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Abstract.
The study of the decay of neutron-rich Cs isotopes has two main objectives: on one side β

decay is a perfect tool to access the low-spin structures in the daughter Ba nuclei, where the
evolution of octupole deformed shapes can be followed, while, on the other hand, the study of
the gross properties of these decays, in terms of decay rates and branching to delayed-neutron
emission, are fundamental inputs for the modelling of the r-process in the Rare-Earth Elements
peak. Results obtained at CERN-ISOLDE are discussed within this framework and compared
to existing data and predictions from state-of-the-art nuclear models.

1. Introduction
Barium isotopes (Z = 56) are located in a region of the Segrè chart characterized by a variety of
shape-related phenomena, including shape coexistence and possible static octupole deformation.
High order deformations can have a strong influence on γ-decay rates and on quasi-particle
energies, which are, in turn, inputs for the various theoretical models developed to describe
these nuclei [1, 2].

The interest in this mass region is not only based on the occurrence of exotic shapes, but also
on the fact that these nuclei contribute to the peak of Rare-Earth Elements (REE). The origin
of this peak, characteristic of the r-process, is still under debate: it can originate either via the

http://creativecommons.org/licenses/by/3.0


2

1234567890 ‘’“”

12th International Spring Seminar on Nuclear Physics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 966 (2018) 012024  doi :10.1088/1742-6596/966/1/012024

�

�����

�����

�
�
�
�

�
�
� �
�
�

�
�
�

	
�
�

	
�
	

��
��
��
������

�

	����

�����

�
�
�

�
�
�
�

�
�
�

�
�
�

�
	
	

�
�
�

�����
���������

�
�
�

�
	
�
�

�
�
�
�

�

����

����

�

��������

� ��� ��� ��� ��� ����

�

�
�
�



�
�
�

�
�
�

�
	
�
	

�
�
�
� ��
��

�

�


�

�
�
	

�
�
 
!
"�

�����
�������#�

Figure 1. γ spectra following the 148Cs→148Ba decay (top panel), following the decay
149Cs→149Ba (central panel) and following the decay 150Cs→150Ba (bottom panel). Transitions
attributed to the main decay branches (148−150Cs →148−150Ba) are indicated by their energies,
while those corresponding to the βn branch by asterisks. The transition indicated by the dollar
symbol belongs to the decay 149Ba→149La. See text for more details.

r-process freeze-out stage when we have an equilibration of (n,γ) ⇀↽ (γ,n) processes, or it can
be fuelled by the fission of very heavy nuclei formed in merging stars [3, 4, 5].

In order to correctly model this process one has to provide a series of experimental quantities
(fission, neutron capture, and β-decay rates), which are not easily accessible, given the very
exotic nature of the parent nuclei.

2. Experimental details
In this work we study the β decays of 148−150Cs to 148−150Ba isotopes. The parent Cs isotopes
have been produced at ISOLDE (CERN) [6, 7] by fission of a nano-structured UCx target induced
by the 1.4-GeV proton beam delivered by the PS-Booster (PSB). The Cs atoms, thermally
diffused out of the target matrix, were surface ionised and separated in the ISOLDE General
Purpose Separator (GPS). The proton beam current ranged between 1.5 − 2μA. Intensities of
the exotic beams reaching the experimental setup were measured to be 5.5×102 ions/μC for
mass A=148, 100 ions/μC for A=149 and 2 ions/μC for A=150 beam, taking into account a
beamline transmission of ∼70%. The beam extraction was started 6 ms after the arrival of the
proton pulse. Cs ions were implanted on an aluminised mylar tape at the center of the detection
setup. The data acquisition recorded the arrival time of each proton pulse, using it as a reference
for building decay curves. The tape was moved every 20-25 proton pulses (corresponding to a
PSB super-cycle of ∼1 minute) in order to remove the unwanted daughter activity.
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The experimental set-up consisted of the Isolde Decay Station (IDS), equipped with 3 fast-
responding plastic scintillator detectors, to detect the β particles, 4 HPGe Clover detectors
for the detection of γ rays following internal decay in the daughter nuclei, and 3 small-volume
conic LaBr3(Ce) detectors to perform lifetime measurements of specific nuclear states. The β
detection array efficiency was 20% while the total HPGe efficiency, after add-back, amounted to
6% at 0.6 MeV. The digital processing of the energy signals yields resolutions at 1.3 MeV of the
order of 2.3 keV for the HPGe detectors and 40 keV for the LaBr3(Ce) ones. To increase the
efficiency of the γ array no anti-Compton shield has been used, with HPGe crystals placed at
few centimetres from the implantation point. The collected spectra show peaks due to partial
depositions of energy by γ rays interacting via Compton or pair-production mechanisms.

Further details on the experimental set-up and analysis techniques can be found in Ref. [8, 9].

3. Results
Total γ spectra have been produced requiring a coincidence (ΔT) between the proton signal and
the emission of a β particle, registered in the plastic scintillator. Different conditions, depending
on the expected half-life, have been used for the three decays. In panel (a) of Fig. 1 we show
the spectrum related to the decay 148Cs→148Ba, collected requiring ΔT<400 ms, in panel (b)
the one corresponding to 149Cs→149Ba, collected in the same condition, and in panel (c) the one
from the decay 150Cs→150Ba, collected in an interval ΔT<200 ms.

