 3 acx\i(3) A (=D)AELI(AU {i}) > 0, VieX, VB C X\{i}.

3. Fractal and cardinality tranformations

We are going to study three families of linear transformations defined by Gra-
bisch and Roubens.5

e the fractal transformation defined recurrently by:

fi fo ] .
Fp) = L cR,i=1,2,3,4. 1
(1) |: o fa | fieR,i 3 ( 7)
[Fx—1y  FFe-o) ]
Fp) = k=2,...,n. 18
® [ fsFuoy  fiF o " a8

e the upper-cardinality transformation defined recurrently by:

_ | G a i .| G- €] _
Cq) = [ 0 ¢ ] » Cy = [ 0 s ] , 1=2,.,n (19)
ci, C? cl, ctt
Cp) = 1 gl) ,Cl, 1) b , 1l=1,..,n—1 (20)
0 C, 2) 0 Cly
C C?
Chpyi=| *ED Z=D 1 k=2...n 21
(k) 0 Cék—l) (21)
e the lower-cardinality transformation defined recurrently by:
| ¢ O 1 . |aa1 0 _
C(l) = |: 1 CO :| 5 C(l) = |: Cl Cl_l :| 5 l — 2, ...,TL (22)
C} 0 c! 0
Cayi=| oV 1 [:Clyyi=| A I=1,..,n—1 (23)
Ch Cu |7 ar cy
(o 0
Cipy = | 50 , k=2,...,n. 24
*) C(k—l) C%k—l) 29

Lower and upper cardinality transformations are uniquely defined by a sequence
Co, ---, Cn Of real numbers. Given ¢y, ..., ¢, the matrix representing the upper-cardinality
transformation is the transpose of the matrix representing the lower-cardinality
transformation.

Moreover, if C' and C? represent two upper-cardinality transformations, the
sequence ¢, related to C! o C2 corresponds to

k k
= it = SRR 25
Cr = Z I Cp—16 = z I Ck—1€» (25)

1=0 =0

where ¢}, ¢2 are the sequences for C! and C? respectively.
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If ¢g # 0 (necessary and sufficient condition for the existence of an inverse
transformation) the inverse C™! of the upper-cardinality transformations C can be
obtained by?

k=1
.t = —Z (l)ck—lcl_l, k=1,..,n. (26)
1=0

It is obvious that these results hold also for lower-cardinality transformation be-
cause a lower-cardinality transformation is the transpose of an upper-cardinality
transformation.

Let us consider the binary order, which is obtained by coding subsets by integers
and arranging them in increasing order, i.e. the order given by 0, {1}, {2}, {1,2}, {3}, ...
Then it can be shown that®

I=Cla,J=Cla (27)

where I,J and a represent the value vectors of Shapley interaction, Banzhaf inter-
action and Mobius transformation respectively, taking the binary order; CL and
C; are matrices representing lower-cardinality transformations defined by

I_ J _
C = - and c¢; =

) =0,..,m. (28)

2i+1 ) b

respectively. Of course, the inverse transformations are also lower-cardinality trans-
formations.
The Mobius transformation

a(T) = 3 (~1) "\l (k)

KCT

can be rewritten under the fractal form
a= M(n) o

where p is the vector of fuzzy measure values and the basic fractal matrix:

1 0
M(l):=|:_1 1:|

Note that M is also a lower-cardinality transformation with ¢; = (—1)%. Note that
co # 0, thus there exists an inverse transformation, which is

Hny = M) 0a

where M, (_73 corresponds to the basic fractal matrix:

10
M(l)::[l 1]

that corresponds to a lower cardinality transformation defined by ¢; = 1,Vi.
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4. Computations over upper and lower cardinality transformations

Since the lower and upper cardinality transformations are 2™ x 2" matrices,
they are not suitable for an efficient implementation. In this section we are going
to give an algorithm to obtain the value of a matrix entry given its coordinates. We
consider the binary order defined in section 3. We restrict to the upper-cardinality
case; the lower-cardinality case is symmetrical. We need some preliminary results.
Let ¢, ---, ¢, define an upper-cardinality transformation. Then the following can be
easily shown by induction:

Lemma 1 Suppose Cl(k) is defined, and let Cﬁc[ij] denote the element in Cl(k) at
coordinates i,j. Then Clij] = 0 if Cyylij] = 0, and Cl(k) [ij] = ¢p if Cwylij] =
Cpti-1-

Lemma 2 In an upper-cardinality transformation matriz C:

1. the value of Clij] is 0 if the set associated with i is not contained in the set
associated with j.

