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We show that a large number of ions forming a 2D Coulomb crystal provides an almost ideal system for
scalable quantum computation and quantum simulation. In particular, the coupling of the internal states to
the motion of the ions transverse to the crystal plane allows one to implement two-qubit quantum gates.
We analyze in detail the decoherence induced by anharmonic couplings, and show that very high gate
fidelities can be achieved with current experimental setups.
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The search for a physical system where quantum com-
putation is feasible is at the focus of an intense theoretical
and experimental activity [1]. Ion traps are by now among
the most promising candidates for a many-qubit quantum
processor. In this system, qubits are stored in internal
electronic states, and collective vibrational modes of the
ions allow us to induce quantum gates between them [2].
Following this idea, the building blocks for quantum com-
putation have already been demonstrated in experiments
with a few qubits [3]. Most of the current efforts to scale up
the size of current ion quantum processors rely on the
fabrication of arrays of microtraps [4], in which a large
number of ions can be stored and shuttled. Even though an
astonishing progress has been achieved in this direction in
the last years, the scalability of this system still demands
technical advances in microfabrication and trap design [5].

Penning traps provide us with an alternative trapping
scheme, where a large number of ions (104–106) can be
confined by a potential with approximate cylindrical sym-
metry [6]. Axial confinement is induced by a static electric
field, whereas radial confinement is a result of the rotation
of the ions under an axial magnetic field. If the axial
confinement is strong enough, ions arrange themselves in
a triangular lattice on a single plane, which corresponds to
a classical two-dimensional (2D) Wigner crystal. The ap-
peal of this system lies on the fact that ions are naturally
ordered in a 2D regular array, without the need of individ-
ual micropotentials. Furthermore, ions are separated by
distances of the order of tens of microns, such that they
are individually addressable by optical means [7]. Thus,
ions in Penning traps may appear as ideally suited for
quantum computation and quantum simulation. However,
this system has never been considered for this task [8].
First, because the complicated vibrational level structure of
the crystal makes it difficult to apply here schemes that
require resolution of single vibrational modes. In addition
to that, typical schemes usually rely on the coupling of
qubits to modes in directions parallel to the crystal. In
current experiments with Penning traps, Doppler cooling
of ions has reached temperatures of at most 1 mK, which
implies occupation numbers of 102–103 in the in-plane

vibrational modes, so that it seems not to be possible to
use them for quantum operations.

In this Letter we show how to circumvent these prob-
lems by exploiting the ions’ motion along the axial direc-
tion (Fig. 1). This approach benefits from the high axial
confinement frequencies (and thus smaller occupation
numbers at finite temperature), as well as from the fact
that ions are weakly coupled in this direction, something
that enormously simplifies the description of the ions’
motion. In particular, we show how it is possible to carry
out two-qubit gates between ions with high fidelities by
performing a careful analysis of the main sources of deco-
herence. We emphasize that the results derived here also
imply that this system is ideally suited for quantum simu-
lations, which may be especially interesting due to the fact
that ions are displayed in a triangular structure and favor
the simulation of magnetic frustrated systems.

The main source of decoherence in our scheme is due to
the anharmonic terms in the Coulomb interaction, which
induce a coupling between axial motion and in-plane hot
vibrational modes, and lead to a residual qubit-phonon
coupling. The description of such decoherence poses an
involved theoretical problem, because of the large number
of vibrational modes that participate in the process.
However, it gets simplified due to the fact that the environ-

FIG. 1 (color online). Quantum gate in a 2D Coulomb crystal:
standing waves induce a state-dependent dipole force on two
nearest neighbors in a triangular lattice.
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ment is in a Gaussian state, which allows us to simplify the
calculation of correlation functions that appear in finite-
temperature, time-dependent perturbation theory. We show
that in a range of parameters where axial confinement is
large enough, the error induced in the quantum gate is very
small. Furthermore, the adjustment of the gate time allows
us to correct for the influence of the phonon environment,
and decrease the gate error by more than 1 order of
magnitude.

