
January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

Journal of Circuits, Systems, and Computers
c© World Scientific Publishing Company

CEPRAM: Compression for Endurance in PCM RAM

RODRIGO GONZALEZ-ALBERQUILLA†, FERNANDO CASTRO§, LUIS PINUEL* and
FRANCISCO TIRADO+

ArTeCS Group, University Complutense of Madrid,

Madrid, 28040, Spain
†rgalberquilla@ucm.es

§fcastror@ucm.es
*lpinuel@ucm.es

+ptirado@ucm.es

Received (Day Month Year)

Revised (Day Month Year)
Accepted (Day Month Year)

We deal with the endurance problem of Phase Change Memories (PCM) by proposing

Compression for Endurance in PCM RAM (CEPRAM), a technique to elongate the
lifespan of PCM-based main memory through compression. We introduce a total of three

compression schemes based on already existent schemes, but targeting compression for

PCM based systems. We do a two-level evaluation. First, we quantify the performance
of the compression, in terms of compressed size, bit-flips and how they are affected by

errors. Next, we simulate these parameters in a statistical simulator to study how they
affect the endurance of the system. Our simulation results reveal that our technique,

which is built on top of Error Correcting Pointers (ECP) but using a high-performance

cache-oriented compression algorithm modified to better suit our purpose, manages to
further extend the lifetime of the memory system. In particular, it guarantees that at

least half of the physical pages are in usable condition for 25% longer than ECP, which

is slightly more than 5% more than a scheme that can correct 16 failures per block.

Keywords: PCM, endurance, compression, failures.

1. Introduction

Although DRAM has been the prevalent building block for main memories dur-

ing many years, it has reached a limit in scalability and also faces problems of

power due to the required periodical refresh of stored values. DRAM does not scale

down well beyond 30nm 1. This has driven researchers to look for new technolo-

gies. Some of them are Phase Change Memory RAM (PCM PRAM or just PCM),

Spin Torque Transfer RAM (STT-RAM) 2 or Ferroelectric RAM (FRAM) 3. While

DRAM is a capacitive technology, meaning that logic values are stored as a charge

in a condenser, these new technologies are resistive or magnetic technologies. In

these emerging technologies, cells are made of a material that can be physically

altered, changing its electrical impedance, making it possible to store logical values

as different values of impedance.

1

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

2 R. Gonzalez-Alberquilla et al.

PRAM is the candidate receiving the most attention, being it because it is

compatible with CMOS process, because it can be scaled down beyond 16nm, or

because –unlike DRAM– it does not require a periodical refresh. However, the

endurance problem restricts the adoption of PCM as main memory for the next

computer generation. The endurance is related with the amount of writes that a cell

is likely to sustain before it fails, and in PCM technology this number is significantly

lower than in DRAM. After a cell fails, it is not possible to change its value anymore

and consequently the corresponding block and even the whole page it belongs to

must be discarded. For these reasons, a lot of effort is being currently invested

in making a reliable and durable memory system based on this emerging memory

technology. As such, many researchers have tackled the endurance problem from a

variety of aspects 4,5,6,7,8,9,10,11,12,13. For example, doing wear leveling 10,14, to avoid

early failures in hot-spots of the memory, or building a hybrid hierarchy 15,16,17

placing a DRAM based last-level cache over a PRAM based main memory. This

paper approaches the problem from the perspective of compression to both reduce

the amount of data written to the memory, thus reducing the wear, and to give

a mean to encode information about errors in a memory block. In summary, our

main concern is making memory blocks usable the longest possible. This requires

detecting and surviving as many failures as we are able to.

The rest of the paper is arranged as follows: Section 2 provides some background.

Section 3 presents our technique in detail. In Section 4 we show the simulation

methodology and environment, and next, in Section 5 we evaluate our proposal.

The state of the art is discussed in Section 6 and finally, Section 7 concludes.

2. Motivation and Background

This section first introduces the concepts of Phase Change Memory and coding

theory, doing special emphasis in compression. Then we introduce the concept of

entropy and the ECP scheme, both key in the motivation of our technique.

2.1. Phase Change Memory Technology

Phase Changing Memory (PCM) is a memory technology that uses the electrical

properties of a material to store memory 18. More precisely, it uses the change in the

electrical resistance of materials when they are transformed between an amorphous

state and a crystalline state. The idea is not new, it first appeared in the 1960s,

but it has been on the last years, with the use of chalcogenous alloys as Ge2Sb2Te5

(or GST for short), when it has gained popularity.

Figure 1(a) depicts a PRAM cell, which consists of the two electrodes enclosing

a heating element, and the chalcogenous material. The heater element is just a

material that produces Joule heat when a current is driven through, warming the

chalcogenous material. In order to write a logical value in the cell, the heating

element is employed to apply electrical pulses to the chalcogenide, which changes the

properties of the material resulting in two different physical states: amorphous (high

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

CEPRAM: Compression for Endurance in PCM RAM 3

Top Electrode

Bottom Electrode
Chalcogenide

Heater

(a)

t
tamorph
christal

Te
m
p
e
ra
tu
re

Time

(b)

Fig. 1. (a) PCM cell. (b) Heat pulses used to set and reset a PCM cell.

electrical resistivity) and crystalline (low resistance). Notably, if a high-intensity

current pulse is applied, the material reaches over 600oC and melts. Then, it is

cooled down quickly, making it amorphous (RESET process). If the pulse is longer

and with lower intensity, the material goes through an annealing process allowing

the molecules to re-crystallize, lowering the electrical resistance (SET process).

Thus, the chalcogenide switches easily, rapidly and in a reliable way between both

states. Figure 1(b) shows graphically the heat pulses used to set and reset a PCM

cell. The process for reading the stored value consists in applying a small current

to the cell to measure its resistance.

The limitations of PCM as a replacement for DRAM are the higher write latency,

and the limited write endurance. Next-generation PCM devices can endure just 107-

109 writing cycles 19 vs 1015 in DRAM. The continuous expansions/contractions

of the cell produced by write operations result in a detachment of the heater from

the cell, leaving the cell in a stuck-at failure state. From that moment on the cell

is still readable, but the value cannot be changed anymore.

On the other hand, PCM has some features that DRAM lacks. One of these

good features is the fact that there are intermediate states between amorphous

and crystalline. These states can be differentiated, allowing for multi-bit cells 20.

Another feature is that, not being a charge based technology as DRAM, PCM is

not affected to particle-induced errors 21,22.

2.2. Coding theory

Error-correcting codes have been used to overcome errors in computer systems for

a number of years. Any code C has 4 defining aspects:

• The alphabet: A is the set of symbols that form words of the code.

• The length: n is the number of symbols from A that form the codewords,

this is, C ⊂ An.

• The size: k is the amount of different codewords in the code: k = |C|.
• The distance: d is the minimum of symbols that differ between any two

words of the code. The number of errors that C can correct is t = (d−1)/2.

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

4 R. Gonzalez-Alberquilla et al.

Compression is an application of coding theory that tries to transform symbols,

or collections of them, into symbols of a (maybe different) output alphabet, such

that the frequent cases use the least amount of symbols as possible. Common tech-

niques used are ordering symbols by frequency and encode them as new strings

such that the common ones require less symbols than the uncommon ones (Huff-

man encoding) or storing in a dictionary symbols/strings as they are processed to

encode subsequent occurrences as a backward reference. This achieves a reduction

in the average amount of symbols required to store/transmit information.

There have been some proposals about using compression at different points in

the memory hierarchy 23,24,25, but they had in mind speeding up bus transactions

or virtually expanding the available space. In this proposal, we have in mind us-

ing the healthy bits of a block to store the result of compressing the data in the

block. This requires the data to be compressible in, at most, as many bits as we

have remaining healthy in the block. The entropy as a measure of the information

conveyed by a word gives some insight of how well data will compress, regardless

of the compression scheme used.

2.3. Entropy as a measure of compressibility

In information theory, entropy is a way to estimate how much information is con-

veyed by a symbol, a word or a whole text. Entropy is related with the probability

of the symbols. For example, if we have A = {0, 1}, and we consider the word

“00000010000100000010′′, the probability of a symbol in the word to be 0 is 17/20

and the probability of 1 is 3/20. In this sense, the statement the nth symbol is a 1

conveys much more information than the statement the nth symbol is a 0, because 0

is the most likely value. The existence of this imbalance lowers the entropy, and we

could just store the positions of the 1s to compress the word. On the other hand, if

we take a look at the word “01100111001100110010′′, P(0)=P(1)=10/20=1/2. This

makes the symbols totally unpredictable, and thus the word is not compressible.

The formula to calculate the entropy of a language/word, L, from a q−ary al-

phabet, this is |A| = q, is:

E(L) = −
∑
s∈A

(ps · log(ps))

where ps is the probability of s appearing in L. If the base for log is 2, the unit for

E(L) is bits/symbol.

In the following we present two different values for the entropy of ap-

plications from the suite SPEC CPU2006. We consider byte symbols: A =

{0x00, 0x01, ...0xff}, and the words are cache blocks, that in our target archi-

tecture are 64-byte.

• Average Entropy: is the entropy of all blocks that are evicted from LLC

and written back to main memory averaged. It hints about the regularity

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

CEPRAM: Compression for Endurance in PCM RAM 5

Table 1. Meaning of the different possible values of Total and Average entropy.

Average Total Meaning

Both the symbols and the language are regularlow low
⇒ Highly compressible.