2. the value of Clij] = c a\p| if the set B associated with i is contained in the
set A associated with j.

Now it is very easy to make an algorithm that computes the upper-cardinality
transformation (resp. the lower-cardinality transformation). In the case of upper-
cardinality transformation let us denote by A; the i-th subset of X in the binary
order, and let y, u denote the final and the initial vectors respectively. Then the
algorithm is:
for (i=1 to i=2")
do {
y(Ai) = co - p(Ai)
for (j=i+1 to j=2")
do {
if(Al C A])
y(4:i) = y(

}

Ag) + ¢ a;)—) 45 - 1(A;)

}

There exists a fast Mdbius algorithm developed by Robert Kennes in 8 with
a computational cost of 2"(n/2 — n/2") if |X| = n. With the above explained
method we get a computational cost of 3" — 2™ since a subset of only one element
is contained in 2"~! subsets of X, a subset of two elements is contained in 272
subsets of X and so on; so that there are

n
n—1 n n—2 n 0 _ n n—k __
n2 +<2)2 +...+<n)2 _Z<k)2 =

k=1

n

k=0
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multiplications.

Thus, we get a better result with the fast Mdbius algorithm, which is not surpris-
ing since it was proved to be optimal. However, with the upper-cardinality (resp.
lower-cardinality) transformation we are able to compute more transformations that
fast Mobius does, namely the transformation from Md&bius to Shapley and its in-
verse transformations that are not possible with the fast M6bius algorithm. This is
because the Kennes algorithm is valid only when ¢; = ¢p, Vi.

5. Lower and upper bounds for Mobius and interactions transforms

Theorem 4 Let A be a subset of X. Then for every fuzzy measure p

o) £ 3 ()

<
7=0
Al-1
- (' | ) (30)
4y
where 1| 4| is given by:
AL
(1) La = 5 if |A] = 0(mod 4)
(it) L4 = |A|2_ L if |A| = 1(mod 4)
AL
(i) 1|4 = 3 1if |A] = 2(mod 4)
Al -3 Al+1
(i) lia) = 4 orljg = Al + if |A| = 3(mod 4).

2
Proof. Let A be a subset of X. We know that

a(4) = p(A) =Y @D+ Y w(A\ )

i€A {i,j}eA

— e (FD)AEEST p(fiy), VA C X (31)

icA
We are going to try to find an upper bound for this expression. We consider the
fuzzy measure fi| 4| defined by:

Ba|(B) = Lif |B| 2 {4 (32)
Ba)(B) = 0if |B| <14 (33)
This is clearly a fuzzy measure for all /|4 > 1. For this measure

lja
a(A) =Y ('4') (—1)7. (34)

J
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We can always choose /| 4| to be even and such that (l‘,l:lL) < (ll‘il‘) and (l\;‘;ﬂ-l) >

(l‘,‘;ﬂz)' It is easy to see that the value of /|4 as defined in the theorem is suitable.
We are going to prove that this is the maximum value that a(A) can reach.

First, note that for every fuzzy measure p

- > wB+ D wB)----<0 (35)
BCA BCA

|B|=|A]=lja—1 |B|=|A|—lj4—2
because if we take B C A such that |B| = |A| — [ 4 — 2 we can always take
BU{j} C A and due to monotonicity u(B U {j}) > pu(B). As (lp‘;ﬂ-l) > (lpl;?—li-Z)’

- > wB+ > B <o. (36)

BCA BCA
|Bl=|A|—lj4—1 |B|=|A|—lj4—2

Proceeding in this way for the rest of the summands the result is proven.

Then, the maximum of (34) is reached letting u(B) = 0, VB such that |B| < 4.
Thus we can restrict our study to values u(B) with B C A and |B| > [j4). Let p
be a fuzzy measure. Let us prove that

- x s T w1+ () (57)

BCA BCA
|B|=|4|-1 |B|=|4]-2
Consider B C A, |B| = |A| — 1. We take B\{i} with some ¢ € B. Then, due to
monotonicity —u(B ) w(B\{i}) < 0. We do this for all BC A, |B|=|A|—1. We
can do it because ( ) < (A|). Then
- Y uB)-uB\{ip]<o. (38)
|B|=|4]-1

Now it remains (I;‘I) - (l‘fl) subsets B such that B C A, |B| = |A| — 2 that were
not used. As p(B) < 1 then (36) becomes clear. Proceeding in this way for the rest
of the summands we get

o < 3 ()

i=o v

(1)l (|Az||,4_| 1). (39)

Now, note that (—1) 41 = 1 in all cases. Thus, we obtain the result.

