
J. Aust. Math. Soc.75 (2003), 1–15
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Abstract

We prove that in the character group of an abelian topological group, the topology associated (in a
standard way) to the continuous convergence structure is the finest of all those which induce the topology
of simple convergence on the corresponding equicontinuous subsets. If the starting group is furthermore
metrizable (or even almost metrizable), we obtain that such a topology coincides with the compact-open
topology. This result constitutes a generalization of the theorem of Banach-Dieudonné, which is well
known in the theory of locally convex spaces.

We also characterize completeness, in the class of locally quasi-convex metrizable groups, by means
of a property which we have calledthe quasi-convex compactness property, or brieflyqcp(Section 3).
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weak* topology, compact-open topology, Banach-Dieudonné theorem, dual group, locally quasi-convex
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Introduction

Let .E; − / be a topological vector space,L E the vector space of all continuous linear
forms defined onE, and¦.L E; E/ the topology onL E of pointwise convergence
on the elements ofE, or weak* topology. Let us denote by− f .L E; E/ the topology
onL E finest of all those which coincide with¦.L E; E/ on every equicontinuous
subset ofL E (The superscriptf stands for finest. In the literature it is frequent to
call it just − f ).
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Many authors have been concerned with the question of when is− f .L E; E/ a
locally convex topology. The Banach-Dieudonn´e theorem provides a positive answer if
.E; − / is a metrizable locally convex space; for it states that, under these circumstances,
− f .L E; E/ coincides with the topology of uniform convergence on the precompact
subsets ofE.

The topology− f was first introduced by Collins, who gave it the name of equicon-
tinuous weak* topology or ew*-topology. He proved that in general it fails to be
a locally convex topology, even if the starting spaceE is locally convex. Komura
gave an example where the ew*-topology fails to be a vector topology, [16]. Wheeler
generalized the latter seeing that for a topological vector spaceE with uncountable
dimensional dualL E, the ew*-topology corresponding to the weak topology inE is
not a vector topology, [22]. Finally Valdivia produced a device to obtain non-regular
ew*-topologies, [21].

The mentioned notions can be defined and studied in the context of topological
abelian groups, and this is precisely the topic of this paper. An appropriate framework
to develop them is within the theory of convergence spaces, since− f .L E; E/ is
the topology ‘associated’ in a standard way to the continuous convergence structure
defined directly inL E. Although this is the point of view adopted by Jarchow in
his extensive and deep book on locally convex spaces [15], we think our approach—
focused only on one problem—is more direct.

In the first section we state a few elementary ideas about convergence theory in
order to make the reading of the paper easier. The main result in the second section is
a version of the Banach-Dieudonn´e theorem for abelian topological groups; its proof
leans on the fact that the character group of an abelian metrizable group is a k-space.
This was proved independently by Chasco and Außenhofer [9, 1]. In the third section
we give a characterizationof completeness for locally quasi-convex metrizable groups,
which resembles some properties of Banach spaces studied by Mazur and by Krein
and Šmulian. The last section deals with some links between topological abelian
groups and topological vector spaces, which allow to claim that the results previously
obtained are the natural generalizations of the theorems so well known for the class
of topological vector spaces.

1. The continuous convergence structure

Before defining the continuous convergence structure, we give the notion of a
convergence structure in general.

Let X be a set and suppose that to eachx in X is associated a collection4.x/ of
filters onX satisfying:

.i/ The ultrafilter{A ⊂ X : x ∈ A} is in4.x/.
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.ii/ If F ∈ 4.x/andG ∈ 4.x/, then the filterF∩G = {F∪G : F ∈ F ;G ∈ G }
also belongs to4.x/.
.iii / If F ∈ 4.x/ andG ⊃ F thenG ∈ 4.x/.

The family4 of all filters4.x/ for x in X is called aconvergence structurefor X, the
pair .X;4/ aconvergence spaceand the filtersF in 4.x/ are calledconvergentto x.
We writeF → x instead ofF ∈ 4.x/ (see [12, 4]).

