
Analysis of “Effectively Callback Freeness” for
Smart Contracts

Trabajo de Fin de Máster
Curso 2019–2020

Autor
Clara Rodríguez Núñez

Directores
Elvira Albert Albiol

Albert Rubio Gimeno

Máster en Métodos Formales en Ingeniería Informática
Facultad de Informática

Universidad Complutense de Madrid

Convocatoria: Julio 2020
Calificación: 10

Analysis of “Effectively Callback Freeness”
for Smart Contracts

Trabajo de Fin de Máster en Métodos Formales en Ingeniería
Informática

Autor
Clara Rodríguez Núñez

Directores
Elvira Albert Albiol

Albert Rubio Gimeno

Máster en Métodos Formales en Ingeniería Informática
Facultad de Informática

Universidad Complutense de Madrid

Dedicatoria

A mi abuela,
por enseñarme tanto en cada llamada

v

Agradecimientos

En primer lugar, a Elvira y Albert. Gracias por todo lo que he aprendido y disfru-
tado estos meses, por el apoyo cuando las cosas no iban bien y por soportarme en
cientos de videollamadas, incluso cuando me pasa un tren por encima. Formar parte
de un proyecto como este ha sido un autentico privilegio. Gracias también a todos
los miembros del grupo COSTA por recibirme tan bien y estar siempre dispuestos
a echarme una mano.

Gracias a todas las personas que me han hecho disfrutar de las matemáticas y la
informática. A los profesores que he tenido durante estos años, gracias por vuestro
esfuerzo y pasión por enseñar, habéis sacado una versión de mí que nunca pensé
que existiera. A los amigos que he hecho en esta universidad, gracias por ser los
mejores compañeros de viaje. Aun nos quedan muchas locuras por hacer, montañas
que escalar y partidos donde no tirar.

Gracias a mi familia. Cuando era una niña y soñaba con ser investigadora me
acompañabais cada fin de semana a buscar fósiles a la montaña de detrás de casa.
Veinte años más tarde aun no han aparecido dinosaurios en La Cistérniga, pero sí
estoy un pasito más cerca de investigar. Gracias por ser sin duda los grandes res-
ponsables de ello.

A mi equipo. Gracias por buscarme un sitio en el Antela para mis reuniones y
cada jueves fingir que os ibais a colar en ellas, por confiar en mi talento para los
triples y mi velocidad al volante. Espero estar muy pronto celebrando esto con vo-
sotras y un montón de manolitos.

A Rocío y Prats, gracias por ser siempre mi equipo. Tengo claro que nuestras
cenas han sido un ingrediente clave en este trabajo, incluso las crudiveganas de za-
nahoria.

Finalmente, gracias a Tom Rosenthal por ser la banda sonora de muchas de las
horas dedicadas a este trabajo.

vii

Abstract

Analysis of “Effectively Callback Freeness” for Smart
Contracts

Callbacks are an effective programming discipline for implementing event-driven
programming, especially in environments like Ethereum which forbid shared global
state and concurrency. Callbacks allow a callee to delegate the execution back to
the caller. Though effective, they can lead to subtle mistakes principally in open
environments where callbacks can be added in a new code. Indeed, several high
profile bugs in smart contracts exploit callbacks. This work presents the first static
technique ensuring modularity in the presence of callbacks and apply it to verify
prominent smart contracts. Modularity ensures that external calls to other contracts
cannot affect the behavior of the contract. Importantly, modularity is guaranteed
without restricting programming.

In general, checking modularity is undecidable– even for programs without loops.
This work describes an effective technique for soundly ensuring modularity harnes-
sing SMT solvers. The main idea is to define a constructive version of modularity
using commutativity and projection operations on program segments.

We implemented our approach in order to demonstrate the precision of the mo-
dularity analysis and applied it to real smart contracts (including a subset of the
150 most queried contracts in Ethereum). Our implementation decompiles bytecode
programs into an intermediate representation and then implements the modularity
checking using SMT queries. Our experimental results indicate that the method can
be applied to many realistic contracts, and that it is able to prove modularity where
other methods fail.

The main results in this project have been submitted to the ACM SIGPLAN
conference on Systems, Programming, Languages, and Applications: Software for
Humanity (OOPSLA 2020).

Keywords

Modularity, static analysis, callbacks, commutativity, SMT solvers, DAO attack,
Ethereum, smart contracts.

ix

Resumen

Análisis de “Effectively Callback Freeness” para Smart
Contracts

Los callbacks son esenciales en muchos entornos de programación, especialmente en
los que como Ethereum no permiten estados globales compartidos ni concurrencia. A
través de ellos un programa llamado puede llevar de nuevo la ejecución al llamante.
A pesar de su efectividad, su uso puede dar lugar a errores. De hecho, muchos de
los principales ataques realizados sobre smart contracts explotan su uso. Este tra-
bajo presenta el primer método estático para asegurar modularidad en presencia de
callbacks y su aplicación sobre algunos de los principales smart contracts. La modu-
laridad de un contrato asegura que llamadas a contratos externos no pueden afectar
a su comportamiento. Cabe destacar que se garantiza modularidad sin establecer
restricciones sobre la programación.

En general, estudiar la modularidad de un programa es indecidible, incluso cuan-
do no incluye bucles. Este trabajo describe un método efectivo para demostrarla de
manera sólida utilizando SMT solvers. La idea clave es el desarrollo de una noción
de modularidad basada en la conmutación y proyección de segmentos del programa.

De cara a estudiar la precisión del análisis hemos implementado y aplicado nues-
tra técnica sobre smart contracts reales (incluyendo un subconjunto de los 150 con-
tratos más llamados en Ethereum). Nuestra implementación decompila el bytecode
de los programas a una representación intermedia y después estudia su modulari-
dad a través de consultas a SMT solvers. Los resultados experimentales obtenidos
indican que el método puede aplicarse sobre multitud de contratos, y que es capaz
de demostrar modularidad en casos donde otros métodos fallan.

Los principales resultados de este trabajo se han presentado a la conferencia
internacionalACM SIGPLAN conference on Systems, Programming, Languages, and
Applications: Software for Humanity (OOPSLA 2020).

Palabras clave

Modularidad, análisis estático, callbacks, conmutatividad, resolutores SMT, ataque
DAO, Ethereum, smart contracts.

xi

Contents

1 Introduction 1
1.1 The DAO Attack . 1
1.2 Effectively Callback Freedom (ECF) 5

1.2.1 Previous approaches . 5
1.2.2 Static Verification of ECF . 6
1.2.3 Overview of the technique . 7

1.3 Objetives and contributions . 9
1.4 Organization of the Project . 10

2 Preliminaries 11
2.1 Programming language . 11
2.2 Traces . 12
2.3 Executions . 13

3 Segments, Projection and Commutation 15
3.1 Basic definitions on segments . 15

3.1.1 Segment-sequences . 16
3.2 Commutation and projection . 17

4 Static analysis 19
4.1 Solvable Call Node . 20
4.2 Segments Join . 24
4.3 Treatment for Revert Operations . 26

5 Callback invariant 29

6 Implementation and Experimental Evaluation 33
6.1 Experimental evaluation . 34

6.1.1 Detailed results . 34
6.2 Challenging real case study . 37

7 Related Work 41

xiii

8 Conclusions and Future Work 45
8.1 Future work . 46

A Proofs 51
A.1 Proof of Lemma 1 . 51
A.2 Proof of Theorem 1 . 52

A.2.1 Auxiliary proofs and definitions 52
A.2.2 Proof sECFSS implies sECFFS 54

A.3 Proof of Theorem 2 . 56
A.4 Proof of Theorem 3 . 57
A.5 Proof of Theorem 4 . 58

List of figures

1.1 A Solidity contract illustrating the DAO bug. We write the bal-
ance update effects of payable functions and send operations explic-
itly using the balance variable. The send_money operation is the same
as Solidity’s send. success represents a success code as returned by
send_money. Revert operations are also stated explicitly. 2

1.2 Attacker object stealing money from DAO contract 3
1.3 The CFG of the withdraw method from the objects in Figure 1.1 and

the malicious trace, marked with blue edges (b is balance, s is shares).
The area under the grey rectangle pertains to the callback. 3

1.4 Solidity contract avoiding the DAO bug. Not verifiable using previous
approaches for ECF checking. 4

1.5 Sequence of commutation and projection operations on an example
trace. 7

1.6 Pseudocode of the algorithm for checking a function with a single
callnode. 8

1.7 Simple counterexample to ECF produced by the analysis 9
1.8 Proof of ECF produced by the analysis 9

2.1 TS for withdraw procedure from Fig. 1.4 written in our programming
language. Conditions appear in red and assignments in blue. 12

4.2 Example of functions f1 and f2 that do not commute. The contract
is not ECF (trace ρ0; ρ2; ρ3; ρ1) . 22

4.3 ECF contract that requires call node removal and cannot be proven
using minimal segments . 24

4.4 Example of contract with revert instructions. The program is ECF . 26

5.1 Simplified Synthetix contract non verifiable using the sECFOS ap-
proach . 30

6.1 The code of the exchangeEtherForSynths function. Without a lock as
defined by the nonReentrant modifier in any one of the proposed fixes
in Figure 6.2, it is not ECF. 38

6.2 Two fixes for the exchangeEtherForSynths function. 39

xv

List of tables

6.1 Summarized ECF results. ‘CN’ stands for ‘callnode’, and ‘f’ for ‘func-
tion’. We only consider functions that are candidates to ECF checking
(>0 CNs). 35

6.2 Results for 94 contracts with callnodes. 35

xvii

Chapter 1
Introduction

Modularity is a key principle in system design: Encapsulating code and data into di-
fferent modules which communicate via clearly defined procedural interfaces allows
separately designing, developing, understanding, testing, and reasoning about diffe-
rent parts of the system. For example, the fully encapsulated programming model
of the Ethereum blockchain allows for any object (“smart contract”) to interact
with other ones by invoking their methods, but prevents direct access to the other
contracts’ data. Modularity, however, is not a panacea as demonstrated by the in-
famous DAO bug [10]. The latter exploited the callback mechanism to temporarily
steal money.1 Callbacks occur when a method of a module, say a smart contract,
invokes a method of another module, say, another smart contract, and the latter,
either directly or indirectly, invokes one or more methods of the former before the
original method invocation returns. Callbacks complicate program reasoning (see,
e.g., [20]) because they require programmers to consider interleavings of calls to their
own code, which, as in concurrent programming [30], can be very tricky. The danger
of callback attacks, also called reentrancy attacks, led to many suggestions for syn-
tactical program restrictions, e.g., delaying external calls (see, e.g., [12]). However,
these restrictions are overly severe and several realistic programs violate them.

The goal of this master thesis is to develop a sound static analysis for proving
immunity to reentrancy attacks while permitting benign use of callbacks, thus, allow-
ing for flexible programming without placing syntactical restrictions. This problem
is challenging since we need to prove relational properties of the code. Intuitively
speaking, the static analysis will show that a program without a callback is seman-
tically equivalent to a program with a callback (in such, modularity is ensured).

1.1 The DAO Attack

We motivate our work using the infamous bug in the DAO (Decentralized Au-
tonomous Organization) contract [10]. Figure 1.1 shows a simplified vulnerable
Solidity contract. The purpose of the DAO contract is to facilitate voting on invest-

1 The money was “returned” by forking Ethereum blockchain into a new blockchain with a fixed
code for the DAO contract.

1

2 Chapter 1. Introduction

1 pragma solidity ^0.4.24;
2

3 contract Bank {
4 mapping (address => uint) public shares;
5

6 function deposit() payable {
7 /* balance is an alias for address(this).balance */
8 balance += msg.value;
9 shares[msg.sender] += msg.value;

10 }
11

12 function withdraw() {
13 uint256 orig_balance = balance;
14 uint256 orig_shares = shares[msg.sender];
15 if (orig_shares > 0 && orig_balance >= orig_shares) {
16 balance = balance − orig_shares;
17 if (msg.sender.send_money(orig_shares)!=success) {
18 balance = orig_balance; // reverting
19 shares[msg.sender] = orig_shares;
20 }
21 else shares[msg.sender] = 0;
22 }
23 }
24 }

Figure 1.1: A Solidity contract illustrating the DAO bug. We write the balance
update effects of payable functions and send operations explicitly using the balance
variable. The send_money operation is the same as Solidity’s send. success repre-
sents a success code as returned by send_money. Revert operations are also stated
explicitly.

ment proposals by the owners of the DAO (referred to as objects in the following).
The contract stores in the variable shares the individual investment for each object
as well as the balance variable.

For clarity of the presentation, we avoid using predefined Solidity instructions
for money transfer and state reversal, and implement them by explicit updates to
the state.

This includes the special reserved global variable balance representing the amount
of money owned by the executing contract that is maintained by the runtime VM.
The contract offers two functions that manipulate the state: deposit and withdraw.
The purpose of deposit is to store money in the contract by increasing the object’s
shares by the value sent as parameter. In Solidity msg is a special variable that
always exists in the global namespace, providing information about the blockchain.
The field sender of msg stores the caller’s object’s address and the field value stores
the “money” (Ether, the cryptocurrency of the Ethereum blockchain) transferred in
the transaction.

The withdraw function allows pulling out all available shares of the object, which
is implemented by decreasing the current shares amount from the contract’s own
balance and transferring it back to the object by means of the send_money in line 17.
This is a call node where control is relinquished to the callee object. At this point,
the callee object might execute a callback. If the call does not fail (programmed as

1.1. The DAO Attack 3

returning success), the object’s shares is set to zero. Otherwise the state is reverted
to the initial one (then branch).

25 bool attacked;
26

27 function send_money(uint value) {
28 if (!attacked) {
29 attacked = true;
30 balance += value;
31 Bank.withdraw();
32 }
33 }

Figure 1.2: Attacker object stealing money from DAO contract

The DAO was attacked by a “callback loop-hole” in which the receiver object calls
back the method withdraw to steal money, in particular, the code of the send_money
function is designed to call withdraw again. Figure 1.2 shows a snippet of code that
produces such a callback loop-hole and Figure 1.3 shows the exploit trace. Basically,
when the attacker receives the control in send_money, it increases its balance and
calls back withdraw again.2 As the shares of the attacker are only updated in line
21 after the send_money has finished, the callback execution of withdraw will find
the shares with the initial value and will make another transfer to the attacker.
Figure 1.3 depicts the bug in the malicious trace. The presence of the callback
violates the invariant balance ≥

∑
shares.

Figure 1.3: The CFG of the withdraw method from the objects in Figure 1.1 and the
malicious trace, marked with blue edges (b is balance, s is shares). The area under
the grey rectangle pertains to the callback.

2In order to simplify the trace with the callbacks shown later, the attacker object is designed in
a way that it can be invoked at most once (by using attacked as a lock), and generate only a single
callback. Note that even without the lock, there is no infinite recursion here since eventually the
condition for sending money will not hold.

4 Chapter 1. Introduction

34 contract Bank {
35 mapping (address => uint) public shares;
36 bool lock = false;
37

38 function deposit() payable {
39 balance += msg.value
40 require (!lock);
41 shares[msg.sender] += msg.value;
42 }
43

44 function withdraw() {
45 require (!lock);
46 uint256 orig_balance = balance;
47 uint256 orig_shares = shares[msg.sender];
48 if (orig_shares > 0 && orig_balance >= orig_shares) {
49 lock = true;
50 balance = balance − orig_shares;
51 if (msg.sender.call(orig_shares)!=success) {
52 balance = orig_balance;
53 shares[msg.sender]= orig_shares;
54 lock = false;
55 }
56 else {
57 lock = false;
58 shares[msg.sender] = 0;
59 }
60 }
61 }
62 }

Figure 1.4: Solidity contract avoiding the DAO bug. Not verifiable using previous
approaches for ECF checking.

Severity of Reentrancy Attacks. The DAO problem is also called ‘Reentrancy
Attack’ since it exploits the non-reentrant nature of the stateful code. The attack
is pervasive, e.g., [13, 10], and keeps occurring even after the DAO hack [27, 36, 8].
For example, [6] describe a bug in a test version of Synthetix [31], one of the three
top-most valuable crypto assets according to [32]. This bug was identified using the
algorithm presented in this dissertation.

Pattern Based Tools. The standard way to identify problems like the DAO is by
searching for a common pattern, of ‘write-after-call’, e.g., [35, 16, 33, 24, 15, 9]. The
idea is that if there are no writes to the state after calls, then it is easy to see that
the contract is safe against reentrancy attacks. Pattern-based solutions yield many
false alarms on existing code, preventing the developers from using these tools.