Note that the bound is reached by fi 4 which depends on |A[, so this is the
smallest upper bound. J

Now, let us turn to the lower bound. The proof is analogous to the proof of the
upper bound but the values of /| 4| change. The new values are:

IN
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A

Al -3
2

Al +1
2

(ii) l|A| = or l‘A‘ = if |A| = l(mod 4)

(i) 14 = % if [A] = 2(mod  4)

Al-1
(iV) l|A| = | |2 if |A| = 3(m0d 4).

Thus,

a(4) > —('A' - 1) (40)

lia

With an analogous proof we can obtain
Theorem 5 Let A be a subset of X. Then for every fuzzy measure p

o<y () vy

=0 7
Al—-1
_ (- ”
la
where 1| 4| depends of |A| as for Mébius.
This is the same value that we have for Mobius. Thus we have the same upper

bound that for Mobius. Of course, this is also true for the lower bound.
Finally, remark that for Banzhaf interaction we will obtain the same bounds.

6. Identification based on learning data

The problem of learning is very important in practice. The fuzzy measure is
learned by minimizing some criterion. It has been proved® that if we consider the
quadratic error criterion the problem reduces to solve the quadratic problem:

minimize %uTDuu +TTu

under the constraint A,u+b, >0 (42)

where u is the vector containing the values of u(A) for all A C X. We are going
to consider the same problem for the M6bius transformation. In the sequel we will
consider the binary order introduced in section 3. Let us suppose that we are given
[ values of Choquet integral ey, ..., e; and the values fi, ..., fL, ..., fl,..., f.. Our goal
is to determine a Md&bius transformation a that minimizes

l

P =Y (Calff, - F) —en)”. (43)

k=1

Of course, we have restrictions over a, namely the restrictions of Theorem 1.



International Journal of Incertainty, Fuzzyness and Knowledge-Based Systems 11

It is important to note that it is possible to find more than one solution.

This problem can be reduced to a quadratic problem with 2™ — 1 variables (for
every Mobius transformation a(f)) = 0) and n2"~! + 1 constraints, which can be
written:

minimize ta’D,a+TTa
under the constraints ffa=1 (44)
A,a+b, >0

Let us examine this expression: f is the vector (1...1)? corresponding to the restric-
tion ) 4 x a(A) =1, and A, and b, correspond to the restrictions (ii) in Theorem
1. A, is a matrix of n2"~' rows. Finally, let us examine D, and T',. Let us fix k.
Then:

(Culffs o fR) —ex) = (Y a(A)F*(A) —er)?, (45)

ACX
where f*(A) = min;ca f¥. Now we obtain

(Y a(A)F¥(A)* —2e Y a(A)f*(A) +ef = a"FIFra — 2efla+ef  (46)
ACX ACX

with

IJ=1: -

1 ... 1

Jisa (2" —1) x (2" — 1) matrix. F}, is a diagonal matrix such that Fy(i,4) = f*(A)
where A is the (i + 1)-th set in binary order (the empty set is the first but a(0) is

not a variable). fj, is the vector containing the diagonal of F. Then

l l
D,=) FJF; and T,=-2) e (47)
k=1 k=1
We can consider the same problem for I. In this case we are going to use the
expression we got before and the expression of a as a lower-cardinality transforma-
tion of I. We know that a = C %1, so that using the result before the objective
function can be put as

%aTDaa +TTa. (48)

Note that we have to consider a new row and a new column for the empty set, since
I(0) # 0 in general.
If we merge these expressions the objective function reads

1
§ITCTDQCI +T1TCI. (49)
If we rename D; = CTD,C,T; =T,C we obtain

1
5ITDII +I7L (50)
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In this case the constraints are given by theorem 2. Of course, by the same process
we can obtain an analogous expression for J.

Now let us turn to the problem of learning k-additive fuzzy measures. We will
suppose that we are given ! values of the Choquet integral. We want to get a
k-additive measure ( with 0 < k < n ) that minimizes the quadratic error. If we
consider the Mdbius transformation we will have (%) +- -+ (}) variables as a(0) =0
for all the Md&bius transformations of a fuzzy measure.

