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Abstract

We present an iterative technique to construct stable solutions for an angio-
genesis model set in an annular region. Branching, anastomosis and extension
of blood vessel tips is described by an integrodifferential kinetic equation of
Fokker-Planck type supplemented with nonlocal boundary conditions and cou-
pled to a diffusion problem with Neumann boundary conditions through the
force field created by the tumor induced angiogenic factor and the flux of vessel
tips. Convergence proofs exploit balance equations, estimates of velocity decay
and compactness results for kinetic operators, combined with gradient estimates
of heat kernels for Neumann problems in non convex domains.

Keywords: Angiogenesis, Integrodifferential model, Kinetic-diffusion
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1. Introduction

Angiogenesis is a process through which new blood vessels grow from pre-
existing ones. Angiogenesis is vital for tissue delevopment and repair. However,
angiogenic disorders are often the cause of inflammatory and immune diseases
[10]. Moreover, angiogenesis is essential for the transition of benign tumors
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Figure 1: Schematic representation of the formation of a vessel network to increase oxygen
supply towards the inner regions of a tumor from a neighboring blood vessel. Drops represent
the emitted concentration of tumor angiogenic factor, decreasing from the tumor core in the
direction of the closest vessel tips.

into malignant ones, and for subsequent tumor spread [10]. Numerous anti-
tumor therapies target blood vessel growth [11, 40] in an attempt to prevent
tumor expansion. Mathematical models may help to control the formation and
evolution of blood vessel networks for therapeutical purposes. Many models
have been proposed to describe different aspects of the process, see references
[8, 15, 22, 24, 29, 32, 33, 34, 35, 40] for instance. However, the incessant avail-
ability of new experimental observations promotes continued model update and
fosters the search for improved descriptions.

In a tumor induced angiogenic process, high cell density in the inner regions
of the tumor results in low oxygen and nutrient levels. Cells respond emitting
a substance (the tumor angiogenic factor) that eventually reaches neighboring
blood vessels, promoting the appearance of new vessel tips that advance in direc-
tion to the tumor to supply new resources to the necrotic cells, see Fig. 1. The
stochastic evolution of the vessel branching process seems to be a key feature
to be taken into account. Recently, a deterministic integrodifferential system
has been shown to reproduce some aspects of the development of the stochastic
vessel network [1, 2]. This model is derived from a stochastic description of
the formation of blood vessel networks using ensamble averages. Comparison
of numerical solutions of both descriptions yields good agreement [2]. The evo-
lution of the density of blood vessel tips p in response to the concentration of
tumor angiogenic factor released by cells c is described by the following set of
equations:

∂

∂t
p(x,v, t) = α(c(x, t))δv0(v)p(x,v, t) − γp(x,v, t)

∫ t

0

d s

∫

dv′p(x,v′, s)

−v · ∇xp(x,v, t) + βdivv(vp(x,v, t)) +

−divv [F (c(x, t))) p(x,v, t)]+ σ∆vp(x,v, t), (1)

∂

∂t
c(x, t) = d∆xc(x, t)− ηc(x, t)j(x, t), (2)

p(x,v, 0) = p0(x,v), c(x, 0) = c0(x), (3)
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where

α(c(x, t)) = α1

c(x,t)
cR

1 + c(x,t)
cR

, F(c(x, t)) =
d1

(1 + γ1c(x, t))q1
∇xc(x, t), (4)

j(x, t) =

∫

RN

|v|

1 + e|v−v0χ|2/σ2
v
p(x,v, t) dv, ρ(x, t) =

∫

RN

p(x,v, t) dv, (5)

for x ∈ Ω ⊂ R
N , v ∈ R

N , N = 2, 3, t ∈ [0,∞). The constants β, σ, γ, d,
η, α1, cR, d1, γ1, q1 are positive. The parameter χ >> 1 (typically χ > 10)
whereas σ2

v << 1. δv0 is a Dirac measure supported at a point v0. v0 is a typical
sprouting velocity for the tips. The source term α(c)δv0 p represents creation of
new tips due to vessel tip branching. Tip vessel death when a tip encounters
another vessel (anastomosis) is described by the integral sink −γp

∫ t

0
ρ(p). The

Fokker-Planck operator expresses blood vessel extension. The chemotactic force
F(c) is taken to depend on the flux of blood vessel tips through j to represent
that consumption of tumor angiogenic factor is mostly due to the additional
endothelial cells that produce vessel extensions [8]. The velocity cut-off through
the Fermi-Dirac distribution in the definition of j (5) reflects the fact that cell
velocities are limited, and small [12]. Similar models may be used to describe
retinal angiogenesis [9].

We study the existence of solutions to a regularized version of equations (1)-
(5), where δv0 is approximated by a smooth, positive, integrable and bounded
function ν(v),

∂

∂t
p(x,v, t) = α(c(x, t))ν(v)p(x,v, t) − γp(x,v, t)

∫ t

0

ds ρ(x, s)

−v · ∇xp(x,v, t) + βdivv(vp(x,v, t)) +

−divv [F (c(x, t))) p(x,v, t)]+ σ∆vp(x,v, t), (6)

when Ω is an annular domain r0 < r < r1. Notice that delta functions can be
approximated by sequences of gaussians. The motivation for the annular geom-
etry is simple, in view of Figure 1. Many tumors resemble spheres. An inner
necrotic core is surrounded by a corona through which blood vessels spread,
driven by the tumor angiogenic factor emitted by core. New vessel tips arise
from existing vessels surrounding the outer layers of the tumor. They spread to
supply with blood inner tumor regions in need of oxygen and nutrients.

The general form of the boundary conditions in dimension N = 2, 3, is as
follows. We impose Neumann boundary conditions for c:

∂c

∂r
(x, t) = cr0(x, t) < 0, x ∈ Sr0 ,

∂c

∂r
(x, t) = 0, x ∈ Sr1 , t ∈ [0, T ], (7)

where cr0 represents the influx of tumor angiogenic factor coming from the inner
core of the tumor. Sr0 and Sr1 are spheres of radius r0 and r1, respectively.

Since diffusion is absent in the x variable, the transport operator forces
boundary conditions of the form:

p−(x,v, t) = g(x,v, t) on Σ−
T . (8)
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The sets Σ±
T = (0, T ) × Γ±, where Γ± = {(x,v) ∈ ∂Ω × R | ± v · n(x) > 0},

n(x) being the outward unit normal onto the boundary ∂Ω. We denote by
p+ and p− the traces of p on Σ+

T and Σ−
T , respectively. In our geometry, the

boundary conditions for p are defined using the magnitudes that can actually
be measured: the marginal tip density ρ =

∫

pdv in the inner boundary and
the flux of blood vessels j =

∫

vpdv in the outer boundary. Using coordinates
x = rθ, with r = |x|, θ ∈ SN−1, and v = vrφ, with vr = |v|, φ ∈ SN−1, the
boundary conditions on Σ−

T read:

p−(r0, θ, vr,φ, t) =
e−

β
σ |v−v0|

2

I0

[

ρ(r0,θ,t)−

∫ ∞

0

dṽr ṽ
N−1
r

∫

{φ̃∈SN−1|ṽ·n>0}

dφ̃ p+(r0,θ,ṽr,φ̃,t)
]

, (9)

p−(r1, θ, vr,φ, t) =
e−

β
σ |v−v0|

2

I1

[

−j0−

∫ ∞

0

dṽr ṽ
N−1
r

∫

{φ̃∈SN−1|ṽ·n>0}

dφ̃ p+(r1,θ,ṽr ,φ̃,t)f1(v)
]

, (10)

where p+ and p− denote the traces of the solution p on Σ+
T and Σ−

T , respectively,
and

I0 =

∫ ∞

0

dṽr ṽ
N−1
r

∫

{φ̃∈SN−1|ṽ·n<0}

dφ̃ e−
β
σ |ṽ−v0|

2

, I1 =

∫ ∞

0

dṽr ṽ
N−1
r

∫

{φ̃∈SN−1|ṽ·n<0}

dφ̃ e−
β
σ |ṽ−v0|

2

f1(ṽ). (11)

The remaining functions are defined as:

f1(v) = v · n
[

1 + e|v−v0χ|
2/σ2

v

]−1

, (12)

j0(θ, t) = v0 α(c(r1, θ, t)) p(r1, θ, v0,w0, t), (13)

for the fixed velocity v0 = (v0,w0, ), v0 > 0, w0 ∈ R
N−1. Notice that the op-

erators defining these boundary conditions are positive. Thus, these conditions
are expected to be absorbing, for positive densities. Boundary conditions with
a similar mathematical structure arise in kinetic models of charge transport in
semiconductors [3].

Rigorous derivations of these mean field models from the original stochas-
tic systems as well as the development of stable numerical schemes require
well posedness results for the integrodifferential set of equations. Equation (1)
evokes Vlasov-Poisson-Fokker-Planck (VPFP) systems, with several key differ-
ences. First, the force field F is not related to the marginal tip density ρ(p)
through a Poisson equation. It depends on the flux of vessel tips j through
the gradient of solutions of heat equations with Neumann boundary conditions.
Second, it contains a quadratic anastomosis term involving a nonlocal in time
integrodifferential sink. Moreover, the structure of the boundary conditions for
the transport operator differs from those usually considered in Boltzmann equa-
tions for gas dynamics [14, 21] and studied for VPFP models [13] as well, see
also references [16, 23]. Existence results for VPFP systems and related models
in the whole space have been formulated under successively milder assumptions,
see references [17, 39, 38, 31, 4, 18, 30, 19]. Global solutions for this angiogen-
esis model in the whole space have been constructed in reference [12]. Spatial
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boundaries pose new difficulties, arising from the nonlocal boundary conditions
for the transport operator in the equation for the density of blood vessel tips
and the presence of Neumann boundary conditions in the diffusion equation for
the tumor angiogenic factor. Analyses in unbounded domains rely heavily on
the properties of fundamental solutions for linear operators. The unavailability
of results on fundamental solutions in bounded domains forces the development
of new strategies.

In this paper, we construct stable solutions of regularized versions of system
(1)-(5), (7), (9)-(10) where the measure δv0 is replaced by a smooth positive
bounded function. To be more precise, we consider the initial-boundary value
problem given by equations (6), (2)-(5), (7), and (9)-(13). Solutions are obtained
as limits of solutions of linearized problems where all the nonlocal coefficients,
rather than the sink terms, are frozen. This guarantees the nonnegativity of
the densities p and concentrations c, but requires L∞

x
estimates of velocity in-

tegrals. Controlling the velocity decay of the densities provides such estimates.
Comparison principles and integral inequalities for both the diffusion and the
kinetic equation allow us to control the Lq norms of their solutions. Energy
arguments provide basic derivative estimates. To handle the nonlocal coupling
of the Neumann problem with the kinetic equation we will have to make use of
the theory of heat kernels in bounded domains [27, 36, 37] and sharp gradient
estimates for the semigroup of the Neumann problem [41] established by prob-
abilistic methods for non convex regions in order to obtain Lr − Lq estimates
of the derivatives of solutions. Compactness results specific of kinetic operators
[30, 18, 4] enable the passage to the limit in the linearized problems.