Example 1 Consider the contract in Figure 1.4 that illustrates a “contract-locks”
solution to avoid callbacks found in real contracts. It uses a boolean state variable
lock to forbid callbacks such that a callback from a different object to execute withdraw
will encounter lock set to true, and the require instruction will prevent the execution
of the withdraw function.3 Pattern-based tools flag this function as vulnerable to a

3In Solidity, if the condition within the require does not hold, the execution is reverted to the

1.2. Effectively Callback Freedom (ECF) 5

reentrancy attack, which is not useful to smart contract developers.

1.2 Effectively Callback Freedom (ECF)

In this section we present the notion of Effectively Callback Free (ECF) contract
introduced by [19] as a semantic way to guarantee immunity to reentrancy attacks.
They define the concept of ECF execution and its static extension for contracts.
An execution trace of an object is ECF if there exists an equivalent execution trace
without callbacks to this object. Hence, an object is ECF if all its possible execution
traces are ECF.

[19] also suggest dynamic techniques for checking if an execution is ECF based
on conflict between read and write operations: a given execution is ECF if we can
reorder its instructions in a way we obtain a callback-free execution such that every
pair of read/write operations appears in the same order in both executions. Never-
theless, this approach is over-conservative and flags as dangerous typical solutions
for reentrancy attacks, as the one using locks shown in the contract in Figure 1.4.

Finally, we introduce in this section an overview of our approach, motivating the
definitions developed in the next chapters. We show the pseudocode of a simplified
version of the technique and include examples illustrating its intuition.

1.2.1 Previous approaches

[19] define the notion of Effectively Callback Free (ECF) module. Intuitively,
a module is effectively callback free if for every trace with a callback, there exists
“an equivalent” callback free trace. [19] suggest two definitions of trace equivalence
inspired by database theory [7]: (i) semantic equivalence based on final state inspired
by final state serializability, and (ii) a syntactic notion of equivalence based on
conflict, i.e., reordering based on reads and writes, inspired by conflict-serializability.

The semantic way to guarantee immunity to reentrancy attacks they suggest is to
show that every execution with a callback can also be simulated without callbacks,
by making sure that an object is Effectively Callback Free (ECF).

A constructive approach to it is to try and reorder callbacks such that they
are executed outside the context of a callback, and show that the resulting trace
is in some sense equivalent to the original trace. This approach requires checking
commutativity of potentially unbounded sequences of operations and each such check
is potentially undecidable.

A simple conservative way to check for ECF already suggested in this paper, is to
check that an object is ECF by reordering operations without read/write conflicts.
This method, called conflict serializability, is the basis for parallelization in modern
database systems, e.g., [7]. Two executions are conflict-equivalent if every pair of
read/write operations appears in the same order in both of these executions. ECF
can be ensured, for the considered execution, if we find a callback-free execution
(among all the reorderings produced) which is conflict-equivalent to the execution
with the callbacks. Consider the malicious execution trace from Figure 1.1 described

initial state.

6 Chapter 1. Introduction

above, read (r) and write (w) operations appear on the edges:

This trace is not conflict-serializable because the read of s in the first call is con-
flicting with the write of s in the callback (marked red), and the write of s in the
first call is conflicting with the read of s in the callback (marked purple). Thus, any
attempt to reorder the callback before or after the first call will change the order of
conflicts.

Conflict serializability is also easier to check using some static analysis tech-
niques, e.g., [34]. Therefore, the original motivation of this work was to implement
a static algorithm for checking conflict serializability. Unfortunately, conflict seriali-
zability is over-conservative and prohibits valid solutions for reentrancy attacks. For
example, the aforementioned Figure 1.4 contains a corrected version of the DAO.
The main idea of this corrected code is to deploy a boolean lock preventing unin-
tended callbacks. However, there are traces with callbacks which are not conflict
serializable:

Observe that the lock variable is written to before and after the callback, and thus
the read of the lock variable in the callback cannot be reordered with respect to
either write.

1.2.2 Static Verification of ECF

This work develops a method for statically verifying ECF using commutativity
checks (which assure equivalence) while also allowing projecting away irrelevant
pieces of code. Our starting point is the reduction of [19] for ECF: it shows that if
there is a violation (using syntactic conflict equivalence) of the ECF property in a
trace with arbitrary nested callback calls then there is one where callbacks are not
nested. We generalize this reduction to semantic final state equivalence and develop
our techniques for simple traces, i.e., ones where the execution of a single method
can be interrupted at call nodes by an arbitrary sequence of executions of other pro-
cedures, however these interrupting procedures themselves never get interrupted.
We prove that a simple trace is ECF by constructing an equivalent callback free
trace via a sequence of swapping and removing of all possible different interrupting
invocations that might arrive.

Example 2 Consider trace ta shown in Figure 1.5. The trace depicts an execution
of procedure h() of a module m which is interrupted twice by different callbacks: h()
starts executing at its entry point and performs a sequence of primitive commands
following its control flow graph (h1) until it gets to a call node (c1) where it relin-
quishes control to an external method. At that point, the external method invokes

1.2. Effectively Callback Freedom (ECF) 7

Figure 1.5: Sequence of commutation and projection operations on an example trace.

procedure f() on m thus generating a callback. Control returns to h() only after
f() exits and h()’s execution continues from c1 by executing the next sequence of
intra-procedural primitive commands (h2) until another call node (c2) is reached. At
that point the external procedure generates two callbacks by invoking p() and then
q(). After control returns to h() the sequence h3 is executed and the execution ends.
We turn ta into the callback free trace te by either commuting the subtraces corres-
ponding to the callback calls or projecting them away. (Note that callback p() is not
part of te). Trace tb shows the result of (right) commuting q with h3. Intuitively,
such a transformation is possible if the composed effect of q;h3 is preserved by h3; q
(c.f. Section 3.2). Trace tc shows a different way to transform the trace, namely
by projecting p away. The elimination of p can be done by a (right) projection with
h3, provided the composed effect of p;h3 is preserved by only executing h3. Alter-
natively, we can achieve the same goal using (left) projection with h2, provided the
composed effect of h2; p is preserved by only executing h2. At this point, we consider
the call node c2 “solved”. Once we solved c2, we can continue with the swapping and
projecting operations to the other callbacks. However, we can do better. Note that
once we solved c2 the trace of h2;h3 is not interrupted. Thus, while we could, for
example, try to swap f with h2 and then with h3 in order to solve call node c1, we,
instead, try to swap it with the “joined” trace h2;h3 (td). Note that if the separate
swaps succeeds it is guaranteed that the swap over the joint trace h2;h3 succeeds too.
This is not true, however, the other way around.

The aforementioned transformation ensures that the resulting trace is final-state
equivalent to the original one, i.e., the effect of executing the original trace (ta) on
an initial state σ can be reproduced by executing it on the transformed (callback-free)
trace (te).

1.2.3 Overview of the technique

We propose a constructive ECF analysis that can be checked using SMT solvers.
For the overview, we present a simplified and intuitive version of the definition, that
does not show all edge cases. The full definition appears in the main chapters of the
work. We partition a trace T which may contain callbacks to subtraces prefix,suffix
and A, such that T = prefix ; A; suffix where A ∈ F ∗, i.e., all possible sequences of

8 Chapter 1. Introduction

function calls from the object, of unbounded length. Let α(·) denote the multiset
of letters in a sequence. The goal is to find disjoint subsequences G,H contained
in A, i.e., α(G)] α(H) ⊆ α(A) and α(G) ∩ α(H) = ∅, such that the callback-free
sequence G; prefix ; suffix ; H is final-state equivalent to T .

63 check_ECF_single_callnode(n, f):
64 prefix = extract_prefix(f,n)
65 suffix = extract_suffix(f,n)
66 L = get_left_movers(prefix)
67 R = get_right_movers(suffix)
68 // L,R are subsets of F
69 if (L + R != F) return MayNotBeECF
70 return check_no_move_collisions(L,R)

Figure 1.6: Pseudocode of the algorithm for checking a function with a single calln-
ode.

A pseudocode of the algorithm for checking our constructive ECF definition is
given in Figure 1.6. It operates by extracting the code segments that pertain to the
‘prefix’ and ‘suffix’ traces of the chosen callnode n, where n is the location of function
f which yields control to callbacks. The algorithm then computes the set of left and
right movers (similar in spirit to [23]). The left and right movers determine how the
subsequences G,H from the above definitions are chosen. To make sure that we can
find such G,H for all possible traces A, the set of left and right movers must cover
all available functions F . If they do not cover all F , then the function f may not
be ECF. In that case, the functions in F \ (L ∪ R) serve as a witness that explains
the potential violation. Interestingly, covering F is not sufficient for proving ECF:
the order of the functions in A may affect whether they can be reordered or not.
For example, if g1 ∈ R, g2 ∈ L, and g1, g2 do not commute, then for A = g1; g2 it is
not necessarily true that g2; prefix ; suffix ; g1 is equivalent to T . A concrete example
is given in Figure 4.2. Hence, the check_no_move_collisions(L,R) takes the sets
of left and right movers, and ensures that such conflicts cannot occur by checking
commutativity properties of pairs of functions. If two functions do not commute in
a way that prevents callback reordering, then it is possible to produce a potential
callback sequence that cannot be reordered outside of the call node, and thus may
indicate ECF violation. In the following chapters, we explain how the definition and
algorithm are generalized to handle the case of multiple call nodes in a function.

The lifting of the dynamic trace-based case to the static case uses the notion of
segments. For a program Pr we define a finite set of segments which conservatively
cover all traces in Pr . We show that if there is a trace violating ECF, then the
segments also violate the commutativity properties. This is realized using SMT
solvers for checking commutativity.

SMT solvers can be used to soundly reason about commutativity properties,
e.g., [1, 4, 37], and we use those in the implementation. Given the known limita-
tions of such solvers in large scale, our chief insight is that for ECF, it is possible
to minimize the number of commutativity checks discharged with the SMT solver.
This is described in further detail in Chapter 6. To intuitively illustrate how our
algorithm operates, and how counterexamples are given, we go back to the buggy

1.3. Objetives and contributions 9

code from Figure 1.1. This code contains two functions, one of them containing a
single callnode (withdraw). Therefore, the algorithm analyzes whether both func-
tions, withdraw and deposit, can commute with the code segments before and after
the callnode, which we denote as withdraw_prefix and withdraw_suffix, resp.

Call node at function withdraw(): line 16
withdraw() deposit()

Move before X not checked
Move after X not checked
ECF check of withdraw() failed due to the
following callback trace at line 16:

withdraw();

Figure 1.7: Simple counterexample to ECF produced by the analysis

It can be seen that withdraw does not commute with either withdraw_prefix
nor with withdraw_suffix. Thus, the SMT solver shows us traces for violating the
commutativity for both, and the conclusion overall would be that withdraw cannot be
moved out if it runs as a callback in this callnode. An example summarized output of
the analysis is given in Figure 1.7. For the corrected code from Figure 1.4, assuming
the algorithm starts by trying to move both functions to the left, then clearly the
callbacks can be projected away with respect to the prefix of the callnode–the lock
is set to true, and the callbacks have no effect and can be omitted. An example
summary is given in Figure 1.8.

Call node at function withdraw(): line 49
withdraw() deposit()

Move before X X
Move after not checked not checked
ECF check of withdraw() succeeded.

Figure 1.8: Proof of ECF produced by the analysis

1.3 Objetives and contributions

The goal of this master thesis is to develop a sound static analysis for proving that
an object satisfies the ECF property. As we discussed in Section 1.2, there exist
techniques for checking if a given execution verifies the ECF property. However, to
the best to our knowledge, this is the first work to present a technique for statically
verifying this property. We implemented our approach and applied it to real smart
contracts, in particular to the 150 most queried contracts in Ethereum, demonstrat-
ing the applicability of the technique.

In summary, the master thesis makes the following main contributions:

10 Chapter 1. Introduction

(1) Semantic commutation and projection, and segment-join operations. We
present semantic notions of left/right/zero-projection, that together with the oper-
ations of commutation and segment-join (intuitively illustrated in the example in
Figure 1.5), lay down our analysis.

(2) Static analysis. We introduce a novel static analysis (intuitively outlined
in Figure 1.6) based on proving commutativity and projection between all the frag-
ments of code (or code segments) in between call nodes and all other procedures of
the module.

(3) Callback invariant. We introduce the new concept of callback invariant that
can be used within our static framework in a natural way in order to increase its
accuracy.

(4) Implementation and evaluation. A prototype of our static analysis algorithm
is implemented on top of the EVM bytecode [39] and evaluated on the most called
Ethereum contracts and on a realistic decentralized finance application.

The main results in this master thesis have been submitted to the ACM SIG-
PLAN conference on Systems, Programming, Languages, and Applications: Software
for Humanity (OOPSLA 2020)[2]. This submission is currently under revision.

1.4 Organization of the Project

The remainder of the work is organized as follows.
Chapter 2 defines the necessary syntax and semantics for the programs that we

consider. Chapter 3 introduces the definitions that the static analysis relies on.
Essentially, they are segments of code, and the projection and commutation oper-
ations on segments. Chapter 4 describes our static analysis technique for checking
ECF. Chapter 5 extends the analysis to include the concept of callback invariant.
Chapter 6 presents the implementation and its evaluation on Ethereum smart con-
tracts, demonstrating the applicability and effectiveness of the proposed technique.
Chapter 7 discusses related work and we conclude in Chapter 8 showing the main
conclusions and pointing out directions for future research.

Chapter 2
Preliminaries

This chapter introduces some preliminary notions and notations. We present the
language we use to formalize our results and define some basic notions like trace or
execution.

2.1 Programming language

We formalize our results using a simple imperative programming language in which
a program Pr is a (finite) collection of procedures p1, . . . pk. Each procedure has its
own (finite) set of local variables which only it can access, and all the procedures
share access to a (finite) set of global variables. Procedures are represented using
control-flow graphs (CFGs). Every edge e of the CFG is annotated with a precon-
dition c and a set of variable assignments a. We refer to the nodes of the CFG as
program locations and to its annotated edges as transitions. We usually range over
program locations and transitions using n and ρ, resp. As our results are not tied
to a particular syntax of conditions or assignments, we leave those unspecified.

Every procedure has a unique entry node, to which no edge leads, and a unique
exit point, from which no edge leaves. In addition, some of the program locations of
a procedure may be call nodes. We sometimes refer to call nodes as callback points.
Every time a procedure reaches a call node it may invoke arbitrary procedures an
arbitrary number of times and then finally havoc the value of a specially designated
return variable r by setting it to an arbitrary value.

Program states σ ∈ Σ record the values of the program’s global variables, the
program counter and the local variables of the currently executing procedure. The
state also maintains a stack of the program locations and values of the local variables
of pending calls. We assume to have at our disposal a semantic function J·K which
assigns meaning to transitions JρK ⊆ Σ×Σ as a binary relation over program states.
Our programs are deterministic in the sense that at most one output state can be
produced by applying a transition (with the exception of the aforementioned havoc
transitions) to any input state. The intention is that the program can proceed
from the program location n at the source of a transition ρ = 〈n, c : a, n′〉 to the
target program location n′ of ρ only when the program is in an input state σ which
satisfies c and it then produces an output state σ′ according to the assignments a

11

12 Chapter 2. Preliminaries

n0 n1 n2

n4

n3

ρ6 : lock == true

ρ0 : lock == false :

o_balance′ = balance

o_shares′ = shares

ρ1 : o_shares > 0 ∧
o_balance ≥ o_shares :

lock′ = true

ρ2 : o_shares ≤ 0 ∨
o_balance < o_shares

ρ4 : r == success :

lock′ = false

shares′ = 0 ρ5 : r! = success :

lock′ = false

balance′ = o_balance
shares′ = o_shares

ρ3 : balance′ = balance− o_shares

Figure 2.1: TS for withdraw procedure from Fig. 1.4 written in our programming
language. Conditions appear in red and assignments in blue.

annotating ρ. Thus, JρK is comprised of all such pairs of states ρ = 〈σ, σ′〉 that
define a transition relation. Hence, from now on, we will refer to our CFGs as (a
symbolic denotation of) Transition Systems (abbreviated as TS). Figure 2.1 depicts
the TS of the withdraw procedure from Figure 1.4 where n0 and n4 are the entry and
exit nodes, resp. We write the assignments annotating edges using two-vocabularies
in the standard way: The primed variables v′ represent the value of a variable
v after the transition and the unprimed version v represents its value before the
transition executes. We mark its sole call node (n3) using a double circle. In our
programming language we can describe encapsulated objects as programs defined
as the set of TSs for their procedures, and the non-deterministic call mechanism
used to represent callbacks. The programming model considered is general enough
to define the relevant part of our analysis for most programming languages, and its
simplicity helps clarify our presentation.