Although the language as itself is not regular, words are,low high
and word-level compression works fine.
Words are not compressible, but the language is

high low ⇒ It is possible to encode symbols in a different way,

so words are still 64 symbols but each symbol smaller in size.
high high Compression is unlikely to work well.

of the symbols in a word or the absence thereof. Small values mean that a

few symbols are repeated in the same word, and there are a few symbols

that only appear a small number of times. In contrast, big values mean

that there is not predictability in the symbols of a word, because most of

the symbols differ from one another. Given that words are 64 symbols long,

the entropy ranges from 0 to 6 = log2(64).

• Total Entropy: is the entropy of the language formed by all blocks (the

multiplicity is the probability of each word) evicted from LLC and written

back to main memory. It gives information about the whole data footprint.

Small values means that words are formed, mainly, by a small set of symbols

that appear in most of the words, although it does not tell us anything

about how many times these symbols appears inside a word, to that end

we have the Average Entropy. A big value means that the footprint is not

regular. Since |A| = 256, this value ranges from 0 to 8 = log2 256.

Table 1 shows the meaning of Average and Total entropy when considered to-

gether. The best case is to have a low Average entropy, because that means com-

pression goes well, and we can stick to it. If Average entropy is high but Total

entropy is low, programs would need to go through a common symbol extraction

phase, then a function f : A → ∪Nn=0{0, 1}n such as Huffman encoding built to re-

encode the alphabet to achieve symbol-level compression. Although it is possible,

the hardware resources to support this are larger.

Figure 2 holds the values for Average, Max and Total entropy for the applica-

tions from the suite SPEC CPU2006 with a 2MB LLC. Max entropy refers to the

maximum entropy found among the evicted words. If it is 6 means that at least one

block in which all the bytes were different is evicted from the LLC. This number

gives a bound for the worst case, and it is interesting the fact that for a big amount

of benchmarks this number is lower than 5, meaning that there is more than 16.6%

redundancy in each word. Concerning Average Entropy, the results are promising,

even for floating point applications, that have much more variability than integer

applications. For all applications but one, the Average Entropy is smaller than 2.5,

what hints for good compression rates.

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

6 R. Gonzalez-Alberquilla et al.

Fig. 2. Average, Max entropy per block, and Total language entropy for a 2MB LLC.

Concerning Total Entropy, the values are really low, this is due to the large

amount of zeros that are written to memory. These values vary slightly with the

cache size (we also explored 1MB and 4MB LLC sizes). This is because as the LLC

size grows, the amount of write-backs decreases and the statistical variety with it.

The lack of enough statistical variety may bias the value making it differ from the

value experienced when different processes share the cache and the effective size

used by each process is smaller than the actual size.

2.4. Error Correcting Pointers (ECP)

The usage of ECP to survive stuck-at faults has been one of the most success-

ful techniques in the last few years. They were introduced y Schechter et. in 26,

outperforming all techniques proposed to the date by large.

The idea behind ECP is using pairs < pi, ri > of pointers (pi) and replacement

cells (ri), such that when a cell in the block fails, a pair is allocated. The pointer

stores the index of the cell to mark the failure and the replacement cell is used to

store the value that would be held in that cell. With an overhead lower than 12.5%,

a 512-bit block can be provided with 6 pairs. There are also 6 extra bits marking

whether or not a given pair has been allocated .

When a block is written to, the actually-written value is compared with the

intended value. If a new discrepancy is discovered, a pair < pi, ri > is allocated,

and the index of the cell in the block is written to pi. All replacement cells are also

updated with the new value. If any of them fails, let’s say rj , a new pair < pi, ri >

is allocated. pi is set to pj to point the same cell, and rj takes the intended value.

When a block is read, all the allocated pointers are read and the failing cells

values are substituted by the values in the replacement cells. This is done in index

order, so if i > j and pi = pj , the value used is ri. This scenario happens if and only

if ri has experienced a failure. This priority-based substitution allows to correct up

to 6 failures in both the block and the extra storage.

In the next section we show the foundations of a technique using compression

which is used to extend the lifetime of a device beyond the limits of ECP.

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

CEPRAM: Compression for Endurance in PCM RAM 7

3. Technique

In this section we present three techniques: 1) COMP, that compresses the infor-

mation associated to a block and fit it in the healthy bits of the block to expand

the effective lifetime, 2) COMPCP , which is a variation of COMP using a com-

pressing scheme much better suited for the context and 3) CEPRAM, which uses

fine grain block pairing plus backspace capabilities to expand the effective lifetime

even further.

In the following, we introduce the compression algorithms from the initial defini-

tion, explaining the modifications we have made along with COMP and COMPCP .

Next, we show how CEPRAM works using block-level pairing. After that, we re-

mind how wear leveling techniques work, and how they behave when using our

techniques. This section is concluded by a rough estimate of the lifetime of a sys-

tem using CEPRAM.

3.1. COMP

3.1.1. No-Table LZW compression (NTZip)

LZW is a traditional text compression algorithm 27 used in many data formats and

applications. We take LZW as the starting point for our compression scheme. LZW

considers a dictionary preloaded with the symbols of the alphabet, in this case

A = {00hex, 01hex, ..., ffhex}. Then symbols from the input are concatenated until

the word they form is not in the dictionary. Then, the index of the prefix is output

with the width necessary to write the size of the dictionary, dlog2(sizeof(Dic))e,
the whole word added to the end of the dictionary, and the considered word becomes

the last read symbol. This process is iterated until all the input is consumed.

LZW focuses on achieving good compression rates for the average cases, and does

not care about the worst case, because there is enough statistical variety to absorb

its effect resulting in a good compression ratio. In our context, we are dominated

by worst case, therefore we need some extra mechanisms to further compress.

We propose the NTZip scheme, a variation of LZW in which the dictionary

is not pre-loaded. It starts empty, and symbols are added as they appear. This

requires output symbols to have one extra bit. The first bit of the output symbol

has the following meaning:

• 0: The following 8 bits represent a symbol from A that was not present yet

in the table.

• 1: The following dlog2(sizeof(Dic))e bits represent a symbol from the table.

At first sight, this modification seems to penalize blocks with many different sym-

bols, because it requires 9 bits per symbol: the leading 0, plus the 8 bits of the

symbol itself. Giving a second thought, in LZW, after the first string is added

to the dictionary, the width of output symbols is dlog2(sizeof(Dic))e = 9, as in

NTZip, so we are not using more bits for the insertion of new symbols than LZW

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

8 R. Gonzalez-Alberquilla et al.

does. The main advantage of this modification is that sizeof(Dic) starts at 0 and

may grow up to 64, so output symbols that refer to the dictionary are, at most 7

bits long (1 preceding bit plus log2(64), as opposed to symbols in LZW that are, in

our context, 9 bits long, except the first output symbol which is just 8 bits.

Algorithm 1 NTZip compression
Dic← φ
S ← λ . Output the first symbol, and insert it in Dic
insert(concat(N), Dic))
output(concat(1, N)) . Proceed with the rest of the input
N ← getChar()
ns← true
while inputLeft() do

while concat(S,N) ∈ Dic do
S ← concat(S,N)
N ← getChar()

end while
if ns then

ns← false
else

if S is just a new symbol then
output(concat(1, S[0]))
ns← true

else
output(concat(0, index(S,Dic), width = dlog2(sizeof(Dic))))e

end if
end if
insert(concat(S,N), Dic))
S ← tail(concat(S,N)
N ← λ

end while

Algorithm 1 shows how the pseudo-code of the decoder looks after the modifi-

cations. First, we need to handle the first symbol separately, because Dic = φ is

a special case. Another modification is the calls to output, that need to be pre-

fixed by 0 or 1 depending on whether we found a new symbol that is not on the

table yet or not. The last modification is the variable ns which controls that the

same symbols are not output by error: when N gets a new symbol s, the con-

dition concat(S,N) ∈ Dic becomes false, we can assume S is formed of some

previous symbols and ns = false, so the compressor outputs the index of S in

Dic, inserts concat(S,N) in the dictionary, sets S ← s (given that N = s 6= λ,

tail(concat(S,N)) = s) and N gets the empty symbol. The outermost loop starts

a new iteration, concat(S,N) cannot be in the dictionary, because S = s which is a

new symbol. Therefore, the inner loop is not entered, and the condition of the fol-

lowing if is satisfied. Then the new symbol is output, and inserted in the dictionary.

The last two sentences of the outer loop leave S and N unchanged, because N = λ.

In the next iteration concat(S,N) ∈ Dic, so N gets the next symbol from the input,

and concat(S,N) 6∈ Dic. Here is when ns appears in the scene: if we did not check

ns, the algorithm would just output the index of s in the dictionary, leading to s

output twice, first as a new symbol and then as an indexed symbol, which is wrong.

Having ns allows the algorithm to just insert concat(S,N) in the dictionary and

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

CEPRAM: Compression for Endurance in PCM RAM 9

Table 2. States for COMP and a proposed encoding to minimize bit-flips in transitions.

State Encoding Description

NF 0000 Initial state, no failures.

ECP1 0001 First failure, corrected applying ECP.

ECP2 0011 Second failure, corrected applying ECP.
ECP3 0010 Third failure, corrected applying ECP.

ECP4 0110 Fourth failure, corrected applying ECP.
ECP5 1110 Fifth failure, corrected applying ECP.
ECP6 1100 Sixth failure, corrected applying ECP.

COMP 2 1000 Seventh failure, discard bit pairs and apply compression.

COMP 4 1001 Eighth failure, discard bit fours and apply compression.
COMP 8a 1101 Ninth failure, discard whole bytes and apply compression.

COMP 8b 0101 Tenth failure, discard whole bytes and apply compression.

proceed. Using NTZip we achieve better results on average and almost the same

worst case (just 1 more bit over a total of 575), as argued in Section 5.