Let us consider a system of N ions forming a 2D
Coulomb crystal. We study, for concreteness, the perform-
ance of a ‘‘pushing gate’’ [9] in the axial direction, an
approach that has the advantage that single vibrational
modes do not have to be resolved, and the gate can operate
at finite temperature. Since we are interested in estimating
the consequences of decoherence, we neglect finite size
effects, and describe the crystal by a triangular lattice with
periodic boundary conditions. Let us assign the z direction
to the axis of the trap, such that ions occupy equilibrium
positions in the x-y plane:

 R 0
r � �r1a1 � r2a2�d0; rj � 1; . . . ; L; (1)

where a1 � �1; 0; 0�, a2 � �1=2;
���
3
p
=2; 0�, and d0 is the

distance between ions. The potential is given by a trapping
term, plus the Coulomb repulsion:
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Rr � �Xr; Yr; Zr�, are the ions’ coordinates with respect to
the equilibrium positions, and VTrap is the harmonic trap-
ping potential, with frequencies !j in each spatial direc-
tion, j � x, y, z. Note that in a Penning trap, (2)
corresponds to the potential in a frame rotating with the
ion crystal [10].

In the harmonic approximation, VCoul is expanded up to
second order in Rr, and the axial (z) and in-plane (x; y)
modes are independent. The vibrational harmonic
Hamiltonian is given by H�0�vib �

P
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the phonon wave vector, and � runs over the three possible
polarizations: � � z (axial modes), and the two in-plane
modes (� �k , ? ) corresponding to longitudinal and
transverse modes. Local displacements can be expressed
in terms of collective coordinates:
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where e�q are the polarization vectors, which are eigenstates
of the Fourier transform of the harmonic ion-ion interac-
tion [11]:
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For each q, !�
q are given by the eigenvectors of the 3� 3

matrix
�������
�q

q
.

The ‘‘pushing gate’’ works by coupling the internal
states of two ions, which we label 1 and 2, to the axial
(z) motion [9,12]. An off-resonant standing-wave induces
a force which displaces the position of ions 1 and 2, in a
direction which depends on their internal state [13]
(Fig. 1):

 Hf�t� �
X
j�1;2

F�t�Zrj�
z
j; (5)

where �zj are operators acting on the internal states of
ions at sites rj. To simplify our calculations, we consider
the following time-dependent force: F�t� � Fe�i�jtj=2

(�1< t <1). However, our results are qualitatively valid
for other pulse shapes with gate time 1=�. Trapping pa-
rameters are chosen such that �z � e2=m!2

zd
3
0 	 1 [13].

In this limit, ions moving in the axial direction can be
considered as independent harmonic oscillators weakly
coupled by the Coulomb interaction, akin to the case of
microtrap arrays. Furthermore, we will be in the adiabatic
limit, defined here by:

 E z � 8��=!z�
2�FZ0=@!z�

2�2 �nz � 1� 	 1; (6)

where Z0 is the axial ground state size, and �nz is the mean
axial phonon number. Ez is, indeed, the error induced in the
quantum gate by nonadiabatic effects in the axial modes
[12]. Under condition (6), internal states end up being
decoupled from the axial motion after the gate, and follow
the unitary evolution given by:

 Ug � e�i
R
dtJ�t��z1�

z
2 ; J�t� � 2�z�F�t�Z0=@!z�

2!z:

(7)

In the following we consider the choice � � J�0��=8, such
that Ug corresponds, up to local operations, to a sign gate.

Unfortunately, the axial motion is coupled to the in-
plane modes by anharmonic terms in VCoul, being the
lowest order ones of the form XZ2, X2Z2, that is, quadratic
in the axial coordinates. Since resonances between axial
and in-plane vibrational frequencies lead to divergences in
the correlation functions of these terms, the effect of
anharmonicities is reduced if !z

q 
 2!k;?q . The axial vi-
brational bandwidth is proportional to �z, and, thus, this
condition can be imposed by choosing a tight enough axial
confinement [see [14] ]. In the case of N � 104 ions, !z �

50!xy is enough to ensure this condition [see Fig. 2(a)], so
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that we will assume this ratio in all the examples presented
along this work.