2.2 Traces

A trace is a (finite) sequence of transitions t = ρ1; . . .; ρn. We say that a trace starts
resp. ends at program location n if n is the source resp. target program location of
its first resp. last transition. We denote the starting resp. ending program location
of a trace t by start(t) resp. end(t). We denote the length of a trace t by |t|, the
empty trace by ε, and the trace composition operator which concatenates two traces
by ; . We say that a trace t1 is a subtrace of a trace t if t = t0; t1; t2 for some traces t0
and t2. A trace is a trace of procedure p if all its transitions come from p’s transition
system. A trace of procedure p is well-formed if the target program location of every
transition in it is the source program location of the next transition. A well-formed
trace t of p is complete if start(t) is p’s entry node and end(t) is p’s exit node.
We refer to complete well-formed traces of procedures as functions. We denote the
set of well-formed procedure traces of a program Pr by TR(Pr) and the set of all
well-formed traces of procedures in Pr starting at program location n and ending
at n′ by TRPr(n, n

′) = {t ∈ TR(Pr) | start(t) = n∧ end(t) = n′}. (We omit the Pr

2.3. Executions 13

subscript in what follows).

Example 3 In the program shown in Figure 2.1, we have, for instance, that TR(n0, n3) =
{ρ0; ρ1; ρ3}, TR(n0, n4) = {ρ0; ρ1; ρ3; ρ4, ρ0; ρ1; ρ3; ρ5, ρ0; ρ2, ρ6}, and TR(n3, n4) =
{ρ4, ρ5}.

A trace t is a complete callback-free trace of a program Pr if t = t1; . . . ; tn, for some
0 ≤ n such that every ti, for i = 1..n, is a function. Thus, the execution of the
procedures is not split due to an incoming call. A trace is callback-free if it is a
subtrace of a complete callback-free trace.

A trace t is a complete well-formed trace if it is a complete callback-free trace of
Pr or there exist traces t1, t2, and t3 such that (i) t2 is a complete well-formed trace
of Pr , (ii) end(t1) is a call node, and (iii) the trace t1; t3 is a complete well-formed
trace of Pr . Note that conditions (ii) and (iii) ensure that start(t3) = end(t1). When
t1 and t3 are not complete traces and end(t1) = start(t3) is a call node, then t2 is a
sequence of complete subtraces which we refer to as the callbacks. Thus, a trace tc
is a callback in trace t if it is a function and there are non-empty traces t0, t1 such
that t = t0; tc; t1. A trace is well-formed if it is a subtrace of a complete well-formed
trace. In the following, unless stated otherwise, we use the term trace to mean a
well-formed trace.

Example 4 Examples of traces without callbacks from n0 to n4 are shown in Ex. 3
in TR(n0, n4). Examples with callbacks would be (the callback trace is underlined):
ρ0; ρ1; ρ3; ρ

′
6;ρ4 where ρ′6 is a callback trace, or ρ0; ρ1; ρ3; ρ′0; ρ′2;ρ4 . However, the

latter would be pruned out by the execution since it is not feasible to execute ρ′0 at
this point as ρ1 sets lock to true and hence the condition in ρ′0 does not hold.

2.3 Executions

We denote the set of executions of a trace t by JtK. An execution ξ = σ0 ρ0σ1 . . . σn−1σn
is an alternating sequence of states and transitions which start and end with a state
and for every i = 0..n − 1, 〈σi, σi+1〉 ∈ JtiK. We say that ξ is an execution of trace
t if t is the subsequence of transitions in ξ. We denote the first and last states of
ξ by start(ξ) and end(ξ), respectively. We write σ − t − σ′ to denote an execution
ξ ∈ JtK of t such that start(ξ) = σ and end(ξ) = σ′. All notions for traces, like being
complete, well-formed or callback-free are extended to executions in the natural way.

Definition 1 ('FS) Executions ξ1 and ξ2 are final state equivalent, written ξ1 'FS

ξ2, if start(ξ1) = start(ξ2) and end(ξ1) = end(ξ2).

It is now possible to use the above notations to define ECF for both executions
(dynamic) and programs (static), similarly to [19].

Definition 2 (dECFFS) A complete well-formed execution ξ is effectively callback-
free, written ξ |= dECFFS , if it is final state equivalent to a complete callback-free
execution.

14 Chapter 2. Preliminaries

Definition 3 (sECFFS) A program Pr is effectively callback-free (denoted P |=
sECFFS) if every complete well-formed execution of Pr is effectively callback free.

The notion of feasible states will be useful in the following chapters:

Feasible states. A state σ is feasible for a trace t if t can be fully executed starting
at σ, i.e., there exists a state σ′ such that σ− t− σ′ is an execution. We denote the
set of feasible states for t by Feasible(t) and the set of all feasible states of a set of
traces P by Feasible(P) =

⋃
t∈P Feasible(P).

When a state is feasible for a trace, we also say that the trace is feasible for
the state. For example, if the trace contains two transitions (n1, x ≤ 0 : x′ =
x+ 1, n2); (n2, x ≥ 0 : x′ = x ∗ 2, n3) (and x is an integer variable) then the feasible
states for this trace are those where x is either 0 or −1 since only in such states we
can execute both transitions (as we need both x ≤ 0 and x+ 1 ≥ 0).

Chapter 3
Segments, Projection and Commutation

This chapter introduces auxiliary definitions that the static analyses in Chapter 4
rely on, namely segments of code, and the projection and commutation operations
on segments. As usual, the static analysis handles many traces at once: the concept
of segment will allow us to characterize all traces that can arise from using the
fragment of code in the segment. In order to explain the intuition of our operations,
we consider a simple complete well-formed trace which is not callback-free t1; tf ; t2,
where tf is a function and t1; t2 is a function as well. (Note that end(t1) = start(t2)
is a call node.) We say that t1 is the left subtrace, and t2 is the right subtrace,
and denote by τ1, τf and τ2 the segments to which t1, tf and t2, resp., belong.
Our technique aims at guaranteeing ECF by proving that the final state of an
execution of t1; tf ; t2 is the same as the final state of an execution of either τ1; τ2; τf
or τf ; τ1; τ2 or τ1; τ2 (when starting from the same initial state). In order to prove the
equivalence, we define projection and commutation of pairs of segments. Applying
these operations guarantees that the resulting state is the same and that in all
feasible states from which the original segment sequence can start and fully execute,
so can the new one. Informally, the projection operation applied on τ1 and τf ensures
that an execution of τ1; τf leads to the same state as an execution of τ1 alone. If it
holds, we have proven ECF for the considered sequence. Commutation ensures that
an execution of τ1; τf results in the same state as an execution of τf ; τ1.

3.1 Basic definitions on segments

Segments represent potentially unbounded number of traces, going between start,
exit, and call nodes. In the definition for segments, we refer to the start and exit
nodes of a procedure as call nodes too. In the rest of the chapter, we assume to be
working with an arbitrary fixed program Pr .

Definition 4 (Segment) Given two call nodes n and n′, the segment between n
and n′ is the set of traces TR(n, n′). A segment TR(n, n′) is a function if n is the
start node of a procedure and n′ is its exit node. The set of function segments of a
program Pr is denoted by F (Pr). A segment belongs to a procedure p if its start and
exit nodes belong to p.

15

16 Chapter 3. Segments, Projection and Commutation

Example 5 The segment for the program shown in Figure 2.1 for n0 and n3 is
τ0 = {ρ0; ρ1; ρ3}, for n3 and n5 is τ1 = {ρ4 , ρ5} and for n0 and n4 is τ2 =
{ρ0; ρ1; ρ3; ρ4 , ρ0; ρ1; ρ3; ρ5 , ρ0; ρ2 , ρ6}, where τ2 is a function segment, since its
traces go from the start node n0 to the end node n4.

Importantly, the notion of segments applies to programs with loops, as the next ex-
ample illustrates. Consider the following function (whose TS is shown to the right):

71 function loop(int val) {
72 int aux = 0;
73 do {
74 aux += val;
75 }
76 while (aux < 10);
77 }

n0 n1 n2 n3

ρ0 ρ1

ρ2

ρ3

The function loop has only one segment that goes from the start to the end node,
although this segment might contain an infinite number of traces (as val can be
negative). In particular, the segment TR(n0, n3) contains the traces that start in
the node n0 and end in n3, but there might be an unbounded number of these
traces since we can take the path ρ1; ρ2 as many times as we like before taking the
transition ρ3 and end at n3.

Definition 5 Given a segment τ , we say that σ− τ − σ′ if and only if there exist a
trace t ∈ τ such that σ − t− σ′.

3.1.1 Segment-sequences

We use sequences of segments (segment-sequences), in order to prove that an exe-
cution is ECF. We use the notation τ for segments and π for segment-sequences.

Definition 6 (Segment-sequence) A segment-sequence is a non-empty sequence
of segments of the program. A segment-sequence is well-formed if the end node of
each segment is the initial node of the next one.

Following the example shown in Example 5, the segment-sequence for the execution
trace ρ0; ρ1; ρ3; ρ′6; ρ4 would be τ0; τ ′2; τ1, where we have primed the segment τ ′2 of the
callback procedure.

We need to distinguish when a segment-sequence includes a particular trace of
the program.

Definition 7 We say that a trace t is represented by a segment-sequence π =
τ1; τ2; . . . ; τn if and only if t = t1; t2; . . . ; tn for some traces t1, t2,. . . ,tn such that for
every i = 1, . . . , n we have that ti ∈ τi.

Definition 8 Given a segment-sequence π, we say that σ − π − σ′ if and only if
there exist a trace t represented by π such that σ − t− σ′.

3.2. Commutation and projection 17

3.2 Commutation and projection

We define the following concepts about commutativity and projection.

Definition 9 (Commutation) Given two segments τ1 and τ2, we say that τ1 com-
mutes with τ2 for the state σ ∈ Feasible(τ1; τ2) if and only if σ ∈ Feasible(τ2; τ1) and
if σ − τ1; τ2 − σ′ and σ − τ2; τ1 − σ′′ then σ′ = σ′′.

Here the condition σ ∈ Feasible(τ2; τ1) means that if τ1 commutes with τ2 for a
state σ ∈ Feasible(τ1; τ2) then we can execute τ2; τ1 from σ as well. Therefore,
commutation for the state σ implies both (i) we can execute τ2; τ1 from the state σ
and (ii) it produces the same state. In order to clarify requirement (i), let τa and τb
be the segments containing only the trace with a single transition 〈n, y ≥ 0 : x′ =
0 , y′ = y − 1, n′〉 and 〈m, y ≤ 1 : x′ = y, y′ = y − 1, m′〉, respectively. They do
not commute for any state σ such that σ[y] = 0 since τa; τb can be executed, but
τb; τa cannot: The first transition in τb decrements y to −1, thus the condition y ≥ 0
in τa does not hold. Hence, although when both can be executed they end in the
same state, we cannot directly replace τa; τb by τb; τa since when σ[y] = 0 the second
execution would not be feasible and therefore we cannot guarantee that we have an
alternative execution.

Definition 10 (Left-projection) Given two segments τ1 and τ2, we say that τ1
left-projects with τ2 for the state σ ∈ Feasible(τ1; τ2) if and only if if σ − τ1; τ2 − σ′
and σ − τ1 − σ′′ then σ′ = σ′′.

Definition 11 (Right-projection) Given two segments τ1 and τ2, we say that τ1
right-projects with τ2 for the state σ ∈ Feasible(τ1; τ2) if and only if σ ∈ Feasible(τ2)
and if σ − τ1; τ2 − σ′ and σ − τ2 − σ′′ then σ′ = σ′′.

Consider the segments τ0 and τ2 defined in Example 5. τ0 represents the traces
of withdraw until the callnode point. τ2 is representing the withdraw function. We
study whether they commute or project in order to prove ECF for traces of withdraw
that have withdraw called as a callback. τ0 does not commute over τ2 since there is
an initial state where the final values of the balance variable could be different: τ0; τ2
does not decrement balance a second time in the callback τ2 due to the lock being set
in τ0, while τ2; τ0 may fully execute the first withdraw, decrementing balance, after
which the trace in τ0 decrements balance again. However, we have left-projection as
τ0; τ2 leads to the same state as τ0 (because the lock is taken when τ2 executes and
there is only one decrement of balance).

We now define movement as a combination of commutativity and projection
properties. Left-movement expresses that for all feasible states we can either com-
mute or left-project, right-movement expresses that we can either commute or right-
project.

Definition 12 (Left-movement) Given two segments τ1 and τ2, we say that τ1; τ2
left-moves if and only if for all σ ∈ Feasible(τ1; τ2) we have that either τ1 commutes
or left-projects with τ2 for the state σ.

18 Chapter 3. Segments, Projection and Commutation

Definition 13 (Right-movement) Given two segments τ1 and τ2, we say that
τ1; τ2 right-moves if and only if for all σ ∈ Feasible(τ1; τ2) we have that either τ1
commutes or right-projects with τ2 for the state σ.

We distinguish between left and right movements to ensure that the result-
ing segment sequence represents a trace of the procedure. For example, for the
segment-sequence π = τ1; f ; τ2, if τ1; f left-moves we build an equivalent callback-
free segment-sequence: for all feasible states either the execution of τ1; τ2 or f ; τ1; τ2
is final-state equivalent to π. Both contain real traces of the program. However,
we could not use that τ1; f right-moves: in case it right-projects we would get the
sequence f ; τ2 that does not represent any complete trace.

On the other hand, any movement between different functions preserves the abi-
lity to generate a real program trace. This is the reason why we consider a more ge-
neral kind of movement that includes left-projection, right-projection, commutation
and a new kind of projection that eliminates both functions: the zero-projection.

Definition 14 (Zero-projection) Given two segments τ1 and τ2, we say that τ1
zero-projects with τ2 for the state σ ∈ Feasible(τ1; τ2) if and only if, if σ− τ1; τ2−σ′,
then σ = σ′.

Zero-projection expresses that two segments transition from a state σ to a final
state equivalent to σ. For example, assuming we are in a state where 0 ≤ x ≤ 1000,
the segments τ1 : x′ = x ∗ 2 and τ2 : x′ = x/2 zero-project, but they do not left or
right-project or commute.

We define the notion of movement, expressing that for all feasible states we can
either commute or left, right or zero-project.

Definition 15 (Movement) Given two segments τ1 and τ2, we say that τ1; τ2
moves if and only if for all σ ∈ Feasible(τ1; τ2) we have that either τ1 commutes,
right-projects, left-projects or zero-projects with τ2 for the state σ.

We use the terminology left-movement to express that if τ1; τ2 left-moves, then
the equivalent sequence we obtain keeps the left segment τ1 (the equivalent sequence
is τ1 or τ2; τ1). The same happens for the right-movements: if τ1; τ2 right-moves,
then τ2 remains. Movements may not preserve any segment: for τ1; τ2, the resulting
sequence may be either ε, τ1, τ2, or τ2; τ1.

Finally, the final state equivalence check used in the definitions of this chapter
can be effectively implemented using SMT encodings for simple fragments of code
containing no loops and no use of data structures (like arrays or maps). In presence of
these elements, the problem becomes harder. In our system, we have overcome these
difficulties by means of abstractions using uninterpreted functions, as described e.g.
in the commutativity checks of [1]. Developing more accurate movement checkers is
an independent problem that can be the focus of future research. Furthermore, our
overall analysis can also be parametrized with efficient movement checkers based on
syntactic overapproximations relying on read/write operations.

Chapter 4
Static analysis

This chapter presents our static analysis to prove that a given program satisfies the
sECFFS property. We first introduce in Section 4.1 the basic approach to prove that
one call node is solvable in isolation, i.e., it does not break the ECF property. In
order to handle all call nodes in the program, we extend in Section 4.2 our approach
with an operation that, once a call node has been solved, allow us to join its left and
right segments to gain further accuracy. Finally, section 4.3 presents the treatment
of revert executions which undo all changes and revert to the initial state.

Our techniques have to ensure that given a trace we can always find an alterna-
tive callback-free one. To this end, we first prove that if we can solve (i.e. find a final
state equivalent callback-free trace) all traces with callbacks only at depth one (i.e.
no callbacks inside another callback), then we can solve all traces. Moreover, we only
have to show that we can solve traces where all callbacks occur inside a single func-
tion, considering all its call nodes. This result generalizes to final state equivalence
the reduction to simples traces of [19] that was based on conflict-equivalence.