3.1.2. COMP operation

Using NTZip requires hardware support to do the compression/decompression, but

also requires extra bits to hold information about the block. In the design of COMP,

we want to keep the overhead at bay: we target at most 12.5% space overhead, same

as ECP6
26, SEC64

28, Pairing8
29, Wilkerson4

30, and a perfect code correcting up

to 9 errors. That makes for 64 bits of extra space.

The idea behind COMP, depicted in Figure 3, is using a ECP6 scheme until the

6th failure takes place (a). Once the 7th failure arises (b), instead of discarding the

block, it is compressed. Out of the 64 extra bits, 4 are used to encode that the block

is compressed (left part of the picture), 56 bits hold 7 8-bit pointers that point to 7

bit pairs that are discarded (512 bits⇒ 256 pairs⇒ 8-bit pointers), so we can point

to the 7 failing pairs, and the data is compressed as long as it fits in the remaining

space, calculated by subtracting 7 ∗ 2 for the seven pair of bits discarded (failing

bit plus accompanying bit due to granularity of addressing), from the block size:

512− 7 ∗ 2 = 498 bits. When the 8th failure takes place (c), the 4 bits encode that

the block is compressed and there are 8 pointers 7-bit wide to groups of 4 bits that

are discarded, because at least one fails. This allows us to use 512−8∗4 = 480 bits

to store the compressed data. The next step is widening the discarded chunk size

again, narrowing the pointer size to 6 bits. This allows us to discard 9 bytes when

the 9th failure happens (d), and 10 (e), when another cell fails. This method can

survive up to 10 failures, as long as the compressed data fits in 512− 10 ∗ 8 = 432

bits. If at some point the data is compressed and it does not fit in the block, the

block is deemed useless and discarded. This is feasible, because we devote 4 bits to

encode the state, as Table 2 shows.

The results for applying this technique improve ECP, if only because it is build

on top of it, but are not very good. The problem is that we are limited by worst

case. This means that it does not matter if a block compresses down to, let us

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

10 R. Gonzalez-Alberquilla et al.

(a)

(b) (c)

(d) (e)

Fig. 3. COMP operation. The top horizontal bar symbolizes the 64 bits of meta-data, and the

square models the data block. In the meta-data section color grey means unused bits. (a) ECP is

used while the number of failures is 6 or less. There are up to 6 9-bit pointers pointing the failing
bits and 6 replacement cells. (b) If the block has 7 failures, 7 8-bit pointers point to the failing

pair. Out of each pair, only one bit is failing (black) and the other one is discarded, even if it is

healthy. (c) There are 8 7-bit wide pointers to groups of 4 bits that are discarded because at least
1 bit is failing (black). (d) and (e) 9th and 10th errors occur: 9 and 10 6-bit pointers respectively

to whole bytes that are discarded because at least one bit (black) is failing.

say, 300 bits, so it fits even with 10 failures and 10 bytes discarded, on average,

because if in a write-back operation it does not fit in the available space, the block is

deemed useless and discarded, and the whole page with it. Therefore, this is not the

best context for compression. Another shortcoming of this scheme is discarding 10

bytes when there are 10 bits failing, the rate of wasted space is 10x. This motivates

adapting NTZip to make it more suitable for our purpose.

3.1.3. NTZip with backspace

The main problem with COMP is that a lot of space is wasted due to the limitation

in the size of the pointers. In this section we propose not doing explicit recording

of the failing cells, given that stuck-at cells are still readable, and thus, the failure

is exposed only 50% of the times. The rationale is that, if we assume the same

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

CEPRAM: Compression for Endurance in PCM RAM 11

probability of 0 and 1 in the values of each bit, the probability of a stuck-at bit

being written a different value that the stuck-at value is 50%. This means that if

we have n failing bits, on average only n
2 of the failures will manifest. Knowing this,

we also propose NTZipBs, a modification of NTZip in which the symbol “0” of the

output code encodes a backspace, that lets the code express that there have been

a failure in the previous symbol, and should be fixed. This is done by modifying

the symbol table (dictionary). The very first entry is allocated upon initialization.

All match tests to index 0 return false, so the output symbol is never 0. If during

the writing of a symbol a fault is exposed, then a 0-index symbol is output to

mean that there is an error in the previous symbol. Algorithms 2 and 3 show the

code for an optimistic simplification of NTZipBs that assumes that no failures are

exposed in the backspace, and that no symbol is, due to failures, transformed into

a backspace. The idea is the same as in NTZip, but when writing the block, if a

failure is detected in one symbol, a backspace is inserted afterwards.

Algorithm 2 NTZipBs compression
Dic← A
insert(< bs >,Dic)
S ← λ
while inputLeft() do

N ← getChar()
while concat(S,N) ∈ Dic do

S ← concat(S,N)
N ← getChar()

end while
output symbol(index(S,Dic), width = dlog2(sizeof(Dic)))e
insert(concat(S,N), Dic))
S ← N

end while

Algorithm 3 output symbol(S : integer, width : integer)
error ← true
while error do

writememory(S,width)
error ← checkmemory(S,width)
if error then

writememory(0, width)
end if

end while

The two major shortcomings of this modification are:

• A block with n failures can require up to n+1 iterative writes: If in the first

write we detect one failing cell, we perform a second write of just the tail of

the block after the failure with the backspace and the rest of the symbols.

If, in turn, this second write shows a failure, a third write is required, and

so on up to n+ 1 writes.

• The decoding of LZW, NTZip and NTZipBs is not parallelizable for such

small blocks. The coding is not parallelizable either, but write-backs are

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

12 R. Gonzalez-Alberquilla et al.

not in the critical path. This has a major impact, because it will insert

non-negligible time overheads to LLC failures in the system “early”.

The first problem is not critical, it is reasonable to slow down writes as the

system gets old. We assume that it is better to have some slow blocks than to

discard some pages. The second problem is more important, and in Section 3.2 we

address it. Prior to that, in the following we briefly analyze the hardware overhead

and throughput penalty of the proposed schemes.

3.1.4. Implementation overhead

For the coding we require an automaton that writes, reads, and in case of a fault,

regenerates the “queue” (from the faulting word onward) by inserting first a < bs >

(to remove the symbol where the fault is manifested). If the circuit is a comparator

(read block == written block), it is needed to find the first mismatch, to perform

a shift and to insert the < bs >. In the general case we require a stack (counter),

since, if the error is in a < bs >, it is needed to insert the < bs > again, and another

< bs > for the erroneous character in which the < bs > become due to the fault.

But obviously, these two new < bs > are again error-sensitive, hence there is the

need of a counter. The circuit iterates O(n/2), where n is the number of faults in

the line, because we only incur overhead in case there exist exposed faults. In any

case, being a writing process, it is out of the critical path, and as all the data are

located in memory, we can do a design that places this circuit on the memory side,

thus not consuming system bus bandwidth.

For the decoding process, as it is performed symbol by symbol, we require 16+2n

steps, where n is the number of < bs > in the given word. The biggest challenge with

NTZip and therefore, with NTZipBs, is implementing the decoder. This challenge

comes from two facts:

• Dependencies among symbols: it is possible to have each symbol depending

on the previous symbol.

• Variable amount of symbols: the amount of symbols needed to compress a

block depends on the contents of the block.

This means that, in the general case, we need to either serialize the decoding or

have a form of speculation on the dependency and recover mechanism. The former

has simpler hardware at the cost of higher latency. For the latter, assuming we want

to decode 2 symbols in parallel, we would require a predictor for the dependency,

two possible paths for each outcome, along with the recovery mechanism. For n

symbols in parallel, we need O(n) predictors (n− 1 to be precise), and O(n2) data-

paths ((n− 1)2). On top of this requirement, by the second observation, we cannot

do a pipelined implementation, unless we provision for the worst case. For NTZip,

that means a block holding 64 different one-byte values, which corresponds to 64

symbols. Putting everything together, that means either 64 stages, each equipped

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

CEPRAM: Compression for Endurance in PCM RAM 13

with a dictionary that can hold up to n−1 words of lengthmin(n−1, 10). The bound

on the length comes from the fact that, in order to generate a symbol encoding n

bytes, we need a symbol encoding n − 1 bytes. Therefore, to get to a symbol that

encodes 11 bytes, we need a symbol that encodes 10, one that encodes 9 and so

on. If we add the lengths, 1 + 2 + ...+ 11 = 66, we would go beyond the length of

a block, so we are guaranteed to generate symbols that encode, at most, 10 bytes.

This amounts to, roughly, 2Kwords ≈ 10Kbytes with an extra 64 cycles latency in

the worst case. The average amount of symbols per block in the studied applications

is around 45, so we would have a latency increase of 45 cycles, assuming our circuit

is capable of doing early exits. If we consider a non-pipelined implementation, that

would require, on average, 45 cycles per cache block, this is, 64 bytes. This would

limit the bandwidth to ≈ 45

64
∗ clock frequencybytes/s. This may not be enough

for configurations in which many cores share the memory controller, but as the

decoding of different blocks is independent, we can just replicate the hardware.

Although the cost in hardware is affordable, increasing the latency of loads in

45 cycles on average is undesirable. This motivates the search for a compression

scheme better suited for this use case.

3.2. COMPcp

3.2.1. C-Pack and C-PackBs

Chen proposed C-Pack 23, a cache compression scheme targeting high performance.

COMPCP is a variation of COMP using C-Pack instead of NTZip as compression

scheme. We slightly adapt the hardware decoder employed in 23 by adding some

logic to discard the failing sets of bits, which can done in a few gate levels.