Every filter gives rise to a net in a standard way and conversely [13]. Thus, by
translating the above properties to the equivalent ones for nets, we could introduce a
convergence structure by specifying the convergent nets restricted to some axioms (for
more details see [5]). The family of all nets on a set cannot be directly considered to
form a set. In order to avoid this inconvenience, we will assume that nets are derived
from filters and use them freely, since intuition is more on the side of nets.

Every topology on a setX defines a convergence structure; the topology could be
recovered from previous knowledge of the convergent filters or nets. For a convergence
structure, restricted only to the above axioms (i)–(iii), there is anassociated topology;
in fact, the ‘convergence closed’ subsets satisfy the axioms required to be the closed
sets of a topology. However this topology has more convergent filters than the ‘a
priori’ convergent ones. Topological notions, like continuity, compactness, being
Hausdorff, regularity, etc. also make sense for convergence spaces. The reader may
find a good survey in [4].

The continuous convergence structure is defined on the set of all continuous
functions between two convergence spaces, which in particular can be topological
spaces, as follows. LetX;Y be convergence spaces. A net of continuous functions
{ fÞ}Þ∈A ⊂ C.X;Y/ is said to converge tof ∈ C.X;Y/ in thecontinuous convergence
structure3 ( fÞ

3→ f ) if for every net{xþ}þ∈B in X convergent tox, the combined
net { fÞ.xþ/}.Þ;þ/∈A×B converges tof .x/ in Y. Here the setA × B is directed by the
‘product direction’, that is,.Þ; þ/ < .Þ′; þ ′/ if Þ <A Þ

′ andþ <B þ ′. It can be
easily checked that the continuous convergence structure inC.X;Y/ is the coarsest
convergence structure for which the evaluation mapping! : C.X;Y/ × X → Y,
defined by. f; x/ → f .x/, is continuous. It also makes sense for subsets ofC.X;Y/.

There is a standard way to define the topology associated to a convergence. In
particular, we describe the topology−3, associated to the continuous convergence
structure3, by the statement:

L ⊂ C.X;Y/ is closed in−3 if and only if

for every net{ fÞ} ⊂ L such thatfÞ
3→ f it follows that f ∈ L :

(∗)

A set satisfying (∗) is also3-closed for the convergence theory; so,3 and−3 give
rise to the same closed sets. However, the convergent nets of−3 only coincide with the
3-convergent nets when3 derives from a topology, which in general is not the case.
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It is easy to check thatfÞ
3→ f implies fÞ

−3→ f . So it can be said that−3 is a topology
coarser than3. In fact it is the finest topology among all those coarser than3.

We will be mainly concerned with the case whenX is an abelian topological group,
andY = T is the multiplicative group of complex numbers modulus one, endowed
with the euclidean topology. The homomorphisms from an abelian topological group
G into T are called characters;0G will denote the group of all continuous characters
(operation is defined pointwise). The dual group ofG in the sense of Pontryagin is
0G endowed with the compact-open topology,−co; we call it justG∧. The symbols
¦.G; 0G/ and¦.0G;G/ stand for the topologies onG and on0G respectively, given
by uniform convergence on the elements of the second space in each pair.

The continuous convergence structure defined on0G gives rise to a convergence
group, from now on denoted by0cG and called the convergence dual ofG. In fact,
it is straightforward to check that addition of elements and taking the inverse in0G
are3-continuous operations. The convergence dual of a topological groupG is no
longer a topological group, unlessG is locally compact.

2. The Banach-Dieudonné theorem for abelian topological groups

Let .G; − / be an abelian topological group. The finest topology on0G of all
those which induce¦.0G;G/ in the equicontinuous subsets of0G will be called
the gew*-topology(g stands for ‘group’) or− f .0G;G/. The result mentioned in
the title of this section will be obtained in two steps. First, we see that− f .0G;G/
coincides with the topology associated to the continuous convergence structure in0G
(Theorem 2.2). Next, we prove that in the class of almost metrizable groups, it is
precisely the compact-open topology (Theorem 2.5).