Let us now quantify the loss of fidelity induced by
anharmonic couplings. The force (5) displaces the ions in
the axial direction by �Z�t� � 2F�t�Z2

0=@!z. In the limit (6),
ions 1 and 2 follow adiabatically the displacement induced
by the force, so that one can neglect the fluctuations in the
coordinates Zrj , and replace them by their ground state
average, �Z�t��zj, when computing anharmonic corrections.
The anharmonic energy dependence on the ions’ position
results in the following coupling between internal states
and in-plane modes:

 

Hdec
xy �t� � Hah

xy�t�
1
4��

z
1 � �

z
2�

2;

Hah
xy�t� � �Z�t�2�ATR1;2 �RT

1;2BR1;2�:
(8)

R1;2�R0
1;2� is the vector given by the in-plane components

of Rr1
�Rr2

�R0
r1
�R0

r2
�. A and B are third and fourth

order anharmonic Coulomb interaction terms, respectively:

 A � 3
e2
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0

R0
1;2; B �

3e2

d5
0

�
1�

5

2

R0
1;2�R

0
1;2�T

d2
0

�
: (9)

Note that Hdec
xy excites the in-plane phonons depending on

the ions’ internal states, and, thus, entangles the qubits with
the environment.

Assume that the internal states are initially in a pure
state: j�i �

P
�c�j�i (j�i � j00i, j01i, j10i, j11i), such

that the initial density matrix of the total system is given
by: �i � j�ih�j � �0

xy, with �0
xy, a thermal phonon state.

After the action of the quantum gate, the final density
matrix is

 �f �
X
�;�

c�c


��Ugj�ih�jU

y
g ��U�

xy�
0
xy�U

�
xy�
y�; (10)

where U�
xy, is the evolution operator of the in-plane pho-

nons,Uxy, projected in the internal state �. In (10) we have
assumed that the axial modes can be described classically
in Hdec

xy due to the adiabaticity of the quantum gate, such
that we can factorize the evolution operator. We define the
(worst-case) reduced fidelity, F , of the quantum gate by
the overlap of the qubits’ reduced density matrix obtained
from (10), with the qubit quantum state after a perfect
gate, minimized over all possible two-qubit initial states.
Note that U00

xy � U11
xy � U�0�xy , and U01

xy � U10
xy � U�ah�

xy ,

where U�0�xy and U�ah�
xy , are the in-plane phonon evolution

operator in the absence and presence of anharmonic cou-
plings, respectively. Thus, the fidelity is completely deter-
mined by the following complex quantity �F :
 

�F � tr fj01ih00jUxy�i�Uxy�
yg � trxyfU

�ah�
xy �0

xyU
�0�y
xy g

� trxy

�
T exp

�
�i

Z 1
�1

Hah
xy���d�

�
�0

xy

�
; (11)

which corresponds to the mean value of the evolution
operator U�ah�

xy , in the interaction picture with respect to
Hah

xy [16]. The worst-case error is E � 1�F �

�1�<� �F ��=2. However, note that the fidelity can be
improved, since, according to Eq. (8), the spin-phonon
coupling depends on the operator �1� �z1�

z
2�. For this

reason, a correction of the gate time allows us to cancel
the phase of �F , and define E0 � �1� j �F j�=2, which quan-
tifies the worst-case error after the correct calibration of the
gate duration.

Equation (11) is a good starting point for perturbation
theory, which can be carried out by expanding the time-
ordered exponential. First of all, let us study the scaling of
the terms appearing in Hah

xy, and check whether a peturba-
tive approach is indeed justified. The anharmonic coupling
(8) can be rewritten in terms of collective variables in the
interaction picture:

 Hah
xy��� �

X
�;q

F�q���R
�
q��� �

X
�;�0;q;k

G��0
qk ���R

�
q���R

�0
k ���:

(12)

According to Eqs. (7)–(9), each term scales like:
 

F�qR�q � J
X0

d0
� �

�
X0

d0

�
;

G�;�0
q;k R

�
qR

�0
k � J

�
X0

d0

�
2
� �

�
X0

d0

�
2
;