The paper is organized as follows. In Section 2 we adapt existence, unique-
ness and stability results for linear boundary value problems involving Fokker-
Planck operators, introducing additional lower order terms. Section 3 derives
L∞ estimates for the nonlocal coefficients defined as velocity integrals of the
vessel tip densities. Bounds on the velocity decay are essential to pass to the
limit in linearized iterative schemes that freeze the nonlocal coefficients. In Sec-
tion 4 we study the Neumann problem set in the annulus, establishing sharp
estimates on the gradient of the solutions. These bounds are fundamental to
control the force field created by the tumor angiogenic factor. Section 5 proves
the existence and stability result for the nonlinear problem with fixed known
boundary condition. Finallly, Section 6 addresses the angiogenesis problem with
nonlocal boundary conditions and Section 7 states our conclusions.

2. Boundary value problems for linear Fokker-Planck operators

Solutions for the coupled angiogenesis model will be constructed using an
iterative scheme that uncouples and freezes each variable to update the other.
A good knowledge about the properties of solutions of uncoupled linearized
equations is essential. In this section, we collect the needed existence results
and estimates for our specific linear problem for the density.

Let Ω ⊂ R
N be a C∞ bounded domain with boundary ∂Ω. Let us introduce
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the set QT = Ω× R
N × (0, T ), T > 0. We consider the problem:

∂p

∂t
+ v · ∇xp+ divv((F − βv)p)− σ∆vp+ ap = h in QT , (14)

p(x,v, 0) = p0(x,v) on Ω× R
N , (15)

with β ≥ 0, σ > 0, F(x, t) ∈ L∞(Ω × (0, T ))N and a ∈ L∞(QT ). We will
encounter two typical situations:

• h ≥ 0, a ∈ L∞(Ω× (0, T )), a ≥ 0,

• h = 0, a = a+ − a−, a+ ∈ L∞(Ω× (0, T )), a− ∈ L∞(QT ).

The initial state p0 represents a density. Therefore, p0 ≥ 0. The transport
operator selects absorbing boundary conditions of the form (8) with g ≥ 0.

We seek weak solutions (in distributional sense) of the problem. For any
T > 0, a function f ∈ L∞(0, T ;L1(Ω × R

N)) is a weak solution of equations
(14)-(15) with boundary condition (8) if

∫

QT

p

[

∂ϕ

∂t
+ v · ∇xϕ− βv · ∇vϕ+ F · ∇vϕ+ σ∆vϕ− aϕ

]

dx dv dt

+

∫

Ω×RN

p0ϕ(x,v, 0) dx dv +

∫

Σ−
T

|v · n(x)|gϕ dS dv dt =

∫

QT

hϕdx dv dt
(16)

for any ϕ ∈ C∞
0 (Ω× R

N × [0, T )) such that ϕ = 0 on Σ+
T .

We denote by Lq the standard spaces of functions p for which |p|q is inte-
grable with respect to the Lebesgue measure in the pertinent domains and by
L∞ the space of bounded functions. We introduce the space Lq

k(Σ
±
T ) of func-

tions g such that |g|q is integrable in Σ±
T with respect to the kinetic measure

|v · n(x)|dSdvdt, where dS is the Lebesgue measure on ∂Ω. In an analogous
way, we define Lq

k(Γ
±) with respect to the measure |v · n(x)|dSdv.

In absence of the lower order term ap, existence, smoothness, positivity
and uniqueness results were established in reference [13]. Theorems 2.1 and
2.2 stated next are straightforward extensions to the case a 6= 0 with slight
modifications in the proofs to handle the ap term and adequate hypotheses on
a.

Theorem 2.1. (Existence, uniqueness, positivity). Let Ω ⊂ R
N be a

bounded domain and set T > 0. If

i) F ∈ L∞(Ω× (0, T )), a ∈ L∞(QT ),

ii) h ∈ L2(QT ), p0 ∈ L2(Ω× R
N ) and g ∈ L2

k(Σ
−
T ),

there exists a unique solution p of equations (14)-(15), (8), satisfying:

• p ∈ {f ∈ L2(QT ) |
∂
∂tf + v · ∇xf − βv · ∇vf ∈ L2(QT )}.
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• The equations hold in the sense of distributions: for any φ ∈ C∞
0 (Ω ×

R
N × [0, T )) and any T > 0

∫

QT

p

(

∂φ

∂t
+ v · ∇xφ− βv · ∇vφ+ F · ∇vφ+ σ∆vφ− aφ

)

dx dv dt

+

∫

Ω×RN

p0φ(x,v, 0) dx dv =

∫

ΣT

v · n(x)Trp φ dS dv dt+

∫

QT

hϕdx dv dt. (17)

If φ = 0 on Σ+
T , the boundary integral becomes

−

∫

Σ−
T

(v · n(x)) g φ dt dS dv.

• Tr p = g on Σ−
T and p(x,v, 0) = p0(x,v) in Ω× R

N .

• ‖p‖L∞(0,T ;L2(Ω×RN )) ≤ C1

[

‖p0‖L2(Ω×RN )+‖g‖L2
k(Σ

−
T )+‖h‖L2(QT )

]

, where

C1 > 0 depends on T , β and ‖a−‖∞.

• If h ≥ 0, p0 ≥ 0 and g ≥ 0, then p ≥ 0.

Theorem 2.2. (Smoothness, balance laws). Let Ω ⊂ R
N be a bounded

domain and set T > 0. If

i) F ∈ L∞(Ω× (0, T )), a ∈ L∞(QT ),

ii) h ∈ L1 ∩ L∞(QT ) and |v|2h ∈ L∞(0, T ;L1(Ω× R
N )),

iii) p0 ∈ L1 ∩ L∞(Ω× R
N ) and |v|2p0 ∈ L1(Ω× R

N),

iv) g ∈ L1
k ∩ L

∞
k (Σ−

T ) and |v|2g ∈ L1
k(Σ

−
T ),

the solution p of equations (14)-(15),(8) satisfies

• p ∈ L∞(0, T ;L1 ∩ L∞(Ω× R
N)),

• |v|2p ∈ L∞(0, T ;L1(Ω× R
N)),

• ∇vp ∈ L2(QT ) and Tr p
∣

∣

Σ+
T

∈ L2
k(Σ

+
T ) ∩ L

∞(0, T ;L1
k(Γ

+)),

• Tr p2
∣

∣

Σ+
T

∈ L∞(0, T ;L1
k(Γ

+)),

• Balance of mass: The solution p has trace values in L∞(0, T ;L1
k(Γ+)) and

verifies the continuity equation in integral form

d

dt

∫

Ω×RN

p dx dv =

∫

Γ−

|v · n(x)|g dS dv +

∫

Ω×RN

h dx dv (18)

−

∫

Γ+

|v · n(x)|Tr p dS dv −

∫

Ω×RN

ap dx dv,
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• Balance of momentum: If |v|µh ∈ L∞(0, T ;L1(Ω × R
N )) and |v|µg ∈

L∞(0, T ;L1
k(Γ

−)), then mµ(p) =
∫

Ω×RN |v|µp dx dv is absolutely continu-
ous and

d

dt

∫

Ω×RN

|v|µp dx dv =

∫

Γ−

|v · n(x)||v|µg dS dv +

∫

Ω×RN

|v|µh dx dv (19)

−

∫

Γ+

|v·n(x)||v|µTr p dS dv − βµ

∫

Ω×RN

|v|µp dx dv −

∫

Ω×RN

a|v|µp dx dv

+µ(µ− 2 +N)σ

∫

Ω×RN

|v|µ−2p dx dv + µ

∫

Ω×RN

F · v|v|µ−2p dx dv,

• Lq estimates: If h ≥ 0, g ≥ 0 and p0 ≥ 0, then p ≥ 0 and

d

dt
‖p(t)‖q

Lq(Ω×RN )
=

∫

Γ−

|v · n(x)|gqdS dv + q

∫

Ω×R2

hpq−1dx dv

−

∫

Γ+

|v · n(x)|(Trp)qdS dv − q

∫

Ω×R2

apqdx dv

+Nβ(q−1)‖p(t)‖qLq− σq(q−1)

∫

Ω×RN

p(q−2)|∇vp|
2dx dv, (20)

for any 1 ≤ q <∞. Setting h = 0, we find for any 1 ≤ q ≤ ∞ :

‖p‖L∞(0,T ;Lq(Ω×RN ))≤e
[Nβ/q′+‖a−‖∞]T

[

‖p0‖Lq(Ω×RN )+‖g‖Lq
k(Σ

−
T )

]

, (21)

‖Tr p‖Lq
k(Σ

+
T )≤e

[Nβ/q′+‖a−‖∞]T
[

‖p0‖Lq(Ω×RN )+‖g‖Lq
k(Σ

−
T )

]

. (22)

The positivity result stated in Theorem 2.1 implies a maximum principle
for force fields F(x, t). A more general maximum principle for bounded fields
F depending on v such that divvF is bounded will be used later to estimate
the velocity decay of solutions p with respect to v in Proposition 3.7, following
reference [17]. In fact, the modified force fields appearing in that proposition
arise after a change of variables and consist of the field depending on space and
time plus a known term depending on the velocity. The existence of a solution
is therefore guaranteed. We state next the key result.

Theorem 2.3. (Maximum principle). Under the hypotheses of Theorems
2.1 and 2.2, the following two comparison principles hold:

(i) if p1 and p2 are two solutions of equations (14)-(15) and (8) with data
h1 ≤ h2, g1 ≤ g2, and p1,0 ≤ p2,0, then p1 ≤ p2.

(ii) if p1 and p2 are two nonnegative solutions of equations (14)-(15) and
(8) with the same data h, g, p0, and coefficients a1 = a+1 − a−1 , a2 =
a+1 − ‖a−1 ‖∞, so that a−1 ≤ a−2 , then p1 ≤ p2.

Moreover, if g ∈ L∞(Σ+
T ) the solution p satisfies:

‖p‖L∞(QT ) ≤ e[Nβ+‖a−‖∞]T

[

‖p0‖∞ + ‖g‖∞ +

∫ t

0

‖h(s)‖∞ds

]

. (23)
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These estimates still hold true if divv(F(x, t)p) is replaced by F · ∇vp, where F
is a bounded field depending also on v in such a way that divvF is bounded, and
the existence of p ∈ C([0, T ];L2(Ω×R

N )) such that ∇vp ∈ L2(QT ) is assumed.

Proof. Let us first extend the positivity result in Theorem 2.1 to fields F de-
pending on v. We set p = e−(λ+Nβ)tp(x, e−βtv, t) and h = e−(λ+Nβ)th(x, e−βtv, t).
Then, p satisfies the equation:

∂p

∂t
+e−βtv·∇xp+e

βtF(x, e−βtv, t)·∇vp−σe
2βt∆vp+(a(x, e−βtv, t) + λ)p=h.