C-Pack input alphabet are 4-byte symbols. Each byte can be in one of the

following 3 categories: Z if it is 0x00, M if it matches the byte in the same position

inside the symbol of a word in the dictionary, or X if the byte is neither Z nor M .

Using C-Pack also requires discarding faulty bits as well as NTZip, what led us

to modify it by including a backspace character (C-PackBs scheme). Table 3 shows

the modification of pattern encoding done to C-Pack (Table 1 in 23). The pattern

ZZZX is eliminated. We do that without hurting compression much by initializing

the dictionary with the word 0, i.e., the word formed by 32 zeros, so ZZZX is a

subcase of MMMX, also we can recognize ZZXX as MMXX with 0. We substitute

it with the backspace (< bs >) and also shorten it in one bit.

In our C-PackBs, the < bs > is, strictly speaking, not a backspace, but a cor-

rection symbol, always followed by 5 bits, to make a 1-byte symbol. The longest

symbol is 34-bit long, requiring less than 5 whole bytes. In the 5 bits following

< bs > each 1 means that a byte contains at least one error, and accordingly, after

the bs-byte, are as many bytes as 1s in the 5 bit pattern, each to be xor-ed with

the failing byte of the previous symbol. Figure 4 depicts an example.

In Figure 4 (a) there is an extract of a compressed block. The first two symbols

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

14 R. Gonzalez-Alberquilla et al.

Table 3. Pattern encoding for C-PackBs

Code Pattern Output Length(b)

00 ZZZZ (00) 2

01 MMMM (01)bbbb 6
1101 MMMX (1101)bbbbB 16
1100 MMXX (1100)bbbbBB 24

10 XXXX (10)BBBB 34
111 < bs > (111)bbbbbB..B 16..48

00 (ZZZZ)

1101 (MMMX)

1100 (MMXX)

111 (<bs>)

Stuck-at failure

Error in byte

No errors in byte
Dictionary index

1 byte 2 byte 3 byte
st nd rd

(a)

(b)

Correction byte
Don't care

Failing byte mask

Fig. 4. Error handling in C-PackBs. (a) Compressed block. (b) Generation of correct symbol using
the correction byte (in this case “01000100”).

correspond to the pattern ZZZZ. Next symbol is a MMMX, so following the symbol

are 4 bits to index the dictionary, and the less significant byte. The fourth symbol

is MMXX, which is the symbol containing failures, and therefore next symbol is

< bs >. The failing symbol is comprised by the pattern descriptor, “1100” (in red),

the 4-bit corresponding to the index in the dictionary of the matched word (in

white), and the 2 least significant bytes of the uncompressed word (in yellow). The

failing bits are in the 2nd byte (bits 6 and 2). After writing the symbol we discover

the failures, so, instead of writing the next symbol, we insert a backspace (cyan),

followed by 5 bits: 0, because the 1st byte contains no errors (green), 1 because the

2nd byte contains errors (deep red), and three more zeros. After it, a byte containing

ones in the position of the failures is inserted. Then, the rest of the block is written.

When we decode the word (Figure 4 (b)), the decoder detects the < bs > symbol,

and reads the following 5 bits. Given that there is only one bit set, it reads one

correcting byte that is XOR-ed with the 2nd byte to produce the corrected symbol

that can then be decoded. The two bytes (< bs >, 5-bit mask and correcting byte)

are eliminated and the decoding proceeds. There are more complex situations in

which the < bs > contains errors or even situations in which the error is in the

header of a symbol, resulting in an output symbol which length is different than

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

CEPRAM: Compression for Endurance in PCM RAM 15

expected. These situations only affect the step of writing into memory. The coding

is unaffected, and the decoding is the same regardless of where the error happened,

and consists in a pre-pass that detects < bs > headers and corrects symbols.

3.2.2. Implementation overhead

The overhead of C-Pack 23 in silicon and latency is much more competitive than

the one for NTZip. The authors report, for the studied technology nodes, a decode

latency of 8 cycles, and an encode latency of 13 cycles. They also do a detailed

description of the circuits and motivate the low overhead 23.

Concerning the versions with backspace, the cost is similar for both compression

algorithms. One possible and simple implementation is a circuit that sequentially

inspects each symbol of the read block and the following. In case of the latter not

being a backspace, it shifts it, and iterates again over the next symbol and the one

after it. In case of a < bs >, both symbols are discarded, the latest shifted symbol

becomes the current symbol for the next iteration, and the symbol following the

discarded pair becomes the next symbol. The need to go back upon detection of

< bs > and the possibility of having consecutive < bs > is easily dealt with using

a stack of up to 16 entries holding the position of the current symbol in the block,

i.e., 10 bits per entry. The control for this unit is very simple, as it has to check

the second symbol for a < bs > (shift + compare). And based on that, stack the

position of the current symbol, or pop the top of the stack, until the stack is full

(16 symbols) and the next symbol is not a < bs >. This means 16 + 2n cycles per

block, where n is the amount of < bs > in the block, with a negligible amount of

hardware. Again, as the circuit is sequential, it may impose an undesired bound to

bandwidth that can be easily address by replicating the proposed scheme.

3.3. CEPRAM

3.3.1. Further increasing the life through block-level pairing

Our last proposal is CEPRAM: Memory compression with block-level pairing for

an improved life-span in resistive memories. The idea of CEPRAM is working as

COMPCP for the 10 first failures. CEPRAM keeps a pool of discarded pages. When

a block hits the 11th failure, if the pool is empty, the whole page is discarded from

the system and added to the pool. If the pool is not empty, the first available block

is allocated as “overflow” block of the failing one. This is done by using one of the

available encodings for the state in the meta-data for this new state, PairLeader.

Another one of those available encodings will be used for the linked block, PairSlave,

and yet another one for when a block is not usable anymore Useless. The remaining

60 bits are used to store the physical address of the linked page. Actually, those

60 bits allow for writing the address with redundancy, to survive stuck-at failures

in the meta-data region. The linked block has its state modified accordingly, and

from then on, when the block is written to, the block is compressed with C-PackBs,

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

16 R. Gonzalez-Alberquilla et al.

using the second block to write data overflowing from the first, if at some point

the compressed data does not fit in the 1024 bits of the combined blocks, then the

PairLeader is discarded with its whole page, and added to the pool. In this initial

proposal, the linked block is lost. The decoding of a PairLeader proceeds as usual,

but continuing with the PairSlave, if after processing the first block the decoder

has found less than 16 non < bs >-symbols.

3.3.2. Wear Leveling

In CEPRAM we use wear leveling techniques as in 31,15. However, we use that only

for the data part, the meta-data is not wear-leveled. The reason for this is that we

need the 4 state bits to be reliable. If a line goes through all states, it will be around

3 writes to each bit. The probability of these bits to get stuck-at is really close to

0. Also we need the pointers to discarded blocks to be as healthy as possible, and

the same for the last stage of a block life, when an overflow block has to be linked,

because if a block cannot be linked or cannot transition states, the block (and the

whole page with it) is immediately discarded. With this decision, we are trading

more wear in the data bits for less wear in the more-critical meta-data bits.

When two blocks are paired, the leader suffers wear more often than the slave

(overflow) block. Allowing for wear leveling inside the pair affects performance

because the start of the block may be physically placed in the second block, and

that scenario requires fetching the PairLeader from memory, getting the PairSlave

address, fetching it, and then start the < bs > expansion. If wear is leveled only

inside each block, then the < bs > expansion can be started as soon as the first

block arrives, and the fetching of the second is done in background.

3.3.3. Multiple Linking

CEPRAM only links once, but an scheme can be devised in which we have plenty of

overflow blocks. We discarded that option because that situation arises only when

the system is close to malfunction, and there is no point in “prolonging the agony”.

3.3.4. Lifetime estimation

The average compressed block size is 320 bits. For every failure, in the worst case,

we use 2 bytes, one for the < bs > and the mask, and another one for the correction

byte. If two failures are in the same symbol, then the algorithm may insert either

2 or 3 bytes, depending on the two failures being in the same byte or in different

bytes. We can do an average case estimation of the lifetime measured in survived

failures. If a block is 512 bits, on average, there are 512−320 = 192 bits = 24 bytes,

that let us correct up to
[

24
2

]
= 12 failures before discarding the first block. After

pairing, the amount of available bits is 1024− 320 = 704 that allow for
[

704
16 = 44

]
failures corrected. On average, if the probability of a stuck-at failure to manifest is

0.5, this can correct on average 90 failures per paired block.

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

CEPRAM: Compression for Endurance in PCM RAM 17

Table 4. Parameters of the memory hierarchy.

DL1 IL1 L2 L3

Size 32KB 32KB 256KB 1,2 and 4MB

Associativity 8 ways 8 ways 8 ways 16 ways

Block size 64 bytes 64 bytes 64 bytes 64 bytes

Replacement policy LRU LRU LRU LRU

4. Simulation Environment

In this section we present the simulation environment and the methodology of

simulation used to evaluate the technique proposed in the previous section. We

start by introducing the applications used for benchmarking and following it is a

description of the two simulation tools used.

Benchmarks: we use all the applications from the suite SPEC CPU2006 32. We

have compiled the applications using GNU compilers, namely, gcc, g++ and gfor-

tran version 4.6. The optimization flags used are those enabled by the standard

optimization flag “-O2”. All applications are run to completion with the test input.

Simulator for compression: for the compression schemes we use a memory hier-

archy simulator based on the cache simulator from the SESC 33 processor simulator.

This simulator is connected to a pintool 34 which instruments guest applications so

the cache model takes the appropriate actions prior to every single memory access.

