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1. Introduction

An important problem in interpolation theory is to study the behaviour under interpolation of properties 
that an operator may have. For example, the classical results of Riesz-Thorin and Marcinkiewicz refer to 
boundedness of operators between Lp spaces and the theorem of Krasnosel´skii to compactness (see the 
monographs by Bergh and Löfström [2] or Triebel [28]). Abstract versions of these results can be found in 
the papers by Lions and Peetre [20], Calderón [4], Cwikel [12] and Cobos, Kühn and Schonbek [9], among 
other papers. The behaviour under interpolation of weakly compact operators has also been study in depth. 
See, for example, the books by Beauzamy [1] and Brudny̌ı and Krugljak [3], and the papers by Heinrich 
[19], Maligranda and Quevedo [21], Mastyło [25] and Cobos and Martínez [10,11].

In the bilinear case, the behaviour of weakly compact operators have been studied in the recent papers 
by Manzano, Rueda and Sánchez-Pérez [22,23] when the couple in the target reduces to a single Banach 
space or both couples in the source reduce to single Banach spaces, and in the paper by Martínez and the 
present authors [8] for general couples. For the real method, the result of [8] shows that if the restrictions 
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T : Aj × Bj −→ Ej are bounded for j = 0, 1 and any of them is weakly compact, then the interpolated 
operator T : (A0, A1)θ,p × (B0, B1)θ,q −→ (E0, E1)θ,r is also weakly compact provided that 0 < θ < 1, 1 ≤
p, q < ∞, 1 < r < ∞ and 1/p + 1/q = 1 + 1/r.

In this paper, we continue this research by showing that a necessary and sufficient condition for the weak 
compactness of the interpolated operator is that T : (A0 ∩A1) × (B0 ∩B1) −→ E0 +E1 is weakly compact.

Our approach is based on the connection between the properties of a bilinear operator T : A ×B −→ E

and those of its linearization T̃ : A⊗̃πB −→ E, the linear operator with source in the projective tensor 
product of the spaces A and B.

Furthermore, we show that a similar characterization does not hold for bilinear operators interpolated 
by the complex method.

We finish the paper with some comments on compactness of interpolated operators by the real method. 
By means of an example we establish that compactness of T : (A0 ∩ A1) × (B0 ∩ B1) −→ E0 + E1 is not 
enough to imply that the interpolated operator T : (A0, A1)θ,p × (B0, B1)θ,q −→ (E0, E1)θ,r is compact.

2. Preliminaries

Let A, B be Banach spaces. A bounded linear operator R ∈ L(A, B) is said to be weakly compact if 
R(UA) is relatively weakly compact in B. Here UA stands for the closed unit ball of A. We write W(A, B)
for the space of weakly compact operators between the spaces A and B.

Let W =
⋃

A,B W(A, B). Then the class W of all weakly compact operators between Banach spaces is 
an operator ideal in the sense of [27] and [14].

The ideal W is injective. This means that for every isometric embedding J ∈ L(B, F ) and every R ∈
L(A, B), it follows from JR ∈ W(A, F ) that R ∈ W(A, B) (see [27, 4.6.12]). Here F is another Banach 
space.

Given any sequence of Banach spaces (Em)m∈Z and 1 < r < ∞, we denote by �r(Em) the vector valued 
�r-space formed by all sequences x = (xm) with xm ∈ Em which have a finite norm

‖x‖�r(Em) =
( ∞∑

m=−∞
‖xm‖rEm

)1/r
.

If R is a bounded linear operator acting between vector valued �r-spaces R ∈ L(�r(Em), �r(Fm)), then 
R may be imagined as a infinite matrix whose elements are QkRPn, where Pn : En −→ �r(Em) is the 
embedding Pnx = (δnmx) with δnm being the Kronecker’s delta, and Qr : �r(Fm) −→ Fk is the projection 
Qk(ym) = yk. Clearly, QkRPn ∈ L(En, Fk) for n, k ∈ Z.