We can put this problem under a quadratic problem which can be written

minimize %aTDa +T7a
under the constraints ffa=1 . (51)
Aa+b>0

The objective function can be found in the same way that for the general case. The
number of constraints will be the same as in the general case as is shown in the
following.

Proposition 2 If k > 1, the number of constraints for the Mébius transforma-
tion of a k-additive fuzzy measure is n2" 1 + 1.

Proof. We will make the proof by proving that we can not delete any row of the
constraints matrix of the M&bius transformation.

It is easy to see that there are no lines of zeroes in A. Now, let us suppose that
there are two lines that take the same values for all the subsets which cardinalities
at most k. As we have a zero for all the singletons except for the one the constraint
refers to, we know that the rows are referred to the same element that we will denote
by j. Let us denote by A and B the two subsets that characterizes the constraints.
Let k € A\B. Then

{k,j} C A =1 in position corresponding to {k,j}

{k,j} ¢ B = 0 in position corresponding to {k,j}

but this contradicts the fact that the rows are equal. Thus A C B. Analogously we
can prove that B C A. Then A = B and we are in the same row. [

If £k =1 we have n + 1 constraints, one for the first condition of theorem 1 and
one for each element of X. We can prove analogous results for I and J.

7. Uniqueness of the solution

With the algorithms explained we will obtain a solution of the learning problem.
An important problem that comes out is whether we have only one solution.

It has been proved* that the set of M&bius transformations is a convex set. Note
that it is also a closed set as all the constraints are closed sets.

Suppose that we are given [ values of Choquet integral ei,...,e; and fi, ..., fl,
e fl, o, fL. With these values we build the matrix A,, which is a [ x (2" — 1)
matrix defined by

Adlirg] = min (£} = Fi(4)), (52)



International Journal of Incertainty, Fuzzyness and Knowledge-Based Systems 13

where A; is the subset which is in the j-th position if we consider the binary order
in P(X).

Let us denote by M the set of Mdbius transformations on X; as a is determined
by a(A),VA C X we can consider that M is contained in R?"~'. In the sequel,
we will identify a with the vector (a({1}),...,a(X)). We are looking for a M&bius
transformation a,. such that

d(Agae,e) = aiélL{d(Aaa, e)}. (53)

with e = (e;...¢;) and d the Euclidean distance. Note that A, M is a closed convex
set because M is so. Consequently, there will be only one z in A, M satisfying

d(z,e) = ;Ielijxr}t{d(Aaa’e)}' (54)
Now our problem is to determine whether the system A,a = z has only one solution.
Note that if we have more than one solution we have an infinite number of solutions
as any convex combination of the solutions will be also a solution.

Let us start studying the rank of A,. It is clear that r(A,) < 2™ — 1. We can
easily find examples for which r(A,) is exactly 2 — 1. For example, if we take as
values of f the values f; = 1ifi € Aand f; = 0if i ¢ A and we do this for all
A C X, A #( we will obtain a matrix A, such that r(A,) =2" — 1.

If r(A,) = 2™ — 1 we can transform the system A,a = z into an equivalent
system A,a = z where A, is an invertible matrix since A, may have more than
2" — 1 rows. Thus we have only one solution: a = A 2.

What will happen if r(A;) < 2™ — 17 Let a, be a Mdbius transformation that
is a solution of Aya = z. Then we are looking for a € M such that

Aja=z=27Nsa, & Ay(a—a;) =0 a—a, € Ker(A,). (55)

Then if a is a solution it will be a = a, + u with u € Ker(A,).

Now we have to verify that a is indeed a Mo6bius transformation of a fuzzy
measure, that is, it satisfies constraints of theorem 1. Let {u,...,up} be a base of
Ker(A,). Then, if a is another solution, it can be written as a = a, + Y 5, Aiu;.
We have the following constraints.

The first constraint in theorem 1 implies:

2" —1 2" —1 p 2" —1 p 2" -1

Z@:l@Zazj—kz:/\iZuij=1@2/\i2“ij=0- (56)
j=1 j=1 j=1 Jj=1

=1 =1

The other constraints can be put under the form E].E,C a; > 0, with a suitable
definition of £.

Let us take a constraint. If ) jex @zj > 0 we will be able to find coefficients A;
small enough to verify this constraint.

If 32 ek az; =0 we will need 37 X 3- ok uzj > 0.



