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Abstract
Numerical simulations are performed for isolated cyclic, or ring, chains with excluded volume. Data are reported for the form factor, S(x),
where x is the reduced scattering variable, and also for averages and distributions of the distance between intramolecular units. The averages of
distances are compared with two alternative expressions describing their dependence with the number of segments separating the units. The
distribution function results are compared with the des Cloizeaux form. Finally the S(x) data are compared with theoretical functions also derived
from the des Cloizeaux expression for the distribution function. Moreover, the low x and asymptotic expansions of these functions are obtained.
Based on these expansions, simple formulas are proposed to give a good description of the simulation data in the whole range of values of x.
A comparison with similar results for linear chains is also included.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Both synthetic and natural cyclic polymers are common
and important types of molecules [1]. For instance, it is known
that DNA may exist in the form of ring molecules. Moreover,
the conformational properties of ring chain molecules have
a special interest because of their translational invariance
along the chain contour. This translational symmetry elimi-
nates the end effects present in linear chains.

The intrachain scattering factor, or form factor, is related to
different scattering experiments, and provides a good descrip-
tion of the conformational behavior of chain molecules. The
form factor of a flexible polymer chain with N chain units is
defined as
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q is the wavevector that describes the momentum transfer in
the scattering, Rj and Rk are the positions of the j-th and
k-th chain units and hi denotes an equilibrium average over
the different orientations and the different conformations of
the chain. Although S(q) formally depends on vector
Rj � Rk in Eq. (1), a general orientational average shows
that the relevant conformational information needed to evalu-
ate the form factor is the distribution of distances between
pairs of units [2]. For a long and flexible polymer, the form
factor can be expressed in terms of variable x ¼ q2hS2i, where
hS2i is the mean quadratic radius of gyration of the chain. At
very low x, S(x) is similar for all types of chains. However, the
form factor behavior is significantly different for different
chain models at moderate or large values of x.

The form factor of a long ideal cyclic chain with a Gaussian
distribution of intramolecular distances is described by the
following equation, derived time ago by Casassa [1,3]:
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This expression is valid for qb� 1, where b is the length of
a polymer unit. This implies not very large x since hS2i ¼
Nb2=12 for cyclic chains in this particular case of ‘‘Gaussian’’
or ‘‘unperturbed’’ chains [1]. For greater values of q or x, the
scattering experiment probes distances for which the structural
details of the units are relevant. As long as the restriction
qb� 1 holds, x may have any value from zero to infinity.

However, excluded volume effects have to be introduced in
order to describe the general behavior of any isolated long
flexible polymer chain immersed in a good solvent [4]. The
intrachain distribution function and its averages show large
deviations from the Gaussian form, affecting both the average
radius of gyration and the form factor. In the case of cyclic
chains, deviations from the Casassa function behavior are ex-
pected at high x, even for qb� 1. Some theoretical work has
been devoted to give a precise description of S(x). A simple
scheme, modifying the intrachain distance form for the aver-
ages to take into account excluded volume effects but main-
taining their Gaussian distribution, has been proposed by
Bensafi et al. [5]. Moreover, a field-theoretical method was ap-
plied by Calabrese et al. to obtain the form factor and distribu-
tion function of intrachain distances for cyclic chains with
excluded volume interactions [6]. This description provides
complex formulas and shows that the form of the distribution
function is similar to that of the generic function previously
proposed for a linear chain with excluded volume by Mazur
et al. [7] and des Cloizeaux [8,9] (see below).

Actually, the case of linear chains has received considerable
attention. Time ago, Mazur et al. [7] calculated SðxÞ for linear
chains with excluded volume at high x by using an empirical
form for both the mean quadratic intramolecular distances be-
tween units and the end-to-end distance distribution function.
The results were not completely satisfactory since the distribu-
tion of intramolecular distances does not have exactly the
same functional form as the end-to-end distance distribution
function. Renormalization group and scaling theory has been
applied to the calculation of distribution functions of dis-
tances. The result in three dimensions can be conveniently
written in the des Cloizeaux form [8,9] which is formally
equivalent to the function employed by Mazur et al.,
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where t ¼ 1=ð1� vÞ and K is a normalization constant

K ¼ fG½ð5þ qÞ=t�=G½ð3þ qÞ=t�g1=2 ð4Þ

and GðaÞ is the Gamma function.
Parameter n is actually a critical exponent, whose value is n