For 1 < r < ∞ the ideal W satisfies the so-called Σr-condition: For any sequences of Banach spaces 
(Em), (Fm) and any operator R ∈ L(�r(Em), �r(Fm)), it follows from QkRPn ∈ W(EnFk) for any n, k ∈ Z

that R ∈ W(�r(Em), �r(Fm)) (see [19], and also [5]).
We put A ⊗B for the tensor product of the Banach spaces A, B. For u ∈ A ⊗B, let

π(u) = inf{
n∑

k=1

‖ak‖A‖bk‖B : u =
n∑

k=1

ak ⊗ bk, ak ∈ A, bk ∈ B, 1 ≤ k ≤ n, n ∈ N}.

We write A⊗̃πB for the projective tensor product of A and B, that is to say, for the completion of (A ⊗B, π)
(see [13,15]).

Let E be another Banach space. We put L(A ×B, E) for the space of all bounded bilinear operators from 
A × B into E. We write T̃ ∈ L(A⊗̃πB, E) for the linearization of T , that is, the unique bounded linear 
operator from A⊗̃πB into E such that T̃ (a ⊗ b) = T (a, b) for any a ∈ A, b ∈ B.
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According to [8, Lemma 2] if T ∈ L(A ×B, E) then

T (UA × UB) ⊆ T̃
(
UA⊗̃πB

)
⊆ co

(
T
(
UA × UB

))
. (2.1)

Here T (UA × UB) = {T (a, b) : a ∈ UA, b ∈ UB} and we write co(S) for the convex hull of the subset S.
A bounded bilinear operator T ∈ L(A × B, E) is said to be weakly compact if T (UA × UB) is relatively 

weakly compact in E.
It is not hard to check that the class of all bilinear weakly compact operators is a closed surjective 2-ideal

in the sense of [23].
By a Banach couple Ā = (A0, A1) we mean two Banach spaces A0, A1 which are continuously embedded 

in the same Hausdorff topological vector space. Then we can form their sum A0 +A1 and their intersection 
A0 ∩A1, which become Banach spaces when endowed with the norms

‖a‖A0+A1 = inf {‖a0‖A0 + ‖a1‖A1 : a = a0 + a1 , aj ∈ Aj}

and ‖a‖A0∩A1 = max {‖a‖A0 , ‖a‖A1}, respectively.
Given any t > 0, we may equivalently renorm A0 + A1 by the Peetre’s K-functional

K(t, a) = inf{‖a0‖A0 + t‖a1‖A1 : a = a0 + a1, aj ∈ Aj}.

For 1 ≤ q < ∞ and 0 < θ < 1, the real interpolation space realized as a K-space in discrete form 
Āθ,q = (A0, A1)θ,q is formed by all those a ∈ A0 + A1 which have a finite norm

‖a‖θ,q =
( ∞∑

m=−∞

(
2−θmK(2m, a)

)q)1/q
.

See the monographs [2,28,1,3] for properties of these spaces. We only recall that spaces (A0, A1)θ,q are 
of class CK(θ; Ā) (see [2, Section 3.5] or [28, Section 1.10.1]). Real interpolation spaces make also sense 
for q = ∞ and they can also be equivalently defined using integrals instead of series, but this continuous 
description will not be used here.

If Ā = (A0, A1), B̄ = (B0, B1), Ē = (E0, E1) are Banach couples and T : (A0+A1) ×(B0+B1) −→ E0+E1
is a bounded bilinear operator such that

T : Aj ×Bj −→ Ej boundedly for j = 0, 1,

then the bilinear interpolation theorem establishes that the restriction

T : (A0, A1)θ,p × (B0, B1)θ,q −→ (E0, E1)θ,r

is bounded provided that 0 < θ < 1, 1 ≤ p, q, r ≤ ∞ and 1/p + 1/q = 1 + 1/r. See [20] and also [17].

3. Weak compactness of interpolated bilinear operators

Next we establish the central result of the paper.