LEMMA 2.1. Let G be a topological group and{'Þ; Þ ∈ A} ⊂ 0G a net whose
range is an equicontinuous subset. Then{'Þ} converges to some' ∈ 0G in 3 if and
only if it converges to' in ¦.0G;G/.

PROOF. If 'Þ
3→' it is straightforward, without any conditions, that'Þ '

¦.0G;G/ .
Conversely, let'Þ '

¦.0G;G/ . Take any net{xþ ; þ ∈ B} in G such thatxþ → x. For
anyW neighbourhood of 1 inT, we consider another oneW′ such thatW′W′ ⊂ W.
Based on the equicontinuity condition, we determineV ∈ NG.0/ with 'Þ.V/ ⊂ W′,
∀Þ ∈ A. By the ¦.0G;G/-convergence of{'Þ}, there existsÞ0 ∈ A such that
'Þ.x/ ∈ '.x/W′ for Þ ≥ Þ0. Pick nowþ0 ∈ B such thatxþ ∈ x + V , ∀þ ≥ þ0.
Thus'Þ.xþ/ ∈ 'Þ.x + V/ ⊂ 'Þ.x/W′ ⊂ '.x/W, ∀.Þ; þ/ ≥ .Þ0; þ0/; in other words,
'Þ.xþ/ → '.x/ in T, which implies that'Þ

3→'.
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The following relationships hold among the indicated convergences in0G

3−−−→ H⇒ −3−−−→ H⇒ −co−−−→ H⇒ ¦ .0G;G/−−−−→ :

If M ⊂ 0G is equicontinuous, all of them coincide inM by Lemma 2.1; hence, the
continuous convergence structure on equicontinuous subsets of0G is topological.

A distinguished class of equicontinuous subsets of0G is the one formed by the
polars of the familyNG.0/ of all neighbourhoods of zero. The polar of a subset
U ⊆ G is defined by

U F := {' ∈ 0G : '.U / ⊂ T+};
whereT+ := {x ∈ T : Re.x/ ≥ 0}, and Re stands for real part. Evidently{UF :
U ∈ NG.0/} is a fundamental family of equicontinuous sets, which means that every
equicontinuous subset of0G is contained in one of those. Note that the setsUF are
closed in¦.0G;G/.

We are ready to prove the following:

THEOREM 2.2. Let G be an abelian topological group. The topology associated to
the continuous convergence structure−3 is the finest of all topologies on0G which
induce¦.0G;G/ on all equicontinuous subsets of0G.

PROOF. By Lemma 2.1−3 induces¦.0G;G/ on all equicontinuous subsets of0G.
In order to prove that it is the finest topology with that property, we must check that

C ⊂ 0G is closed in−3 if and only if
C ∩ M is closed inM with respect to−3|M ; for every equicontinuousM:

(∗∗)

Since −3 is the topology associated to3, the proof can be reduced to show the
following: if C ⊂ 0G satisfies (∗∗), and {'Þ}Þ∈A ⊂ C is such that'Þ

3→', then
' ∈ C.

Let us consider the classical net of neighbourhoods of 0 inG. Its index set is
B := {þ = .x;U / ∈ G × NG.0/ : x ∈ U }, directed under.x;U / ≤ .x′;U ′/ if
and only if U ′ ⊆ U . The net defined byS.x;U/ = x, converges to 0, and therefore
'Þ.Sþ/ → 1. In particular, there existÞ0 ∈ A andþ0 = .x0;U0/ ∈ B such that
'Þ.Sþ/ ∈ T+, ∀.Þ; þ/ ≥ .Þ0; þ0/. This implies that'Þ.U0/ ⊂ T+, and, since{'Þ}
converges pointwise to', also'.U0/ ⊂ T+. So, forÞ ≥ Þ0, 'Þ ∈ U F

0 . Now U F
0 is

an equicontinuous subset of0G such that'Þ ∈ C ∩ U F
0 , and'Þ → ' ∈ U F

0 . By the
condition (∗∗) imposed onC, we obtain that' ∈ C.