¼ 0:588 [4]. Assuming that both units j and k are in the interior
part of the chain (as it is always the case in cyclic chains) the
numerical value q ¼ 0:71� 0:05 is also obtained [8]. In
previous work [10] we have shown that the behavior of SðxÞ
can be obtained from the approach of Mazur et al. but per-
forming the conformational average with the des Cloizeaux
form of the distribution function, Eq. (3). The expression de-
rived for S(x) (an integral) is in good agreement with experi-
mental and simulation data. Low x and also asymptotic
expansions are simply obtained from this approach and these
expansions are in total agreement with those previously de-
rived using different mathematical approaches [11,12]. The as-
ymptotic limit together with the low x expansion provide Padé
approximants that, with a small number of coefficients, are
able to describe the exact integral with small error up to the
value of x where a few terms of the asymptotic expansion
also give good accuracy.

In this work we study the form factor of cyclic chains both
from the numerical and theoretical points of view. We provide
simulation data for long chains and, extending the theoretical
work that we have previously employed for linear chains, we
derive an expression for S(x). With this end, we have to make
assumptions on the precise form of the distribution function
and averages of the intrachain distances in a cyclic ring. These
conformational properties are also obtained from our simula-
tions. The comparison of the theoretical expressions with the
simulation data of these conformational properties is, there-
fore, particularly useful to evaluate the validity of the different
assumptions needed to obtain S(x).

2. Numerical simulations

The model and Monte Carlo algorithms used in our simula-
tions have been described and justified in previous work. The
chains have N units joined by means of N flexible connectors
whose variable lengths follow a Gaussian distribution with
root mean square b (b is adopted as the length unit). Non-
neighboring units interact through a 6e12 LennardeJones
potential, characterized by the distance and energy parameters
s and 3 (the energy unit is the Boltzmann factor kBT ). We
set the values s¼ 0.8 at any temperatureesolvent condition.
The good solvent or excluded-volume conditions are set
with the choice 3¼ 0.1, reproducing the correct behavior in
these conditions even for relatively short chains [13].

The algorithm for cyclic chains [14] starts with the gener-
ation of a cyclic non-overlapping conformation in a diamond
lattice. New conformations are generated from this starting
state by choosing two chain units i and j and calculating the
two bond vectors vi and vjþ1 that connect these units to the lon-
gest contour in the cyclic chain. Keeping a constant sum
viþ vjþ1 we resample each one of the components of viLvjþ1

from a Gaussian distribution with mean equal to zero and
mean square deviation 2b2/3. This allows us to obtain new po-
sitions for units i and j. The shorter path of the chain is rotated
by an amount defined by random angle F around an axis
defined by vector Rij and then translated to connect again
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with these new positions. (A similar rotation of a segment of
the chain extended from a chosen unit up to its nearest end
is applied in the case of linear chains.) We compute the total
conformational energy in order to accept or reject new confor-
mations, according to the Metropolis criterion.

Typically, we perform six runs, each one starting with a dif-
ferent seed number. A run includes the generation of 250,000
conformations for equilibration and 500,000 conformations to
evaluate properties, quadratic averages and distribution of in-
trachain distances and also the form factor obtained from the
orientational average of Eq. (1). These properties are stored
for every conformation. We obtain arithmetic means over the
sample of saved conformations and, finally, we evaluate the
final conformational averages as arithmetic means and error
bars from the six independent runs.

3. Theoretical expressions

We assume that the distribution function of intramolecular
distances in cyclic chains can be expressed by the des Cloi-
zeaux form, though particular expressions for the average dis-
tances have to be considered. This assumption is motivated by
the conclusions obtained through the analysis of the field-the-
oretical derivation of the distribution function by Calabrese
et al. [6], whose numerical values were practically coincident
with a generic expression equivalent to the des Cloizeaux
function. Therefore, we follow the theoretical scheme of our
previous work for linear chains, using the analytical procedure
outlined in Ref. [7] by Mazur et al., but employing Eq. (3) in-
stead of their empirical expression for the end-to-end distance
distribution. However, this scheme has to take into account
now the different topology of cyclic chains. First, the dou-
ble-sum in Eq. (1) is transformed in a single sum over the
number of units separating every pair of units, j and k, in
the ring, jj�kj n, from n¼ 0 to N/2. It is verified that for cyclic
chains there are 2N equivalent terms of this type covering the
whole range of possible pairs of units, except for the special
term n¼ 0 and the case n¼ N/2 for even N. These exceptions
give q(1/N ) contributions and can be neglected. The single
sum over n is then transformed in an integral over variable n.