(13)

where X0 is the size of the ground state in the radial
trapping potential, and by �O, we mean the square root of
the variance of the operator in the ground state. Since
the evolution of the in-plane modes is governed by the
in-plane trapping frequency, !xy, we expect that terms in

FIG. 2. (a) Spectrum of the vibrational modes with wave
vector q along the x direction. N � 104 ions, !z � 50!xy,
and we consider periodic boundary conditions. (b) Continuous
lines: E (error without phase correction). Dashed lines: E0 (error
with correction of the gate time). Thick lines and thin lines
correspond to !xy � 20 kHz and !xy � 200 kHz, respectively.
N � 104 ions and �=!xy � 0:05.
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perturbation theory scale according to �=!xy in Eq. (13).
We study two sets of experimental parameters with
!xy � 20�200� kHz, and !z � 1�10� MHz, which implies
d0 � 46:8�10:1� 	m. Let us consider N � 104 ions, such
that both values lead to�z � 3:8� 10�3. Typical tempera-
tures of T � 1 mK can be reached after Doppler cooling,
such that mean phonon numbers are �nz � 20�2� in the axial
modes, and �nxy � 103�102�, in the center of mass in-plane
modes. If we choose �FZ0=@!z� � 0:234, such that Ez <
10�5, we get �=!xy � 5� 10�2. Taking into account that
X0=d0 is small (as it should be, if the assumption of
harmonic vibrational modes is valid), all terms are small
in (13). In particular, X0=d0 � 3:6� 10�3, and 5:0�
10�3, in the cases !xy � 20, and 200 kHz, respectively.

To quantify precisely the error in the quantum gate, we
proceed as follows. See the appendix of Ref. [17] for
details. We expand the time-ordered exponential (11) up
to fourth order in Hah

xy, and keep all the terms up to order
�X0=d0�

4. Each contribution can be expressed in terms of
time integrations of correlation functions of collective
coordinates R�q. The problem gets numerically tractable
by application of the Wick’s theorem, which allows us to
express real time high order correlation functions in terms
of the two-operator correlation function. Note that Wick’s
theorem can be applied here, even when we are at finite
temperatures, because of the statistical properties of the
phonon thermal (Gaussian) state. Finally, a summation of
sets of diagrams up to infinite order is done by means of the
linked cluster theorem, such that (11) takes finally the form
of the exponential of low order irreducible diagrams [18].

The results of our calculation are presented in Fig. 2(b),
where we show our results for the two sets of experi-
mental parameters discussed above. Note that at high
temperatures, like those ones that occur in current ex-
periments with Penning traps, we get a quadratic de-
pendence with temperature, which can be explained by
the dominant contribution of terms that are second order
in the coupling G�;�0

q;k . These terms have the form

hR�q�t1�R�
0

k �t1�R
�
�q�t2�R�

0

�k�t2�i, and diverge in the limit of
large times when the resonance condition!�

q � !�0
k is met.

The correction of the phase by adjustment of the gate time
allows us to reduce the error by more than 1 order of
magnitude. Even with the highest temperatures considered
here, which correspond to the limit of Doppler cooling,
anharmonic terms induce very small errors. With the range
of parameters considered in this work, we get rates � � 1,
10 kHz. A limitation in the number of quantum gates due
to heating reduces the number of gates to a maximum of
�102, with current heating rates. However, this quantity is
amenable to be improved by increasing the quality of the
vacuum [19], or by sympathetic cooling with spectator
ions [4].

Finally, our proposal could also be used for the quantum
simulation of interacting spin systems, by applying a state-

dependent force to all the ions at the same time. In this way,
as shown in Ref. [20], an antiferromagnetic Ising inter-
action is induced between the internal states, which behave
like effective spins. If we add a transverse field of the form
��=2�

P
r�

x
r , by means of a global carrier transition, then

this experimental setup allows us to study the rich phe-
nomenology of quantum frustration in triangular lattices
[21]. Note that our analysis of the decoherence induced by
low-energy vibrational modes also implies the viability of
this approach, since the effective spin-spin interactions are
an always-on version of the qubit-qubit coupling induced
during the quantum gate.
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