Both instructions and data accesses are simulated. Table 4 gathers the parameters

of the memory hierarchy simulated. Whenever the simulator evicts a block from

the LLC, it performs the appropriate actions. For entropy and bit-flip probability

calculations, these actions are just appropriately modifying the counters according

to the contents of the block. For NTZipBs and C-PackBs, the actions are more

complex. First, the block is compressed. Second, for n = 1, 2, ..., 50 a 512-bit wide

error mask containing exactly n errors is generated. The compressed block is writ-

ten into a single block using the error mask, and it is accounted as an overflow if the

required size exceeds 512 bits. Otherwise, it is accounted for as a success. Next, for

n = 1, 2, ..., 50 a 1024-bit wide error mask containing exactly n errors is generated.

The compressed block is written into a single block using the error mask, and it

is accounted as an overflow if the required size exceeds 1024 bits. Otherwise, it is

accounted for as a success. This is done to differentiate the probability of overflow

when the block is in its own from the probability when the block is paired. In addi-

tion, to calculate the amount of bit-flips, the “previous value” is kept, compressed

and written for each mask, and both output are compared to count the number of

bits that flip.

Memory system simulator: we use an in-house simulator. Doing faithful, cy-

cle accurate simulation is hard and impractical, because it will require simulating

workloads until the end of the lifetime of the system. For that reason, our simulator

does a number of assumptions. First, we assume that there is an underlying wear-

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

18 R. Gonzalez-Alberquilla et al.

Table 5. Memory system simulator parameters.

Page size 4KB

Row size 64 Bytes

Rank 1
Chips per rank 8

Bit lines per chip x8
Lifetime distribution N(µ = 108, σ = 2.0 · 107)

Pages 2000

leveling technique to evenly wear all the memory cells, or at least, those not devoted

to actual data, depending on the technique. Next, we assume that memory chips

store data in 512-bit blocks (rows), and that each contiguous block of memory is

spread over eight chips. Finally, writes are performed at block level. When a block

is written, each bit is modified with probability p extracted from the study on flip

probability. This is needed, because compressing data will narrow the size of writes,

but as a side effect will increase the probability of bits being flipped, because com-

pression reduces size by eliminating regular patterns, therefore, compressed blocks

are less regular and more prone to have more bits modified per write.

As shown in Table 5, we simulate a system with 4KB pages. Each technique

is simulated by creating a number of memory pages. Each bit inside every page,

including meta-data, is created with a lifetime randomly distributed according to

a Gaussian distribution N(µ = 108, σ2 = 2.0 · 107). Initially, the wear ratio, w is

calculated as a function of p and the number of pages in the system, as Equation 1

shows. Then, according to the wear ratio, lifetime calculation is performed, and the

simulation proceeds by locating the next failing cell, wearing all the system accord-

ingly, applying the actions corresponding to the simulated technique: allocating an

ECP, discarding a page, pairing a page, ignoring it because an ECC is capable

of correcting the error, etc. After actions are taken, w is updated if needed, and

lifetime recalculated.

w = p · #starting pages

#alive pages
(1)

w is affected by 2 factors:

(1) Page deaths: When physical pages die, the remaining pages need to “absorb”

writes to that page. Due to the assumption of wear leveling techniques, that

extra wear is evenly spread among the remaining pages. That requires recalcu-

lating w and the lifetime for all alive pages in the system.

(2) Technique application: When a technique takes an action that modifies either

p or the size of block writes, the wear ratio of a block, a page or of the whole

system may be modified. For example, when a block start being compressed,

both p and the average compressed write size are modified requiring w to be

recalculated along with the remaining lifetime.

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

CEPRAM: Compression for Endurance in PCM RAM 19

5. Evaluation

In this section, we show the results of the evaluations of the technique proposed in

Section 3. First, in Section 5.1 we show the performance of the compression schemes

considered, in terms of frequency of best case, frequency of overflow and average

compressed size. Next, in Section 5.2 we evaluate NTZipBs and C-PackBs in terms

of survived failures, and evolution of the average bits flipped per write with the

number of errors. To conclude the evaluation, in Section 5.3 we show the results

of the simulation of a PCM based system in terms of the lifespan, comparing it to

previous proposals.

5.1. NTZip and C-Pack performance

The two aspects of a compression scheme that we have chosen to focus on are :

• % Constant Block : it is the percentage of blocks that are constant, and therefore

are the most compressible ones.

• % Overflows: it is the percentage of blocks that exceed 512 bits when com-

pressed. It represents how often a block lies in the worst case scenario.

Figure 5 shows both aspects for NTZip and C-Pack (using SPEC CPU2006 ap-

plications and 2MB LLC. SPECINT, SPECFP and Aggregate refers to the weighted

average considering integer, floating point and all applications respectively.

NTZip: With NTZip the constant blocks compress down to 48 bits, while the

maximum compressed size is 576 bits: each byte is “new” so it is encoded as a 9-bit

symbol, with a 1 identifying the new byte plus the byte itself.

The reason for the modification of LZW is that, for the case of the constant

block, LZW manages only to compress down to 98 bits: first symbol is 8 bits, and

the remaining 10 symbols required to encode the word ((1+10)∗10
2 = 55 < 64 < 66 =

(1+11)∗11
2) require 9 bits, because the number of symbols of the dictionary is greater

than 256 after the first byte is encoded and output. For the smallest compression

ratio, NTZip is 576 bits, while LZW only improves it by 1 bit: 1 symbol of 8 bits,

plus 63 symbols 9-bit wide total 575 bits. It is easy to proof that for input sizes of

64 bytes, NTZip compresses always to smaller sizes than LZW but for the case of

64 different symbols.

NTZip does an amazing job compressing blocks from SPECINT applications.

The one for which it performs the worse is bzip2. Since bzip2 is a compression

program in itself this is totally reasonable, because compressed data does not re-

compress well. Compressing SPECFP is harder. The compression algorithms con-

sidered are not FP oriented, and therefore, the higher variability at byte level in-

trinsic to floating point data is the reason why they perform worse than for integer

code. Nevertheless, on average 75% of the blocks that FP applications write back to

memory compress to sizes ≤ 512, and 20% of the total are the same byte repeated

over and over again.

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

20 R. Gonzalez-Alberquilla et al.

Fig. 5. Percentage of blocks evicted from LLC that are the same byte repeated 64 times (constant,
zeros in C-Pack), and that compress with NTZip and C-Pack to more than 512 bits (overflow).

C-Pack: there is a slight difference with respect to NTZip. In NTZip, a block being

the same byte repeated over and over again is the best case scenario. C-Pack is, in

that respect, more restrictive. It requires the block to be all zeros, in which case

C-Pack is able to compress it down to 32 bits, improving the 48 bits achieved by

NTZip. Given that most of the constant blocks are zeros, this restriction is not a big

constraint. Another difference in the numbers is that in the presence of a block with

64 different bytes, the compressed size for NTZip is 576 as discussed above, while

C-Pack manages to use just 544 bits. Although Figure 5 is not enough to state that

the compression ratio of C-Pack is higher than that of NTZip, it is a good reason

to use C-Pack. Since CEPRAM pairs two blocks and writes the compressed block

in the two blocks, having a smaller maximum size makes C-Pack very well suited

for this purpose.

As shown in Figure 5, the numbers for C-Pack do not differ much from those

achieved by NTZip. On the whole, C-Pack manages to keep overflows lower than

NTZip, although the difference is not significant.

Regarding those blocks that neither are constant nor compress to more than

512 bits, Figure 6 shows for each application, the average compressed block size

using NTZip and C-Pack. For these blocks, the distribution of the size to which

they compress is pseudo-normal in both cases, differing from a normal more in the

case of C-Pack. This is because being C-Pack a word-oriented algorithm, there are

only a small number of different sizes that can be achieved.

Note that for NTZip, there is no general trend, not even if we distinguish between

integer and floating point code. However, 335 bits is a low average size if we take

into account that the input size is 512 bits, and with so few input symbols, just 64,

it is hard to achieve high compression rates.

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

CEPRAM: Compression for Endurance in PCM RAM 21

Fig. 6. Average compressed block size for both NTZip and C-Pack.

C-Pack as well as NTZip does not show any pattern or regularity in the aver-

age compressed size. There is no correlation between the average compressed size

for both algorithms either. For some applications as gobmk1,2,3,4, mcf or zeusmp

C-Pack outperforms NTZip, but for xalancbmk, gobmk5 or calculix it is NTZip

outperforms C-Pack. There are also some applications (bzip2,gamess,soplex) for

which the difference is negligible. Overall C-Pack achieves a smaller average size,

but also with a higher coefficient of variance.

These results back up the design decision of changing the compression algorithm

for C-Pack, because there is already a high performance encoder/decoder, especially

designed for the place in the hierarchy we intend to place it.

5.2. NTZipBs and C-PackBs performance

When we augment NTZip with the backspace character the average compressed

size is hard to quantify. Instead, we have taken the amount of (exposed) failures

survived in a block pair as the figure of merit. This number, M , is the maximum

number of exposed errors, N , for which after doing the following process for all

blocks that are written back to memory, none reported a final size greater than

1024 bits (paired block):

(1) Calculate C as the result of applying NTZip to the B written-back block.

(2) Generate a random 1024-bit mask with N errors, maske.

(3) For each symbol s ∈ C
• Write s and check maske.

• If no errors are detected, proceed with next symbol.

• If an error is detected, insert a backspace, write s and check for errors

again.