We can express the quadratic average intrachain distances
as

D
R2

jk

E.
b2 ¼ f ðnÞ ð5Þ

Thus, in the case of unperturbed chains, the averages can be
simply written as [1]

D
R2
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with p¼ n/N.
Several expressions have been considered to introduce

excluded volume effects into Eq. (6). They are inspired by the
general formula
D
R2

jk

E.
b2 ¼ ðsNÞ2n ð7Þ

which gives the correct result for linear chains with s¼ p [4].
In the case of cyclic chains, Bensafi et al. [5] proposed a
formula that we write as

s¼ ½ð1=2Þ � r�½ð1=2Þ þ r� ð8Þ

with

r ¼ n=N� 1=2 ð9Þ
These equations modify the description suggested by Yu

and Fujita [15] that we can write as

s2n ¼
�
ð1=2Þ þ r2n

��
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with

r2n ¼ ðn=NÞ2n�1=2 ð11Þ

Our particular description of s in terms of variable r in Eqs. (9)
and (11) allows for more symmetric and easier to handle forms
of f(n). It should be mentioned that the Yu et al. expression
does not hold the formal circularity condition hR2

ni ¼
hR2

N�ni. However, we believe that its validity in the interval
0< n< N/2 should be solely judged based on its accuracy to
describe the chain conformational properties.

Starting from Eq. (1), introducing the distribution function
for the intrachain distances, Eq. (3), and expressing the aver-
ages in terms of variable s, as described in the preceding par-
agraph, it is possible to obtain S(x) by integration over variable
u¼ qRjk, as

SðxÞ ¼ t

Gðð3þ qÞ=tÞy3þq

ZN

0

du sinðuÞuqþ1I2ðuÞ ð12Þ

where I2(u) has to be obtained as a second integral over vari-
able s. Incidentally, a slightly different expression for S(x) was
previously derived as intermediate result in the study of linear
chains [10] though it was not explicitly reported because inte-
gral I2(u) could be written in terms of incomplete Gamma
functions. In the case of cyclic chains, we should consider
the alternative definitions for s, according to the different op-
tions to describe the intramolecular distances. Thus, if Eqs. (8)
and (9) are employed, I2(u) is defined as,

I2ðuÞ ¼
Z1=4

0

dsð1=4� sÞ�1=2s�ðqþ3Þn exp
�
� ðu=yÞts�nt

�
ð13Þ

where

y2 ¼ G½ð3þ qÞ=t�
G½ð5þ qÞ=t� x=

Z1=2

0

p2nð1� pÞ2n
dp ð14Þ

For small values of x, we can consider the general small wave-
vector expansion
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When S(x) is described by Eqs. (12)e(14) the following
convergent expansion around the origin is obtained

SðxÞ ¼
XN
m¼0

ð�1ÞmG½ð2mþ 3þ qÞ=t�Gð1þ 2mnÞ2

ð2mþ 1Þ!G½ðqþ 3Þ=t�Gð1þ 4mnÞ y2m ð16Þ

This expression with the numerical values n¼ 0.588 and
q¼ 0.71 provides the numerical coefficients b(m) shown in
Table 1.

An asymptotic value for x is also obtained,
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The numerical value of this asymptotic limit with the exponent
values that we have previously used for linear chains,
n¼ 0.588 and q¼ 0.71, is 0.615.

On the other hand, when Eqs. (10) and (11) are used for the
intrachain distances in cyclic chains, the integral over s
becomes

I2ðuÞ ¼
1

2n

Zs0

0

ds

�
1

2
�
�

1

4
� s

1=2�ð1=2nÞ�1

ð1=4� sÞ�1=2
s�ðqþ3Þ=2

� exp
�
� ðu=yÞts�t=2

�
ð18Þ

with

s0 ¼ ð1=4Þn
�

1�
�

1

4

n�
ð19Þ

and

y2 ¼ G½ð3þ qÞ=t�
G½ð5þ qÞ=t� x=

Z1=2

0

p2n
�
1� p2n

�
dp ð20Þ

S(x) derived from Eqs. (12), (18)e(20) has the following
expansion for low x,
Table 1