Definition 16 (simple trace) Given a trace t1; . . . ; tn with ti ∈ TR, the depth of
ti in t1; . . . ; tn is the number of entry nodes visited minus the number of exit nodes
visited in t1; . . . ; ti−1. The depth of the trace is the highest depth of all its ti. A trace
is simple if: (1) it is of depth one, and (2) after removing all ti that are callbacks
we obtain a trace ti1 ; . . . ; tim that is a trace of a procedure p of the program, and we
say that it is a simple trace of p.

Lemma 1 If all executions of simple traces of a program Pr are dECFFS then Pr
is sECFFS.

Proof: In Section A.1. �

The proofs of all our results are provided in Appendix A. Some of them require
auxiliar lemmas and definitions, so for readability reasons we have decided to keep
them in an appendix.

Therefore, from now on, we will focus on ensuring that all executions of simple
traces can be solved. Every simple trace of a procedure p can be represented by a

19

20 Chapter 4. Static analysis

segment-sequence of the form

τ0; f
1
0 ; . . . ; f 1

k1
; τ1; . . . ; f

m
0 ; . . . ; fm

km ; τm

where all f i
j are function segments and the start node of τ0 is the start node of p, the

end node of τm is the end node of p, and for all i ∈ 0 . . .m− 1, the end node of τi
and the start node of τi+1 are the same call node. Note that, every pair τi and τi+1

captures, resp., the code before and after a call node where any number of callbacks
f i+1
0 ; . . . ; f i+1

ki+1
can enter. The rest of this chapter will provide sufficient conditions

to ensure that all callbacks can either be removed by projections or sent before τ0
or after τm.

4.1 Solvable Call Node

We first apply commutation and projection operations over a single call node to
ensure that, for this call node, we can convert all executions with callbacks in this
call node into executions without callbacks in this call node. When defining the
segments on which the operations are applied, for the soundness of the analysis, we
need to take the minimal segments, i.e., segments that do not include any other call
node apart from the start and end node.

In this definition we consider that the initial and end nodes of a procedure are
call nodes too, as we did before we introduce the definition of segment in Def. 4

Definition 17 (Minimal left/right segments) Given a call node c of a proce-
dure p of Pr with a set of call nodes C, we define the set of minimal left/right
segments resp. as follows:

• SLeft(c) = ∪c′{TR(c′, c)|∀t = ρ1; . . . ; ρn ∈ TR(c′, c), ∀j ∈ {2 . . . n}. source(ρj) /∈
C}

• SRight(c) = ∪c′{TR(c, c′)|∀t = ρ1; . . . ; ρn ∈ TR(c, c′), ∀j ∈ {1 . . . n−1}. target(ρj) /∈
C}

Intuitively, the left (resp. right) segments are those segments τ of p whose end (resp.
initial) node is c′ for some c′ ∈ C, and there are no more call nodes occurring in τ .

Example 6 Let us illustrate these sets on the examples of the work. First, we
consider the example in Fig. 1.4, which is the fixed DAO, and whose TS is given in
Fig. 2.1. Here, in addition to the initial node n0 and the final node n4, there is a
single call node n3. Then, SLeft(n3) = {{ρ0; ρ1; ρ3}} and SRight(n3) = {{ρ4; ρ5}}.
For the original DAO problem in Fig. 1.1 (where there is no use of the lock variable),
we have the same SLeft(n3) and SRight(n3) since its TS is like Fig. 2.1, but omitting
transition ρ6 and all conditions or assigments involving the lock variable.

Example 7 We can apply these notions to call nodes that appear in loops. Consider
a function with one call node in the loop:

4.1. Solvable Call Node 21

79 function loop1(int val) {
80 int aux = 0;
81 do {
82 if (val != 0){
83 aux += val;
84 val++;
85 }
86 else{
87 aux = call();
88 }
89 }
90 while (aux < 10);
91 }

n0 n1

n2

n3 n4 n5

ρ0

ρ1

ρ2

ρ5

ρ6

ρ3

ρ4

The only call nodes are n3 and the initial and final nodes n0 and n5. The set
SLeft(n3) contains segments that represent traces from a call node (the initial n0

or n3) to n3 and SRight(n3) from n3 to a call node (the final n5 or n3). We first
consider the segment that goes from n0 to n3: it contains all the traces between these
two nodes that do not include any other call node apart from themselves. There
might be an unbounded number of such traces since we can take the path ρ1; ρ5; ρ3
as many times as we like before taking the transition ρ2 to end at n3. The same
happens for the traces from n3 to n3 and the ones from n3 to n5. Then, using the
notation t = ρ1; ρ5; ρ3,

SLeft(n3) = {{ρ0; ρ3 , ρ0; t; ρ2 , ρ0; t; t; ρ2 , . . . }, {ρ6; ρ3 , ρ6; t; ρ2 , ρ6; t; t; ρ2 , . . . }}
SRight(n3) = {{ρ6; ρ4 , ρ6; t; ρ4 , ρ6; t; t; ρ4 , . . . }, {ρ6; ρ3 , ρ6; t; ρ2 , ρ6; t; t; ρ2 , . . . }}

The static analysis needs to consider sequences of n callbacks, e.g., of the form
τ1; f1; . . . ; fn; τ2, where the fi (for i = 1, . . . , n) are function segments for the call-
backs to all n different procedures in the program. As we do not know which call(s)
might arrive at runtime, all permutations of the fi must be considered. Thus, we
cannot just apply the operations for movements in Chapter 3 to each of the func-
tions since it could be the case that, for instance, f1; τ2 right-moves (but τ1; f1 does
not left-move) and τ1; fn left-moves (but fn; τ2 does not right-move). A necessary
condition in this case is that f1; fn must move as well, since f1 may appear before fn.
However, it is insufficient since there are additional calls in the middle (f2, . . . , fn−1)
whose own ability to move with τ1 and τ2 must be preserved independently of f1
and fn. Therefore, this imposes additional movement properties of f1 over all of
f2, . . . , fn and of fn over f1, . . . , fn−1. The example in Fig. 4.2 illustrates this situa-
tion for only two calls. There, we have a single call node n1, τ1 is the segment that
contains only the trace with ρ0 and τ2 is the segment that contains only the trace
with ρ1. Thus, although f1 commutes with τ2 (but not with τ1) and f2 commutes
with τ1 (but not with τ2), because f1; f2 does not move, any trace represented by
the segment-sequence τ1; f1; f2; τ2, does not have a final state equivalent callback-free
trace, and hence the program is not ECF. This is the reason why we must require
f1; f2 to move.

The aforementioned situation requires leveraging the projection and commuta-
tion operations to handle multiple callbacks at a call node. Basically, we classify in
Def. 18 the calls at this node as either left-solvable (commute or project with the

22 Chapter 4. Static analysis

92 contract Example_no_ECF {
93 uint c;
94 uint s;
95

96 function inc() {
97 c = c+1;
98 call();
99 s = s+1;

100 }
101

102 function f_1() {
103 s = s+1;
104 c = 0;
105 }
106

107 function f_2() {
108 s = 0;
109 c = c+1;
110 }
111 }

inc :
n0 n1 n2

ρ0 : c′ = c+ 1 ρ1 : s′ = s+ 1

f1 : n3 n4

ρ2 : s′ = s+ 1, c′ = 0

f2 : n5 n6

ρ3 : s′ = 0, c′ = c+ 1

Figure 4.2: Example of functions f1 and f2 that do not commute. The contract is
not ECF (trace ρ0; ρ2; ρ3; ρ1)

minimal left segment) and/or right-solvable (commute or project with the minimal
right segment), and then Def. 19 requires movement properties for those that are
exclusively left- or right-solvable.

Definition 18 Given a call node c of a procedure p, we define sets of function
segments Left(c) and Right(c) as follows:

1. for every function g in Pr we have that g ∈ Left(c) iff τ ; g left-moves for all
τ ∈ SLeft(c).

2. for every function g in Pr we have that g ∈ Right(c) iff g; τ right-moves for
all τ ∈ SRight(c).

The idea is that the sets Left(c) and Right(c) include the functions that, in-
dividually and independently of other functions, can move over the left and right
segments of the call at call node c. But as the functions may appear in the callback
at any order, we have to take into account the commutation between the possible
functions. For example, let there be functions f1, f2 such that f1 /∈ Right(c) and
f2; f1 does not move, then if we consider the sequence of callbacks f2; f1, then the
only possibility for f2 is to move to the left, although it may belong to Right(c).
This happens because the movement to the right of f1 is impossible. To make sure
we are able to handle all potential permutations of functions appearing as callbacks
in a call node c, we introduce the sets MLeft(c) (must-left) and MRight(c) (must-
right). Informally, these sets include the functions that cannot move over the right
and left segments resp.; either because they are not members of Right(c) or Left(c),
or because they are blocked by a function, or sequence of functions, that must move
left or right.

4.1. Solvable Call Node 23

Definition 19 Given a call node c of a procedure p, and denoting the set of func-
tions of Pr by F (Pr), we define sets of function segments MLeft(c) and MRight(c)
using the least fixed point operator as follows:

1. MLeft(c) = LFPX

(
X ∪

{
f |f ∈ F (Pr) ∧ ∃x ∈ X .f ; x not moving

})
with

X0 = F (Pr) \ Right(c)

2. MRight(c) = LFPX

(
X ∪

{
f |f ∈ F (Pr) ∧ ∃x ∈ X .x ; f not moving

})
with

X0 = F (Pr) \ Left(c)

Intuitively, we can now define when a call node is solvable by ensuring that we
can always take the callbacks at that node and either remove them or send them
before its minimal left-segment or after its minimal right-segment.

Definition 20 (Solvable call node) Given a program Pr , we say that a call node
c of Pr is solvable if MLeft(c) ∩MRight(c) = ∅.

If all procedures in our program have a single call node then if they are all
solvable it is easy to show that the program is sECFFS. However, if a procedure
has several consecutive call nodes, we cannot handle each one of them in isolation,
as the following example illustrates. Consider a procedure p with two call nodes
(left) and a procedure f (right).

n0 n1 n2 n3

ρ0 : x′ = 2 ρ1 : x′ = x+ 1 ρ2 : x′ = x+ 1
n4 n5

ρ3 :: x′ = x+ 2

There, f is only in Right(n1) as it only commutes with its minimal right segment,
and it is only in Left(n2) as it only commutes with its minimal left segment. This
shows a circularity that implies that we cannot move a callback to f in n1 out of
the trace since it will be moved to n2 (by commutation) and then back to n1 (by
commutation) again.

We can only ensure ECF if we also impose that, for every function, we will always
be able to move it to the right or to the left of all call nodes as the following theorem
states:

Definition 21 (sECFSS) Given a program Pr , it is sECFSS if and only if for all
procedures p in Pr with call nodes C we have that, for every c, c′ in C such that c′
is reachable from c or c′ = c, it holds that MRight(c) ∩MLeft(c′) = ∅.

Example 8 Consider again the example in Figs. 1.4 and 2.1 which is sECF. In Ex-
ample 6, we have seen that SLeft(n3) = {{ρ0; ρ1; ρ3}} and SRight(n3) = {{ρ4; ρ5}}.
Now let τd be the function segment of deposit and τw be the function segment of with-
draw. We have that Left(n3) = {τd, τw} as for both {ρ0; ρ1; ρ3}; τd and {ρ0; ρ1; ρ3}; τw
left project to {ρ0; ρ1; ρ3}, since ρ1 sets lock to true (which is not changed in ρ3),
and in such state both deposit and withdraw do nothing. Then all functions are in
Left(n3) and hence the program is sECFSS.

Now, we show why the example in Fig. 1.1 (which is not ECF) is not sECFSS.
As seen in Example 6 we have that SLeft(n3) = {{ρ0; ρ1; ρ3}} and SRight(n3) =
{{ρ4; ρ5}}, and recall that we do not use the lock variable and we do not have tran-
sition ρ6. Here, we have that τw neither belong to Left(n3) nor to Right(n3), since
without using lock, we cannot project or commute.

24 Chapter 4. Static analysis

Theorem 1 If a program is sECFSS then it is sECFFS.

Proof: In Section A.2. �

4.2 Segments Join

The technique we have considered in the previous section is powerful, but it can be
more accurate if, once a call node has been solved, we allow joining its left and right
segments. For instance, consider a general segment-sequence representing simple
traces of some procedure of our program τ0; f

1
0 ; . . . ; f 1

k1
; τ1; . . . ; f

m
0 ; . . . ; fm

km
; τm. Then

if we solve the call node between τ0 and τ1, i.e., if we take all functions f 1
0 ; . . . ; f 1

k1

out of this call node, by projecting or commuting with τ0 or τ1, we will have τ0
and τ1 together without any callback in the middle. Hence, we can consider them
together as a single segment τ0;1 after joining them. The reason for joining them is
that having larger segments leads to strictly more accurate results. The following
example shows a situation where we can gain accuracy by joining segments:

112 contract Ex_need_join {
113 uint c;
114

115 function discount2() {
116 c = c − 1;
117 call();
118 c = c − 1;
119 call();
120 c = 0;
121 }
122

123 function multiply(){
124 c = c ∗ 2;
125 }
126 }

discount2 :

n0 n1 n2 n3

ρ0 : c′ = c− 1 ρ1 : c′ = c− 1 ρ2 : c′ = 0

multiply :

n3 n4

ρ3 : c′ = c ∗ 2

Figure 4.3: ECF contract that requires call node removal and cannot be proven
using minimal segments

Example 9 Consider the example in Fig. 4.3 whose procedure discount2 has three
transitions and two call nodes, namely n1 and n2 (where callbacks can enter), while
the function multiply has a single transition and no call nodes. Assume that our trace
has a callback (to multiply) at each call node: ρ0; ρ3; ρ1; ρ′3; ρ2 (we have primed the
second use of multiply). The minimal segments of discount2 are (i) the set of traces
from n0 to n1, i.e. τ0 = {ρ0}, (ii) the set of traces from n1 to n2, i.e. τ1 = {ρ1}, and
(iii) the set of traces from n2 to n3, i.e. τ2 = {ρ2}. We use f for the function segment
{ρ3} of multiply. Now, the segment-sequence representing our trace is τ0; f ; τ1; f ; τ2.
We start by handling the second call node, n2, first. We can do either commutation of
f over τ2 or we can do right-projection of f ; τ2 to τ2, e.g., in the latter we have solved
the call node n2, and the new segment-sequence (representing final state equivalent
traces to our trace) is τ0; f ; τ1; τ2. But now we cannot go further and solve n1 since
we cannot apply any projection or commutation on τ0; f or f ; τ1. However, if we

4.2. Segments Join 25

use the fact that n2 has already been solved, we can consider that n2 is no longer a
call node, since it does not have callbacks in it, then our transition system would be:

n0 n1 n2 n3

ρ0 : c′ = c− 1 ρ1 : c′ = c− 1 ρ2 : c′ = 0

and hence if we compute the right segment of n1 we obtain the segment τ1;2 =
{ρ1; ρ2}, which is the join of segments τ1 and τ2, and hence the sequence we have
to consider now is τ0; f ; τ1;2. Then, we can right-project f ; τ1;2 to τ1;2, and the
result τ0; τ1;2 is a callback-free sequence (which implies that we have a callback-free
execution). The following table compares the different options to try to solve the
callnodes, with and without joins (� means no operation can be applied, and 2

means that callbacks were successfully removed):

τ0; f ; τ1; f ; τ2
start with n1 start with n2 start with n2 with joins

� RightProj(f, τ2) RightProj(f, τ2)
� remove n2 as call node

RightProj(f, τ1;2)
2

Note that the reason we can right-project f ; τ1;2 to τ1;2 is that after setting c to zero,
we have that 2 ∗ 0 = 0, thus f is not changing c.

We will thus consider that we can apply an operation to remove call nodes that
enables a more accurate static analysis for procedures with multiple call nodes.
However, once we introduce this operation, the order in which call nodes are solved
might affect the accuracy of the analysis results. Assume we have a segment-
sequence π with k callbacks (n1, . . . , nk ordered by their position at the execution).
We establish a new order in which they are solved, by means of a permutation
i1, . . . , ik of 1, . . . , k which indicates that we will solve the callback nodes in the
order ni1 , . . . , nik . For instance, the order 2, 1 leads to a solution in Example 9. The
general concept we have is an order <O that indicates when a call node is solved
before another, i.e. if c′ <O c then we know that c′ has been solved when we solve
c. This means that when checking if c is solvable we have to first remove as call
nodes from the transition systems all those call nodes c′ such that c′ <O c. Now, we
present a generalization of the sECFSS property to the case where we solve the call
nodes in a given order. First we define the notion of solvable call node for a given
order <O.

Definition 22 (Orderly solvable call node) Given a program Pr and an order
<O on the call nodes of Pr . We say that a call node c of Pr is solvable wrt. <O if
c is solvable after removing as call nodes from Pr all c′ <O c.