The other feature we have focused on is the probability (ratio) of blocks that

actually exceed 1024 bits when written back with M+1 errors. This second number

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

22 R. Gonzalez-Alberquilla et al.

Fig. 7. Max. survived exposed failures (M) for NTZipBs and C-PackBs.

provides an insight on how long it will take for the block to fail after the (M + 1)th

failure is hit.

Figure 7 and Figure 8 show the M number and the aforementioned probability

respectively for both NTZipBs and C-PackBs. In our context, the behavior of a

system is decided by the worst case, because due to wear leveling technique the

worst-case takes place in a number of different memory places as time passes. For

this reason the average M and the average overflow probability with M + 1 failures

lack any meaning in this context and they are not shown.

First, note that the theoretical limit of failures a paired block is able to survive

is 26 for NTZipBs and 30 for C-PackBs:

• In the case of NTZipBs the maximum compresses size is 576. Therefore, there

are at least 1024 − 576 = 448 bits for correcting errors. In order to correct an

error, we need, at most, 8 bits for the backspace (1 bit to signal we are indexing

in the table, plus 7 bits to index the table if the error is in the 64th symbol).

After the backspace we need to output the symbol again, which if it was not in

the table previously takes 9 bits, for a total of 17 extra bits. Dividing, NTZipBs

is able to correct, at least, 448/17=26 failures.

• For C-PackBs the maximum compressed size is 544. Therefore, there are at

least 1024 − 544 = 480 bits for correcting errors. In order to correct an error,

we need, at most, 16 bits: 3 bits for the BS code, plus the 5 bit mask, and

then 8 bits with the correction mask. In the case of errors happening in the

same byte/symbol, this increases the total bits required but decreases the bits

required per error. Likewise, if a failure transforms a symbol into a BS, we just

discard that byte, clearing the mask, and repeat the symbol again. Dividing,

C-PackBs is able to correct, at least, 480/16=30 failures.

According to Figure 7, in the case of NTZipBs a paired block is able to survive,

at least, 27 failures. The theoretical limit is a strange scenario and does not show

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

CEPRAM: Compression for Endurance in PCM RAM 23

up in our simulations. Moreover, for many of the applications more than 30 failures

are survived. In addition, note that this is the number of exposed failures. If a cell

is stuck-at a value, and the block requires the cell to be that value, the failure

is not exposed, and therefore no actions are required. This is important, because

previous schemes as ECP do not take into account if the error is exposed or not,

and just avoid the failing bit all the time. Moreover, if the probability of a cell

holding a 0 is the same of that of a cell ending up stuck-up at 0, then, the expected

number of exposed failures per block write is half the number of failures. In other

words, on average, half of the stuck-at cells are written the same value they hold,

and only the other half require correcting actions. This makes NTZipBs able to at

least 26 ∗ 2 = 52 failures per paired block, which dramatically improves the errors

achieved by 2 ECP blocks in their own.

However, in the case of C-PackBs the theoretical limit is actually reached for

some applications, although a number of them show a more favorable behavior,

managing to get more failures survived.

In the same line that happened with average compression size between NTZip

and C-Pack, NTZipBs and C-PackBs do not compare in a per-application basis.

There are examples of both beating the other. On the big figure, C-PackBs is able

to correct, at least 30 failures, which is 4 more than the minimum for NTZipBs.

Figure 8 shows the overflow probability for NTZipBs and C-PackBs. It also

includes the overflow probability for NTZip and C-Pack –calculated in an analogous

fashion– in order to illustrate that for the vast majority of applications they are

much higher than those of NTZipBs and C-PackBs. According to Figure 8, after

the (M + 1)th error, the overflow probability is quite low for both schemes, but

for calculix and soplex, allowing the block pair to be usable for a number of times

before it actually overflows and the whole page has to be discarded. It is worth

noticing that soplex is the application with the highest M for both algorithms, and

for that, we do not think having a high overflow probability after surviving 45 or

48 failures is really a shortcoming.

To finish the high level analysis of NTZipBs and C-PackBs, we analyze for the

blocks that contain failures how the amount of bits that flip varies with the number

of failures. We have explored this variation on the average number of bits that

flip when the number of errors grows. Owing to lack of space, we do not show

the graphs, but in both schemes and for all the applications evaluated the average

amount of bits flipped per block increases quasi-linearly with the number of errors.

Some curves show a small bending, but it can be approximated by a horizontal

line with a admissible error. In both cases all curves show a slope that ranges from

around 0.3 to around 1 in the case of NTZipBs and between 0.25 and 1 in the case

of C-PackBs, what means that the wear rate of the surviving cells is not vastly

increased as cells start getting stuck-at. In other words, this hints that having

more errors will not, necessarily, increase the rate at which cells wear. However,

if we compare C-PackBs and NTZipBs in this field, C-PackBs clearly outmatches

NTZipBs. Although the slopes and the general shape of the curves is the same,

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

24 R. Gonzalez-Alberquilla et al.

Fig. 8. Overflow probability for both NTZipBs and C-PackBs (and also NTZip and C-Pack).

those belonging to C-PackBs are at lower positions, meaning that the amount of

bit-flips in a block compressed with C-PackBs is smaller than the amount of bit-flips

in a block compressed with NTZip, meaning that NTZip wears the memory faster

than C-PackBs does. This is mainly due to the design of the algorithms. NTZip is

string-oriented, while C-Pack is word-oriented. If a byte inside a chain changes, the

output is likely to vary significantly. It is likely that what was previously a chain in

the dictionary now has to be compressed into two different tokens, or the other way

round. On the other hand, in C-PackBs words match one of the patterns shown

in Table 3. Any change in the word that does not alter which pattern the word

matches will not change the output symbol encoding, maintaining the width, and

the symbol header, maintaining the output largely unmodified.

5.3. Comparison to previous proposals

Next we provide data illustrating how well a memory system implementing our

technique performs. We compare our technique to some proposals in the literature:

SECDED 35, DRM 29 and ECP 26.

For a number of years, DRAM memories with Error Correcting Codes (ECC) are

available. It is intuitive to use ECC for PCM before exploring other alternatives,

this is why we evaluate the performance of a system implementing a SECDED

(Single Error Correction, Double Error Detection) scheme, that allows to correct

one error per 64-bit chunk inside a block, but when a chunk manifests a second

error, its whole page is discarded from the system.

Dynamically Replicated Memory (DRM) 29 is briefly detailed in Section 6 and

Error Correction Pointers (ECP) 26 is an alternative to ECC for error correction in

phase change memories that uses pointers to point errors and replacement cells to

survive them (see Section 2.4).

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

CEPRAM: Compression for Endurance in PCM RAM 25

Table 6. High level comparison of schemes. The first three columns show the char-

acteristics of each algorithm while the last two show the results of our evaluation

of a system with 1000 pages using that technique. †: This amount of errors can
be corrected only when the corresponding unit is paired with another such unit.

When the unit is on its own this number is smaller.

Scheme Overhead
Failure Failures/unit total failures

Unit survived failures per page

SECDED 10.9% 64 bits 1 29072 26.21

DRM 12.5% 4KB page 160† 161216 149.78

ECP6 12.5% 512 bits 6 149160 149.16

CEPRAM 12.5% 512 bits ≥ 30† 1446613 1447.11

5.3.1. Overview

Table 5.3.1 shows a comparison of all the schemes in big numbers: the overhead, the

failure unit, the correcting capability per unit, the number of failures successfully

corrected on the moment of system failure, and the average number of errors in

pages at system failure (failed pages are expected to have one more errors than the

correction capability). We can see that CEPRAM dramatically increases both num-

bers, hinting for a longer lifetime. By design, CEPRAM cannot do worse than ECP,

but these numbers show the big increase achieved in error-correcting capability.

First thing, point out that the numbers in the last two column correspond with

the quantities when all pages are broken, therefore, they do not reflect how soon/late

errors manifest. There are two interesting things to observe:

(1) Theoretical/real failure survival: For SECDED, each 4KB page is made of 512

64-bit blocks, meaning that in the presence of a good leveling of the failures,

up to 512 failures can be corrected, but on average only 26.21 are. This is less

than a 5%, and that is a poor ratio. DRM does somehow better, getting quite

close to its capacity. Note that the 160 survived errors refers to a pair of pages.

ECP6 is, again, not very good in this respect: there are 64 blocks in each page,

accounting for a total 384 ECPs, but on average, only 149.16 are used, which

is below 50%. To end with, CEPRAM corrects, on average, 22.611 failures per

block (1447.11/64), which is close to the “at least” 30 per block pair, but not

as close DRM is to its limit.

(2) The reason behind CEPRAM being closer to the theoretical limit is, mainly,

because cell lifetime follows (and is modeled as) a normal distribution, therefore,

lifetimes are clustered around the average. If a scheme is able to survive those

failures outlaying in the curve, then the errors are evenly spread among blocks.

One example of the opposite behavior can be found on SECDED. Given that

the failure survival ability is so small, the probability of having a byte with two

cells having shorter lifetime in a block is quite high, leading to early failure of

pages.

This analysis shows that although the wear is spread evenly through all the

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

26 R. Gonzalez-Alberquilla et al.

memory cells, there are many failure-surviving-resources not used at the point of

failure. Developing techniques to make a more efficient usage of this resources is

out of the scope of this work.

5.3.2. Dynamic analysis

Here we show and discuss the dynamic behavior of CEPRAM, comparing it to the

aforementioned techniques. Figure 9 shows curves for all the techniques. This curve

containing the point (x, y) means that after x billions writes to every page (wear

leveling is assumed), the y% of the memory pages are still usable. Same graph as

shown in 26, although the scale changes because they assume that in each write a

bit is flipped with probability p = 0.5. Again, given that CEPRAM is built on top

of ECP, it is bound to improve it.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

%
 p

a
g

e
s
 s

u
rv

iv
in

g

Writes to pages (billions)

No correction
ECC
DRM
ECP6
CEPRAM

Fig. 9. % of pages functional as time (measured in blocks written back to physical pages) passes.