Coefficients b(m) of the low x expansions, Eq. (15)

m S(x), Eq. (16), q¼ 0.71 S(x), Eqs. (21)e(23), q¼ 0.71

2 0.0599236 0.0617016

3 0.00713984 0.00765968

4 0.000626637 0.000705055

5 0.0000431371 0.0000511216

6 2.42775� 10�6 3.03971� 10�6

7 1.15039� 10�7 1.52529� 10�7

8 4.69133� 10�9 6.59897� 10�9

9 1.67467� 10�10 2.50280� 10�10

10 5.30421� 10�12 8.43281� 10�12
SðxÞ ¼
XN
m¼0

ð�1ÞmG½ð2mþ 3þ qÞ=t�
ð2mþ 1Þ!nG½ð3þ qÞ=t� y2mb4�nðmþ 1=2n;mþ 1Þ

ð21Þ

In Eq. (21) the terms contain an incomplete beta function [16]
that, for this particular case, can be expressed as a finite sum,

b4�nðmþ 1=2n;mþ 1Þ ¼
n
�
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�m

ð2mnþ 1Þ4mn

�
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ð�mÞk
ðmþ 1þ 1=2nÞkð1� 4nÞk
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Numerical values of the quantities (�m)k and
ðmþ 1þ 1=2nÞk, contained in Eq. (22), can be obtained
from the following general formula:

ðaÞ0¼ 1; ðaÞk¼ a
�
aþ 1

�
/
�
aþ k� 1

�
ð23Þ

that, together with the numerical values n¼ 0.588 and
q¼ 0.71, allows us to calculate the numerical coefficients
b(m) of Eq. (15), also contained in Table 1.

This function also leads to the asymptotic limit for x given
by Eq. (17). However, the numerical values provided by the
two alternative choices are different, because they differ in
the numerical relationship between y and x, according to
Eqs. (14) and (20). For this second approach with n¼ 0.588
and q¼ 0.71 we get a limit of 0.700.

4. Results and discussion

A first indication of the performance of the different ex-
pressions for intrachain distances is provided by computation
of the ratio between the mean quadratic radii of gyration of
a cyclic and a linear chain rc ¼ hS2ic=hS2il with excluded vol-
ume conditions. Renormalization group calculations by Pren-
tis [17] yielded rc¼ 0.57, while some simulations [1,14,18]
give a value slightly higher than 0.5 (the unperturbed chain
result) for long chains. The present simulations for cyclic
and linear chains up to N¼ 781 units give the extrapolated
value rc¼ 0.535� 0.005. The simulation data confirm experi-
mental results for polymers in unperturbed (theta) or good
solvent conditions, reviewed in Refs. [14,18], that seem to
indicate a weak dependence of rc on solvent conditions. The
S(x), Eqs. (21)e(23), q¼ 0.9 Linear, Ref. [10], q¼ 0.9

0.0607678 0.0777881

0.00737557 0.0136197

0.000660936 0.0018896

0.0000465237 0.000215789

2.68025� 10�6 0.0000208494

1.30115� 10�7 1.74011� 10�6

5.43988� 10�9 1.275� 10�7

1.99197� 10�10 8.3086� 10�9

6.47518� 10�12 4.8668� 10�10
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Fig. 2. Generalized Kratky plot, SðxÞx1=2n vs. x (n ¼ 0:588) for cyclic chains.

Symbols correspond to the Monte Carlo data: �: N¼ 246, þ: N¼ 781. Lines

correspond to theoretical results, dashed and line, results from Casassa for-

mula, Eq. (2); dotted line: results from Eqs. (12)e(14), q¼ 0.71; dashed

line: results from Eqs. (12), (18)e(20), q¼ 0.71; solid line: results from

Eqs. (12), (18)e(20), q¼ 0.9.

632 A.M. Rubio et al. / Polymer 49 (2008) 628e634
simple well-known expression related the radius of gyration
with the intramolecular distances

�
S2
�
¼ N�2

XN

j>

XN

k

hR2
jki ð24Þ

can be transformed to an integral over n or p. Using this ap-
proach and applying Eq. (7) with s¼ p for linear chains and
Eq. (7) with Eqs. (8) and (9) or Eqs. (10) and (11) for cyclic
chains we have obtained numerical values for rc. Eqs. (7)e
(9), give a remarkably low value rc¼ 0.43 while Eqs. (7),
(10) and (11) lead to the more consistent result rc y 0.50.