Our main result is that if there exists an order for which all call nodes in our
program are solvable, then the program is ECF:

Definition 23 (sECFOS) We say that a program Pr is sECFOS if there exists an
order <O for the call nodes C of Pr such that all c ∈ C are solvable with respect to
<O.

Theorem 2 If a program is sECFOS then it is sECFFS.

26 Chapter 4. Static analysis

Proof: In Section A.3. �

Example 10 Consider the example in Fig. 4.3 for the function discount2 whose
TS is in Ex. 9, taking O as n2 <O n1, we have that SLeft(n2) = {{ρ1}} and
SRight(n2) = {{ρ2}}, and SLeft(n1) = {{ρ0}} and SRight(n1) = {{ρ1; ρ2}}. Now,
we can prove that both discount2 and multiply belong to Right(n2) and to Right(n1).

The next result proves that the sECFOS approach is strictly more precise than
sECFSS. Moreover, it proves that if a program is sECFSS we can use any order to
solve its call nodes.

Theorem 3 If a program Pr is sECFSS then for any order <O for the call nodes
C of Pr all c ∈ C are solvable with respect to <O.

Proof: In Section A.4. �

4.3 Treatment for Revert Operations

Some environments, like Ethereum, include a revert operation that undoes all changes
made in the current call and all its callbacks. We formalize them by means of re-
verting transitions that do not annotate the edge with assignments but rather with
a revert label and its target location is always an exit point. It is clear that any exe-
cution of a simple trace t that reverts is dECFFS: the final state is the same as the
initial one, thus the execution is final-state equivalent to the empty one. We need
to improve our sECFSS and sECFOS approaches taking into account this situation
as the following example illustrates.

127 contract Ex_revert {
128 uint c;
129

130 function f() {
131 c = 2;
132 }
133

134 function rev() {
135 c = 1;
136 call();
137 if (c != 1)
138 revert();
139 }
140 }

rev :
n0 n1 n2

ρ0 : c′ = 1

ρ1 : c! = 1 : revert

ρ2 : c == 1

f :
n3 n4

ρ3 : c′ = 2

Figure 4.4: Example of contract with revert instructions. The program is ECF .

Example 11 The contract in Fig. 4.4 is sECFFS. We can check that any possible
execution ξ of the program from an initial state σ either ends at the state [c = 1], [c =
2] or reverts. Hence, there exist complete callback-free executions equivalent to ξ: the
execution of the function rev, f and the empty execution respectively. However, it is
not sECFOS. There is a single call node n1 and the sets SLeft(n1) and SRight(n1)

4.3. Treatment for Revert Operations 27

only contain the segments τ0 = {ρ0} and τ1 = {ρ1 , ρ2}, respectively. It is clear
that the function rev belongs to Left(n1) and Right(n1), but f does not belong to any
of this sets, as τ0; f1 and f1; τ1 does not left or right-move, so the contract is not
sECFOS.

The example shows that working only with commutation or projection of segments is
not appropriate for executions that revert. We take a more general definition of right-
movements that gives a special treatment to reverting executions: the revert/right-
movements. We only need to modify the definition of right-movement because it is
impossible that the left-segment of a call node reverts, as the target node of a revert
transition is always an exit point.

Definition 24 (Revert/Right-movement) Given two segments τ1 and τ2, we
say that τ1; τ2 reverts or right-moves if and only if for all σ ∈ Feasible(τ1; τ2) ei-
ther τ1 commutes or right-projects with τ2 for the state σ or the execution of τ1; τ2
from the state σ reverts.

Now, we adapt the sECFSS and sECFOS approaches by using the revert/right-
movements in order to check the functions that belong to Right(c), instead of the
right-movements.

Definition 25 Given a call node c of a procedure p. We define sets of function
segments Left(c) and Right(c) as follows:

1. for every function g in Pr we have that g ∈ Left(c) iff τ ; g left-moves for all
τ ∈ SLeft(c).

2. for every function g in Pr we have that g ∈ Right(c) iff g; τ reverts or right-
moves for all τ ∈ SRight(c).

Example 12 Consider again the example in Fig. 4.4. The execution of f1; τ1 from
any state reverts, thus f1; τ1 reverts or right moves. Hence, f1 ∈ Right(c1) and the
program is sECFOS.

Chapter 5
Callback invariant

Motivated by challenging contracts found in the Ethereum environment (similar to
the one in Example 13 to follow), we introduce the notion of callback invariant as a
way to increase the accuracy of the sECFSS and sECFOS approaches. A callback
invariant is a property that holds when we first arrive at the call node, but also after
executing any possible sequence of callbacks. The notion of callback invariant can
be extended to several call nodes, having an invariant per call node. Note that we
can always take true as invariant in a call node if we do not need it. Then, taking
true as a (fictitious) invariant for the initial node, we have that the invariants must
be preserved by all transitions between two callnodes (or the initial node) and they
need to be preserved when executing all functions. Being precise:

Definition 26 Given a procedure p with call nodes C and start node n0, we say that
I(C), from nodes to properties, is callback invariant of C, if, taking I(n0) = true,
we have that

• For every c ∈ C and every segment τ in SLeft(c) starting at node n ∈ C∪{n0},
we have that if σ satisfies I(n) and σ − τ − σ′, then σ′ satisfies I(c).

• For all c ∈ C and g ∈ F (Pr) if σ satisfies I(c) and σ−g−σ′, then σ′ satisfies
I(c).

Example 13 (Monotone lock) The contract appearing in Figure 5.1 is a simpli-
fication of the Synthetix case study (a fragment of it is shown in Section 6.2) with
no loops. It uses a counter to prevent callbacks that can lead to harmful results.
This contract only has two call nodes: n2 and n3. The node n2 is solvable accord-
ing to the sECFOS approach, but n3 is not. The minimal segments of the node n3

are SLeft(n3) only containing the segment τl = {ρ0; ρ3} and SRight(n4) containing
τr = {ρ5; ρ6, ρ5; ρ7}. This node is not solvable: the function exchange does not left-
move nor revert/right-move with the segments τl and τr, resp. The states that are
problematic for the right-movements are only the ones where σ[count] = σ[lc] − 1.
For any other state, after executing exchange we will obtain a state σ′ such that
σ′[count] 6= σ′[lc], thus the execution will revert. Hence, if we could prove that no
execution gets to the call node n3 in the problematic state described above, we would
be able to prove that the contract is sECFFS.

29

30 Chapter 5. Callback invariant

141 pragma solidity ^0.4.24;
142 contract Bank {
143 mapping (uint => uint) public

deposits;
144 uint initIndex;
145 uint count = 0;
146

147 function exchange(uint remaining) {
148 count += 1;
149 uint lc = count;
150 deposit = deposits[initIndex];
151 if(deposit == 0){
152 initIndex++;
153 }
154 else if(deposit > remaining){
155 uint newAmount= deposit −

remaining;
156 deposits[initIndex] =

newAmount;
157 user.send(remaining);
158 }
159 else{
160 deposits[initIndex] = 0;
161 user.send(deposit);
162 initIndex++;
163 }
164 require(lc == count);
165 }
166 }

n0

n1

n2 n3

n4

n5

ρ0 : count′ = count+ 1

lc′ = count+ 1

deposit′ = deposits[initIndex]

ρ1 : deposit == 0 :

initIndex′ = initIndex+ 1

ρ2 : deposit > remaining :

deposits[initIndex]′ = deposit− remaining

ρ3 : deposit! = 0 ∧
deposit <= remaining :

deposits[initIndex]′ = 0

ρ4

ρ5 : initIndex′ = initIndex+ 1

ρ6 : count == lc
ρ7 : count ! = lc :

revert

Figure 5.1: Simplified Synthetix contract non verifiable using the sECFOS approach

We can check that the property I = {lc ≤ count} is a callback-invariant of the
node n3 (we do not need an invariant for the other call node n2). First, it is clear
that the only trace that goes from n0 (the initial node) to n3 is t = ρ0; ρ3. Then, for
any initial state σ if σ − t− σ′ then σ′[count] = σ[lc] + 1 and σ′[lc] = σ[count] + 1,
thus σ′ satisfies I. On the other hand, if we execute any function of the program
from a state that satisfies I, then it ends at a state that satisfies I: the value of
the local variable lc does not change and count can only increment. Note that the
property is invariant provided there are no overflows, however since we start in 0
and can only increment 1 in each call, the assumption that we will not reach 2256 is
reasonable. There is a more complex invariant which does not need this assumption
but for readability reasons we have decided not to present it.

We want to use the information that a callback invariant gives us to check the
commutation and projection of the callbacks. We first adapt the definition of move-
ments to take into account the invariants: in the previous version we included all
feasible states, now we are going to restrict it to the ones that satisfy the invariant.

Definition 27 (Left-movement with precondition) Given two segments τ1 and
τ2, and a property P , we say that τ1; τ2 left-moves assuming the precondition P if
and only if for all σ ∈ Feasible(τ1; τ2) such that σ satisfies P we have that either τ1
commutes or left-projects with τ2 for the state σ.

The definitions of right-movement with precondition andmovement with precondition

31

are modified analogously.
Consider the segment τr = {ρ5; ρ6, ρ5; ρ7} and τexc representing the function

exchange. Using the previous definition, we can check that τexc; τr does not right-
move: it reverts for any state σ such that σ[count] 6= σ[lc]− 1, but for any state σ
such that σ[count] = σ[lc]− 1 they do not commute or right project. Nevertheless,
τexc; τr right-moves assuming the precondition I, because the problematic states do
not verify I.

Then, we just have to adapt the definitions of Left(c),Right(c) to use this new
movements and take the sets MLeft(c) and MRight(c) according to them.

Definition 28 Given a procedure p with call nodes C, a call node c ∈ C and I
from nodes to properties. We extend function Left(c, I) and MLeft(c, I) to work
with invariants as follows:

1. for every function g in Pr we have that g ∈ Left(c, I) iff for all τ ∈ SLeft(c)
starting at node n ∈ C ∪ {n0} we have that τ ; g left-moves assuming the pre-
condition I(n) .

2. MLeft(c, I)) = LFPX

(
X ∪

{
f |f ∈ F (Pr)∧ ∃x ∈ X .f ; x not moving assuming

the precondition I(c)
})

with X0 = F (Pr) \ Right(c, I)

The definition MRight(c, I) is modified analogously and the definition of Right(c, I)
only varies in that it assumes I(c) as precondition.

For the call node n3 of the previous example, according to the original definition
Left(n3) = ∅ and Right(n3) = ∅, but if we consider the invariant I = {lc <= count}
then Right(n3, I) = {τexc} so MLeft(n3, I) = ∅.

Finally, we define the notion of sECFIOS program that takes callback invariants
into account.

Definition 29 (sECFIOS) Given a program Pr , it is sECFIOS if and only if there
exist an order <O for the call nodes C of Pr and a callback invariant I of C such
that all c ∈ C are solvable assuming I with respect to <O.

Theorem 4 If a program is sECFIOS then it is sECFFS

Proof: In Section A.5. �

Finally, we can prove that the above contract is ECF. The property I is a callback
invariant of the call node n3 and MLeft(n3, I) = ∅, as the call node n2 is also solvable,
we conclude that the contract is sECFIOS.

Chapter 6
Implementation and Experimental
Evaluation

Our implementation decompiles smart contracts given as EVM bytecode and pro-
duces code in an intermediate representation amenable to static analysis and the gen-
eration and discharge of verification conditions using SMT solvers, such as Z3 [14].
Furthermore, since the EVM bytecode does not contain a notion of procedures or
functions, and the Solidity compiler generates generic ‘dispatch’ code to jump to
the appropriate function code, we split out the function implementations from the
large EVM bytecode. Currently, we have bounded support for loops using finite
unrolling, we are working on the general extension.

Motivated by the real smart contracts analyzed, the actual algorithm imple-
mented is based on sECFOS, but with a predetermined callnode ordering: going
linearly from latest (in program-order) callnodes to earlier callnodes. The consider-
ations for choosing that particular approach are:

• The sECFOS is strictly more precise than sECFSS approach, thanks to join
operations.

• Nevertheless, trying all possible callnode orders, given that there are functions
that have over 10 callnodes, may be impractical due to the number of required
SMT queries.

• The later-to-early callnode order is a good fit for well-written contracts that
make sure to place callnodes after all updates to the global state were per-
formed. For these contracts, the approach would lead to faster proofs of ECF.

We have run our benchmarks on an Amazon AWS c5n.2xlarge machine. The
SMT solver used is Z3, with a timeout of 60 seconds per query. To each callnode
we set a timeout of 5 minutes for analyzing it, requiring all needed SMT queries
to run within the time span. Callnodes are detected in a conservative manner–any
instance of a call instruction, except for STATICCALL, is considered a callnode. The
STATICCALL instruction is not considered a callnode because it enforces the VM to
avoid any writes to the global state in all calls until the STATICCALL returns, and
therefore trivially projects. This method assumes a completely open environment,

33

34 Chapter 6. Implementation and Experimental Evaluation

that considers only the contract checked. As we show later, many contracts use
other contracts as libraries and thus establish properties that should hold when one
contract calls the library. In that case, it is possible to ignore certain callnodes,
because the callee contract is guaranteed not to trigger a callback. In result, this
would lead to a greater number of verified contracts (those marked ∗ in Table 6.1).

Delegate calls Two special instructions in the EVM bytecode are DELEGATE-
CALL and CALLCODE. These instructions allow to execute an external code, that is
not necessarily known at compile-time, and execute it in the context of the caller’s
state. We are treating these instructions as regular callnodes in order to prove ECF,
but it should be noted that if a contract contains such delegating instructions, then
ECF does not guarantee sound modular reasoning.

6.1 Experimental evaluation

To validate the usefulness of our approach, we picked a benchmark of smart contracts
that are often used and invoked. To that end, we extracted the top-150 contracts
based on volume of usage, as of December 31st, 2019 1. A total of 132 contracts in
total were successfully decompiled, but 38 contracts did not contain callnodes. Since
the ECF property that we check is based on the results for all functions, we give
in Table 6.1 the summarized results for all functions extracted out of all contracts.
Section 6.1.1 gives detailed results for 94 contracts that were successfully decompiled
and have at least one function with a callnode.

Out of the total 2733 functions extracted, 386 contained callnodes, and thus are
candidates to ECF checking. Out of these 386 functions, 238 are verified to be ECF,
105 are reported as violating ECF, and 43 time out before a definite answer is re-
turned. We manually analyzed 72 of the violations (for the other 33, 16 did not have
source code and 17 were too complex for human reasoning). 10 functions are con-
firmed to be true violations. 36 are violated because of the over-conservative choice
of callnodes. After studying the contract systems, we believe those callnodes can be
omitted (and thus become ECF verified). 19 are violated due to over-approximations
in the implementation, and we plan to re-run those tests after the accuracy is im-
proved. 7 were violated but they are not sECFOS, and thus cannot be proved to be
ECF using our approach.

6.1.1 Detailed results

Table 6.2 details our results for the 94 contracts out of the 150 that were successfully
decompiled and have at least one function with a callnode.

The table shows for each contract: its size (in number of edges in the CFG of
the decompiled bytecode), the number of non-read only functions, the number of
functions with callnodes, the total number of callnodes in all functions, the number
of SMT queries performed by the implementation, the time it took to process the
contract (in seconds), and the number of functions that were verified to be ECF,

1up to Ethereum blockchain block number 9193265 until 2019-12-31 23:59:45 UTC

6.1. Experimental evaluation 35

fs % all % fs Avg. T
fs w. CN (sec.)

ECF Verified 238 8.7 61.7 30
ECF Violated 105 3.8 27.2 132
Timeout 43 1.6 11.1 1240

Analysis of violations
Confirmed violations 10
Could not manually check 33
FPs due to callnode choice∗ 36
FPs to sECFOS 7
FPs due to implementation 19

Table 6.1: Summarized ECF results. ‘CN’ stands for ‘callnode’, and ‘f’ for ‘function’.
We only consider functions that are candidates to ECF checking (>0 CNs).

out of functions with callnodes. Contracts with the DELEGATECALL instruction are
marked with a ∗.

The complexity of the ECF check depends on both the number of non-read only
functions for which movement checks are required, and the number of callnodes that
have to be processed, listed in non-RO and CNs columns. The fs with CNs column
lists the number of functions for which we need to determine if they are ECF or not.
We present these values for each contract. The last three columns shows how many
functions were found to be ECF, non-ECF, or that the implementation timed-out,
out of all functions with callnodes.

Finally, the table lists the running time for analyzing the contract (in seconds)
as well as the number of required calls to the SMT solver.

Table 6.2: Results for 94 contracts with callnodes.

