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The validity of the Wiedemann-Franz law �WFL� for icosahedral quasicrystals belonging to the families
AlCu�Fe,Ru� and AlPd�Mn,Re� is discussed. We exploit some characteristic features in the electronic structure
in order to obtain closed analytical expressions for the transport coefficients in terms of the Hurwitz zeta
function. Depending on the Fermi-level position, a systematic deviation from the ideal WFL is observed. The
role of self-similar features in the electronic structure on the WFL is discussed. The obtained expression for the
Lorenz function may be used in order to refine previous experimental results on the charge-carrier contribution
to the thermal conductivity in these materials.
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I. INTRODUCTION

The Wiedemann-Franz law �WFL� links the electrical
conductivity, ��T�, and the charge-carrier contribution to the
thermal conductivity, �e�T�, of a substance by means of the
relationship �e�T� /��T�=L0T, where T is the temperature
and L0= �kB /e�2�0 is the Lorenz number, where kB is the
Boltzmann constant, e is the electron charge, and �0 depends
on the sample’s nature. Thus, for metallic systems �0
=�2 /3, and we get the Sommerfeld value L0=2.44
�10−8 V2 K−2, while for semiconductors we have �0�2.1

The WFL expresses a transport symmetry arising from the
fact that the motion of the carriers determines both the elec-
trical and thermal currents at low temperatures. As the tem-
perature of the sample is progressively increased, the validity
of WFL will depend on the nature of the interaction between
the charge carriers and the different scattering sources
present in the solid. In general, the WFL applies as long as
elastic processes dominate the transport coefficients, and
usually holds for arbitrary band structures provided that the
change in energy due to collisions is small compared with
kBT.2,3 Accordingly, one expects some appreciable deviation
from WFL when electron-phonon interactions, affecting in a
dissimilar way electrical and heat currents, start to play a
significant role.4 On the other hand, at high enough tempera-
tures the heat transfer is dominated by the charge carriers
again due to umklapp phonon-scattering processes, and the
WFL is expected to hold as well.

Quasicrystals �QCs� are metallic alloys belonging to the
class of aperiodic crystals. Since QCs consist of metallic
elements, one should expect they would behave as metals do,
hence reasonably obeying the WFL. This working hypothesis
is routinely assumed when studying the thermal transport
properties of these materials in order to estimate the phonon
contribution to the thermal conductivity, �ph�T�, by subtract-
ing from the experimental data, �mes�T�, the expected elec-
tronic contribution according to the expression �ph=�mes
−L0T�. Nonetheless, it is now well established that most
transport properties of stable QCs are quite unusual by the
standard of common metallic alloys, resembling more semi-
conductorlike than metallic character.5–9 Accordingly, it
seems quite convenient to check the validity of this law for
QCs, since our understanding of thermal properties in these

materials should be substantially revised if it does not hold.10

To this end, we shall consider the following realistic
model for the spectral conductivity close to the Fermi
level:11–14

��E� = �̄� �1

�E − �1�2 + �1
2 +

	�2

�E − �2�2 + �2
2�−1

, �1�

which satisfactorily describes the electronic structure of both
QCs and approximant phases belonging to the AlCu�Fe,Ru�
and AlPd�Mn,Re� icosahedral families in terms of a wide
Lorentzian peak �related to the Hume-Rothery mechanism�
plus a narrow Lorentzian peak �related to sp-d hybridization
effects�. This model includes six parameters, determining the
Lorentzian heights ��̄ /�i� and widths ���i�, their positions
with respect to the Fermi level, �i, and their relative weight
in the overall structure, 	
0. The parameter �̄ is a scale
factor measured in �� cm eV�−1 units. Suitable values for
these electronic model parameters can be obtained by prop-
erly combining ab initio calculations of approximant phases
with experimental transport data of icosahedral samples
within a phenomenological approach.11,12,15–18

II. ANALYTICAL EXPRESSIONS

Following previous works, we will express the Lorenz
function in the form18,19

L�T� �
�e�T�
T��T�

= � kB

eJ0
	2
J0 J1

J1 J2

 , �2�

where the kinetic coefficients Ji can be written as

J0c0
−1 =

4�2

3
�−2 + a3�−1H1 + a4H0 + 4a0,

J1c0
−1 =

4�2

3
a1�−1 + a5H1 + a3�G0,

J2c0
−1 =

28�4

15
�−2 + a6�H1 + a5G0�2 +

4�2

3
a0, �3�

where c0� �̄��1+	�2�−1 and ���kBT�−1; the coefficients ai

were defined in Ref. 19, and we have introduced the auxil-
iary integrals
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Hk��� � �
−



 xk

�−2x2 − 2�−1q1x + q0
sech2�x/2�dx , �4�

and G0�4−q0H0, where x���E−��, E is the electron en-
ergy, q0���1

2�2
2��1+	�2�−1, q1= ��1�2+	�1�2���1+	�2�−1,

�i
2��i

2+�i
2, and ���1�1

−2+	�2�2
−2. In order to evaluate

these integrals, in previous works we expanded Eq. �4� in
Taylor series around the Fermi level, concluding that QCs
closely obey the WFL over a wide temperature range.18 Sub-
sequently, we realized that truncation effects have an impor-
tant influence on the obtained results, so that the Lorenz
function significantly deviates from its ideal behavior above
�50 K.19