We multiply by p− and integrate to get:

−

∫

Ω×RN

|p−(T )|2

2
dxdv −

∫

∂Ω×RN×[0,T ]

e−βtv · n
|p−|2

2
dSdvdt+

∫

Ω×RN×[0,T ]

divvF(x, e
−βtv, t)

|p−|2

2

−σ

∫

Ω×RN×[0,T ]

e2βt|∇vp
−|2 −

∫

Ω×RN×[0,T ]

(a(x, e−βtv, t) + λ)|p−|2 =

∫

Ω×RN×[0,T ]

hp− ≥ 0.

Notice that p−(0) = 0 for p(0) ≥ 0 and p− = 0 on Σ−
T . The only contribution

to the integral over ∂Ω comes from the region where v · n > 0. Choosing
λ ≥ ‖a−‖∞ + ‖divvF‖∞, we conclude that |p−| = 0. Therefore, p ≥ 0 if p0 ≥ 0,
h ≥ 0 and p

∣

∣

Σ−
T

≥ 0.

Assertion (i) is a consequence of the positivity result. Indeed, setting p =
p2 − p1, linearity plus the positivity result imply that p2 − p1 ≥ 0.

To prove statement (ii), we set p̂1 = e−‖a−
1 ‖∞tp1 and p̂2 = e−‖a−

1 ‖∞tp2.

These functions are solutions of similar problems, with source ĥ = e−‖a−
1 ‖∞th,

boundary datum ĝ = e−‖a−
1 ‖∞tg and initial datum p0:

∂p̂1

∂t
+v·∇xp̂1+F·∇vp̂1−βdivv(vp̂1)−σ∆vp̂1+a

+
1 p̂1 = (a−1 −‖a−1 ‖∞)p̂1+ĥ

∂p̂2

∂t
+v·∇xp̂2+F·∇vp̂2−βdivv(vp̂2)−σ∆vp̂2+a

+
1 p̂2 = ĥ.

Since (a−1 − ‖a−1 ‖∞)p̂1 ≤ 0, assertion (i) implies that p1 ≤ p2.
For the L∞ estimate, let us first notice that if p is a solution with data

h, g, p0 ≤ 0 then −p is a solution with data −h,−g,−p0 ≥ 0 by linearity.
Therefore, −p ≥ 0 and p ≤ 0. The reverse inequality holds too. Now, let us
set p = eλtp̂ with λ = Nβ + ‖a−‖∞. The function p̂ is a solution of equations
(14)-(15), (8) with an additional source term −λe−λtp = −λp̂. Set M(t) =
∫ t

0 e
−λs‖h(s)‖∞ds+ ‖g‖∞ + ‖p0‖∞ and p = p̂−M . Then, p satisfies:

∂p

∂t
+ v·∇xp+ F·∇vp− βdivv(vp)− σ∆vp+ (a+ λ)p

= −a+M − (‖a−‖∞ − a−)M ≤ 0

with initial and boundary conditions p0 −M ≤ 0 and e−λtg −M ≤ 0. Notice
that e−λt < 1 because −λ < 0. Therefore, p ≤ 0, p̂ ≤ M and p ≤ eλtM . The
reverse inequality follows in a similar way by linearity.
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3. Estimates on velocity integrals

The nonlinear problem includes the velocity integrals ρ(p) and j(p) of the
density p as coefficients. In this section we discuss strategies to estimate velocity
integrals in terms of density norms. Let us start with the variable j.

Lemma 3.1. For any p ≥ 0, the norms ‖j‖Lq
x
, 1 ≤ q ≤ ∞, of the flux j defined

in equation (5) can be bounded in terms of ‖p‖L∞
xv
.

Proof. Let us set |v|w(v) = |v|[1 + e|v−v0χ|
2/σ2

v ]−1. This function is
bounded and integrable. Then,

‖j‖L∞
x

≤ ‖|v|w‖L1
v
‖p‖L∞

xv
, (24)

‖j‖Lq
x
≤ meas(Ω)1/q‖j‖L∞

xv
, 1 ≤ q <∞. (25)

(26)

The anastomosis term may be controlled using the kinetic equation, as we
show below.

Lemma 3.2. Under the hypotheses of Theorems 2.1 and 2.2, let p be a nonnega-
tive solution of problem (6),(3),(4) with boundary condition (8) and nonnegative

data. Assume that c ≥ 0. Then, ‖
∫ T

0

∫

pdvds‖L2
x
is bounded by the parameters

of the problem and ‖p‖L∞
t L∞

xv
.

Proof. Let us recall the equation of mass conservation from Theorem 2.1:

∂

∂t

∫ ∫

pdvdx+ γ

∫
[
∫ t

0

∫

pdv′dt′
] [

∫

pdv

]

dx =

∫ ∫

α(c)νpdvdx

+

∫

Γ−

|v · n(x)|g dS dv −

∫

Γ+

|v · n(x)|Tr p dS dv.

Setting a(x, t) =
∫ t

0

∫

p(x,v′, t′, )dv′dt′, we notice that da
dt (x, t) =

∫

p(x,v′, t)dv′.
Therefore:

[
∫ t

0

∫

pdv′dt′
]
∫

p(x,v, t)dv = a(x, t)
da

dt
(x, t) =

1

2

da2

dt
(x, t).

Integrating (27) in time and inserting (27), we find:
∫ ∫

p(t)dvdx −

∫ ∫

p(0)dvdx +
γ

2

∫

a(x, t)2dx−
γ

2

∫

a(x, 0)2dx =

∫ t

0

∫ ∫

α(c)νp dsdvdx +

∫

Σ−

|v · n(x)|g dS dv −

∫

Σ+

|v · n(x)|Tr p dS dv.

Notice that a(0,x)2 = 0. Therefore:

∫

dx

[
∫ t

0

∫

pdvds

]2

≤ C(γ, α1,meas(Ω), ‖p‖∞, ‖ν‖L∞(0,T,L1
xv

), ‖g‖L1(Σ−
T )).
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To ensure the positivity of the solutions of linearized versions of equation
(6), b(p) =

∫ t

0 ρ(p)ds is taken to be a known coefficient. To apply Theorem 2.1,
it should be a bounded function. Lq

x
estimates of ρ(p) are obtained controlling

the moments.

Lemma 3.3. Under the hypotheses of Theorems 2.1 and 2.2, let p a nonneg-
ative solution of the linear equations (14)-(15) with boundary condition (8)
and nonnegative data. If (1 + |v|2)µ/2p0 ∈ L1(Ω × R

N ), (1 + |v|2)µ/2h ∈
L∞(0, T ;L1(Ω × R

N )) and (1 + |v|2)µ/2g ∈ L1
k(Σ

−
T ) for a positive integer µ,

then, for ℓ = 0, 1, . . . , µ and t ∈ [0, T ], all the moments

mℓ(p(t)) =

∫

Ω×RN

|v|ℓp dx dv, mℓ
k(Tr p

+) =

∫

Σ+
T

|v · n||v|ℓTr p+ dS dv dt,

are bounded in terms of the parameters β, σ, N , T , µ, the norms of the data
‖(1+|v|2)µ/2p0‖L1

xv
, ‖(1+|v|2)µ/2h‖L∞(0,T ;L1

xv
), ‖(1+|v|2)µ/2g‖L1

k(Σ
−
T ), ‖a

−‖∞,

‖F‖∞, and ‖p‖L∞(0,T ;L∞
xv

), ‖p‖L∞(0,T ;L1
xv

).

Proof. Notice that the integral

∫

RN

p

|v|
dv ≤ ‖p‖L∞

xv

∫

|v|<R

dv

|v|
+

1

R

∫

RN

pdv ≤ ‖p‖L∞
xv

RN−1

N − 1
+

1

R

∫

RN

pdv.

Since Ω is a bounded set,
∫

Ω×RN
p
|v|dxdv is bounded in terms of ‖p‖L∞

xv
and

‖p‖L1
xv
. We first apply identity (19) with µ = 1 to find:

d

dt

∫

Ω×RN

|v|p dx dv =

∫

Γ−

|v · n(x)||v|g dS dv +

∫

Ω×RN

|v|h dx dv

−

∫

Γ+

|v·n(x)||v|Tr p dS dv − β

∫

Ω×RN

|v|p dx dv −

∫

Ω×RN

a|v|p dx dv

+(N − 1)σ

∫

Ω×RN

|v|−1p dx dv +

∫

Ω×RN

F · v|v|−1p dx dv.

Integrating in time, we find:

∫

Ω×RN

|v|p dxdvds ≤ C(p0, g, h,F, p) + ‖a−‖

∫ t

0

∫

Ω×RN

|v|p dxdvds,

where C(p0, g, h,F, p) depends on the norms and parameters mentioned in the
statement. Gronwall’s Lemma provides the required bound on

∫

Ω×RN|v|p dxdvds.
Once the moment of p is bounded, the estimate on the moment of its trace fol-
lows inserting this information in the differential equation.

We reason by induction. Assuming that the moments mℓ(p) are bounded in
terms of the required norms for ℓ ≤M−1, let us see that the same holds true of
mM (p). Integrating in time (19), using the bounds on mM−1(p) and mM−2(p),
together with Growall’s lemma, we find the desired estimate. By induction, it
holds up to M = µ. Once the moments of p are bounded, the estimate on the

11



moment of its trace follows inserting this information in the differential equa-
tions.

The relation between velocity moments and norms of the marginal density
ρ(p) =

∫

RN pdv is established in the following lemma, proven in [12] when
Ω = R

N . Lq
x
estimates follow reference [5]. L∞

x
estimates of the marginal

density ρ(p) rely on a strategy involving velocity weights introduced in reference
[17]. The bounded or unbounded nature of Ω plays no role in the proofs, and
R

N can be replaced by bounded subsets as we state next.

Lemma 3.4. Let Ω ⊂ R
N be bounded. For any nonnegative p the following

inequalities hold:

‖|v|ℓp‖L1(Ω×RN ) ≤ ‖p‖
1− ℓ

µ

L1(Ω×RN )
‖|v|µp‖

ℓ
µ

L1(Ω×RN )
, µ > ℓ > 0, (27)

‖

∫

IRN

|v|ℓp dv‖
L

N+µ
N+ℓ (Ω)

≤ CN,µ,ℓ ‖p‖
µ−ℓ
N+µ

L∞(Ω×RN ) ‖|v|
µp‖

N+ℓ
N+µ

L1(Ω×RN ), µ > ℓ > 0, (28)

‖

∫

RN

|v|pdv‖L∞(Ω) ≤ Cµ‖p‖
1−(N+1)/µ

L∞(Ω×RN )‖(1+|v|2)
µ
2 p‖

(N+1)/µ

L∞(Ω×RN ), µ > N + 1, (29)

‖

∫

RN

pdv‖L∞(Ω) ≤ Cµ‖p‖
1−N/µ

L∞(Ω×RN )
‖(1+|v|2)

µ
2 p‖

N/µ

L∞(Ω×RN )
, µ > N, (30)

‖(1+|v|2)
µ−1
2 p‖L∞(Ω×RN) ≤ Cµ‖p‖

1/µ

L∞(Ω×RN)
‖(1+|v|2)

µ
2 p‖

1−1/µ

L∞(Ω×RN)
, µ > 1, (31)

provided the involved integrals and norms are finite.