14 International Journal of Incertainty, Fuzzyness and Knowledge-Based Systems

Note that we have only one solution if and only if A\; = 0, Vi; thus, we only need
to solve the following problem:

maximize b . [Ad
under the constraints Y 0 A Ef lu =0 (57)
Y N Yjeauz 20

where K is such that Ejelc a.j = 0. If we have only one solution it must be 0.

Note that this process can be applied to fuzzy measures, Shapley and Banzhaf
interaction and k-additive measures because in all these situations the hypotheses
(convexity and closed set) hold. The only thing that changes is the number of
variables. In the case of fuzzy measures the rank of A, is at most 2™ — 2. Thus, if
the rank of A, is 2™ —2 we have only one solution. Now, as a Mdbius transformation
is determined by a fuzzy measure, we can conclude that we have only one solution
if the rank of A, is 2™ — 2, i.e. if dim(Ker(A,)) = 1.

Now, we have another question: Which is the smallest value of [ which allows us
to have only one solution in some situation? The answer is given in the following
proposition for fuzzy measures.

Proposition 3 The smallest value for 1 is 2.

Proof. First, let us prove that we can find a situation in which there is only one
solution and I = 2. Let us take (f{,...f1) = (1,1-21—-2 . Lyande = 1.
Then, the expression of Choquet integral is

%[H(X) +u(X\{n}) +--- + p({1})]: (58)

To obtain the value 1 we need that all the sets in this expression have a measure of
1. Then p({1}) = 1 and by monotonicity

p(A) =1,VA, A> 1. (59)

For the second data vector we take (f, ..., f2) = (%,2,...,1) and e = . To obtain

this value of e; we need that u(X\{1}) = 0 and by monotonicity
p(A) =0, VA C X\{1}. (60)

As every subset of X is either containing 1 or not, this determines uniquely the
measure.

Now, let us prove that if I = 1 we have always an infinite number of solutions.
For every data vector we have a chain X of subsets A(;,n > i > 1 such that
Ay C A(i—1) which determines the value of the Choquet integral (see definition 7).
Suppose that this chain is given by

{1} c{1,2} C--- Cc X\{n}. (61)
It is always possible to find a chain ) such that

AeX, BeY=>A¢ B, BZA. (62)
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Take for example
{n}c{nn-1}yc---Cc X\{1} (63)

Clearly, the values p(A), A € Y are not influenced by the values pu(A4), A € X and
thus we have an infinite number of solutions. O

We may think that if the data are such that all the subsets of X are used we
will have only one solution. In this case we would need only (;) data vectors if n
is an even number and (.2:) if n is an odd number®. However, this is not true as
shown in the following example.

Example 1 Let us take n = 3. Let us take the binary order and consider the 3
data vectors given by

data vector corresponding matriz row in A,

(1,0.5,0) (0.5,0,0.5,0,0,0)
(0.5,0,1) (0,0,0,0.5,0.5,0)
(0,1,0.5) (0,0.5,0,0,0,0.5)

Now, if we take as solution e; = 0.5,Vi we will obtain an optimum when
uw(A) =0.5,VAC X,A#X,0

and another when
p({1} = p({2} = p({3} =0,
p({1,2}) = p({1,3}) = p({2,3}) = 1.

Thus, we have an infinite number of solutions.
Now, we may think that if we have enough data to explore all possible orderings,
that is, at least n! we will have only one solution (note that n! > 2" — 2 if n > 3).
However, this is not true as is shown in the following example.

Example 2 Let us take n = 3. We consider the sixz data vectors given by

(1,0.5,0), (1,0,0.5), (0.5,1,0), (0,1,0.5),

(0.5,0,1), (0,0.5,1).

We see that all the orderings are involved. Now, if we take as solution e; = 0.5,Vi
we will obtain an optimum when

W(A)=05YAC X, A+X,0

and another when

p({1} = p({2} = ({3} =0,
p({1,2}) = p({1,3}) = n({2,3}) = 1.

Thus, we have an infinite number of solutions.
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In conclusion, there is no relation between the possible orderings and the number
of solutions. We have seen that we can get only one solution with two data vectors;
however, this is a very special case where the values of Choquet integral are 0 or 1
and so lead to a very extreme fuzzy measure; this implies that a lot of constraints
are verified with equality and thus they appear as constraints of (57). This implies
that only A; = 0 verifies all the constraints of the problem.
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