REMARK. In Theorem 2.2 the family of all equicontinuous subsets can be substi-
tuted by any fundamental family of equicontinuous sets.
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In [6] it is proved that the topology associated to the continuous convergence
structure in a dual group is not necessarily a group topology. After Theorem 2.2, we
conclude that the gew*-topology in0G is not in general a group topology. In order to
find conditions under which it is a group topology, as a first approach, we study when
it coincides with the compact-open topology. To this end we establish the following
lemma.

LEMMA 2.3. Let G be an abelian topological group, and letÞG : G → .G∧/∧

be the natural mapping (defined byÞG.g/.�/ = �.g/ for everyg ∈ G and every
� ∈ G∧). The following assertions hold:

(a) If M ⊂ 0G is equicontinuous and closed in3, then M is 3-compact and
conversely.
(b) ÞG : G → G∧∧ is continuous if and only if any−co-compact subset of0G is

equicontinuous.
(c) If ÞG is continuous, then the3-compact and the−co-compact subsets of0G

coincide.

PROOF. (a) AssumeM ⊂ 0G is equicontinuous. Its closure in¦.0G;G/, M
¦
, is

also equicontinuous, and by Ascoli’s lemma it must be−co-compact. Thus for every net
{'Þ}Þ∈A ⊂ M there is a convergent subnet, call it again'Þ

−co→' ∈ M
¦
. By Lemma 2.1,

'Þ
3→', and beingM 3-closed,' ∈ M . ThereforeM is3-compact.
Conversely, letM be3-compact. IfM were not equicontinuous, for someW ∈

NT.1/ and for everyV ∈ NG.0/, there would exist an element'V ∈ M with
'V.V/ 6⊂ W. The net{'V : V ∈ NG.0/}, where the direction is the usual⊇-relation,
does not have any3-convergent subnet (clearly, every'V can be matched with an
elementxV ∈ V such that'V.xV / 6∈ W). This contradicts the compactness ofM in3.
(b) This is proved in [1, (5.10)].
(c) Take into account (a) and (b) and the Ascoli lemma stating that every equicontin-
uous closed subset of0G is −co-compact.

PROPOSITION2.4. Let G be an abelian topological group such that the natural
mappingÞG : G → G∧∧ is continuous. The following are equivalent:

(a) 0G is a k-space with respect to the compact-open topology.
(b) The compact-open topology on0G is the finest of all those topologies which

induce¦.0G;G/ on the equicontinuous subsets of0G.
(c) The compact-open topology on0G coincides with the topology−3 associated

to the continuous convergence structure.

PROOF. Observe that by Lemma b the family of−co-compact subsets of0G coin-
cides with that of equicontinuous−co-closed subsets, and those form a fundamental
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family of equicontinuous subsets. Thus, statement (a) means that the compact-open
topology in0G is the finest of all those which induce¦.0G;G/ in the−co-compact
subsets of0G. So, the equivalence between (a) and (b) is proved. The equivalence
between (b) and (c) is obtained from Theorem 2.2.

A natural question now is to find those abelian topological groupsG whose dual
G∧ is a k-space. In [9] it is proved that ifG is an abelian metrizable group,G∧ is
a k-space. The same assertion holds for the dual of an almost metrizable group [1,
(5.20)]. An abelian topological groupG is almost metrizable if and only if it contains
a compact subgroupK such thatG=K is metrizable. The class of almost metrizable
groups includes all abelian metrizable groups, all locally compact abelian groups, and
more generally, alľCech-complete abelian groups [1, (2.21)]. The above comments
together with Proposition 2.4 prove the following:

THEOREM 2.5. If G is an almost metrizable abelian topological group, then the
finest of all those topologies which induce¦.0G;G/ on the equicontinuous subsets
of 0G coincides with the compact-open topology in0G and therefore it is a group
topology.

REMARK. The continuity ofÞG is implicitly required in Theorem 2.5. In fact, for
an almost metrizable groupG, ÞG is already continuous [1, (5.21)]. The weaker
assumption of equality between the families of−co-compact and−3-compact subsets
of 0G would also yield the equivalence of (a) and (b) in Proposition 2.4.