Revising the proofs of these inequalities in references [5, 12, 17], we see that
they extend to the traces on the boundary, with respect to either the Lebesgue
or the kinetic measure. This fact is stated in the next two corollaries.

Corollary 3.5. The inequalities in Lemma 3.4 hold for Tr p+ replacing the
spaces Lq

x
L1
v
(Ω × R

N ) by Lq
x
L1
v
(Γ+) and Lq(Ω × R

N ) by Lq(Γ+) provided the
involved integrals and norms are finite.

Corollary 3.6. The inequalities in Lemma 3.4 hold for |v · n|Tr p+ replacing
the spaces Lq

x
L1
v
(Ω × R

N ) by Lq
x
L1
v
(Γ+) and Lq(Ω × R

N) by Lq(Γ+) provided
the involved integrals and norms are finite.

Let us now estimate the velocity decay of p, and the L∞
x

norms of velocity
integrals, which extend to traces on the boundary.

Proposition 3.7. Let p ≥ 0 be a solution of the initial value problem (14)-(15)
with boundary conditions given by (8). Under the hypotheses:

(i) a ∈ L∞(Ω× IRN × (0, T )),

(ii) (1 + |v|2)µ/2p0(x,v) ∈ L1 ∩ L∞(Ω× R
N ), µ > N, p0 ≥ 0,

(iii) (1 + |v|2)µ/2g(x,v, t) ∈ L1 ∩ L∞(Σ−
T ),

12



(iv) F ∈ L∞(Ω× (0, T )),

the norms ‖(1 + |v|2)µ/2p‖L∞(0,T ;L∞
xv

), and ‖p‖L∞(0,T ;L∞
x

L1
v
) are bounded by

constants depending on T , σ, β, µ, as well as ‖(1 + |v|2)µ/2p0‖L∞
xv
, ‖(1 +

|v|2)µ/2g‖L∞(Σ−
T ), ‖a

−‖L∞(QT ), ‖F‖L∞(Ω×(0,T )) and ‖p‖L∞(0,T ;L∞
xv

). Moreover,

if

(v) (1 + |v|2)µ/2g(x,v, t) ∈ L1
k ∩ L

∞
k (Σ−

T ),

then, for any 1 ≤ q ≤ ∞ :

‖(1 + |v|2)
µ
2 p‖L∞(0,T ;Lq

xv)≤e
‖D‖∞T

[

‖p0‖Lq
xv
+‖(1 + |v|2)

µ
2 g‖Lq

k(Σ
−
T )

]

, (32)

‖(1 + |v|2)
µ
2 Tr p‖Lq

k(Σ
+
T )≤e

‖D‖∞T
[

‖p0‖Lq(Ω×RN )+‖(1 + |v|2)
µ
2 g‖Lq

k(Σ
−
T )

]

, (33)

where ‖D‖∞ depends on σ, β, µ, N , ‖a−‖L∞(QT ) and ‖F‖L∞(Ω×(0,T )).

Proof. We follow reference [17] and set Y (x,v, t) = (1 + |v|2)µ/2p(x,v, t).
Multiplying equation (14) by (1 + |v|2)µ/2, µ > 0, we get:

∂

∂t
Y +v∇xY +

(

F+ 2σµ
v

1 + |v|2
−βv

)

∇vY −∆vY =(Nβ−a)Y +R (34)

where R = R1 +R2 +R3, with

R1 = µ(1 + |v|2)µ/2−1F · vp, R2 = −βµ
|v|2

(1 + |v|2)
Y,

R3 = σµ(µ+ 2)
|v|2

(1 + |v|2)2
Y −Nσµ

1

1 + |v|2
Y.

Thanks to Theorem 2.3:

‖Y (t)‖L∞
xv
≤ C(p0, g)+

∫ t

0

[

[Nβ+‖a−‖∞]‖Y ‖L∞
xv
+‖R1‖L∞

xv
+‖R2‖L∞

xv
+‖R3‖L∞

xv

]

ds,

where C(p0, g) is a constant depending on ‖(1+|v|2)µ/2p0‖∞ and ‖(1+|v|2)µ/2g‖∞.

The factors |v|ε

1+|v|2 ≤ 1, for 0 ≤ ε ≤ 2. Therefore,

‖R1‖L∞
xv

≤ µ‖(1 + |v|2)µ/2−1F · vp‖L∞
xv
,

‖R2‖L∞
xv

≤ βµ‖Y ‖L∞
xv
, ‖R3‖L∞

xv
≤ σµ(µ + 2 +N)‖Y ‖L∞

xv
.

To bound ‖(1 + |v|2)µ/2−1F · vp‖L∞
xv
, we set:

‖(1 + |v|2)µ/2−1F · vp‖L∞
xv

≤
N |v|

1 + |v|2
‖F‖∞‖Y ‖L∞

xv
≤ N‖F‖∞‖Y ‖L∞

xv
.

Taking A = (N‖F‖∞ + β)µ+ σµ(µ+2+N) +Nβ+ ‖a−‖∞ and B = C(p0, g),
Gronwall’s inequality implies

‖Y (t)‖L∞
xv

≤ BeAt, t ∈ [0, T ].
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Once the velocity decay has been established, the L∞ bounds on
∫

RN pdv
follow from inequality (30) in Lemma 3.4.

Writing down the analogous of equation (20) for equation (34) we find:

d

dt
‖Y (t)‖q

Lq(Ω×RN )
=

∫

Γ−

|v · n(x)|(1 + |v|2)µ/2gqdS dv

−

∫

Γ+

|v · n(x)|(1 + |v|2)µ/2(Tr p)qdS dv

− σq(q−1)

∫

Ω×RN

Y (q−2)|∇vY |2dx dv − q

∫

Ω×RN

DY qdx dv,

where D is a bounded coefficient. Integrating in time, we recover estimates (21)
and (22) for Y updating the data, and replacing the exponent of the exponential
by ‖D‖∞.

4. Coupling to the diffusion equation with Neumann boundary con-
dition

In this section, we consider diffusion problems of the form:

∂

∂t
c(x, t) = d∆xc(x, t)− ηc(x, t)j(x, t) + h(x, t), x ∈ Ω, t > 0, (35)

∂c

∂r
(x, t) = cr0(x, t), x ∈ Sr0 ,

∂c

∂r
(x, t) = 0, x ∈ Sr1 , t > 0, (36)

c(x, 0) = c0(x), x ∈ Ω, (37)

where d, η > 0, cr0 < 0 and j(x, t) = j(p) =
∫

R2

|v|

1+e|v−v0χ|2/σ2
v
p(x,v, t) dv.

The domain Ω = {x ∈ R
N | r0 < r = |x| < r1}, with boundaries Sr0 = {x ∈

R
N
∣

∣ |x| = r0} and Sr1 = {x ∈ R
N
∣

∣ |x| = r1}.
When j(x, t) is a bounded function, existence of a unique global solution for

equations (35)-(37) can be proved by classical galerkin or spectral methods [25].
Coercitivity of the associated bilinear form is not necessary. However, it holds
whenever j(t) is continuous and does not vanish identically for any t ∈ [0, T ].

Let us now establish comparison and maximum principles that will be es-
sential in the sequel.

Proposition 4.1. (Comparison principle). Let c ∈ C([0, T ];L2(Ω)) be a
solution of problem (35)-(37) with initial datum c0 ∈ L2(Ω), boundary condition
cr0 ∈ C([0, T ];L2(∂Ω)) and nonnegative coefficient j ∈ L∞(Ω × (0, T )). If
c0 ≥ 0, h ≥ 0 and cr0 ≤ 0, then c ≥ 0. Moreover, the following comparison
principle holds. Given two solutions c1 and c2 with sources h1, h2, initial data
c1,0, c2,0 and normal derivatives at the boundary g1, g2, if g1 ≤ g2, c1,0 ≤ c2,0,
h1 ≤ h2, then c1 ≤ c2.

Proof.

14



Multiplying the equation

∂

∂t
c(x, t) = d∆xc(x, t) − ηc(x, t)j(x, t) + h,

by c− = Max(−c, 0) and integrating, we get

1

2
‖c−(t)‖22 +

∫ t

0

∫

Ω

[|∇c−|2 + ηj|c−|2] =

1

2
‖c−(0)‖22 −

∫ t

0

∫

∂Ω

∂c

∂n
c−−

∫ t

0

∫

Ω

hc− ≤ 0, (38)

since, in our case,

−

∫

∂Ω

∂c

∂n
c− = −

∫

r=r1

∂c

∂r
(r1)c

− +

∫

r=r0

∂c

∂r
(r0)c

− =

∫

r=r0

∂c

∂r
(r0)c

− ≤ 0.

This implies that c− = 0 and c ≥ 0.
If h ≥ 0, ∂c

∂n ≥ 0 and c(0) ≥ 0, inequality (38) implies immediately c ≥ 0.
Reproducing the computations for c = c2 − c1, inequality (38) implies c2 ≥ c1
by linearity.

Corollary 4.2. If c is a solution of equations (2)-(3),(7) with nonnegative data
c0 and coefficient j, then c ≥ 0 and c ≤ u, u being the solution of the heat
equation with the same initial and boundary data, but zero source.

Proof. Positivity is a straightforward consequence of the previous maximum
principle. Similarly, the comparison principle applied with h1 = −cj and h2 = 0
implies c ≤ u.

To control the tumor angiogenic factor (TAF) induced force field ‖F(c)‖L∞
xt
,

we will need Lr−Lq estimates of c analogous to the known estimates for solutions
of heat equations in the whole space. Let us first consider the pure initial value
problem:

ut(x, t) = d∆xu(x, t), x ∈ Ω, t > 0, (39)

∂u

∂n
(x, t) = 0, x ∈ Sr0 ∪ Sr1 , t > 0, (40)

u(x, 0) = u0(x), x ∈ Ω. (41)

For any u0 ∈ L2(Ω), there is a unique global solution u ∈ C([0, T ], L2(Ω)) ∩
L2(0, T ;H1(Ω)), see reference [25]. Ω being bounded, this remains true when
u0 ∈ L∞(Ω). We can construct the solution using eigenfunction expansions.
Let φn, n = 1, 2..., be the orthonormalized eigenfunctions for the homogeneous
Neumann problem:

−d∆φn = λnφn on Ω,
∂

∂n
φn = 0 on ∂Ω. (42)
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The smallest eigenvalue is λ1 = 0 with constant eigenfunction. Using separation
of variables, u takes the form:

u(x, t) =
∑

n≥1

u0,nφn(x)e
−λnt, u0,n =

∫

Ω

u0(y)φn(y)dy. (43)

The series expansion allows us to prove the ‘smoothing effect’ for t > 0: u(t) ∈
H2(Ω). In fact, u(t) ∈ Hk(Ω), for all k.