This graph is much more illustrative of the effectiveness of the schemes when

it comes to keeping as much memory alive as possible. According to Table 5.3.1,

the number of failures per page survived by ECP6 and DRM is quite close. Nev-

ertheless, the lifetime of a system implementing DRM is much shorter. This is due

to dynamic behavior. More precisely, pages are discarded upon first failure, rapidly

decreasing the memory size, making other pages absorb writes to those discarded

pages, increasing the pace at which cells wear out, leading for an early system fail-

ure. The other techniques are somehow characterized by the appearance of the first

failure, moment in which, due to the aforementioned clustering of failures when

getting closer to the average cell lifetime, and to the increased wear ratio due to

page failures, the amount of memory available decreases exponentially, quickly lead-

ing to a system failure. CEPRAM increases the lifetime beyond ECP due to the

fine-grain pairing (as opposed to the coarse grain pairing of DRM). This pairing

requires a technique to survive the existing failures. DRM uses parity to mark dead

bytes in the primary page, CEPRAM uses compression with backspace symbol to

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

CEPRAM: Compression for Endurance in PCM RAM 27

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

%
 p

a
g
e
s
 s

u
r
v
iv

in
g

Writes to pages (billions)

No correction
ECC
DRM
ECP6
CEPRAM

(a)

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

%
 p

a
g
e
s
 s

u
r
v
iv

in
g

Writes to pages (billions)

No correction
ECC
DRM
ECP6
CEPRAM

(b)

Fig. 10. Percentage of pages functional as the time passes for the flip/overflow probabilities of

gobmk5 (a) and lbm (b). Time is measured in blocks written back (to physical pages).

encode the information plus the failure information. There is a small phase in which

the block is compressed with C-Pack, without backspace, encoding the bits to be

discarded in a mask, prior to the pairing. Our simulations show that the worst case

is frequent enough to make the length of this phase negligible, showing that the

strength of CEPRAM is not as much in the compression as a means of reducing

size, but as a means of encoding both the data and information about errors in the

block.

The results above correspond to dealII which is an average application in terms

of bit-flip probability, which is a measure of how wear-some the application is to the

memory. If we take a look at gobmk5 and lbm, which are the application with the

lowest and highest bit-flip rate, depicted in Figures 10(a) and 10(b) respectively,

we can observe that CEPRAM is especially powerful when the amount of flips is

high. This is counterintuitive, because less flips mean lower entropy which usually

translates in better compressibility. This happens because when the wear rate is

high, cells suffer a lot of wear before an overflow happens, meaning that a lot of

errors can be survived. Conversely, if the wear ratio is low, an overflow will take

place before the toll is to high on the cells, not leveraging the extra error correction

capacity provided by CEPRAM.

5.3.3. Ideal case study

To finish the evaluation, we present some discussion of the ideal scheme that can

correct up to n errors with a 12.5% overhead (Id n). Figure 11 shows the available

percentage of pages after a given number of writes.

Surviving the first failure almost doubles the lifetime of the system. To double

that time again requires surviving 8 failures. ECP6 does slightly better than Id 6.

This is not weird, taking into account that failures can be hidden. For example, if

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

28 R. Gonzalez-Alberquilla et al.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

%
 p

a
g

e
s
 s

u
rv

iv
in

g

Writes to pages (billions)

No correction
Id 1
Id 6
Id 16
Id 32
Id 64
Id 128
Id 256
CEPRAM
ECP6

Fig. 11. % of pages functional as time (measured in blocks written back to physical pages) passes.

two cells fail, and due to wear leveling techniques they lay in the same pointer, the

two errors are hiding each other, making one less pointers necessary, saving some

wear. This delays the death of some pages, reducing the write-pressure over the

rest of the pages, slightly spanning the lifetime. If the system failure is triggered

by the available memory size falling below 50% as done in 29, CEPRAM is halfway

between 16 and 32. On the other hand, if we are more restrictive and use the ratio

1/
√

2 i.e. 70.7% CEPRAM is placed between ECP6 and Id 16, around 4
5 of the

way closer to the latter.

Figure 12 shows the accumulated number of stuck-at failures as a function of the

lifetime. When the first failures start to happen, correcting one failure significantly

improves lifetime, but as soon as we correct the 29th failure, the lifetime gain per

corrected failure drops down below 0.5%failure. We think that this low return of

investment makes correcting more than 29 failures unprofitable. According to this

reasoning CEPRAM does a great job pushing the lifetime curve towards the Id 32

curve shown in Figure 11.

6. Related work

The problem of PCM cell lifetime has been addressed mainly in three different ways.

The first way is to reduce the wear experienced by cells by reducing the number of

PCM writes. The first idea was in 36, and consists in detecting and avoiding silent

writes. Differential writes (DCW) were introduced in 9 showing a big improvement

in lifetime. Buffering techniques have also been explored in 15,16,17 presenting a

level of DRAM buffering to alleviate the wear on PCM. In 17, the authors propose

some techniques to overcome the process variation in terms of power and lifetime.

They also use compression, but just to reduce the width of writes to some blocks

that are deemed compressible by an OS-guided procedure. Flip-N-Write 11 reduces

wear by flipping those words that incur in a lot of bit-flips in combination of DCW

to reduce the number of effective bit-flips, thus extending the lifetime. The LLC

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

CEPRAM: Compression for Endurance in PCM RAM 29

0
16
32

64

128

256

512

0 4
.2

4
.7

5
.2

5
.7

6
.3

6
.9

7
.7

8
.7

2
0

#
 S

T
U

C
K

-A
T

 F
A

IL
U

R
E

S

WEAR (10
7
 WRITES)

Accum. failures

Fig. 12. Accumulated count of errors in a 512-bit block as a function of the number of writes

to the block, assuming a write modifies all the block. If wear is leveled, the fact that not all the
block is written merely changes the scale of the x axis.

has the ability to help in this purpose as in 37. A modification on the replacement

policy of the LLC to make it PCM-aware can help in reducing the amount of writes

done to main memory without hurting performance.

Another way to tackle the limited lifetime is to evenly spread the wear among all

cells 9,31,38 at different granularity, and from different perspectives: the two former

are hardware techniques, and the latter is a software technique at OS level. These

techniques prevent the appearance of hot spots that can lead to an early failure of

the memory system.

The third trend is to detect and survive errors 29,26,39,40,41,42,43 as this piece of

work does. DRM 29 does coarse grain pairing using parity to detect failing bytes.

As long as two pairs have not overlapping bytes failing, they can operate as a single

page tolerating some failures. ECP 26 uses < pointer, replacement cell > pairs

to point and substitute failing cells, allowing for one failure survival per pointer.

FGCR 42 and PAYG 43 are techniques built on top of ECP. The former does current

regulation and voltage up-scaling techniques to reduce the wear of cells, and the

latter an abstraction of wear leveling applied to ECP pointers: At system failure

time, a big share of the blocks have used less than 2 pointers, therefore, it would

be more efficient to have a pool of pointers, and allocate them on demand as faults

appear. Free-p 40 applies fine-grain pairing as CEPRAM. The main difference is

that FREE-p is simple to implement and requires few extra hardware, but when a

block fails it just points a “healthy” one instead of combining them somehow. On

the other hand, CEPRAM is more complex because it adds a technique to survive

failures that arise when two blocks are combined. SAFER 39 and RDIS 41 try to

break a block down in pieces with different properties. SAFER makes n partitions,

equal in size, such that there are at most one error per partition. Each partition is

provided with a bit to express whether the that partition data should be flipped

or not after reading. When a partition is written to, if no faults are detected, the

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

30 R. Gonzalez-Alberquilla et al.

corresponding bit is clear. If a fault is detected, then the bit is set, the word is flipped

and written to the cells, so the fault is masked. RDIS does something similar. It

tries to dynamically identify a set comprised only by exposed failures and healthy

cells such that no exposed failures lie out of the set. Such a set is called invertible

set. The intended contents of the invertible set are inverted and written to the

hardware, avoiding the exposure of any fault, allowing for stuck-at fault survival.

As far as cache compression is concerned, other than compression algorithms

as C-Pack 23, some work has been done on architecture and interfaces for systems

with compressed memory systems 24.

Our proposal is the first one to use compression for endurance, extending the

lifetime of a PRAM based system. It builds on top of ECP as some other proposals,

and takes the lifetime well beyond the limit of ECP with a novel way of dealing

with exposed errors through the use of a custom backspace encoding to ignore

(NTZipBs) or repair (C-PackBs) exposed failures.

7. Conclusions

Resistive memories are closer to industrial adoption every day. That makes it im-

portant to develop techniques to overcome the limitations they present, so they

can substitute DRAM, improving the memory in aspects such as scalability, low

leakage.

In this paper we have introduced CEPRAM, an attempt to make a PRAM

system more durable through memory block compression. Our technique is built on

top of ECP, and using a high-performance, cache-oriented compression algorithm,

modified to better suit our purpose. It manages to further extend the lifetime of

the memory system. In particular, it guarantees that at least half of the physical

pages are in usable condition for 25% longer than ECP, which is slightly more than

5% more than an scheme that can correct 16 failures per block.

In addition , we do an analysis of why PCM is not a very good context for com-

pression, and it is probably not a good idea to invest efforts in it, unless compression

is conceived differently: focusing more on improving the worst case scenario.