It may happen thatÞG be continuous andG∧, endowed with the compact-open
topology, be not a k-space. In that case−3 is the k-extension of−co.

For the sake of completeness we reproduce here the example of [6], which, ac-
cording to Theorem 2.2, proves that the gew*-topology may not be a group topology.
Furthermore, it shows that the gew*-topology for the product of two groups is not in
general the product of the corresponding gew*-topologies of the factors. In the vector
spaces context, it is known that the ew*-topology of a productE × F is the product of
the respective ew*-topologies ifE is locally convex andF is finite-dimensional [22,
(3.3)].

EXAMPLE 1. TakeG := R
!, a countable product of real lines with the Tychonoff

topology− andG′ := !R ⊂ R
! its direct sum endowed with− ′, the restriction of the

box topology ofR!.
The groupsG andG′ are duals of each other [2, (14.11)]; that is, the following

identifications are validG∧ ≡ G′ andG′∧ ≡ G.
SinceG is metrizable, by Theorem 2.5 the compact-open topology onG′ coin-

cides with the topology− f .0G;G/. On the other hand, sinceG is a k-space, by
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Proposition 2.4 the compact-open topology coincides with− ′ f
.0G′;G′/. The product

group H := G × G′ is selfdual, thusÞH is a topological isomorphism, and− ′ × −

coincides with the corresponding compact-open topology forH . In [2, (17.9)], it
is proved thatH is not a k-space; again by Proposition 2.4, − ′ × − is not equal to
.− × − ′/ f .G′ × G;G × G′/.

REMARK. It remains open to characterize those groupsG for which the gew* is
a group topology in0G. M. J. Chasco has informed us that, for such groups, the
corresponding gew*-topology may not coincide with the compact-open topology.

3. A property of Mazur-type for abelian topological groups

After [19], we will say that a locally convex spaceE hasthe convex compactness
property(shortly,ccp) if the closed circledconvex hull of everycompact subsetK ⊂ E
is again compact. Mazur proved that a Banach space has the ccp; later, Krein and
Šmulian proved that a Banach space endowed with its weak topology has the ccp. In
this line, it is proved in [19] the following:

‘A metrizable locally convex space is complete
if and only if it has the ccp’

(A)

We shall extend statement (A) to the larger class of locally quasi-convex metrizable
groups. We recall first some definitions connected with quasi-convexity; observe that
all these concepts, as well as the names used, correspond to analogous notions in
locally convex spaces. A subsetM of an abelian topological groupG is quasi-convex
if for everyx ∈ G\M there exists a continuous character' such that'.M/ ⊂ T+ and
'.x/ 6∈ T+. Thequasi-convex hullQ.H / of a subsetH ⊂ G is the intersection of
all quasi-convex subsets ofG containingH . It can be easily checked that it coincides
with the bipolar

.HF/G := {x ∈ G : '.x/ ∈ T+;∀' ∈ H F}:

Observe that the quasi-convex hull of a subset ofG depends only on0G. If ¹ denotes
another group topology onG such that0.G; ¹/ = 0G, we will say that¹ iscompatible
for the duality.G; 0G/ (see [10] for a detailed description of group dualities). The
quasi-convex subsets ofG are¦.G; 0G/-closed, therefore closed in the topology
of G, and also closed in any group topology compatible for the duality.G; 0G/.

An abelian Hausdorff topological groupG is locally quasi-convexif the quasi-
convex neighbourhoods of zero constitute a basis for the zero-neighbourhoods. Further
information on locally quasi-convex groups is given in [2].
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We will say that an abelian topological groupG has thequasi-convex compactness
property(qcp) if the quasi-convex hull of every compact subset ofG is again compact.
Let us call a topological abelian groupvon Neumann completeif its closed precompact
subsets are compact. Evidently, any complete group is von Neumann complete. Next,
we establish some results related with the qcp.

PROPOSITION3.1. Let G be a locally quasi-convex topological group. IfG is von
Neumann complete, or if the natural mappingÞG : G → G∧∧ is onto,G has the qcp.