Since Ω is a bounded domain, a L2
x
estimate implies a Lq

x
estimate for q ∈

[1, 2]. In the same way, a L∞
x

estimate implies a Lq
x
estimate for 1 ≤ q ≤ ∞.

The decay of the norms of the solutions of the pure initial value problem is
summarized in the following result.

Theorem 4.3. (Decay for the initial value Neumann problem). If u0 ∈
L∞(Ω), the solution u of equations (39)-(41) satisfies:

‖u(t)‖L∞
x

≤ ‖u0‖L∞
x
, (44)

‖u(t)‖L2
x

≤ ‖u0‖L2
x
, (45)

‖∇xu(t)‖L2
x

≤
1

t1/2
‖u0‖L2

x
, (46)

‖∇xu(t)‖Lr
x

≤
Crq

t1/2+N/2(1/q−1/r)
‖u0‖Lq

x
, 1 ≤ q ≤ r ≤ ∞, Crq > 0, (47)

for t ∈ (0, T ], T > 0. Moreover, if ∇xu0 ∈ L2
x
and ∆xu0 ∈ L∞

x
, then

‖∇xu(t)‖L2
x

≤ ‖∇xu0‖L2
x
, (48)

‖∇xu(t)‖L∞
x

≤ C(‖u0‖L∞
x
, ‖∆xu0‖L∞

x
). (49)

Proof.
By Proposition 4.1, u is bounded from above and below by the solutions

of equations (39)-(41) with initial data ‖u0‖∞ and −‖u0‖∞, respectively. This
proves (44).

Multiplying equation (39) by u and integrating, we find the energy identity:

1

2
‖u(t)‖22 + d

∫ t

0

∫

Ω

|∇xu|
2 =

1

2
‖u0‖

2
2, (50)

which implies estimate (45).
To prove inequality (46) we argue by density, assuming first that u0 ∈ H1(Ω).

We multiply equation (39) by ut and integrate over Ω to get

‖ut(t)‖
2
2 +

d

2

d

dt

∫

Ω

|∇xu(t)|
2 = 0.

We conclude that
∫

Ω |∇u(t)|2 decreases with time. Inserting this information in
identity (50), we find:

1

2
‖u(t)‖22 + t

∫

Ω

|∇xu(t)|
2 ≤

1

2
‖u0‖

2
2 ⇒ ‖∇xu(t)‖L2

x
≤

1

t1/2
‖u0‖L2

x
.
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The inequality extends to u0 ∈ L2
x
by density.

To prove the Lr − Lq estimate on the gradients, we resort to expressions of
the solutions in terms of heat kernels [27] and pointwise estimates of the kernels
[41]. Our annular domain Ω is not convex, therefore we can only apply results
valid for C2 compact manifolds. In terms of the heat kernel for the Neumann
problem, the solution of equations (39)-(41) reads:

u(x, t) =

∫

Ω

K(x,y, t)u0(y)dy, K(x,y, t) =
∑

n≥1

e−λntφn(x)φn(y),

where φn and λn are the eigenvalues and eigenfunctions of the homogeneous
Neumann problem, see reference [27], pp. 104-106. The kernel function K is
positive, symmetric in the x and y variables, and satisfies

∫

ΩK(x,y, t)dy = 1.
It is the solution of a Neumann problem with measure valued initial data δx(y).
For compact Riemannian manifolds with C2 smooth boundary, the gradient of
the heat kernel satisfies:

|∇K(x,y, t)| ≤
C

t
(N+1)

2

e−
ρ(x,y)2

ct , t > 0,x,y ∈ Ω,

for some positive constants C, c, where N is the dimension, and ρ the Rieman-
nian distance. Our domain Ω is a ring in R

N . We may find a constant d′ such
that ρ(x,y) ≥ d′|x − y|. Extending the upper bound to an integral over the
whole space:

|∇u(x, t)| = |

∫

Ω

∇K(x,y, t)u0(y)dy| ≤
C

t
(N+1)

2

∫

RN

e−
d′|x,−y|2

ct |u0(y)|dy,

the Lr-Lq estimates (47) follow from standard Lr-Lq estimates for solutions of
the heat equation in the whole space [20].

Expressing the solution in terms of eigenfunctions (43), the L2
x
norm of the

gradient becomes:

∫

Ω

|∇u(x, t)|2dx =
∑

n,m≥1

u0,nu0,me
−λnte−λmt

[
∫

Ω

∇φn(x)∇φm(x)dx

]

=
∑

n,m≥1

u0,nu0,me
−λnte−λmtλm

d

[
∫

Ω

φn(x)φm(x)dx

]

=
∑

n≥1

u20,ne
−2λntλm ≤

∑

n≥1

u20,n
λm

d
=

∫

Ω

|∇u0(x)|
2dx, (51)

after integrating by parts, using definition (42) and the orthogonality of the
eigenfunctions. This proves estimate (48).

To estimate the L∞
x

norm of the gradient, we notice that differentiating
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formula (43) and assuming ∂u0

∂n we find:

∆u(x, t) =
∑

n≥1

u0,n∆φn(x)e
−λnt = −

∑

n≥1

u0,n
λn

d
φn(x)e

−λnt =

∑

n≥1

[
∫

Ω

u0(y)∆φn(y)dy

]

φn(x)e
−λnt=

∑

n≥1

[
∫

Ω

∆u0(y)φn(y)dy

]

φn(x)e
−λnt.

This expression defines a solution of

ũt(x, t) = d∆xũ(x, t), x ∈ Ω, t > 0,

∂ũ

∂n
(x, t) = 0, x ∈ Sr0 ∪ Sr1 , t > 0,

ũ(x, 0) = ∆u0(x), x ∈ Ω.

The comparison principle in Proposition 4.1 yields ‖∆xu‖L∞
x

≤ ‖∆u0‖L∞
x
.

This inequality extends to u0 ∈ W 2,∞(Ω) by density. Finally, Gagliardo-
Nirenberg’s inequalities [6] provide an estimate on the gradients: ‖∇xu‖L∞

x
≤

C(‖∆xu‖L∞
x
, ‖u‖L∞

x
) ≤ C(‖∆xu0‖L∞

x
, ‖u0‖L∞

x
). This proves inequality (49) and

concludes the proof.

Let us now consider the diffusion problem with a source but zero initial and
boundary values:

ut(x, t) = d∆xu(x, t) + h(x, t), x ∈ Ω, t > 0, (52)

∂u

∂n
(x, t) = 0, x ∈ Sr0 ∪ Sr1 , t > 0, (53)

u(x, 0) = 0, x ∈ Ω. (54)

For any h∈L∞(0, T ;L2(Ω)), there is a unique global solution u∈C([0, T ], L2(Ω)),
see reference [25]. It is given by the series expansion:

u(x, t) =
∑

n≥1

φn(x)

∫ t

0

hn(s)e
−λn(t−s)ds, hn(s) =

∫

Ω

h(y, s)φn(y)dy.

The series expansion implies again the ‘smoothing effect’: u(t) ∈ H2(Ω) for
t > 0. In fact, u(t) ∈ Hk(Ω), for all k and t > 0. This solution can be rewritten
using the semigroup formalism [28]. The initial value problem (39)-(41) defines
a semigroup S(t)u0 = u(t), u being the solution of equations (39)-(41). The
solution of an inhomogeneous initial value problem with initial datum u0 and
source h can be expressed as:

u(t) = S(t)u0 +

∫ t

0

S(t− s)h(s)ds. (55)

Theorem 4.3 establishes decay estimates for the semigroup S(t) and its deriva-
tives, applied to different types of initial data. We can exploit those estimates
to infer the decay of the integral term representing solutions with a source. The
following estimates hold:
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Proposition 4.4. (Decay for the inhomogeneous problem). For sources
h ∈ L∞([0, T ]× Ω), the solution u of equations (52)-(54) satisfies:

‖u(t)‖L∞
x

≤ t‖h‖L∞
t L∞

x
, ‖∇xu(t)‖L∞

x
≤ 2t1/2‖h‖L∞

t L∞
x
, (56)

‖u(t)‖L2
x
≤ t‖h‖L∞

t L2
x
, ‖∇xu(t)‖L2

x
≤ 2t1/2‖h‖L∞

t L2
x
, (57)

‖∇xu(t)‖Lr
x
≤ Crqt

1/2−N/2(1/q−1/r)‖h‖L∞
t Lq

x
, Crq > 0,

1

N
>

1

q
−

1

r
> 0, (58)

for t ∈ [0, T ].

Proof. Consequence of the semigroup expression (55) for the solutions and
Proposition 4.3.

Let us now apply the previous decay estimates to solutions c of equations
(2)-(3),(7). Let cb be a function such that cb = cr0 on r = r0 and cb = 0 on
r = r1. For simple choices of cr0 this can be done explicitly. Otherwise, we may
resort to solutions cb of the boundary value problem for the heat equation, with
zero initial data, zero source term, and non homogeneous boundary conditions
cb = cr0 on r = r0 and cb = 0 on r = r1. Existence of such solutions has been
established in reference [7] by the method of layer potentials for boundary data
satisfying integrability conditions that always hold for bounded data. We set
c = c̃+ cb. Then,

c̃t − d∆xc̃ = −ηcj − cb,t + d∆xcb, x ∈ Ω, t > 0, (59)

∂c̃

∂n
(x, t) = 0, x ∈ Sr0 ∪ Sr1 , t > 0, (60)

c̃(x, 0) = c0(x)− cb(x, 0), x ∈ Ω. (61)

The term z = −cb,t+d∆xcb appearing in the right hand side may vanish when cb
is chosen to be a solution of the heat equation. We have the following estimates.

Theorem 4.5. Let c be a solution of equations (2)-(3),(7) with initial and
boundary data verifying c0 ∈ W 2,∞(Ω), c0 ≥ 0 and cr0 ∈ L∞(0, T ;L∞(∂Ω)),
T > 0. Let cb ∈ W 1,∞(0, T ;W 2,∞(Ω)) be a function satisfying cb = cr0 on
r = r0 and cb = 0 on r = r1. Set K = max(‖c0 − cb‖∞, ‖cb,t − d∆cb‖∞). Then,
c ≥ 0 and

‖c(t)‖q ≤ [‖cb‖∞ +K(1 + T )]meas(Ω)1/q , t ∈ [0, T ], 1 ≤ q ≤ ∞. (62)

Moreover,

‖∇c(t)‖∞ ≤ ‖∇cb(t)‖∞ + C(‖c0 − cb(0)‖∞, ‖∆c0 −∆cb(0)‖∞) (63)

+2t1/2‖cb,t−d∆cb‖∞ + ηCqt
1
2−

N
2q ‖cj‖L∞

t Lq
x
, q > N,

‖∇c(t)‖2 ≤ ‖∇cb(t)‖2 + ‖∇c0−∇cb(0)‖2 (64)

+2t1/2‖cb,t−d∆cb‖L∞
t L2

x
+ 2t1/2η‖cj‖L∞

t L2
x
,
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d
∫ t

0

∫

Ω
|∇c(s)|2dsdx ≤ d

∫ t

0

∫

Ω
|∇cb(s)|

2dsdx + 1
2‖c0−cb(0)‖

2
2 (65)

+‖cb,t − d∆cb‖L2(0,t;L2
x
)‖c‖L2(0,t;L2

x
).