Following a phenomenological approach, which allows
one to extract suitable information about the electronic struc-
ture from the temperature dependence of the transport coef-
ficient curves, the values q1=−0.025 eV, q1=−0.015 eV, and
q1=−8.8�10−5 eV were respectively obtained for AlMnSi
approximant phases,17 i-AlCuFe QCs,16 and i-AlPdRe
QCs.20 We notice that the smaller q1 values correspond to
high quality QCs, exhibiting long-range quasiperiodic order,
whereas the larger value is obtained for an approximant crys-
tal. Accordingly, we can confidently assume that the limiting
behavior q1→0 properly applies to ideal QCs. The condition
q1=0 imposes the constraint

�2

�1
= − 	

�2

�1
�5�

among the model parameters. From a physical viewpoint,
this relation indicates that �i� the peak location ratio is pro-
portional to their height ratio, providing a characteristic cor-
relation in the electronic structure, and �ii� since �i
0, the
Fermi level must be located in between both spectral fea-
tures.

By inspecting Eq. �4�, we realize that the auxiliary inte-
gral H1 identically vanishes in the case q1=0 due to the odd
parity of the integrand. In that case, one obtains the closed

analytical expression H0=4q0
−1�̃�H�2,1 /2+ �̃� �see the Ap-

pendix�, where �̃��q0� /2� is a scaled variable and
�H�s ,a��
k=0


 �k+a�−s is the Hurwitz zeta function, which
reduces to the Riemann zeta function in the case a=1.21 By
making use of this analytic expression, along with H1=0, Eq.
�3� can be rearranged in the matrix form

�J0

J1

J2
� =

4�2c0

3 �
3

�2 J̃00 0 1

0 J̃11 0

J̃20 0
7�2

5
�� 1

�−1

�−2� , �6�

where J̃00�a0+a4q0
−1�̃�H, J̃11�a1+12a3q0

−1f��̃�, and J̃20

�a0+12a4q0
−1f��̃�, with f��̃�� �̃2�1− �̃�H�. By comparing

Eq. �6� with Eq. �A12� in Ref. 19, and taking into account
the asymptotic limits

lim
�̃→


�̃�H = 1, lim
�̃→


�̃2�1 − �̃�H� = 1/12, �7�

we realize that the J̃ij��̃� coefficients reduce to Jij�q1=0�, so
that the exact and approximate �Taylor expanded� expres-
sions for the kinetic coefficients Ji coincide in the low-
temperature regime. As the temperature is increased, how-
ever, the analytical expression given by Eq. �6� retains all the
temperature dependent information contained in the kinetic
coefficients in terms of the Hurwitz zeta function. Plugging
the kinetic coefficient expressions given by Eq. �6� into Eq.
�2�, we obtain

L�T� = L0

J̃00J̃20 + Q��̃��−2 +
7�4

15
�−4

J̃00
2 +

2�2

3
J̃00�

−2 +
�4

9
�−4

, �8�

where Q��̃���2�21J̃00/5+ J̃20− J̃11
2 � /3. Making use of Eq.

�7�, one gets limT→0L�T�=L0, so that the WFL holds in the
low-temperature regime, as expected. On the other hand,
making use of the limits

lim
�̃→0

�̃�H = 0, lim
�̃→0

�̃2�1 − �̃�H� = 0 �9�

in Eq. �8�, one obtains the high-temperature limit
limT→
L�T�=21L0 /5. Therefore, we conclude that the WFL
is obeyed by those QCs whose electronic structure close to
the Fermi level can be properly described in terms of the
spectral function given by Eq. �1� in both the low- and high-
temperature regimes, although in the latter case the Lorenz
number is 4.2 times larger than the Sommerfeld value.22

III. DISCUSSION

In order to illustrate the temperature variation of the Lo-
renz function, we evaluate Eq. �8� by making use of the
electronic structure model parameters listed in Table I to ob-
tain the curves shown in Fig. 1. The referenced values are
taken from ab initio calculations for three representative QC
samples. The remaining values have been derived from the
ab initio ones by properly imposing the constraint q1=0.
Two main criteria have been adopted to this end: �i� to vary
the relative position of the Fermi level �describing possible
stoichiometric effects� or �ii� to vary the narrow spectral fea-
ture �2 parameter �describing both temperature and long-
range resonance effects�. By inspecting Fig. 1, the following
conclusions can be drawn. First, the WFL is closely followed
by most considered samples in the low-temperature regime.
Second, significant deviations from the WFL are exhibited
by those systems for which the condition q1=0 is accom-
plished by tuning the Fermi-level relative position �dashed-
line curves�. In particular, by inspecting Table I, we clearly
appreciate that the L�T� curve deviation intensifies as EF ap-
proaches the narrow spectral peak, irrespective of the sample
nature.