PROOF. Let K ⊂ G be compact. ThenK F is a zero neighbourhood inG∧, andK FF

is compact inG∧∧. Being G locally quasi-convex,ÞG : G → G∧∧ is injective and
open onto its image [2, (14.3)], that is,Þ−1

G : ÞG.G/ → G is continuous. Therefore
.K F/G = Þ−1

G .K
FF ∩ ÞG.G// is precompact inG. On the other hand, it is¦.G; 0G/-

closed, and consequently closed inG. By the von Neumann completeness ofG, we
have that.K F/G is compact.

Notice also that, ifÞG : G → G∧∧ is onto, by the above argumentsÞ−1
G is

a continuous mapping. ThusÞ−1
G .K

FF/ = .K F/G is compact for every compact
K ⊂ G.

PROPOSITION3.2. Let G be a locally quasi-convex group. The quasi-convex hull
of every precompact subset ofG is again precompact.

PROOF. Let us callG̃ the completion ofG, which is a locally quasi-convex group
[3]. By Proposition 3.1,G̃ has the qcp. Denote byM a precompact subset ofG. After
identification ofG and the corresponding dense subgroup ofG̃, we can claim that
QG.M/ ⊆ QG̃.M/ (the subscriptsG, G̃ indicate the group in which the quasi-convex
hull is to be taken). NowM̃ is compact, andQG̃.M̃/ is also compact. We obtain that
QG.M/ is precompact taking into account thatQG.M/ ⊆ QG̃.M/ = QG̃.M̃/.

PROPOSITION3.3. Let G be an abelian topological group and let−1, −2 be locally
quasi-convex topologies onG, compatible for the duality.G; 0G/, and such that
−1 < −2. If .G; −1/ has the qcp, so does.G; −2/.

PROOF. Take K ⊂ G −2-compact. In particular it is−1-compact, and by the
assumption,Q.K / is also−1-compact. Thus it is−1-complete. In order to prove that
.Q.K /; −2/ is also complete, take a−2-Cauchy net{xÞ; Þ ∈ A}. Since−1 < −2, it
is −1-Cauchy, and therefore−1-convergent to somex ∈ G. By [10, (3.9 b))], there
exists a zero neighbourhood basis for−2 formed by¦.G; 0G/-closed subsets, which
consequently are also−1-closed. TakeV symmetric in such a basis, and letÞ0 ∈ A
be such thatxÞ − xþ ∈ V for all Þ; þ ≥ Þ0. Fixing þ ≥ Þ0, and taking into account
thatV is −1-closed, we have thatxÞ ∈ xþ + V for all Þ ≥ Þ0 implies thatx ∈ xþ + V .
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Since this holds for allþ ≥ Þ0, we obtain that{xÞ; Þ ∈ A} is eventually inx + V , and
thus it converges tox in −2.

On the other hand, by Proposition 3.2,Q.K / is precompact in−2. So Q.K / is
−2-compact.

PROPOSITION3.4. Let G be an abelian topological group for which the natural
mappingÞG is continuous. ThenG∧ has the qcp.

PROOF. First we prove that the quasi-convex hull of anequicontinuous subset of0G
is again equicontinuous. LetM ⊂ 0G be equicontinuous. There existsV ∈ NG.0/
such thatM ⊂ V F. Now Q.M/ = MFG ⊂ .VF/FG = VF, which implies thatQ.M/ is
equicontinuous. Finally, by Lemma 2.3 (b), we obtain thatG∧ has the qcp.

COROLLARY 3.5. Every reflexive groupG has the qcp.

Taking into account the ideas involved in Section 4, it is clear that the following
theorem is an extension of statement (A).

THEOREM 3.6. A locally quasi-convex metrizable groupG is complete if and only
if the quasi-convex hull of every compact subsetK ⊂ G is again compact(that is, if
G has the qcp).

PROOF. The direct implication holds even without the assumption of metrizability
(Proposition 3.1).