Proof. By the comparison principle 4.1, we know that c ≥ 0 and that c̃ is
bounded from above by the solution C̃ of system (59)-(61) with right hand side
z = −cb,t + d∆cb. By Proposition 4.1, |C̃| ≤ K(1 + t). Since Ω is a bounded
domain, estimate (62) follows.

Let us now study the derivatives of c̃. The energy inequality provides a
uniform L2

xt estimate that implies inequality (65):

1

2
‖c̃(t)‖2L2

x

+ d

∫ t

0

∫

Ω

|∇c̃(s)|2dsdx ≤
1

2
‖c̃(0)‖2L2

x

+‖d∆cb − cb,t‖L2(0,T ;L2
x
)‖c‖L2(0,T ;L2

x
).

To prove inequalities (64) and (63), we split c̃ = c̃1 + c̃2. By linearity, we
take c̃1 to be a solution of a heat equation with initial datum c̃0, zero source
and zero boundary condition. We choose c̃2 to be the solution of another heat
problem, with source −ηcj + z, plus zero initial and boundary conditions. The
estimates stated in Theorem 4.3 hold for c̃1 and those in Proposition 4.4 to c̃2.
Differentiating −ηcj must be avoided, not to introduce the spatial derivatives
of c we intend to control. In this way, we obtain inequalities (64) and (63).

5. Nonlinear problem with known boundary condition

Solutions for the the nonlinear angiogenesis model may be constructed em-
ploying an iterative scheme. For m ≥ 2, we consider the linearized system of
equations

∂

∂t
pm(x,v, t)+v·∇xpm(x,v, t)+∇v ·[(F(cm−1(x, t))−βv)pm(x,v, t)] (66)

−σ∆vpm(x,v, t)+γbm−1(x, t)pm(x,v, t)=α(cm−1(x, t))ν(v)pm(x,v, t),

bm−1(x, t) =

∫ t

0

ds

∫

RN

dv′pm−1(x,v
′, s), (67)

α(cm−1) = α1
cm−1

cR + cm−1
, F(cm−1) =

d1

(1 + γ1cm−1)q1
∇xcm−1, (68)

pm(x,v, 0) = p0(x,v), (69)

∂

∂t
cm−1(x, t) = d∆xcm−1(x, t)− ηcm−1(x, t)jm−1(x, t), (70)

jm−1(x, t)=

∫

RN

|v|

1 + e|v−v0χ|2/σ2
v
pm−1(x,v, t) dv, (71)

cm−1(x) = c0(x, 0), (72)

supplemented with the boundary conditions:

∂cm−1

∂n (x, t) = cr0(x, t) < 0, x ∈ Sr0 ,
∂cm−1

∂n (x, t) = 0, x ∈ Sr1 , (73)

pm(x,v, t) = g(x,v, t) ≥ 0, for v · n̂ < 0, v ∈ R
N , x ∈ Sr0 ∪ Sr1 . (74)
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We initialize the scheme setting p1 = 0 and j1 = 0. c1 is the solution of
the associated heat equation. The function p2 is a nonnegative solution of the
Fokker-Planck problem with smooth and bounded coefficient fields F(c1) and
α(c1) in a bounded domain. Let us see that the resulting sequence is well defined
under our hypotheses on the data and we may extract a subsequence converging
to a solution of the original problem.

Theorem 5.1. Let us assume that

p0 ≥ 0, c0 ≥ 0, g ≥ 0, (75)

c0 ∈W 2,∞(Ω), (76)

(1 + |v|2)µ/2p0 ∈ L∞ ∩ L1(Ω× R
N ), µ > N, (77)

cr0 ∈ L∞(0, T ;L∞(Sr0)), (78)

(1 + |v · n|)(1 + |v|2)µ/2g ∈ L∞(0, T ;L∞ ∩ L1(Γ−)), (79)

and that a function cb is found verifying the hypotheses of Theorem 4.5. Then,
there exists a nonnegative solution (p, c) of equations (2)-(8) satisfying:

c ∈ L∞(0, T ;W 1,∞(Ω)), (80)

p ∈ L∞(0, T ;L∞ ∩ L1(Ω× R
N)),∇vp ∈ L2(0, T ;L2(Ω× R

N )), (81)

(1 + |v|2)µ/2p ∈ L∞(0, T ;L∞ ∩ L1(Ω× R
N )), (82)

p ∈ L∞(0, T ;L∞
x
(Ω, L1

v
(RN )), (83)

for any T > 0.

The proof is organized in several steps. First, we argue that the scheme is
well defined. Then, we obtain uniform estimates on the Lq norms of the solu-
tions of the iterative scheme. Next, we derive L∞ estimates on the coefficients
Fm−1, jm−1 and bm−1 using the velocity decay. Estimates on the derivatives
of the densities with respect to v allow us to pass to the limit in the equations
using compactness results for the specific of FP operator, obtaining a nonnega-
tive solution of the nonlinear problem with the stated regularity.

Proof.
Step 1: Existence of nonnegative solutions for the scheme.
First, let us argue that the scheme (66)–(74) is well defined. Setting p1 = 0,
we have j1 = 0 and due to (70), c1(x, t) is the solution of the associated heat
equation

∂

∂t
c1(x, t) = d∆xc1(x, t) x ∈ Ω, t > 0,

c1(x, 0) = c0(x), x ∈ Ω,

∂c1

∂n
(x, t) = cr0(x, t) < 0, x ∈ Sr0 ,

∂c1

∂n
(x, t) = 0, x ∈ Sr1 , t > 0,

satisfying the properties of Theorem 4.5. The function p2 is the nonnegative
solution of the Fokker-Planck problem with smooth and bounded coefficient

21



fields F(c1) and α(c1) in a bounded domain, i.e.,

α(c1) = α1
c1

cR + c1
, F(c1) =

d1

(1 + γ1c1)q1
∇xc1.

Let us proceed by induction. We assume that j(pm−1) and b(pm−1) are
nonnegative bounded functions. Then, cm−1 is the unique solution of equations
(70)-(72) with boundary conditions (73), whose existence can be proven by
Galerkin or spectral methods [25]. By Proposition 4.1 we know that cm−1 ≥ 0
if c0 ≥ 0. This implies that 0 ≤ α(cm−1) ≤ α1 and 0 ≤ d1

(1+γ1cm−1)q1
≤ d1.

Moreover, Theorem 4.5 provides L∞ and Lq bounds for cm−1. Then, Theo-
rem 4.5 implies that ∇xcm−1 is a bounded function and also F(cm−1). Since
α(cm−1) and F(cm−1) are bounded, and b(pm−1) is assumed to be bounded,
pm is the unique nonnegative solution of equations (66),(69) with boundary
conditions (74) that satisfies the estimates collected in Theorems 2.1, 2.2 and
2.3. This implies that γb(pm−1)pm ≥ 0 and α(cm−1)ν ≤ α1‖ν‖∞. By Lemma
3.1, ‖j(pm)‖L∞

x
is bounded in terms of ‖pm‖L∞

t L∞
xv
. Proposition 3.7 implies that

b(pm) ∈ L∞(Ω× (0, T )). This allows us to construct cm and pm+1, and so on.

Step 2: A priori estimates on the tumor angiogenic factor cm.
By Theorem 4.5, setting K = max(‖c0 − cb‖L∞

x
, ‖cb,t − d∆cb‖L∞

xt
), we get

‖cm(t)‖Lq
x
≤ (‖cb‖∞ +KT )meas(Ω)1/q, t ∈ [0, T ], 1 ≤ q ≤ ∞. (84)

The energy inequality yields a bound on the gradient independent of j(pm−1):

d

dt

∫

Ω

c2mdx + d

∫

Ω

|∇xcm|2dx ≤ d

∫

∂Ω

cr0cm.

Integrating in time we find

d

∫ T

0

∫

Ω

|∇xcm|2dx ≤ ‖c0‖
2
L2

x

+ d‖cr0‖L1(∂Ω×(0,T ))‖cm‖∞. (85)

Theorem 4.5 provides alternative energy estimates (65) on the L2
tL

2
x
norm of

∇xcm−1 and the L∞
xt norm of ∇xcm−1:

‖∇cm−1(t)‖∞ ≤ ‖∇xcb(t)‖∞ + C(‖c0 − cb(0)‖∞, ‖∆xc0 −∆xcb(0)‖∞)

+t1/2‖cb,t−d∆xcb‖∞ + ηCqt
1
2−

N
2q ‖cm−1j(pm−1)‖L∞

t Lq
x
, q > N, (86)

for t ∈ [0, T ].

Step 3: A priori estimates on the tip vessel density pm.
Let us revisit the Lq estimates in Theorem 2.2. The conservation of mass

implies inequality (21) with q = 1:

‖pm(t)‖L1
xv

≤
(

‖p0‖L1
xv

+

∫

Σ−
T

|v · n(x)|g
)

eα1‖ν‖∞t, t ∈ [0, T ]. (87)
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Applying inequality (21) with 1 < q <∞, we find:

‖pm(t)‖q
Lq

xv

≤
(

‖p0‖
q
Lq

xv

+

∫

Σ−
T

|v · n(x)|gq
)

e

(

Nβ(q−1)+α1‖ν‖∞

)

t, t ∈ [0, T ]. (88)

Uniform L∞ estimates follow either inequality (21) with q = ∞:

‖pm‖L∞(QT ) ≤
(

‖p0‖L∞(Ω×RN ) + ‖g‖L∞
k (Σ−

T )

)

e

(

Nβ+α1‖ν‖∞

)

t, (89)

or Theorem 2.3 with ‖g‖L∞
k (Σ−

T ) replaced by ‖g‖L∞(Σ−
T ).

To be able to extract a converging subsequence from the sequence pm, we
need estimates on its derivatives. Let us revisit the L2 estimate (20) provided
by Theorem 2.2 for pm:

d

dt
‖pm(t)‖2L2

xv

=

∫

Γ−

|v · n(x)|g2dS dv +

∫

Ω×RN

α(cm−1)νp
2
mdx dv

−

∫

Γ+

|v · n(x)|(Trpm)2dS dv −

∫

Ω×RN

γb(pm−1)p
2
mdx dv

+Nβ‖pm(t)‖2L2
xv

− 2σ

∫

Ω×RN

|∇vpm|2dx dv.

Integrating in time and neglecting negative terms, we find

2σ

∫

QT

|∇vpm|2dx dvds ≤ ‖p0‖
2
L2

xv

+

∫

ΣT
−

|v · n(x)|g2dSdvds

+(α1‖ν‖∞ +Nβ)

∫

QT

p2mdx dvds.