On the other hand, in Fig. 1�d� we illustrate the high-
temperature asymptotic limit prescribed by Eq. �8� for all the
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considered samples. As we can see, the theoretical limit
21L0 /5 is attained at very high temperatures, well above the
melting point of these materials ��1000 K�. A suitable ex-
perimental measure of the WFL’s validity over a given tem-
perature range can be gained from the study of the magni-
tude �mes�T� /��T�=L�T�+��T�, where ��T� accounts for the
phonon contribution to the heat transport. A study of the
temperature variation of the �mes /� ratio in several interme-
tallic compounds showed that the experimental data may be
fitted by a linear temperature dependence of the form
�mes /�=LT+B over the temperature range 350–800 K.23,24

By comparing the slopes obtained for pure aluminum and
icosahedral AlCuFe samples, the ratio LQC/LAl�1.21 was
obtained, hence indicating an enhanced Lorenz number for
QCs at high temperatures. In a similar way, room-
temperature L�T� values larger than L0 have been experimen-
tally reported, ranging from L300/L0=1.15 �Ref. 25� to
L300/L0=1.43.26 Therefore, the available experimental infor-
mation supports the theoretical trend L�T� /L0
1, prescribed
by Eq. �8� in the high-temperature regime.

In order to gain some understanding of the observed de-
viation from the WFL in the intermediate temperature range,
we will explicitly consider the thermal and electrical conduc-
tivities, which can be obtained from the expressions18,19

�e�T� = � kB

2e
	2�J2 −

J1
2

J0
	T, ��T� =

J0

4
. �10�

Making use of Eq. �6�, we can write Eq. �10� in the form

�e�T� = c0L0T�7�2

5
�−2 + J̃20 − J̃11

2 +
J̃11

2

1 +
�2

3
J̃00

−1�−2� ,

�11�

��T� = c0��2

3
�−2 + J̃00	 . �12�

By assuming that the limits given by Eq. �7� still hold in the
considered temperature range, and keeping the leading terms

in �−2 in Eqs. �11� and �12�, we obtain the following ap-
proximate expression for the reduced Lorenz function:

L�T�
L0

=

1 +
21

5
�bT2

1 + �bT2 , �13�

where b�e2L0=2.44 eV2 K−2, and the coefficient

� �
�1

2�2
2��1 − �2�

�1�2
2 − �2�1

2 �in eV−2� �14�

accounts for electronic structure effects on the transport
properties at the intermediate temperature range. Since �i

2

�0, Eqs. �13� and �14� indicate that the deviation from the
WFL naturally occurs for any electronic structure �except for
the trivial case �2=�1�. The question regarding what sort of
electronic structures will minimize and/or maximize the role
of coefficient � in Eq. �13� then arises. To discuss this issue,
we will first consider the temperature variation of the Lorenz
function for actual samples. In Fig. 2, we show the normal-
ized L�T� curves, obtained from Eq. �8�, for two representa-
tive samples of the icosahedral AlCuFe family, with q1
=0 eV and �=0.055 eV−2 �solid line� and q1=0.015 eV and
�=0.0022 eV−2 �dashed line�, along with the approximant
phase AlMnSi with q1=−0.025 eV and �=0.0019 eV−2 �dot-
dashed line�. The electronic model parameters adopted for
the samples with q1�0 have been obtained from the analysis
of experimental transport curves, as previously reported in
Refs. 17 and 16 for AlMnSi and AlCuFe, respectively. By
inspecting this figure, we observe a clear correlation between
the nature of the long-range order present in the sample
�roughly measured in terms of the q1 parameter� and an en-
hancement of the L�T� curve as compared to that prescribed
by the WFL �horizontal solid line�. In fact, whereas the ap-
proximant phase �exhibiting long-range periodic order�
closely obeys the WFL over a broad temperature range �from
0 up to �100 K�,27 the icosahedral AlCuFe samples �charac-
terized by a long-range quasiperiodic order instead� exhibit
an anomalous enhancement starting at low temperatures
��20 K�. Such enhancement is also observed for the approx-

TABLE I. Values of the electronic model parameters adopted to determine the Lorenz curves plotted in
Fig. 1 �more details in the text�.