A direct comparison between theoretical and simulation re-
sults for the averages can also be accomplished from our data.
In Fig. 1, we compare the theoretical results (with b fitted to
precisely describe the data corresponding to the shortest
ji� jj) and our simulation results for a cyclic chain with 781
units. It is clearly observed that Eqs. (7), (10) and (11) give
a good description of the simulation data, while Eqs. (7)e
(9) show a significant downwards deviation for the highest
ji� jj and Eq. (6) exhibits a strong and early disagreement,
which remarks the poor performance of the Gaussian approx-
imation and the large influence of the excluded volume effects.

Fig. 2 contains the simulation data for two relatively long
chains with excluded volume conditions, N¼ 246 and 781.
The results are presented as generalized Kratky plots [19],
x1=2nSðxÞ vs. x, which should give a plateau for high x in accor-
dance with the predicted asymptotic behavior. This plateau is
confirmed by the simulation data (the values of q are small
enough to prevent the appearance of local model features).
Comparing the two values of N included in the graphic, it is
observed that they show slight differences at intermediate
values of N for which the asymptotic limit has not been
reached. However, the influence of N is very small, indicating
that the considered chain lengths are near to the long chain
limit behavior.
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Fig. 1. Intrachain distances for a cyclic chain of N¼ 781. Circles: simulation

data. Solid line: Eqs. (7)e(9); dash line: Eqs. (7), (10) and (11); dotted line:

Eq. (6) with s¼ p, see text.
Fig. 3 shows previous simulation data for linear chains [20],
allowing for a direct comparison of the behavior exhibited by
two types of chain topologies. It should be remarked that the
theoretical results for cyclic and linear chains have been ob-
tained with the same general form of the distribution function
of intrachain distances (or pair correlation function), given by
Eq. (3), and the differences are only due to the influence of
topology on the averaged intrachain distances, affecting the
specific numerical values of this function for a given Rjk,
and also the disposition of units along the chain, or number
of identical terms for a given jj� kj.

It is observed in Fig. 2 that, in the generalized Kratky rep-
resentation for cyclic chains, the simulation points show a clear
maximum at x y 3. A much flatter (almost undistinguishable)
maximum located at higher x, was obtained in the case of
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mental data proposed by Noda et al. [22].
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linear chain. Also, the numerical asymptotic limit for cyclic
chains is significantly smaller than for linear chains. These
two distinctive features may be of interest for experimental
characterization of polymer topology. The needed range of x
can be reached in light scattering experiments if the polymer
molecular weight is high enough (for instance, in the case of
DNA samples). Most synthetic polymer samples, however,
would need to be characterized with neutron scattering tech-
niques that employ shorter wavelengths (higher q).

Fig. 2 also includes some curves corresponding to different
theoretical predictions. It is observed that the Casassa expres-
sion for unperturbed chains, Eq. (2) is valid up to x¼ 2. How-
ever, as expected, this expression cannot describe the high x
behavior. Considering the expressions for excluded volume
proposed in Section 3, defined by Eq. (12) but with different
forms for integral I2(u), both of them give a reasonable de-
scription of the simulation data up to x¼ 2.5. Therefore they
are able to describe points near to the maximum. They also
follow the correct qualitative asymptotic behavior. However,
when the intrachain averages proposed by Bensafi et al. are
considered, i.e. Eqs. (7)e(9) are used to calculate I2(u) through
Eqs. (13) and (14), we obtain intermediate and asymptotic
values significantly smaller than the simulation data. The alter-
native use of Eqs. (18)e(20) derived from the Yu and Fujita for-
mula for the intrachain averages, Eqs. (7), (10) and (11), gives
results considerably closer to the simulation data in the whole
interval of x values, though some small quantitative differences
can still be observed in the intermediate and asymptotic regime
(the theoretical curve lies slightly above the simulation points).
A similar discrepancy between simulation and theoretical re-
sults was observed in the case of linear chains [10,20].