The uniform estimates on ‖pm‖L2(QT ) yield a uniform estimate on ‖∇vpm‖L2(QT ).

Step 4: Uniform bounds on velocity integrals and velocity decay of pm.
In Steps 2 and 3 we have obtained uniform estimates on the blood vessel den-

sity norms ‖pm‖L∞(0,T ;Lq
xv) and the tumor angiogenic factor norms ‖cm‖L∞(0,T ;Lq

x)

for 1 ≤ q ≤ ∞.
Lemma 3.1 provides a uniform bound of the Lq

x
norms of the fluxes jm−1,

1 ≤ q ≤ ∞ in terms of the bounds (89) on ‖pm‖|L∞(0,T ;Lq
xv) established in

Step 3. Thanks to inequality (86) in Step 2, we obtain a uniform estimate
on ‖∇xcm−1‖L∞(0,T ;L∞(Ω)). A uniform estimate on ‖F(cm−1)‖L∞(0,T ;L∞(Ω))

follows.
Next, we apply Proposition 3.7 to equation (66), setting a = γb(pm−1) −

α(cm−1)ν and F = F(cm−1), with j = jm−1 depending on pm−1. Step 1 guar-
antees that a ∈ L∞. Its negative part a−(cm−1) = α(cm−1)ν satisfies ‖a−‖∞ ≤
α1‖ν‖L∞

v
. Thanks to the uniform estimate on ‖F(cm−1)‖∞ and ‖pm‖∞, Propo-

sition 3.7 provides a uniform estimate on ‖(1+|v|2)µ/2pm−1‖L∞
xv
. Then, inequal-

ity (30) in Lemma 3.4 yields a uniform estimate on ‖pm‖L∞(0,T ;L∞
x

L1
v
). We also
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obtain as a consequence an upper bound of the form

|pm| ≤
C

(1 + |v|2)µ/2
= P , µ > N,C > 0. (90)

This upper bound P is integrable, and belongs to Lq(Ω×R
N ) for any q ∈ [1,∞]

since µ > N and Ω is bounded.
In conclusion, the coefficients bm−1, α(cm−1), jm−1 and F (cm−1) appearing

in the equations are uniformly bounded in L∞(0, T ;L∞
x
).

Step 5: Compactness of the iterates.
Once we have obtained uniform estimates on pm and their velocity deriva-

tives, we resort to the compactness results in reference [4] to extract converging
subsequences.

Lemma 5.2. [4] Let σ > 0, β ≥ 0, T > 0, 1 ≤ q < ∞, p0 ∈ Lq(RN ),
h ∈ L1(0, T ;Lq(RN×R

N)) and consider the solution p ∈ C([0, T ], Lq(RN×R
N))

of:

∂p

∂t
+ v∇xp− βdivv(vp)− σ∆vp = h in R

N × R
N × (0, T ), (91)

p(0) = p0 in R
N × R

N .

Assume that p0 belongs to a bounded subset of Lq(RN ×R
N) and h belongs to a

bounded subset of Lr(0, T ;Lq(RN ×R
N )) with 1 < r ≤ ∞. Then, for any η > 0

and any bounded open subset ω of RN × R
N , p is compact in C([η, T ], Lq(ω)).

These results are stated for problems set in the whole space. Here, we deal
with a problem set in Ω ⊂ R

N . We may extend them to the whole space
multiplying by functions φ ∈ C∞

c (Ω). The truncated sequences qm = φpm
satisfy

∂qm

∂t
+ v∇xqm − βdivv(vqm)− σ∆vqm = hm in R

N × R
N × (0, T ),

where the sources

hm = −v · ∇xφpm − φ F(cm−1) · ∇vpm − γb(pm−1)pmφ + α(cm−1)νpmφ

are bounded in L2(QT ) and the initial state φp0 ∈ L1
xv

∩ L∞
xv

is fixed. The
sequence pm is therefore locally compact and by a diagonal extraction procedure
we may extract a subsequence pm′ converging to a limit p pointwise, and strongly
in C([η, T ], L2(ω)) for any ω ⊂ Ω×R

N . Uniform bounds together with uniform
control of the velocity decay allow us to extend compactness up to the borders
[6, 12]. Weak convergences of pm and ∇vpm hold in all the spaces in which we
have uniform estimates.

In Step 2, we have obtained a uniform bound on cm in L2(0, T ;H1(Ω)).
Step 4 provides a uniform estimate on j(pm) in L∞(0, T ;L∞(Ω)). Using equa-
tion (70), we conclude that ∂cm

∂t is bounded in L2(0, T ;H−1(Ω)). Standard
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compactness results in reference [26] yield compactness for the sequence cm in
L2(0, T ;L2(Ω)). A subsequence cm′ , converges pointwise and strongly in L2 to a
function c. Weak convergences hold in all the spaces for which uniform bounds
have been established.

Step 6: Convergence to a solution.
Let us first pass to the limit in the nonlocal terms using the integrable upper

bound P defined in (90). We know that pm′ and vw(v)pm′ converge pointwise
to p and w(v)p. The bounds 0 ≤ pm′ ≤ P ∈ L∞(0, T ;L1(Ω × R

N )) and
|v|w(v)pm′ ≤ |v|w(v)P ∈ L∞(0, T ;L1(Ω × R

N )) imply pointwise convergence
for the nonlocal coefficients:

b(pm′) → b(p) ≥ 0, j(pm′) → j(p), a.e.x ∈ Ω, t ∈ [0, T ].

Let us now consider the nonlinear products. Pointwise convergence of b(pm′−1)pm′

to b(p)p, together with the bound 0 ≤ b(pm′−1)pm′ ≤ b(P)P ∈ L1(0, T ;L1(Ω×
R

N )), imply strong convergence in L1(0, T ;L1(Ω × R
N )). Similarly, pointwise

convergence of α(cm′−1)νpm′ to α(c)νp, together with the bound |α(cm′−1)νpm′ | ≤
α1‖ν‖∞P ∈ L1(0, T ;L1(Ω×R

N)), ensure strong convergence in L1(0, T ;L1(Ω×
R

N )). Finally, pointwise convergence of j(pm′−1)cm′−1 to j(p)c, together with
the bound j(pm′−1)cm′−1 ≤ maxm′‖j(pm′−1)‖L∞(Ω×(0,T ))(‖cb‖|L∞(Ω×(0,T )) +
KT ) ∈ L1(0, T ;L1(Ω)), yield strong convergence in L1(0, T ;L1(Ω)). Strong
convergences extend to any Lq with q finite.

The term involving the force field is more complex. Notice that the se-
quence pm′

d1

(1+γ1cm′−1)
q1

tends pointwise to p d1

(1+γ1c)q1
and is bounded by Pd1 ∈

Lq(0, T ;Lq(Ω× R
N )) for any q ∈ [1,∞]. Thus, we have strong convergence in

L
q
xvt for all finite q. The sequence ∇xcm′−1 is bounded in L2(0, T ;L2(Ω× R

N )).
Therefore, it tends weakly to ∇xc in L

2
xvt .

Using these convergences we pass to the limit in the weak formulation of the
equations for pm′ :
∫

QT

pm′

[

∂ϕ

∂t
+v · ∇xϕ−βv · ∇vϕ+F(cm′−1) · ∇vϕ+σ∆vϕ−b(pm′−1)ϕ

]

dxdvdt

+

∫

Ω×RN

p0ϕ(x,v, 0) dxdv +

∫

Σ−
T

|v · n(x)|gϕ dSdvdt =

∫

QT

ανpm′ϕdxdvdt,

for any ϕ ∈ C∞(Ω × R
N × [0, T )) with compact support in v such that ϕ = 0

on Σ+
T . Weak convergence of pm′ is enough to pass to the limit in the linear

terms. For the rest, we use the strong convergences established above and the
weak convergence of ∇xcm′−1. A similar argument can be applied in the weak
formulation of equation (70). Therefore, p and c solve the original angiogenesis
problem (2)-(8).

6. Nonlocal boundary conditions

In the previous section we constructed solutions for the angiogenesis model
assuming the boundary values for the density known. The general problem
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with nonlocal boundary condition (9)-(10) becomes more complex. Let us ad-
dress first the linear problem with nonlocal boundary conditions. We define the
functions:

K1(β, σ, χ, σv) = Max{v·n>0}|v · n| e−
β
σ |v−v0|

2
[

∫

{v·n<0}

|ṽ · n| e−
β
σ |ṽ−v0|

2

dṽ

1+e|ṽ−χv0|2/σ2
v

]−1

,

K2(χ, σv) =

∫

{v·n>0}

dv

1+e|v−χv0|2/σ2
v
. (92)

For χ|v0| >> 1 fixed, K2 < 1 choosing σv small enough. Then, K1 < 1,
K1K2 < 1 choosing β

α small.

Theorem 6.1. Let us assume that

p0 ≥ 0, (1 + |v|2)µ/2p0 ∈ L∞ ∩ L1(Ω× R
N ), µ > N, (93)

a ∈ L∞(QT ), F ∈ L∞(Ω× (0, T )), (94)

j0 ≥ 0, j0 ∈ L∞(Σ−
T ). (95)

Then, there exists a nonnegative solution p of the linear equations (14)-(15)
with boundary conditions (9)-(10) satisfying:

p ∈ L∞(0, T ;L∞ ∩ L1(Ω× R
N)),∇vp ∈ L2(0, T ;L2(Ω× R

N )), (96)

(1 + |v|2)µ/2p ∈ L∞(0, T ;L∞ ∩ L1(Ω× R
N )), (97)

(1 + |v · n|)(1 + |v|2)µ/2Tr p± ∈ L∞(0, T ;L∞ ∩ L1(Σ±
T )), (98)

p ∈ L∞(0, T ;L∞
x
(Ω, L1

v
(RN )), (99)

for any T > 0, provided the parameters β, σ, σv , χ satisfy K1(β, σ, χ, σv)K2(χ, σv) <
1.

Proof. The solution is constructed as the limit of solutions pm of approxi-
mating problems defined by equations (14)-(15) with boundary condition of the
form:

p−m(x,v, t) = g(p+m−1(x,v, t)) on Σ−
T , (100)

The operators g defining these boundary conditions in formulas (9)-(10) are
positive. The proof follows the same lines as the proof of Theorem 5.1, with
changes to handle the boundary conditions, that we summarize.

The scheme is well defined thanks to Theorems 2.1 and 2.2, starting from
p1 = 0 and choosing boundary values p−2 for p2 on Σ−

T with the regularity
(79). All the estimates established in Step 3 of the proof of Theorem 5.1 hold.
However, now g = g(p+m−1(x,v, t)) and we need to obtain uniform bounds of
the traces at the boundaries. Let us analyze the explicit expressions given by
(9)-(10).
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We analyze first the bounds associated to the boundary condition at Sr0 .