Theorem 3.1. Let Ā = (A0, A1), B̄ = (B0, B1), Ē = (E0, E1) be Banach couples. Assume that T : (A0 +
A1) × (B0 + B1) −→ E0 + E1 is a bounded bilinear operator such that the restrictions T : Aj × Bj −→ Ej

are bounded for j = 0, 1. Let 0 < θ < 1, 1 ≤ p, q < ∞ and 1 < r < ∞ with 1/p + 1/q = 1 + 1/r. Then a 
necessary and sufficient condition for



JID:YJMAA AID:126837 /FLA [m3L; v1.329] P.4 (1-6)
4 F. Cobos, L.M. Fernández-Cabrera / J. Math. Anal. Appl. ••• (••••) ••••••
T : (A0, A1)θ,p × (B0, B1)θ,q −→ (E0, E1)θ,r to be weakly compact

is that

T : (A0 ∩A1) × (B0 ∩B1) −→ E0 + E1 is weakly compact.

Proof. Since the following continuous embeddings hold A0 ∩A1 ↪→ (A0, A1)θ,p, B0 ∩B1 ↪→ (B0, B1)θ,q and 
(E0, E1)θ,r ↪→ E0 + E1, it is clear that if T : (A0, A1)θ,p × (B0, B1)θ,q −→ (E0, E1)θ,r is weakly compact, 
then

T : (A0 ∩A1) × (B0 ∩B1) −→ E0 + E1 is also weakly compact.

Next we show that the condition is sufficient. By the bilinear interpolation theorem, we know that

T : (A0, A1)θ,p × (B0, B1)θ,q −→ (E0, E1)θ,r boundedly.

Hence, in view of (2.1), it suffices to show that

T̃ : (A0, A1)θ,p⊗̃π(B0, B1)θ,q −→ (E0, E1)θ,r is weakly compact. (3.1)

With this aim, for m ∈ Z we put Fm = (E0 +E1, K(2m, .)) and we write j : (E0, E1)θ,r −→ �r(2−θmFm) for 
the isometric embedding defined by j(x) = (· · · , x, x, x, · · · ). Here 2−θmFm is the space Fm with the norm 
2−θm‖ · ‖Fm

. The injectivity of the ideal W of weakly compact linear operators yields that (3.1) holds if and 
only if

T̃ : (A0, A1)θ,p⊗̃π(B0, B1)θ,q −→ �r(2−θmFm) is weakly compact. (3.2)

Using that W satisfies the 
∑

r-condition, we have that (3.2) is equivalent to

T̃ : (A0, A1)θ,p⊗̃π(B0, B1)θ,q −→ E0 + E1 is weakly compact. (3.3)

By (2.1), this in turn is equivalent to

weak compactness of T : (A0, A1)θ,p × (B0, B1)θ,q −→ E0 + E1. (3.4)

To establish (3.4) we observe that by the assumption we have that

T : (A0 + A1) × (B0 + B1) −→ E0 + E1 is bounded

and that

T : (A0 ∩A1) × (B0 ∩B1) −→ E0 + E1 is weakly compact.

Since (A0, A1)θ,q is of class CK(θ; Ā) and (B0, B1)θ,q is of class CK(θ; B̄), using [23, Corollary 4.7], we derive 
that

T : (A0, A1)θ,p × (B0, B1)θ,q −→ E0 + E1 is weakly compact.

This completes the proof. �



JID:YJMAA AID:126837 /FLA [m3L; v1.329] P.5 (1-6)
F. Cobos, L.M. Fernández-Cabrera / J. Math. Anal. Appl. ••• (••••) •••••• 5
Note that in the special case when the couple in the target (E0, E1) reduces to a single Banach space 
(i.e. E0 = E1), then Theorem 3.1 follows from [23, Corollary 4.7] applied to the 2-ideal of weakly compact 
operators.

Martínez and the present authors have shown in [8] that weakly compact bilinear operators can be also 
interpolated by the complex method (we refer to [4,2,28] for the definition and properties of this interpolation 
method). According to [8, Theorem 4.2] if T : (A0 +A1) × (B0 +B1) −→ E0 +E1 is bilinear and bounded, 
with the restrictions T : Aj ×Bj −→ Ej being bounded for j = 0, 1 and one of these two restrictions being 
weakly compact, then T : [A0, A1]θ × [B0, B1]θ −→ [E0, E1]θ is weakly compact. However, a similar result 
to Theorem 3.1 does not hold for the complex method as we show next by means of an example.