ID Size non-RO fs with CNs CNs Queries Time ECF Non-ECF Timeout
1∗ 86 4 1 1 0 0 1 0 0
2 166 7 1 1 0 0 1 0 0
3 431 16 2 2 0 0 2 0 0
5 345 11 1 1 0 0 1 0 0
6 1105 26 11 15 162 2603 5 4 2
7 2448 29 17 33 229 6081 4 6 7
9 40 2 2 2 0 0 2 0 0
10 188 8 2 2 0 0 2 0 0
11 241 6 2 2 0 0 2 0 0
12 143 6 1 1 0 0 1 0 0
13 723 15 8 10 16 46 0 8 0
15 2567 14 12 14 20 2227 0 8 4
16∗ 2 1 1 1 0 0 1 0 0
17 538 16 3 4 103 220 3 0 0
18 294 11 1 1 0 0 1 0 0
19 709 19 11 17 29 1670 5 5 1
20 120 2 1 1 0 0 1 0 0
22 1349 19 5 5 16 798 1 4 0
23 538 16 3 4 103 230 3 0 0
24 702 9 4 8 5 817 2 1 1
27∗ 584 14 3 4 50 155 2 1 0
28 126 11 4 4 0 0 4 0 0
29 2369 12 10 12 16 1882 0 6 4
33 452 16 10 14 209 459 10 0 0
34 383 7 2 3 24 191 2 0 0
35 2533 38 18 105 712 31796 5 2 11

Continued...

36 Chapter 6. Implementation and Experimental Evaluation

ID Size non-RO fs with CNs CNs Queries Time ECF Non-ECF Timeout
36 169 5 2 2 0 0 2 0 0
37 169 7 2 2 0 0 2 0 0
39 638 15 1 1 0 0 1 0 0
41 129 7 1 1 0 0 1 0 0
42 208 6 1 1 0 0 1 0 0
43 2246 32 15 68 128 6954 1 10 4
44 260 11 1 1 0 0 1 0 0
47 159 6 1 1 0 0 1 0 0
48 215 6 1 1 0 0 1 0 0
51 143 6 1 1 0 0 1 0 0
52 156 6 1 1 0 0 1 0 0
53 875 25 7 7 0 0 7 0 0
54 156 6 1 1 0 0 1 0 0
56 72 1 1 4 2 5 0 1 0
57 157 3 3 18 68 1405 2 1 0
58 648 9 4 5 4 70 3 1 0
59 1110 21 4 4 36 300 3 0 1
61 375 12 3 3 0 0 3 0 0
62 1168 22 14 48 290 5650 9 5 0
63 209 8 1 1 0 0 1 0 0
64∗ 1387 78 52 82 2440 3621 48 4 0
65 630 16 10 13 56 687 8 1 1
66 479 12 7 7 14 21 0 7 0
67 266 11 1 1 0 0 1 0 0
69 506 16 9 9 18 35 0 9 0
70 629 16 7 8 8 740 4 2 1
71 192 8 1 1 0 0 1 0 0
72∗ 153 6 6 7 0 0 6 0 0
75 140 4 1 1 0 0 1 0 0
76 42 1 1 4 2 5 0 1 0
77 161 4 1 1 0 0 1 0 0
78 1153 19 5 5 0 0 4 1 0
80 282 11 2 2 4 8 0 2 0
81 1286 12 3 3 0 303 2 0 1
83 350 7 2 3 24 90 2 0 0
84 279 7 1 1 0 0 1 0 0
89 350 14 2 2 0 0 2 0 0
90 341 13 1 1 0 0 1 0 0
91 13 1 1 1 0 0 1 0 0
92 132 6 1 1 0 0 1 0 0
93 151 4 1 1 0 0 1 0 0
97 161 4 1 1 0 0 1 0 0
98 181 5 4 17 13 280 0 4 0
99 1185 11 7 13 63 470 2 5 0
100 456 11 5 5 2 34 4 1 0
101 327 10 4 4 20 418 3 0 1
102 289 9 1 1 10 17 0 1 0
104 331 11 2 2 0 0 2 0 0
105 170 6 1 1 0 0 1 0 0
107 577 8 1 1 0 0 1 0 0
108 475 16 7 7 4 10 6 1 0
109 290 7 1 1 0 0 1 0 0
110 646 13 1 1 0 0 1 0 0
114 39 1 1 4 2 8 0 1 0

Continued...

6.2. Challenging real case study 37

ID Size non-RO fs with CNs CNs Queries Time ECF Non-ECF Timeout
116 780 7 2 2 0 0 2 0 0
117∗ 153 6 6 7 0 0 6 0 0
119 215 9 1 1 0 0 1 0 0
120 470 11 1 1 0 0 1 0 0
122 188 8 1 1 0 0 1 0 0
123 270 10 1 1 0 0 1 0 0
124 1226 15 4 12 0 3361 2 0 2
125 185 6 6 7 0 0 6 0 0
126 313 13 1 1 0 0 1 0 0
128 129 7 1 1 0 0 1 0 0
129 191 9 3 3 0 0 3 0 0
130 39 1 1 4 2 6 0 1 0
131 45 1 1 4 2 6 0 1 0
132 279 8 5 7 24 675 3 0 2

End of table.

6.2 Challenging real case study

The vast majority of the contracts analysed in Table 6.1 are rather simple. There-
fore, the reader may conclude that all smart contracts are simple, which is not our
experience. Some of the valuable smart contracts actually implement complex logic,
which makes checking ECF and other properties quite hard. One such example
is the reentrancy bug [6] in Synthetix [31]–a high-volume De-Fi2 application.3 In
Figures 6.1 and 6.2 an excerpt of the buggy code and two potential fixes prevent-
ing callbacks are given. Our technique can mechanically verify both: one of them
as-it-is, the other using callback invariants. To the best of our knowledge, none
of the techniques available are able to show that immunity to reentrancy attacks
is true for the fixed contract. Indeed, we also compared our implementation to
other existing tools whose premise is to handle ‘reentrancy bugs’: Securify2 [35]
and Slither [15]. Notably the properties checked by these tools are more restric-
tive than ECF: Securify and Slither check that there are no global state updates
following a call instruction. When we ran this case study (as well as our lock-based
example of Figure 1.4), Securify and Slither both failed to show that it is actually
safe (Securify times out after hours of running on the Amazon machine). The same
holds for the simplified version of our case study as appears in Figure 5.1.

Excerpt of Solidity code for our case study. The code uses modifiers to
prevent callbacks that can lead to harmful results. When the code of a function
using a modifier is invoked (observe that this is stated in the function header), the
modifier is executed by replacing the hole “_” by the code of the invoked function.

2Decentralized Finance
3according to [32], rated 2nd in locked USD value, with $116.7M locked as of May 5th, 2020.

38 Chapter 6. Implementation and Experimental Evaluation

167 function exchangeEtherForSynths() public payable nonReentrant rateNotStale(ETH)
notPaused returns (uint) {

168 require(msg.value <= maxEthPurchase);
169 uint ethToSend;
170 uint requestedToPurchase = msg.value.multiplyDecimal(exchangeRates().

rateForCurrency(ETH));
171 uint remainingToFulfill = requestedToPurchase;
172 for (uint i = depositStartIndex; remainingToFulfill > 0 && i < depositEndIndex; i++)

{
173 synthDeposit memory deposit = deposits[i];
174 if (deposit.user == address(0)) {
175 depositStartIndex = depositStartIndex.add(1);
176 }
177 else {
178 if (deposit.amount > remainingToFulfill) {
179 uint newAmount = deposit.amount.sub(remainingToFulfill);
180 deposits[i] = synthDeposit({user: deposit.user, amount: newAmount});
181 totalSellableDeposits = totalSellableDeposits.sub(remainingToFulfill);
182 ethToSend = remainingToFulfill.divideDecimal(exchangeRates().rateForCurrency(

ETH));
183 if (!deposit.user.send(ethToSend)) {
184 fundsWallet.transfer(ethToSend);
185 }
186 synthsUSD().transfer(msg.sender, remainingToFulfill);
187 remainingToFulfill = 0;
188 }
189 else if (deposit.amount <= remainingToFulfill) {
190 delete deposits[i];
191 depositStartIndex = depositStartIndex.add(1);
192 totalSellableDeposits = totalSellableDeposits.sub(deposit.amount);
193 ethToSend = deposit.amount.divideDecimal(exchangeRates().rateForCurrency(

ETH));
194 if (!deposit.user.send(ethToSend)) {
195 fundsWallet.transfer(ethToSend);
196 }
197 synthsUSD().transfer(msg.sender, deposit.amount);
198 remainingToFulfill = remainingToFulfill.sub(deposit.amount);
199 }
200 }
201 }
202 if (remainingToFulfill > 0) {
203 msg.sender.transfer(remainingToFulfill.divideDecimal(exchangeRates().

rateForCurrency(ETH)));
204 }
205 return requestedToPurchase.sub(remainingToFulfill);
206 }

Figure 6.1: The code of the exchangeEtherForSynths function. Without a lock as
defined by the nonReentrant modifier in any one of the proposed fixes in Figure 6.2,
it is not ECF.

6.2. Challenging real case study 39

207 /* Fix 1 (Simple Lock) */
208 bool l;
209 modifier nonReentrant() {
210 require(!l);
211 l = true;
212 _;
213 l = false;
214 }

215 /* Fix 2 (Monotone Lock) */
216 uint256 count;
217 modifier nonReentrant() {
218 count += 1;
219 uint256 lc = count;
220 _;
221 require(lc == count);
222 }

Figure 6.2: Two fixes for the exchangeEtherForSynths function.

Chapter 7
Related Work

We have presented a novel static analysis that proves modularity of the contract for
any execution and can be applied to ensure effective-callback freedom prior to de-
ployment. Reentrancy attacks have led to the most severe exploits in the blockchain
and, as we have shown in the work, general techniques for ensuring modularity of
programming languages can be used to detect ECF violations and avoid these mali-
tious attacks. This kind of reentrancy problems were pinpointed as a possible source
of correctness bugs [24, 3]. As discussed in Chapter 1, our work is inspired by that
of [19] who pioneered the idea of ECF as means to immune modules (contracts)
from reentrancy attacks and enable modular reasoning. However, the analysis of
[19] is dynamic hence it cannot be used to verify ECF. In the rest of this chapter,
we review other closely related work.

[25] present a framework, called FSolidM [9], that allows preventing reentrancy
via a built-in locking mechanism. In contrast, we present a technique for verifying
ECF, and thus the absence of reentrancy bugs, is language-agnostic while allow-
ing judicious use of callbacks. [17] survey on recent theories and tools for formal
verification of Ethereum smart contracts focusing on the F*-formalized small-step
semantics presented by [18] and its Horn clauses-based abstraction. Most relevant
to our work is over-approximation of the single-reentrancy property [29, 18] which,
intuitively, states a contract is single-entrant if it cannot perform any more calls
once it has been reentered. This restriction, however does not mean that callbacks
may not have unique behaviors which cannot be exposed in callback-free executions.
[35] report of a parametric static verification tool which can detect whether a con-
tract violates a given security property encoded as a bad pattern in the contract’s
data-flow graph. To detect reentrancy-related bugs, they use a pattern which for-
bids writes after calls. Thus, their restrictions are more severe even than the ones
imposed by conflict-based ECF. [21] identified a family of bugs in blockchain-based
smart contracts, dubbed event-ordering (or EO) bugs, which are related to the dy-
namic ordering of contract events, i.e. calls of its functions. However, in contrast to
our work, the ordering they investigate is between different transactions while our
focus is on errors which occur within one transaction. Thus, the class of bugs we are
after does not overlap with theirs. Also, our tool is static while theirs is based on dy-
namic (symbolic) testing. In MAIAN [26] the authors present a symbolic execution

41

42 Chapter 7. Related Work

tool for detecting contracts vulnerabilities such as ether leaking. Such vulnerbilities
may intersect with reentrancy vulnerabilities (for example, the DAO’s reentrancy
attack leads to leaked ether).

[9] checks information-flow properties to identify vulnerabilities that occur in a
multi-transaction setting, including callbacks.

[28] employ taint analysis on Ethereum traces to detect reentrancy vulnerabili-
ties. The dynamic check implemented there is more precise than the as-of-then static
analysis tools and its performance is similar to [19] for non CREATE-generated calln-
odes. (the latter did not include CREATE as a callnode candidate). A work by [16]
define a language for patterns in Ethereum transactions representing malicious be-
haviors, and an instrumented Ethereum client that can detect such patterns in-vivo.
Patterns can be added and removed based on voting in a smart contract. 4 out
of 6 patterns presented in [16] are related to reentrancy vulnerabilities. Of most
relevance to our work is the comparison between pattern-based detection of mali-
cious attacks and semantic equivalence checking. In both the dynamic and static
settings, the pattern-based approach can easily lead to over-approximation and false
positives, while on the other hand not giving full clarity about the actual immunity
of the code to malicious callbacks. In contrast, our approach, while more expensive
computationally, gives strong guarantees about callbacks not being able to influence
the execution in unexpected ways, while also being more resistant to false positives.

As [30] note when discussing the similarity of smart contracts to concurrent
objects, enabling modular verification is one of the highlighted challenges. A key
benefit of our semantic equivalence based approach, when compared to pattern-
based techniques, is that it enables to modularly check properties of ECF contracts.
For example, [38] present VeriSol, a tool for static verification of smart contracts
against a state machine model specification and an access-control policy. The analy-
sis is capable of inferring contract invariants—properties of the state of the contract
which are true when none of its procedures is pending. However, the analysis is not
modular. We believe that our approaches can be combined so that once the con-
tract is verified as ECF, VeriSol can infer its class invariants in a sound modular
way. A different approach to modularity is given in [11] by Cecchetti et al., defining
reentrancy as an information-flow property, and reentrancy security as a property
that guarantees invariants inductiveness even in the presence of callbacks. Their
approach has the benefit of finer-grained policies, enabling supporting systems that
consist of multiple contracts, but also requires the user to annotate ‘critical sections’
in the code.

Complementary approaches to modularity is to check an invariant of the pro-
gram, e.g., [22, 5].

As regards the state equivalence check, we have implemented an SMT-based
technique similar to the ones proposed to check commutativity in the context of
model checking of concurrent programs (see, e.g., [37, 1]). However, our method is
generic wrt. the particular check used and we will benefit for future improvements
in this domain. For example, Bansal et al. [4] present a refinement-based technique
for synthesizing commutativity conditions for operations on representations (imple-
mentations) of abstract data types (ADTs). The algorithm is generalized to handle
left/right-movers [23]. We utilize commutativity checks as a “black box” in our al-

43

gorithms. Thus, in that respect our works are complementary. Nevertheless, the
projection checks and the gradual simplification of the commutativity checks done
in the treatise algorithm are novel.

Chapter 8
Conclusions and Future Work

Reentrancy attacks represent one of biggest threats to smart contracts, as we dis-
cussed in Chapter 1. They exploit the use of callbacks to break the modularity
of the contracts, generating unexpected behaviours. The main contribution of this
master thesis is the first static analysis for verifying ECF.

First, we introduced the notions of segment and the commutation, projection and
segment-join operations. These definitions are novel and allow us to characterize and
work with all traces that can arise from a fragment of code, instead of working with
individual traces. This is one of the key points of our static analysis.

Second, we presented our static analysis. It is based on proving commutativity
and projection between all fragments of code between call nodes and the procedures
of the module, that are the possible callbacks. As we discussed in Section 1.2, there
exist techniques for proving that a given execution is ECF; however, to the best to
our knowledge, this is the first work to present a technique for statically verifying
this property. Our analysis can help developers with feedback on potential vulnera-
bilities of the contract prior to deployment. This is fundamental in environments
like Ethereum, where once a contract is deployed it can not be modified.

We also introduced the notion of callback invariant as a way to increase the
accuracy of the analysis. Callback invariants are properties that hold when we first
arrive at the call node, but also after executing any possible sequence of callbacks.
We extended our static analysis to take into account the information that callback
invariants give us to check the commutation and projection of the callbacks more
precisely.

Our experimental results show that our approach can be applied to many real
contracts, and it is able to prove modularity where other methods fail. Our technique
is able to verify typical solutions to avoid reentrancy attacks, like the ones shown
for the Synthetix contract in Figure 6.2, that can not be proven using previous
approaches.