From identity (9), we deduce:

p−m(r0, θ, vr,φ, t)=
e−

β
σ |v−v0|

2

I0

[

∫ ∞

0

dṽr ṽ
N−1
r

∫

{φ̃∈SN−1|ṽ·n<0}

dφ̃ p−m−1(r0, θ, ṽr, φ̃, t)
]

. (101)

Multiplying (101) by vN−1
r and integrating over Σ−

T , we find:

‖p−m‖L1(Σ−
T ) = ‖p−m−1‖L1(Σ−

T ) = . . . = ‖p−2 ‖L1(Σ−
T ). (102)

Multiplying (101) by vN−1
r vℓr, ℓ > 0, integrating, and inserting (102) we obtain:

‖|v|ℓp−m‖L1(Σ−
T ) ≤

∫ ∞

0

dvr v
N−1+ℓ
r

∫

{φ̃∈SN−1|ṽ·n<0}

dφ̃
e−

β
σ |v−v0|

2

I0
‖p−2 ‖L1(Σ−

T ). (103)

Multiplying (101) by vN−1
r and integrating over (0,∞)× {φ̃ ∈ SN−1|ṽ · n < 0},

we find:
∫ ∞

0

dvrv
N−1
r

∫

{φ∈SN−1|v·n<0}

dφ p−m(r0, θ, vr,φ, t)=

∫ ∞

0

dṽr ṽ
N−1
r

∫

{φ̃∈SN−1|ṽ·n<0}

dφ̃ p−m−1(r0, θ, ṽr, φ̃, t)

= . . . =

∫ ∞

0

dṽr ṽ
N−1
r

∫

{φ̃∈SN−1|ṽ·n<0}

dφ̃ p−2 (r0, θ, ṽr, φ̃, t). (104)

Therefore, for any q ∈ (1,∞):

‖p−m‖q
Lq(Σ−

T )
≤

∫ ∞

0

dvr

∫

{φ∈SN−1|v·n<0}

dφ vN−1
r

e−
qβ
σ |v−v0|

2

Iq
0

‖

[

∫ ∞

0

dṽr ṽ
N−1
r

∫

{φ̃∈SN−1|ṽ·n<0}

dφ̃ p−2 (r0, θ, ṽr , φ̃, t)

]q

‖L∞
θ,t
.

We may estimate uniformly the norms ‖p−m‖L∞(Σ−
T ), ‖(1+ |v|2)

µ
2 p−m‖L∞(Σ−

T ) and

‖p−m‖Lq
k
(Σ−

T ), for 1 ≤ q ≤ ∞, in a similar way.

Let us recall the boundary condition at r = r1:

p−m(r1,θ,vr ,φ,t)=
e−

β
σ |v−v0|

2

|I1|

[

j0−

∫ ∞

0

dṽr ṽ
N−1
r

∫

{φ̃∈SN−1|ṽ·n>0}

dφ̃ p+m−1(r1,θ,ṽr,φ̃,t)f1(ṽ)
]

. (105)

Multiplying by v · n we get:

‖p−m‖L∞
k (Σ−

T )≤K1(β, σ, χ, σv)
[

‖j0‖∞+K2(χ, σv)‖p
+
m−1‖L∞

k (Σ+
T )

]

. (106)

Set ωq = Nβ
q′ + ‖a−‖∞. From identity (20) in Theorem 2.2, we deduce:

‖e−ωqtp+m−1‖Lq
k(Σ

+
T ) ≤

[

‖p0‖Lq(Ω×RN ) + ‖e−ωqtp−m−1‖Lq
k(Σ

−
T )

]

, (107)

for any q ∈ [1,∞]. Set ω = Nβ+‖a−‖∞.Multiplying equation (105) by e−ωtv·n
and integrating over Σ−

T , we find that

‖e−ωtp−m‖L∞
k (Σ−

T ) ≤ K1‖e
−ωtj0‖∞ +K1K2‖e

−ωtp+m−1‖L∞
k (Σ+

T ). (108)

27



Inserting (107) in (108) and iterating we obtain:

‖e−ωtp−m‖L∞
k (Σ−

T )≤
1

1−K1K2

[

C(j0,ω,T,K1)+‖p0‖L∞
xv

]

+(K1K2)
m−2‖e−ωtp−2 ‖L∞

k (Σ−
T ). (109)

Using (107), we extend this uniform estimate to ‖p+m‖L∞
k (Σ+

T ).

Multiplying equation (105) by |v|ℓ, ℓ = 0, . . . , µ, we find:

‖|v|ℓp−m‖L∞(Σ−
T )≤

‖|v|ℓe−
β
σ |v−v0|

2

‖∞
|I1|

[

‖j0‖∞+K2 ‖p
+
m−1‖L∞

k (Σ+
T )

]

.(110)

‖|v|ℓp−m‖L1(Σ−
T )≤

‖|v|ℓe−
β
σ |v−v0|

2

‖1
|I1|

meas(Ω)
[

‖j0‖∞+K2 ‖p
+
m−1‖L∞

k (Σ+
T )

]

.(111)

In a similar way, we bound uniformly ‖|v|ℓp−m‖L∞
k (Σ−

T ) and ‖|v|ℓp−m‖L1
k(Σ

−
T ) for

ℓ = 0, . . . , µ.
The above uniform estimates on the boundary values yield the uniform es-

timates on pm in Steps 3 and 4 of Theorem 5.1. We can extract converging
subsequences as in Step 5, with F(cm) and a = b(pm) + αν fixed, and pass to
the limit in the weak formulation as in Step 6, with obvious simplifications. For
the boundary term, an extracted subsequence Tr p±m′ = p±m′ ⇀ ± in Lq(Σ±

T )
and L

q
k(Σ

±
T ) weak for 1 ≤ q < ∞ and weak* for q = ∞. This allows to pass

to the limit in the boundary term but we must justify that g− and g+ satisfy
the equations defining the boundary conditions. Multiplying (9)-(10) by a test
function ψ ∈ Cc(ΣT ) and integrating, we find

∫

Σ−
T ∩{|x|=r0}

p−m′ψdSdvdt =

∫

Σ−
T ∩{|x|=r0}

e−
β
σ |v−v0|

2

I−1
0

[

∫ ∞

0

dṽr ṽ
N−1
r

∫

{φ̃∈SN−1|ṽ·n<0}

dφ̃ p−m′−1

]

ψdSdvdt,

∫

Σ−
T ∩{|x|=r1}

p−m′ψdSdvdt =

∫

Σ−
T ∩{|x|=r1}

e−
β
σ |v−v0|

2

j0 ψdSdvdt

+

∫

Σ−
T ∩{|x|=r1}

e−
β
σ |v−v0|

2

|I1|
−1

[

∫ ∞

0

dṽr ṽ
N−1
r

∫

{φ̃∈SN−1|ṽ·n>0}

dφ̃ p+m′−1f1(ṽ)

]

ψdSdvdt.

Taking limits, the same identities hold for g+ and g−.

Once we have understood the difficulties introduced by the nonlocal bound-
ary conditions, we can combine the strategies developed in the proofs of The-
orems 5.1 and 6.1 to obtain an existence result for the original angiogenesis
problem.

Theorem 6.2. Let us assume that

p0 ≥ 0, c0 ≥ 0, (112)

c0 ∈ W 2,∞(Ω), (113)

(1 + |v|2)µ/2p0 ∈ L∞ ∩ L1(Ω× R
N ), µ > N, (114)

cr0 ∈ L∞(0, T ;L∞(Sr0)), (115)
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and that a function cb is found verifying the hypotheses of Theorem 4.5. Then,
there exists a positive solution (p, c) of the initial value problem (2)-(7) with
boundary conditions given by (9)-(10) satisfying:

c ∈ L∞(0, T ;W 1,∞(Ω)), (116)

p ∈ L∞(0, T ;L∞ ∩ L1(Ω× R
N)),∇vp ∈ L2(0, T ;L2(Ω× R

N )), (117)

(1 + |v|2)µ/2p ∈ L∞(0, T ;L∞ ∩ L1(Ω× R
N )), (118)

(1 + |v · n|)(1 + |v|2)µ/2Tr p± ∈ L∞(0, T ;L∞ ∩ L1(Σ±
T )), (119)

p ∈ L∞(0, T ;L∞
x
(Ω, L1

v
(RN )), (120)

provided the functions K1,K2 defined in (92) satisfy K1K2 < 1. The norms of
the solution are bounded in terms of the norms of the data and the parameters.

Proof.
We consider the scheme (66)-(73) with boundary conditions (100), where g

is given by (9)-(10). We set p1 = 0, so that c1 is the solution of a heat equation.
Then, p2 is the solution of the problem with bounded coefficients F(c1) and
α(c1) and fixed boundary condition p−2 with the regularity (79). As in step 1
of the Proof of Theorem 5.1, the sequence of iterates (cm−1, pm) is well defined
thanks to Proposition 4.1, Theorem 4.5, Theorems 2.1, 2.2 and 2.3, Lemma 3.1
and Proposition 3.7. The iterates are nonnegative, and the coefficients j(pm−1),
b(pm−1), α(cm−1) and F(cm−1) are bounded functions. As we have seen in the
proof of Theorem 6.1, the boundary conditions for p−m satisfy the regularity (79).

The estimates for cm and pm in Steps 2 and 3 of the Proof of Theorem
5.1 hold. However, we do not obtain immediate uniform estimates on the Lq

norms of pm unless we estimate first the boundary conditions. Setting a =
b(pm−1)− α(cm−1)ν, we have ‖a−‖∞ ≤ α1‖ν‖∞. Then, we may reproduce the
computations in the Proof of Theorem 6.1 to get uniform bounds of (1 + |v ·
n|)(1 + |v|2)µ/2p−m in L1 ∩L∞(Σ+

T ). This provides uniform estimates on the Lq

norms of pm thanks to Theorem 2.2. Steps 4, 5 and 6 proceed as in the proof of
Theorem 5.1. The passage to the limit in the boundary conditions is analogous
to that in the proof of Theorem 6.1. The final solution inherits all the bounds
established for the iterates, as a result of weak convergences.

7. Conclusions

The increasing availability of experimental observations forces the appear-
ance of updated angiogenesis models, taking into account new features. The
enhanced complexity displayed by such models fosters the development of new
mathematical strategies for their numerical simulation and analysis. We con-
sider here a model that is able to describe the effect of blood vessel branching
and anastomosis, as well as blood vessel spread due to diffusion of the concen-
tration of tumor angiogenic factor. A kinetic equation for the density of blood
vessel tips involving a Fokker-Planck operator as well as nonlocal terms and
boundary conditions, is coupled to a diffusion equation for the tumor angio-
genic factor with Neumann boundary conditions. These models entail measure
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valued coefficients. Replacing Dirac measures by gaussians, a regularization fre-
quent in numerical approximations, we are able to construct solutions as limits
of solutions of iterative schemes. Stability bounds in terms of the norms of
the data follow. Whether the solutions of families of regularized problems ap-
proximating Dirac measures with gaussians effectively converge to the original
measure valued problem is an open problem.
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