In our discussion of the results for linear chains [10], we
conjecture that this difference may be eliminated if a more
adequate value of q (considered as an empirical parameter)
is employed in Eq. (3). In fact, some simulation data for the
intrachain distance distribution in linear polymers [21] of
N¼ 160 are apparently more consistent with the value
q¼ 0.9. Following these arguments, we have decided to ex-
plore the possibility of using q¼ 9 in our calculations. In
Fig. 4, we show the simulation data obtained for the intramo-
lecular distance distribution function corresponding to cyclic
and linear chains with N¼ 781. Two cases are considered:
ji� jj ¼ 49 (relatively short value for which, however, we
can study a relatively large interval in the short distance range
without observing a direct dependence on the intramolecular
potential) and ji� jj ¼ 390 y N/2. It is observed that all the
data merge at large distance and that even at short distances
the results for the linear and cyclic chains are very similar
and do not exhibit systematic differences. However, there is
a remarkable difference between the data obtained for the
two values of ji� jj. The results corresponding to ji� jj ¼ 49
are lower and they are better described by a value of q close
to 0.9. The ji� jjy N/2 results are, however, above the theo-
retical line corresponding to q¼ 0.71. Therefore, our simula-
tion data seem to indicate that exponent q has an empirical
dependence with ji� jj which has not been considered in the
theoretical approaches.
We have recalculated the theoretical results for S(x) from
Eq. (12) and Eqs. (16)e(20) using q¼ 0.9, since this value
appears to be more adequate for short values of ji� jj which
gives the more important contribution to the form factor for
moderate or high x. From Eq. (17) we have obtained a smaller
value, 0.676, for the asymptotic limit in excellent agreement
with the simulation data. In Fig. 2, we include the results ob-
tained from Eqs. (12), (18)e(20) with q¼ 0.9. A good agree-
ment can be observed over the whole x range. The numerical
coefficients b(m) of Eq. (15) with this value of q are also
shown in Table 1. Incidentally, these coefficients are coinci-
dent with the values obtained by Calabrese et al. [6], appar-
ently following a totally different theoretical approach that,
nevertheless, seems to be practically equivalent.

In Fig. 3, we have included the theoretical values obtained
with q¼ 0.71 and q¼ 0.9 for linear chains, calculated from
Eqs. (5)e(8) in Ref. [10]. A better agreement is clearly found
between our previous simulation data for N¼ 101, new simu-
lation results obtained in this work for a chain with N¼ 781,
and the theoretical expression when q¼ 0.9, which gives the
asymptotic limit 1.216. The simulation data lie close to the
theoretical line, though slightly below. On the other hand, re-
liable experimental data of the form factor in a large interval
of x values have been reported for linear chains [22] and
they show an excellent agreement with the theoretical line in
the asymptotic limit (the more pronounced maximum of the
experimental data is probably due to particular rigidity effects
in the real chains, that are not included in the theoretical model
of a totally flexible chain composed of Gaussian units). The
low-x expansion coefficients b(m) of Eq. (15) corresponding
to this case can be found in Table 1.

The good performance of the results with q¼ 0.9 for linear
and cyclic chains (the latter when used together with the Yu
and Fujita theoretical formulas for intrachain distances) has
suggested us to propose simpler numerical formulas in order
to compute S(x). Noting the alternating sign pattern of the
low x expansions and the fact that the function SðxÞ decreases
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almost like 1=x for large x, it is possible to form Padé approx-
imants with only a few terms to describe the exact expressions
up to relatively large values of x. In the case of linear chains,
an asymptotic expansion was also derived and a generic
expression was provided [10], see Eqs. (10) and (11) in
Ref. [10] (z should read 2 in Eq. (11) of Ref. [10]). Recalcu-
lating the results for q¼ 0.9, the numerical formulas given
there are changed to

SðxÞy 1þ 0:0275562xþ 0:0115336x2

1þ 0:36089xþ 0:0528466x2þ 0:00325559x3

for x < 5

and

SðxÞy1:21624=x0:8503þ 0:840856=x1:7007� 1:17668=x1:9500

� 0:267305=x3:1636 for x > 5 ð25Þ

with a maximum error of 0.5% at x y 5 with respect to the
numerical integral.

In the case of cyclic chains, the asymptotic expression is
not so useful because of the occurrence of several terms of
similar fractional order. This technical difficulties together
with the appearance of an earlier maximum in the Kratky
plot require more coefficients for the Padé approximant in
the case of cyclic chains. We find that
SðxÞy
�
1� 0:140904xþ 0:0135922x2� 0:000465993x3

þ 8:80468� 10�6x4
���

1þ 0:192429xþ 0:0169676x2

þ 0:000871902x3 þ 0:0000266987x4

þ 4:01478� 10�7x5
�

together with the asymptotic limit from Eq. (17)
S
�
x
�
y0:676=x0:8503 for x > 15 ð26Þ

gives a maximum error of about 1% for x y 15.
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