The main transitions attributed to each decay are indicated in the figure by their energy,
while the ones marked by an asterisk, and whose energy is indicated in italics font, belong to the
βn channel, which sizeably contributes to these decays, as it will be discussed later on. These
transitions were used to extract the decay half-lives, which have been published in [8].

The extraction of the probability for emitting delayed neutrons (expressed in terms of Pn

values) is usually based on the ratio between the population of known states in the grand-
daughter nuclei AY and A−1Y, taking into account the emission probability from the daughter,
if known.

In the case of 148Cs→148Ba, being the βn successor (147Ba) an even-odd nucleus its decay
is characterised by a large fragmentation onto many final states. Three transitions are clearly
seen in the spectrum at energies 85, 169 and 246 keV. The line at 158 keV belongs to the decay
148La →148Ce, coming as background from previous implantations, since the tape was moving
every minute.

The 148Cs neutron emission probability of Pn=38(4)% was determined from the ratio between
the total number of 147Ba and 148Ba nuclei produced, estimated using the adopted values
Iabs(

147La; 167.4 keV) = 15.3(16)% and Iabs(
147La; 196.1 keV) = 6.7(7)% [12].

In general, the decay from 149Cs is fragmented onto many, closely lying, final states, and a
strong contribution from delayed emission of neutrons is present. The βn branch seems to be
mainly populating the 2+ state in 148Ba, even if a contribution from the 4+ → 2+ transition
at 281 keV might be present. This second transition is hidden behind a γ transition at similar
energy (282 keV) in the decay of 149Ba.

The neutron emission probability, Pn = 25(4)% for 149Cs, was extracted from the ratio of
the total number of 148Ba and 149Ba nuclei using absolute γ-ray intensities in 149Ba and βn
daughters 148La and 148Ce. Literature values were used for Iγ (148La; 415.8 keV) = 3.6(1)% [13]
and Iγ (148Ce; 158.5 keV) = 56(1)% [14].

In panel (c) two transitions can be identified as originating from the βn channel in the
decay 150Cs→150Ba, at 282 and 326 keV. A third transition belongs to the successor’s decay
149Ba→149La, indicated by the dollar symbol. In the case of the decay 150Cs→150Ba, the
collected statistics is limited, and no previous experimental information on daughter decay are
available. A 150Cs neutron emission probability of Pn <44(11)% was determined from the ratio
between the total number of 149Ba [8] and 150Ba nuclei produced, estimated using the 316.6-
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Figure 2. Top panel: Evolution of Qβ window (filled circles) and neutron separation energy
(filled squares) as a function of mass in the Cs isotopic chain with A=140-152. The values are
taken from the ENSDF database [10]. Central panel: Evolution of β-decay T1/2: experimental
values, shown by open circles, from masses A<144 are taken from the ENSDF database, while
those for A≥144 from the recent compilation given in Ref. [11]. The experimental data obtained
in this work are shown with filled stars. The data are compared with predictions obtained with
KUTY (squares) and FRDM (diamonds) as described in the text. Bottom panel: evolution of
Pn values (same symbols used in the middle panel).

and 101.1-keV transitions, respectively. For the transition at 101.1 keV a conversion coefficient
of 1.86(3) [15] has been used, assuming a pure E2 character. We consider this as an upper limit,
owing to the fact that we could not follow the decay to the grand-daughter.
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4. Discussion
In this section we compare the extracted half-lives and Pn values with literature data and
predictions coming from two of the most credited mass models available on the market.

The first is the finite-range droplet model (FRDM) which is based on quasi-particle random-
phase approximation (QRPA). This model has been recently updated to include contributions
also from first-forbidden transitions, in the framework of the statistical gross theory [16], which
are expected to contribute ≈ 50% of the total decay rate, with increased importance towards
the most exotic species. The second model is based on the KUTY mass formula with the second
generation of β-decay gross theory (GT2)[17]. Both models include the possibility of having
deformed ground states, which are established to be present in this mass region [8, 9].

In the central panel of Fig. 2, we show the evolution of experimental and theoretical half-
lives: The values extracted in this work, shown in the two panels with filled stars, are compared
to experimental data (open circles) taken from literature: those referring to masses A<144
are taken from the ENSDF database [10], while for A≥ 144 are from a recent measurement
performed in Riken (J) during the EURICA campaign [11].

In the inset we expand the region where the two dataset can be compared: T1/2 data extracted
from our work are in general lower than the values extracted in Riken, even if they agree within
the error bars. The large error bar for A=150 refers to the value reported in [11].

The data are compared with predictions obtained used the KUTY mass formula, shown in
filled red squares and from the FRDM model in green diamonds.

Apart from the sudden jump seen for mass A=142, the T1/2 data show a smooth decreasing
trend, which is reproduced by both theories, with some slight deviations in the case of FRDM
predictions.

At increasing mass we see, in the top panel of Fig. 2, that the Qvalue window increases steeply,
while the neutron separation energy, Sn, decreases smoothly. This opens the competition with
the β-delayed neutron-emission channel, leading to the population of (A-1) species. The Pn

values obtained in this work are again shown in filled stars, while the ones taken from literature
with open circles. They are again compared with predictions from the previously described
models.

We see that, up to 143Cs→143Ba decay, the branching is negligible, while it becomes sizeable
at mass around A=145. One should stress that experimental data points do not exist for all
the decay chain. The comparison with theoretical predictions shows a better agreement with
the description given by KUTY, while FRDM tends to overestimate the value by a large factor.
The presence of strong non-axial deformations might affect the predictions for half-lives and Pn

values.
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