Sample �1 �2 �1 �2 	 q1

L�300�

L0

AlCuFea 1.35 0.04 −0.12 0.23 0.98 0.220

AlCuFe-1 1.35 2.64 −0.12 0.23 0.98 0 1.002

AlCuFe-2 1.35 0.04 −0.325 0.01 1 0 2.310

AlCuRu12 1 0.045 −1.1 0.275 1.7 0.177

AlCuRu-3 1 0.125 −1.1 0.275 2 0 0.967

AlCuRu-4 1 0.045 −1.5 0.115 1.7 0 0.949

AlPdReb 1.35 0.042 −0.2 0.23 3.864 0.184

AlPdRe-5 1.35 0.388 −0.2 0.23 4 0 1.005

AlPdRe-6 1.35 0.042 −0.6 0.072 3.864 0 1.058

aReference 11.
bReference 12.

THEORETICAL ASSESSMENT ON THE VALIDITY OF THE… PHYSICAL REVIEW B 75, 104210 �2007�

104210-3



imant phase, but only at significantly higher temperatures. It
is then tempting to assume that the observed enhancement in
the L�T� /L0 ratio may be related to the possible presence of
self-similar features in the electronic structure of QCs. In
order to check this point, we shall consider a representative

self-similar spectral conductivity model given by the param-
eters �1�−�3�, �2��, �1��, �2��3�, and 	=�−6 �after
Eq. �5��, where �= �1+�5� /2 is the golden mean.28,29 Plug-
ging these values in Eq. �14�, we get �= �1+�6��2

�0.2728. . . eV−2. By comparing this figure with those pre-
viously obtained for the samples discussed in Fig. 2, we
realize that the role of electronic structure effects is quite
remarkable in the ideal self-similar case. In Fig. 3, we show
the corresponding L�T� /L0 curve obtained from Eq. �8�. As
we can see, the presence of self-similar features in the elec-
tronic model parameters gives rise to an appreciable en-
hancement of the Lorenz function as the temperature is pro-
gressively increased.

IV. CONCLUSIONS

By comparing the overall L�T� curves corresponding to
the ideal case q1=0 and those obtained for real samples with
relatively small q1 values in Fig. 2, we realize that the main
qualitative features of the Lorenz curve do not sensitively
depend on the precise value of the adopted q1 value �pro-
vided it is small enough�. Accordingly, we can confidently

FIG. 1. Temperature variation of the normalized Lorenz func-
tion for �a� i-AlCuFe phases with the model parameters set respec-
tively labeled 1 �solid line� and 2 �dashed line� in Table I, �b�
AlCuRu phases with the model parameters set respectively labeled
3 �solid line� and 4 �dashed line� in Table I, and �c� AlPdRe phases
with the model parameters set respectively labeled 5 �solid line� and
6 �dashed line� in Table I. In �d�, we illustrate the high-temperature
asymptotic limit for samples 1–6.

FIG. 2. �Color online� Temperature variation of the normalized
Lorenz function for two samples of the icosahedral quasicrystal
AlCuFe, with q1=0 eV �solid line� and q1=0.015 eV �dashed line�,
along with the approximant phase AlMnSi with q1=−0.025 eV
�dot-dashed line�.

FIG. 3. Temperature variation of the normalized Lorenz func-
tion for an ideal QC characterized by a self-similar electronic struc-
ture model given by �1�−�3�, �2��, �1��, �2��3�, and 	
=�−6, with �=0.12 eV.
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conclude that the WFL anomaly is a generic feature of real-
istic QCs, presumably related to certain self-similar features
in their electronic structure, as illustrated in Fig. 3. On the
basis of this study, we propose the use of the expression
�ph=�mes−L�T�T�, where the Lorenz function is given by
Eq. �8�, instead of the usual assumption L�T��L0, in order to
properly determine the phonon contribution to the thermal
conductivity in AlCu�Fe,Ru� and AlPd�Mn,Re� QCs and ap-
proximant phases.
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APPENDIX

Taking into account the Fourier transform relationship

1

x2 + a2 =
1

2a
�

−





e−a�ei�x d� ,

the auxiliary integral H0 can be properly rearranged in the
form

H0��� �
�2

2a
�

−





e−a� d��
−





ei�x sech2� x

2
	dx , �A1�

where a2�q0�2. Now, the second integral in Eq. �A1� is just
the Fourier transform of the function 4�� cosech����, so
that we finally obtain

H0 �
2��2

a
�

−





e−a�� cosech����d� = h0��H�2,
1

2

+
�

�2h0
	 ,

with h0�2/ ���q0�.
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