Finally, we show an study on the memory life time improvement as a function

of the error correcting ability, offering some insights to help choose a target failure

recovery ability depending on the lifetime expansion we want to get. This study

shows that there is room for improvement beyond CEPRAM, although CEPRAM

pushes the lifetime to a point in which the cost of extending the lifetime any further

is quite high in terms of the amount of per-block error correcting ability.

References

1. K. Kim, Technology for sub-50nm dram and nand flash manufacturing, in Interna-
tional Electron Devices Meeting 2005 , (Washington, 2005), pp. 323–326.

2. Y. Chen, X. Wang, H. Li, H. Liu and D. Dimitrov, Design margin exploration of
spin-torque transfer ram (spram), in ISQED , 2008, pp. 684 –690.

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

CEPRAM: Compression for Endurance in PCM RAM 31

3. A. Ruan, B. Hu and Y. Zhai, A parasitic effect - free test scheme for ferroelectric
random access memory (fram), in Int. Conf. on Testing and Diagnosis, 2009, pp. 1–4.

4. A. P. Ferreira, M. Zhou, S. Bock, B. R. Childers, R. G. Melhem and D. Mossé,
Increasing PCM main memory lifetime, in Design, Automation and Test in Europe,
DATE 2010, Dresden, Germany, March 8-12 , 2010, pp. 914–919.

5. X. Zhang, Q. Hu, D. Wang, C. Li and H. Wang, A read-write aware replacement policy
for phase change memory, in Advanced Parallel Processing Technologies, (Springer,
2011) pp. 31–45.

6. S. Yoo, E. Lee and H. Bahn, LDF (less dirty first): dirtiness-aware cache replacement
policy for PCM main memory, Electronics Letters 49(25) (2013) p. 1607.

7. R. Rodŕıguez-Rodŕıguez, F. Castro, D. Chaver, L. Piñuel and F. Tirado, Reducing
writes in phase-change memory environments by using efficient cache replacement
policies, in Design, Automation and Test in Europe, DATE 13, Grenoble, France,
March 18-22, 2013 , 2013, pp. 93–96.

8. W. Zhang and T. Li, Characterizing and mitigating the impact of process variations
on phase change based memory systems, Proceedings of the Micro-42 (2009) 2–13.

9. P. Zhou, B. Zhao, J. Yang and Y. Zhang, A durable and energy efficient main memory
using phase change memory technology, in Proc. of ISCA, 2009, pp. 14–23.

10. B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu and D. Burger,
Phase-Change Technology and the Future of Main Memory, IEEE Micro 30(1) (2010)
131–141.

11. S. Cho and H. Lee, Flip-n-write: a simple deterministic technique to improve pram
write performance, energy and endurance, in Proc. of MICRO., 2009, pp. 347–357.

12. L. E. Ramos, E. Gorbatov and R. Bianchini, Page placement in hybrid memory sys-
tems, in Proceedings of the 25th International Conference on Supercomputing, 2011,
Tucson, AZ, USA, May 31 - June 04 , ACM2011, pp. 85–95.

13. I.-S. Choi, S.-I. Jang, C.-H. Oh, C. C. Weems and S.-D. Kim, A dynamic adaptive
converter and management for PRAM-based main memory, Microprocessors and Mi-
crosystems 37(6) (2013) 554–561.

14. M. K. Qureshi, S. Gurumurthi and B. Rajendran, Phase change memory: From devices
to systems, Synthesis Lectures on Computer Architecture 6(4) (2011) 1–134.

15. M. K. Qureshi et al., Scalable high performance main memory system using phase-
change memory technology, in Proc. of ISCA, 2009, pp. 24–33.

16. B. C. Lee, E. Ipek, O. Mutlu and D. Burger, Architecting phase change memory as a
scalable dram alternative, SIGARCH Comput. Archit. News 37(June 2009) 2–13.

17. W. Zhang and T. Li, Exploring phase change memory and 3d die-stacking for pow-
er/thermal friendly, fast and durable memory architectures, in Proc. of Int. Confer-
ence on Parallel Architectures and Compilation Techniques, PACT2009, pp. 101–112.

18. S. Lai, Current status of the phase change memory and its future, in International
Electron Devices Meeting 2003 , (Santa Clara, CA, 2003), pp. 255–258.

19. R. F. Freitas and W. W. Wilcke, Storage-class memory: The next storage system
technology, IBM Journal of Research and Development 52(4.5) (2008) 439–447.

20. T. Nirschl et al., Write strategies for 2 and 4-bit multi-level phase-change memory, in
IEEE Int. Electron Devices Meeting, 2007. IEDM 2007 , 2007, pp. 461 –464.

21. S. Mukherjee, J. Emer and S. Reinhardt, The soft error problem: an architectural
perspective, in HPCA-11., 2005, pp. 243 – 247.

22. J. F. Ziegler, Terrestrial cosmic rays, IBM Journal of Research and Develop. 40(1)
(1996) 19–39.

23. X. Chen, L. Yang, R. Dick, L. Shang and H. Lekatsas, C-pack: A high-performance
microprocessor cache compression algorithm, IEEE Transactions on VLSI Systems,

January 17, 2017 10:41 WSPC/INSTRUCTION FILE ws-jcsc

32 R. Gonzalez-Alberquilla et al.

18(8) (2010) 1196 –1208.
24. C. Benveniste, P. Franaszek and J. Robinson, Cache-memory interfaces in compressed

memory systems, IEEE Transactions on Computers, 50(11) (2001) 1106 –1116.
25. P. Pujara and A. Aggarwal, Restrictive compression techniques to increase level 1

cache capacity, in Int. Conference on Computer Design (ICCD)., 2005, pp. 327 – 333.
26. S. Schechter, G. H. Loh, K. Straus and D. Burger, Use ecp, not ecc, for hard failures in

resistive memories, in Int. Symposium on Computer Arch. (ISCA), 2010, pp. 141–152.
27. T. A. Welch, A technique for high-performance data compression, Computer 17(June

1984) 8–19.
28. R. Hamming, Error Detecting and Error Correcting Codes, Bell System Technical

Journal 26(2) (1950) 147–160.
29. E. Ipek et al., Dynamically replicated memory: building reliable systems from

nanoscale resistive memories, in ASPLOS , Mar. 2010.
30. C. Wilkerson et al., Trading off cache capacity for reliability to enable low voltage

operation, in Int. Symposium on Computer Architecture, ISCA.2008, pp. 203–214.
31. M. K. Qureshi et al., Enhancing lifetime and security of pcm-based main memory

with start-gap wear leveling, in Proc. of MICRO , 2009, pp. 14–23.
32. T. S. P. E. Corporation, The spec cpu 2006 benchmark suite (2013),

http://www.specbench.org.
33. J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prulovic., L. Ceze, S. Sarangi, P. Sack,

K. Strauss and P. Montesinos, Sesc simulator (2013), http://sesc.sourceforge.net.
34. C.-K. Luk et al., Pin: Building Customized Program Analysis Tools with Dynamic

Instrumentation, in Proc. of PLDI , 2005, pp. 190 – 200.
35. M. Y. Hsiao, A class of optimal minimum odd-weight-column sec-ded codes, IBM J.

Res. Dev. 14(July 1970) 395–401.
36. B.-D. Yang et al., A low power phase-change random access memory using a data-

comparison write scheme, in Proc. of ISCAS , may. 2007, pp. 3014 –3017.
37. M. Zhou et al., Writeback-aware partitioning and replacement for last-level caches in

phase change main memory systems, ACM Trans. Archit. Code Optim. 8(4) (2012)
53:1–53:21.

38. N. H. Seong, D. H. Woo and H.-H. S. Lee, Security refresh: prevent malicious wear-
out and increase durability for phase-change memory with dynamically randomized
address mapping, in Proceedings of ISCA, 2010, pp. 383–394.

39. N. H. Seong, D. H. Woo, V. Srinivasan, J. Rivers and H.-H. Lee, Safer: Stuck-at-
fault error recovery for memories, in Proc. of Int. Symposium on Microarchitecture
(MICRO),, dec. 2010, pp. 115 –124.

40. D. H. Yoon et al., Free-p: A practical end-to-end nonvolatile memory protection mech-
anism, Micro, IEEE 32(3) (2012) 79 –87.

41. R. Melhem, R. Maddah and S. Cho, Rdis: A recursively defined invertible set scheme
to tolerate multiple stuck-at faults in resistive memory, in Proc. of IEEE/IFIP Inter-
national Conference on Dependable System and Networks (DSN), 2012.

42. L. Jiang, Y. Zhang and J. Yang, Enhancing phase change memory lifetime through
fine-grained current regulation and voltage upscaling, in Proc. of Int. Symposium on
Low-power electronics and design, ISLPED2011, pp. 127–132.

43. M. K. Qureshi, Pay-as-you-go: low-overhead hard-error correction for phase change
memories, in Proc. of MICRO , 2011, pp. 318–328.

	Introduction
	Motivation and Background
	Phase Change Memory Technology
	Coding theory
	Entropy as a measure of compressibility
	Error Correcting Pointers (ECP)

	Technique
	COMP
	No-Table LZW compression (NTZip)
	COMP operation
	NTZip with backspace
	Implementation overhead

	COMPcp
	C-Pack and C-PackBs
	Implementation overhead

	CEPRAM
	Further increasing the life through block-level pairing
	Wear Leveling
	Multiple Linking
	Lifetime estimation

	Simulation Environment
	Evaluation
	NTZip and C-Pack performance
	NTZipBs and C-PackBs performance
	Comparison to previous proposals
	Overview
	Dynamic analysis
	Ideal case study

	Related work
	Conclusions