45

46 Chapter 8. Conclusions and Future Work

8.1 Future work

We have found several research directions we would like to follow in future work.
The first direction is related to the implementation. As we discussed in Chapter 6,
the actual algorithm is based on sECFOS but always considers the later-to-early
callnode order. We would like to extend our implementation considering all possible
orders. This represents a challenging problem as studying all orders may be imprac-
tical due to the number of required SMT queries. However, Theorem 3 suggests that
it is possible to reduce the number of queries needed to study an order by taking
advantage of the results of other orders already checked. Moreover, we would like to
integrate in the implementation techniques for generating callback invariants. The
actual implementation checks and takes into account the invariants that are given,
but does not generate them.

The second direction is applying notions we have introduced as segments or
callback invariants to other problems. They are not restricted to modularity checks,
so we would like to study new possible applications. Generalizing these ideas and
expressing new problems in terms of them represents an exciting future work.

Finally, the third direction is related to our experimental evaluation. We picked
as benchmark set the most used smart contracts and checked that most of them
are ECF. The majority of these contracts are rather simple, so as future work we
would like to consider benchmark sets containing valuable contracts implementing
complex logic, like the Synthetix contract that we presented in Section 6.2.

Bibliography

[1] Albert, E., Gómez-Zamalloa, M., Isabel, M. and Rubio, A. Con-
strained dynamic partial order reduction. In Computer Aided Verification -
30th International Conference, CAV 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II ,
392–410. 2018.

[2] Albert, E., Grossman, S., Rinetzky, N., Rodríguez, C., Rubio, A. and
Sagiv, M. Taming callbacks for smart contract modularity. 2020.

[3] Atzei, N., Bartoletti, M. and Cimoli, T. A survey of attacks on ethereum
smart contracts sok. In Proceedings of the 6th International Conference on
Principles of Security and Trust - Volume 10204 , 164–186. Springer-Verlag
New York, Inc., New York, NY, USA, 2017. ISBN 978-3-662-54454-9.

[4] Bansal, K., Koskinen, E. and Tripp, O. Automatic generation of precise
and useful commutativity conditions. In Tools and Algorithms for the Construc-
tion and Analysis of Systems (edited by D. Beyer and M. Huisman), 115–132.
Springer International Publishing, Cham, 2018. ISBN 978-3-319-89960-2.

[5] Beillahi, S. M., Ciocarlie, G., Emmi, M. and Enea, C. Behavioral sim-
ulation for smart contracts. To appear, 2020.

[6] Bernardi, T., Dor, N., Fedotov, A., Grossman, S., Nutz, A., Op-
penheim, L., Pistiner, O., Sagiv, M., Toman, J. and Wilcox, J. Pre-
venting reentrancy bugs - another use case for formal verification. 2020.
https://www.certora.com/blog/reentrancy.html.

[7] Bernstein, P. A., Hadzilacos, V. and Goodman, N. Concurrency Control
and Recovery in Database Systems . Addison-Wesley, 1987. ISBN 0-201-10715-5.

[8] Bizga, A. A hackers’ dream payday: Ledf.me and uniswap lose $25 million
worth of cryptocurrency. https://securityboulevard.com/2020/04/
a-hackers-dream-payday-ledf-me-and-uniswap-lose-25-million-worth-of-cryptocurrency/,
2020. [Online; accessed 11-May-2020].

[9] Brent, L., Grech, N., Lagouvardos, S., Scholz, B. and Smaragdakis,
Y. Ethainter: A smart contract security analyzer for composite vulnerabilities.
To appear, 2020.

47

https://www.certora.com/blog/reentrancy.html
https://securityboulevard.com/2020/04/a-hackers-dream-payday-ledf-me-and-uniswap-lose-25-million-worth-of-cryptocurrency/
https://securityboulevard.com/2020/04/a-hackers-dream-payday-ledf-me-and-uniswap-lose-25-million-worth-of-cryptocurrency/

48 BIBLIOGRAPHY

[10] Buterin, V. Critical update re: Dao vulnerabil-
ity. https://blog.ethereum.org/2016/06/17/
critical-update-re-dao-vulnerability/, 2016. [Online; accessed
2-July-2017].

[11] Cecchetti, E., Yao, S., Ni, H. and Myers, A. Securing smart contracts
with information flow. In Third International Symposium on Foundations and
Applications of Blockchain 2020 . 2020.

[12] Consensys. Ethereum smart contract best practices. https:
//consensys.github.io/smart-contract-best-practices/
known_attacks/, 2019. [Online; accessed 14-May-2020].

[13] Daian, P. 2016.

[14] De Moura, L. and Bjørner, N. Z3: An efficient SMT solver. In Pro-
ceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Sys-
tems , TACAS’08/ETAPS’08, 337–340. Springer-Verlag, Berlin, Heidelberg,
???? ISBN 3-540-78799-2, 978-3-540-78799-0.

[15] Feist, J., Grieco, G. and Groce, A. Slither: a static analysis framework for
smart contracts. In 2019 IEEE/ACM 2nd International Workshop on Emerging
Trends in Software Engineering for Blockchain (WETSEB), 8–15. IEEE, 2019.

[16] Ferreira Torres, C., Baden, M., Norvill, R. and Jonker, H. ægis:
Smart shielding of smart contracts. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security , CCS 19, 2589–2591.
Association for Computing Machinery, New York, NY, USA, 2019. ISBN
9781450367479.

[17] Grishchenko, I., Maffei, M. and Schneidewind, C. Foundations and
tools for the static analysis of ethereum smart contracts. In Computer Aided
Verification (edited by H. Chockler and G. Weissenbacher), 51–78. Springer
International Publishing, Cham, 2018. ISBN 978-3-319-96145-3.

[18] Grishchenko, I., Maffei, M. and Schneidewind, C. A semantic frame-
work for the security analysis of ethereum smart contracts. In Principles of
Security and Trust (edited by L. Bauer and R. Küsters), 243–269. Springer
International Publishing, Cham, 2018. ISBN 978-3-319-89722-6.

[19] Grossman, S., Abraham, I., Golan-Gueta, G., Michalevsky, Y.,
Rinetzky, N., Sagiv, M. and Zohar, Y. Online detection of effectively
callback free objects with applications to smart contracts. PACMPL, Vol.
2(POPL), 48:1–48:28, 2018.

[20] Hernandez, F. Understanding callbacks and promises. https://dev.to/
_ferh97/understanding-callbacks-and-promises-3fd5, 2019.
[Online; accessed 14-May-2020].

https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://blog.ethereum.org/2016/06/17/critical-update-re-dao-vulnerability/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://dev.to/_ferh97/understanding-callbacks-and-promises-3fd5
https://dev.to/_ferh97/understanding-callbacks-and-promises-3fd5

BIBLIOGRAPHY 49

[21] Kolluri, A., Nikolic, I., Sergey, I., Hobor, A. and Saxena, P. Ex-
ploiting the laws of order in smart contracts. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis , ISSTA
2019, 363–373. ACM, New York, NY, USA, 2019. ISBN 978-1-4503-6224-5.

[22] Li, A., Choi, J. A. and Long, F. Securing smart contract with runtime
validation. To appear, 2020.

[23] Lipton, R. J. Reduction: A method of proving properties of parallel programs.
Commun. ACM , Vol. 18(12), 717–721, 1975. ISSN 0001-0782.

[24] Luu, L., Chu, D.-H., Olickel, H., Saxena, P. and Hobor, A. Making
smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security , CCS ’16, 254–269. ACM, New
York, NY, USA, 2016. ISBN 978-1-4503-4139-4.

[25] Mavridou, A. and Laszka, A. Tool demonstration: Fsolidm for designing
secure ethereum smart contracts. In Principles of Security and Trust (edited by
L. Bauer and R. Küsters), 270–277. Springer International Publishing, Cham,
2018. ISBN 978-3-319-89722-6.

[26] Nikolić, I., Kolluri, A., Sergey, I., Saxena, P. and Hobor, A. Finding
the greedy, prodigal, and suicidal contracts at scale. In Proceedings of the 34th
Annual Computer Security Applications Conference, 653–663. 2018.

[27] Palmer, D. Spankchain loses $40k in hack due to
smart contract bug. https://www.coindesk.com/
spankchain-loses-40k-in-hack-due-to-smart-contract-bug,
2018. [Online; accessed 11-May-2020].

[28] Rodler, M., Li, W., Karame, G. O. and Davi, L. Sereum: Protecting
existing smart contracts against re-entrancy attacks. In 26th Annual Network
and Distributed System Security Symposium, NDSS 2019, San Diego, Califor-
nia, USA, February 24-27, 2019 . The Internet Society, 2019.

[29] Schneidewind, C., Scherer, M., Grishchenko, I. and Maffei, M. ethor:
Practical and provably sound static analysis of ethereum smart contracts. To
appear, 2020.

[30] Sergey, I. and Hobor, A. A concurrent perspective on smart contracts. In
Financial Cryptography and Data Security (edited by M. Brenner, K. Rohloff,
J. Bonneau, A. Miller, P. Y. Ryan, V. Teague, A. Bracciali, M. Sala, F. Pintore
and M. Jakobsson), 478–493. Springer International Publishing, Cham, 2017.

[31] Synthetix. Synthetix - decentralised synthetic assets. 2020. www.
synthetix.io.

[32] The Concourse Open Community. Defi pulse. https://defipulse.
com/, 2019. [Online; accessed 11-May-2020].

https://www.coindesk.com/spankchain-loses-40k-in-hack-due-to-smart-contract-bug
https://www.coindesk.com/spankchain-loses-40k-in-hack-due-to-smart-contract-bug
www.synthetix.io
www.synthetix.io
https://defipulse.com/
https://defipulse.com/

50 BIBLIOGRAPHY

[33] Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R.,
Marchenko, E. and Alexandrov, Y. Smartcheck: Static analysis of
ethereum smart contracts. In 2018 IEEE/ACM 1st International Workshop
on Emerging Trends in Software Engineering for Blockchain (WETSEB), 9–
16. 2018.

[34] Tripp, O., Manevich, R., Field, J. and Sagiv, M. JANUS: exploiting
parallelism via hindsight. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, Beijing, China - June 11
- 16, 2012 (edited by J. Vitek, H. Lin and F. Tip), 145–156. ACM, 2012.

[35] Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Bünzli, F.
and Vechev, M. Securify: Practical security analysis of smart contracts. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Commu-
nications Security , CCS ’18, 67–82. ACM, New York, NY, USA, 2018. ISBN
978-1-4503-5693-0.

[36] Turley, C. imbtc uniswap pool drained for $300k in eth. https:
//defirate.com/imbtc-uniswap-hack/, 2020. [Online; accessed 11-
May-2020].

[37] Wang, C., Yang, Z., Kahlon, V. and Gupta, A. Peephole partial order re-
duction. In Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint Euro-
pean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings , 382–396. 2008.

[38] Want, Y., Lahiri, S., Chen, S., Pan, R., Dillig, I., Bprb, C. and
Naseer, I. Formal specification and verification of smart contracts for azure
blockchain. 2019. ArXiv:1812.08829v2.

[39] Wood, G. Ethereum: A secure decentralised generalised transaction ledger.
http://gavwood.com/paper.pdf, 2016. [Online; accessed 5-July-2017].

https://defirate.com/imbtc-uniswap-hack/
https://defirate.com/imbtc-uniswap-hack/
http://gavwood.com/paper.pdf

Appendix A
Proofs

A.1 Proof of Lemma 1

We first establish a simple result about complete well-formed traces:

Lemma 2 Let t be a complete well-formed trace of depth d then either t is callback-
free or t = t1; t

s
1; t2; t

s
2; . . . ; t

s
n−1; tn with tsi simple traces and t1; t2; . . . ; tn−1; tn a com-

plete well-formed trace of depth d− 1.

Proof: Proof by induction on the length of the trace.
�

Lemma 3 If all executions of simple traces of a program Pr are dECFFS then Pr
is sECFFS.

Proof: We prove that any execution ξ is dECFFS by induction on the depth of the
executed trace t.

If t is callback-free then the execution is trivially dECFFS.
Otherwise, we can apply Lemma 2, hence t = t1; t

s
1; t2; t

s
2; . . . ; t

s
n−1; tn with tsi

simple traces and t1; t2; . . . ; tn−1; tn a complete trace of depth d− 1.
We denote the initial and final states of ξ by σ1 = start(ξ) and σn = end(ξ).

Then, for each i = 1, . . . , n − 1 there exist intermediate states σi and σs
i such that

σi − ti − σs
i and σs

i − tsi − σi+1.
We are assuming that all executions of simple traces of the program are dECFFS,

hence for each one of executions σs
i − tsi − σi+1 there exists a complete callback-free

trace ti such that σs
i − ti − σi+1.

Finally, we consider the trace t = t1; t1; . . . ; tn−1; tn. It is clear that σ1 − t− σn,
hence this execution is final state equivalent to ξ. Moreover, t is complete well-formed
and has depth d− 1.

�

51

52 Appendix A. Proofs

A.2 Proof of Theorem 1

A.2.1 Auxiliary proofs and definitions

Definition 30 (≤F) Given two callback-free segment sequences π1 = f1; . . . ; fn and
π2 = f ′1; . . . ; f

′
m, then π2 ≤F π1 if and only the multisets that contain their functions

verify {f ′1, . . . , f ′m} ⊆ {f1, . . . , fn}.

Definition 31 (D(π)) Given a program Pr, a callback-free segment sequence π =
f1; . . . ; fn and two disjoint sets FLeft and FRight such that FLeft∪FRight = F (Pr),
we define the value

D(π) =
∑

1=1...n

di(π) (A.1)

with di(π) =

di(π) =

{
0 if fi ∈ FRight
#j : 1 ≤ j < i ∧ fj ∈ FRight if fi ∈ FLeft

(A.2)

We are going to use this value to control the number of functions that are not
correctly placed. The idea is that we have two kind of functions: the ones that have
to be placed at the left of the sequence and the ones that have to be placed at the
right. In case a function fi has to be placed at the left, di(π) expresses the number
of misplaced functions with respect to fi (they have to be placed at the right but
appear before this function).

We can easily check that D(π) = 0 if and only if all the functions are correctly
placed (there exists k ∈ {0..n} such that fi ∈ FLeft if i ≤ k and fi ∈ FRight if
i > k).

Proposition 1 Given a program Pr and two sets FLeft and FRight such that

• FLeft ∩ FRight = ∅

• FLeft ∪ FRight = F (Pr)

• for all f ∈ FLeft and g ∈ FRight g; f moves

Then, given a callback-free execution ξ of a sequence of functions f1; . . . , fn there
exists a sequence of functions f ′1; . . . ; f ′m whose execution is final-state equivalent to
ξ such that f ′1; . . . ; f ′m ≤F f1; . . . ; fn and D(f ′1; . . . ; f

′
m) = 0.

Proof: We are using the notation π0 = f1; . . . ; fm. We prove the result by induction
on D(π0).

The case D(π0) = 0 is trivial. So, we assume D(π0) > 0. Then, there exists a
value i such that fi ∈ FRight and fi+1 ∈ FLeft .

Then, we consider the states σi, σi+1 before and after executing fi; fi+1 in the
original execution, respectively.

The function fi ∈ FRight and fi+1 ∈ FLeft , hence f ; g moves. We distinguish
four possibilities: commutation, left-projection, right-projection and zero-projection.

A.2. Proof of Theorem 1 53

• If fi and fi+1 commute for the state σi then σi − fi+1; fi − σi+1.

We consider the execution of the segment-sequence π1 where we substitute
fi; fi+1 by fi+1; fi then σI−π1−σF . Moreover, it is clear that D(π1) < D(π0).

• If fi left-projects with fi+1 for the state σi then σi − fi − σi+1. Following the
same reasoning, we denote by π1 the segment sequence where we substitute
fi; fi+1 by fi then D(π1) < D(π0) and σI − π1 − σF .

• The cases of right and total-projections are analogous.

We have proved that we can obtain a segment-sequence π1 that represents a trace t
whose execution is final state equivalent to the original execution, such that π1 ≤F π0
and D(π1) < D(π0). Hence, the proposition holds by induction.

�

Lemma 4 Existence of FLeft i and FRight i
If a program Pr is sECFSS then for any simple segment-sequence π such that

all its segments are minimal and it traverses the call nodes c1, . . . , cn following
this order (first c1, next c2,. . .) there exists a family of pairs of functions sets
{(FLeft i,FRight i)}i=1,...,n such that:

• FLeft i ∪ FRight i = F (Pr)

• FLeft i ∩ FRight i = ∅

• FLeft i ⊆ Left(ci) and FRight i ⊆ Right(ci)

• If i ≤ j then FLeft j ⊆ FLeft i and FRight i ⊆ FRight j

• For all f1 ∈ FLeft i, f2 ∈ FRight i, g2; g1 moves.

Proof: We take for each i = 1, . . . , n:
FRight i =

⋃
j=1,...,i MRight(cj)

FLeft i = F (Pr) \ FRight i

Let us check that this family of sets verifies the conditions:

• The two first conditions are trivial.