Counterexample 3.2. Consider the couple of Lorentz spaces (Λϕ, Λψ) constructed by Mastyło in [24, page 
161]. These spaces satisfy that the embedding Λϕ ∩ Λψ ↪→ Λϕ + Λψ is weakly compact and that [Λϕ, Λψ]θ
contains a subspace isomorphic to �1. Choose (A0, A1) = (E0, E1) = (Λϕ, Λψ), (B0, B1) = (C, C), where C
is the field of complex numbers, and let T be the bilinear operator defined by T (f, λ) = λf . Clearly, T is 
bounded acting among the following spaces

T : (A0 + A1) × (B0 + B1) −→ E0 + E1,

T : Aj ×Bj −→ Ej , j = 0, 1.

Moreover, since A0 ∩ A1 = Λϕ ∩ Λψ, B0 ∩ B1 = C and E0 + E1 = Λϕ + Λψ, weak compactness of the 
embedding Λϕ ∩ Λψ ↪→ Λϕ + Λψ yields that

T : (A0 ∩A1) × (B0 ∩B1) −→ E0 + E1 is weakly compact

but

T : [A0, A1]θ × [B0, B1]θ −→ [E0, E1]θ

fails to be weakly compact because [B0, B1]θ = C, [A0, A1]θ = [E0, E1]θ = [Λϕ, Λψ]θ and the space [Λϕ, Λψ]θ
is not reflexive.

4. Remarks on compactness of interpolated bilinear operators

We close the paper with some comments on compact bilinear operators, that is, bilinear operators which 
send the product of the unit balls onto a relatively compact set. Their interpolation properties have been 
extensively studied recently. See, for example, the papers [16–18,6,26,7]. In particular, it follows from [6, 
Theorem 4.9] that if T : (A0 + A1) × (B0 + B1) −→ E0 + E1 is bilinear and bounded, with the restrictions 
T : Aj × Bj −→ Ej being bounded for j = 0, 1 and one of these two restrictions being compact, then 
T : (A0, A1)θ,p × (B0, B1)θ,q −→ (E0, E1)θ,r is compact provided that 0 < θ < 1, 1 ≤ p, q ≤ ∞, 1 ≤ r ≤ ∞
and 1/p + 1/q = 1 + 1/r.

In the proof of Theorem 3.1 we have used the 
∑

r-condition, but compact linear operators do not satisfy 
that condition. Hence, the approach of Theorem 3.1 does not allow to replace weak compactness by compact-
ness. Clearly, if T : (A0, A1)θ,p × (B0, B1)θ,q −→ (E0, E1)θ,r is compact then T : (A0 ∩A1) × (B0 ∩B1) −→
E0 + E1 is also compact. However, the converse does not hold as we show next by means of an example.

Counterexample 4.1. Subsequently, we put �2(2n) for the space �2 with the weight (2n), formed by all 
sequences of scalars ξ = (ξn) such that (2nξn) ∈ �2. Choose A0 = E0 = �2, A1 = E1 = �2(2n) and 
B0 = B1 = K, where K is the scalar field, K = R or C. Let T (x, λ) = λx. Since the embedding A0 ∩ A1 =
�2(2n) ↪→ �2 = E0 + E1 is compact, then
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T : (A0 ∩A1) × (B0 ∩B1) −→ E0 + E1 is compact.

Choose p = 2, q = 1 and r = 2, so 1/p + 1/q = 1 + 1/r, and let 0 < θ < 1. We have (A0, A1)θ,2 = �2(2θn) =
(E0, E1)θ,2 (see [28, Theorem 1.18.2] and (B0, B1)θ,1 = K. Therefore, the interpolated operator is

T : �2(2θn) ×K = (A0, A1)θ,2 × (B0, B1)θ,1 −→ (E0, E1)θ,2 = �2(2θn)

which is not compact because �2(2θn) is not finite dimensional.

Therefore, the characterization of Theorem 3.1 fails if we replace weak compactness by compactness.
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