• Now, we prove that f /∈ Right(ci) implies that f /∈ FRight(ci).

If f /∈ Right(ci) then f ∈ MLeft(ci). We are assuming that the program Pr is
sECFSS, hence f /∈ MRight(cj) for all j : 1 ≤ j ≤ i (as ci is reachable from
cj). Then, f /∈

⋃
j=1,...,i MRight(cj) = FRight i.

The proof of f /∈ Right(ci)⇒ f /∈ FRight(ci) is analogous.

• If i ≤ j then FRight i =
⋃

k=1,...,i MRight(ck) ⊆
⋃

k=1,...,j MRight(ck) = FRight j.

On the other hand, FLeft i = F (Pr) \ FRight i hence FLeft j ⊆ FLeft i.

54 Appendix A. Proofs

• Finally, we check that for all f1 ∈ FLeft i and f2 ∈ FRight i, f2; f1 moves.
The function f2 belongs to FRight i, hence there exists j ≤ i such that f2 ∈
MRight(cj). If f2; f1 does not move, f1 belongs to MRight(cj) too.
Hence, f1 ∈ FRight i and we get a contradiction: f1 ∈ FLeft i∩FRight i but this
intersection is empty.

�

A.2.2 Proof sECFSS implies sECFFS

Definition 32 (V (π)) Let π be a segment-sequence representing a simple trace,
π = f 1

0 ; . . . ; fm0
0 ; τ1; f

1
1 ; . . . ; fm1

1 ; τ2; . . . ; τn+1; f
1
n+1; . . . ; f

mn+1

n+1

We are using the notation c1, . . . , cn for the call nodes it traverses and f 1
i ; . . . ; fmi

i

to denote the, maybe empty, sequence of callbacks made in the call node ci.
Given a family of pairs of functions sets {(FLeft i,FRight i)}i=1,...,n such that:

• FLeft i ∪ FRight i = F (Pr)

• FLeft i ∩ FRight i = ∅

we define the value V (π) as:

V (π) =
∑

i=1,...,n

vi(f
1
i ; . . . ; fmi

i) (A.3)

with vi(f 1; . . . ; fm) =
∑

j=1,...,m vi(f
j) and

vi(f) =

{
i if f ∈ FLeft(ci)
n+ 1− i if f ∈ FRight(ci)}

(A.4)

We can easily check the following facts:

• A simple segment sequence π is callback-free if and only if V (π) = 0.

• We consider two simple segment sequences π and π′ that only differ in the
callbacks made in the node ci. The first one calls to the sequence of functions
πi = f1; . . . ; fn and the second one to π′i = f ′1; . . . ; f

′
m. If they verify that

π′i ≤F πi then V (π′) ≤ V (π).

Theorem 5 (sECFSS ⇒ sECFFS) If a program Pr is sECFSS then it is sECFFS.

Proof: We are proving that the execution of any simple trace of the program is
dECFFS. This condition is enough to prove that the program is sECFFS according
to the Lemma 3.

Given the execution of a simple trace ξ = σI − t − σF , we consider a segment-
sequence of minimal segments π that represents its trace t. We assume that it tra-
verses the call nodes c1, . . . , cn following this order (first it gets to c1, then to c2,. . .).

According to the Lemma 4, there exists a family of sets {(FLeft i,FRight i)}i=1,...,n

that verifies the properties established in the lemma. We consider the value of V (π)
according to this family of sets.

A.2. Proof of Theorem 1 55

• If V (π) = 0 there are not callbacks in the segment-sequence, hence the execu-
tion trivially is dECFFS.

• If V (π) > 0 there exists at least one callback, we assume it is made in the node
ci. We consider the sequence of callbacks made in the node ci and denote it by
πi = f 1

i ; . . . ; fmi
i .

Next, we take the states σ1 and σ2 that are, respectively, the state of the contract
in the original execution before and after executing this sequence of callbacks.
We apply the Lemma 1 on the execution σ1 − πi − σ2 with respect to the sets
FLeft i and FRight i. Then, there exists a segment-sequence πi = f 1

i ; . . . ; f r
i

such that σ1 − πi − σ2 and D(πi) = 0. Moreover, it verifies that πi ≤F πi.

We consider now a segment-sequence π similar to the original one but substitut-
ing the sequence of callbacks made in the node ci by πi. This segment-sequence
verifies that σI − π − σF and V (π) ≤ V (π).

Now we distinguish three possibilities:

– If the new sequence of callbacks πi is empty, then it is clear D(π) < D(π).

– If it is not empty and its first function f 1
i belongs to FLeft(ci) then this

function left-moves with the segment τi at the left of the call node ci (τi; f 1
i

left-moves).
We consider the states σ3 and σ4 before and after executing τi; f 1

i , respec-
tively, we have that σ3 − τi; f 1

i − σ4.
We know that τi either left-projects or commutes with f 1

i for the state σ3,
hence we distinguish between these two cases:

∗ If it left-projects, then σ3−τi−σ4. So, if we take the segment-sequence
π1 where we substitute τi; f 1

i by τi we have that σI−π1−σF . Moreover,
V (π1) < V (π) ≤ V (π).
∗ The case of commutation is similar. It is clear that σ3 − f 1

i ; τi − σ4.
Hence, the segment-sequence π1 where we move the first callback f 1

i

from the beginning of the callbacks of the call node ci to the end of the
callbacks of node ci−1, then σI − π1− σF . Moreover, f ∈ FLeft(ci) ⊆
FLeft(ci−1) hence V (π1) = V (π)− i+ (i− 1) < V (π)

In both cases we get a segment sequence that represents a trace whose
execution is final-state equivalent to ξ such that V (π1) < V (π).

– If f 1
i does not belong to FLeft(ci) then all the callbacks belong to FRight(ci).

We consider then the last callback f r
i and follow an analogous reasoning.

We have proved that there exists a segment-sequence π1 such that V (π1) < V (π)
and it represents a trace t whose execution is final-state equivalent to ξ. Hence,
we conclude that there exist a callback-free execution ξ′ = σI − t′ − σ′F final
state equivalent to π, hence ξ is dECFFS.

�

56 Appendix A. Proofs

A.3 Proof of Theorem 2

Theorem 6 If a program Pr is sECFOS then it is sECFFS

Proof: We are going to prove that the execution of any simple trace is dECFFS.
We do this by induction on the number of call-nodes that have not been solved. We
say that a call node ci is solved according to an order <O if ci and all the nodes
smaller than it do not have callbacks.

We are assuming that the contract is sECFOS hence there exists an order <O

for the call nodes s.t. all of them are solvable wrt. <O.
Let ξ = σI − t− σF be a simple execution, we assume it traverses the call nodes

c1, . . . , cn following this order (first c1, then c2, . . .). Then, we distinguish two
possibilities:

1. If all call nodes have been solved, the execution has not callbacks hence it is
trivially dECFFS.

2. Otherwise, we take ci the smallest call node with callbacks according to the
order <O. Hence, not callbacks are made in any node cj such that cj <O ci.
We denote the sequence of callbacks that take place in ci by πi = f 1

i ; . . . ; fm
i .

First, take the sets FLeft = MLeftO(ci) and FRight = F (Pr) \ MLeftO(ci).
The call node ci is solvable, hence all the nodes in FLeft belong to LeftO(ci),
all the nodes in FRight belong to RightO(ci) and for all g ∈ FLeft , f ∈ FRight
f ; g moves.

Now, we apply the Lemma 1 and obtain the segment-sequence πi = f 1
i ; . . . ; f r

i

such that σI − πi − σF and D(πi) = 0. Then, there exists k ∈ 0, . . . ,m such
that f i

j ∈ FLeft for all j ≤ k and f i
j ∈ FRight for all j > k. We have sorted

the callbacks inside the call-node correctly, now we have to move them away
from it (to its left or right respectively).

Let cl be the last non-solved call-node that appears before ci (we are considering
the initial node and end nodes of the function as non-solved call-nodes for this
definition). It verifies that l < i, cl ≥O ci and for all l : l < j < i we have
that cj < ci. We take τl = TR(cl, ci) it is clear that τl ∈ SLeftO(ci). Moreover,
in the original execution there are not callbacks made in call nodes between cl
and ci, hence the trace followed between these nodes belongs to τl.

Now, we move all the functions f i
1, . . . , f

i
k. We know that all of them belong to

LeftO(ci), hence τl; f l
i left-moves for all them. Applying a similar reasoning to

the one we followed in the proof of Theorem 5, we commute or project each one
of them one by one, obtaining a segment sequence where all these functions
have been either projected or moved to the call-node cl.

We can apply the same reasoning for the functions in FRight : let cr be the
first non-solved call-node that appears after ci. It verifies that i < r, cr ≥O ci
and for all l : i < j < r we have that cj < ci. We take the segment between
these two nodes τr = TR(ci, cr) . As ci ≤O cr and the call-nodes between them
are smaller than ci, it verifies that τr ∈ SRightO(ci).

A.4. Proof of Theorem 3 57

Now we consider the functions fk+1
i , . . . , fm

i . We know that all of them belong
to RightO(ci), hence f r

i ; τr right-moves for all them. As we said in the previous
case, we can get a segment sequence where all these functions have been either
projected or moved to the call-node cr that represents a trace whose execution
is final-state equivalent to ξ.

This trace does not have callbacks in nodes cj such that cj ≤O ci, hence all these
nodes are solved. Then, the number of not solved call-nodes is strictly smaller than
in the original execution ξ. �

A.4 Proof of Theorem 3

The next two results prove that the ordered approach is at least as precise as the
minimal segments approach.

Lemma 5 Given an order <O and a function g ∈ F (Pr), then if f ∈ Left(ci) for
all ci ≤O cn such that cn is reachable from ci then f ∈ LeftO(cn) and if f ∈ Right(ci)
for all ci ≤O cn such that ci is reachable from cn then f ∈ RightO(cn).

Proof: We are proving the result for LeftO(cn), the case RightO(cn) is analogous.
Let us consider τ ∈ SLeftO(cn), this set was built considering that the nodes

ci <O cn are not call-nodes. Then, it is clear that τ is going to start at a call-node
cj such that cj ≥O ci, traverse some nodes c1, . . . , cm smaller than cn and finally end
in ci.

So, we divide τ into minimal segments:
τ = τ1; τ2; . . . ; τmτn
We have that τ1 ∈ SLeft(c1), . . . , τm ∈ SLeft(cm), τn ∈ SLeft(cn) with c1, . . . , cm

nodes such that all of them are smaller than cn according to the order <O.
The result we want to obtain is that τ ; g left-moves. Then, for any state σI ∈

Feasible(τ), we need to prove that τ either left-projects or commutes with g for the
state σI .

We consider that σI − τ ; g − σF . Then, there exists a state σ1 such that σI −
τ1; . . . ; τm − σ1 and σ1 − τn − σF .

We have that τn ∈ SLeft(cn) and g ∈ Left(cn), hence τn commutes or left-projects
with g for the state σ1.

1. If they left-project, σ1− τn− σF . Then, σ1− τ − σF , hence τ left-projects with
g.

2. If they commute, σ1−g; τn−σF . Then, we have that σ1−τ1; . . . ; τm; g; τn−σF .

Now, we can repeat the same reasoning for each one of the intermediate seg-
ments, hence finally the execution σI − τ ; g − σF is final-state equivalent to
either σI − τ − σ′F or σI − g; τ − σ′′F (in case it commutes with all the inter-
mediate segments).

58 Appendix A. Proofs

We have proved that τ ; g left-moves for any τ ∈ SLeftO(cn), hence g ∈ LeftO(cn).
�

Theorem 7 Given a program Pr, if a subset of call-nodes c1, . . . , cm = C ′ ⊆ C
verify the sECFSS property then for any order < O such that c1 <O c2 <O . . . <O

cm <O c for all c ∈ C \ C ′ we have that all the nodes of C ′ are solvable wrt. < O.

Proof: Let us take ci ∈ C ′. In order to prove that this node is solvable we need to
prove that MLeftO(ci) ∩MRightO(ci) = ∅.

If g ∈ MLeftO(ci) then either g /∈ RightO(ci) or there exists a function g1 ∈
MLeftO(ci) such that g; g1 does not move. We can repeat the same reasoning for g1
and so on, until we eventually get a function gn such that gn /∈ RightO(ci).

Then, according to the Lemma 5, gn /∈ Right(cj) for a call-node cj ≤O ci such
that cj is reachable from ci, hence gn ∈ MLeft(cj). Now, we take the reverse path:
if gn ∈ MLeft(cj) and gn−1; gn does not move hence gn−1 ∈ MLeft(cj), hence g ∈
MLeft(cj).

We follow an analogous reasoning for MRightO(ci), hence if f ∈ MRightO(ci)
then f ∈ MRight(ck) for a call-node ck ≤O ci such that ci is reachable from ck.

Finally, we observe that if g ∈ MLeftO(ci)∩MRightO(ci) then g ∈ MRight(ck)∩
MLeft(cj) with cj reachable from ck and ck, cj ∈ C ′, hence the nodes of C ′ would not
verify the ECFSS property. �

A.5 Proof of Theorem 4

Proposition 2 Given a program Pr, two sets FLeft and FRight and a callback
invariant I such that

• FLeft ∩ FRight = ∅

• FLeft ∪ FRight = F (Pr)

• for all f ∈ FLeft and g ∈ FRight g; f moves assuming the invariant I(c)

Then, given a callback-free execution ξ of a callbacks made in the node c f1; . . . , fn
there exists a sequence of callbacks made in that node f ′1; . . . ; f ′m whose execution is
final-state equivalent to ξ such that f ′1; . . . ; f ′m ≤F f1; . . . ; fn and D(f ′1; . . . ; f

′
m) = 0.

Proof: It is analogous to 1.
We just have to take into account that the state σi satisfies I(c), hence the func-

tions fi and fi+1 either commute or project for this state.
�

Theorem 8 If a program Pr is sECFIOS then it is sECFFS

A.5. Proof of Theorem 4 59

Proof: The contract Pr is sECFIOS hence there exists an order <O and callback
invariants I for the nodes of the program C s.t. all the call nodes are solvable wrt.
<O.

Let ξ = σI − t− σF be a simple execution, we assume it traverses the call nodes
c1, . . . , cn following this order (first c1, then c2, . . .). We denote by c0 the start node.

First, we prove that during the execution the property I(ci) holds when we first
arrive at the node ci, and it also holds after the sequence of callbacks made in this
node. We prove this result by induction.

We assume that the result holds for the nodes c0, . . . , ci−1, then after execution
the callbacks made in the node ci−1 we are in a state σi−1 that satisfies Ici−1

. Then,
we consider the trace ti followed between the nodes ci, ci−1 in the execution ξ. The
property Ici is a call node invariant hence if σi−1− ti−σi then σi satisfies Ici. Then,
it is clear that Ici holds when we first arrive at the node ci and it also holds after
executing any callback.

Finally, we just have to follow an analogous reasoning to the one we used to
prove that sECFOS ⇒ sECFFS. In case there is a not solved node ci, we apply the
proposition above to get a sequence of callbacks πi such that D(πi) = 0. Then, we
take the same τl and τr segments and move the callbacks to the nodes cl and cr.

When we are trying to move a callback fk
i (we assume it belongs to FRight , the

case fk
i ∈ FLeft is analogous), we have to take into account that I(ci) is a call node

invariant. We consider the states σ1 and σ2 before and after executing fk
i ; τr in the

original execution, respectively. I is a call node invariant, hence σ1 satisfies I(ci).
Then, it is clear that fk

i ; τr either commutes or right-projects for the state σi.
�

	Página de Título
	Índices
	Tabla de Contenidos
	Índice de figuras
	Índice de tablas

	Introduction
	The DAO Attack
	Effectively Callback Freedom (ECF)
	Previous approaches
	Static Verification of ECF
	Overview of the technique
	Objetives and contributions
	Organization of the Project

	Preliminaries
	Programming language
	Traces
	Executions

	Segments, Projection and Commutation
	Basic definitions on segments
	Segment-sequences

	Commutation and projection

	Static analysis
	Solvable Call Node
	Segments Join
	Treatment for Revert Operations

	Callback invariant
	Implementation and Experimental Evaluation
	Experimental evaluation
	Detailed results

	Challenging real case study

	Related Work
	Conclusions and Future Work
	Future work

	Proofs
	Proof of simple
	Proof of teo sECF
	Auxiliary proofs and definitions
	Proof sECFSS implies sECFFS
	Proof of teo sECFOS
	Proof of teo:anyorder
	Proof of teo sECFIOS

	Fin