The converse implication can be derived from the following facts:

(1) For any abelian metrizable groupG there exists a metrizable complete groupG̃
which densely containsG.
(2) The compact-open topology for the dual of a complete or even of a von Neu-

mann complete, groupH coincides with the topology of uniform convergence on the
precompact subsets ofH .
(3) For any dense subgroupH of a metrizable topological groupG, the dual mapping

of the inclusion is a topological isomorphism. ThusH∧ andG∧ can be algebraically
and topologically identified (See [9, 1]).
(4) If G is a metrizable abelian group andD ⊂ G a dense subspace, every neigh-

bourhood of zeroV in G∧ contains the polar of an adequate null sequence inD, [1,
(4.3)].

Take a Cauchy sequenceL := {xn : n ∈ N} ⊂ G. Its rangeL is a precompactset iñG,
thusLF is a zero-neighbourhood iñG∧. By fact (4), there exists{an : n ∈ N} ⊂ G with
an → 0 such that{an : n ∈ N}F ⊂ LF. Now {an : n ∈ N}FG ⊃ LFG ⊃ {xn : n ∈ N}.
The set{an : n ∈ N}FG is compact by the assumption, and, being metrizable, it is
also sequentially compact. This means that the Cauchy sequence{xn : n ∈ N} has
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a subsequence convergent to somex ∈ {an : n ∈ N}FG. Therefore,xn → x and the
groupG is complete.

REMARK. If metrizability is dropped, the assertion of Theorem 3.6 does not hold in
general. The example given by Komura of a reflexive,non-complete topological vector
spaceE, considered as an abelian topological group, would suit as a counterexample.
The natural mappingÞE : E → E∧∧ is onto, therefore, by Proposition 3.1,E has
the qcp.

COROLLARY 3.7. The additive group of the rational numbers does not have the qcp.

Observe that a direct proof of the previous statement would entail tedious calcu-
lations of quasi-convex hulls. We point out that there are other totally inconnected
groups which do have the qcp. For instance, the additive group of integers, being the
dual group ofT, by Proposition 3.4, has the qcp.

4. Topological vector spaces as abelian topological groups

Let E be a real topological vector space. If only addition is considered,E is an
abelian topological group. Let us callLc E the dual space ofE endowed with the
continuous convergence structure. It is a convergence vector space in the natural
sense, and viewed as a group,Lc E is bicontinuously isomorphic to0cE. Let us
establish more precisely the parallelism betweenL E and0E:

PROPOSITION4.1. If E is a topological vector space, the exponential mapping
² : L E → 0E defined by². f / = exp.2³ i f /, satisfies the following assertions:

(a) ² is an algebraic isomorphism.
(b) ² : Lc E → 0cE is a bicontinuous isomorphism.
(c) ² : .L E; −3/ → .0E; −3/ is a topological homeomorphism.
(d) ² : LcoE → E∧ is a topological isomorphism.
(e) ² : .L E; ¦ .L E; E// → .0E; ¦ .0E; E// is a continuous isomorphism, which

is not open(unlessL E = {0}).

PROOF. Observe that all isomorphisms mentioned are group-isomorphisms.
(a) and (d) are proved in [2, (2.3)].
(b) This is [8, Satz 1].
(c) The symbol−3 has two different interpretations, but no confusion is likely. The
continuity of the natural identitiesj : 0cE → .0E; −3/ andk : LcE → .L E; −3/,
together with (b) show that the mappingsj² : LcE → .0E; −3/ and²−1k : 0c E →
.L E; −3/ are continuous. Now apply the following general principle whose proof
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is easy: A mappingf from a convergence space.X;4/ into a topological spaceY
is continuous if and only if it is continuous fromX with the associated topology−4
into Y.
(e) The continuity is straightforward. IfL E 6= 0, ² cannot be a topological iso-
morphism. In the simplest case ofE = R, we can identify algebraically0R and
LR with R. However.0R; ¦ .0R;R// is a totally bounded subgroup ofTR, while
.L R; ¦ .LR;R// can be topologically identified with the real line.

It must also be stated that there is a ‘good’ correspondence between the equicon-
tinuous subsets ofL E and of0E; more precisely, from the next lemma we can
conclude that² carries a fundamental family of equicontinuous subsets ofL E into a
fundamental family of equicontinuous subsets of0E.

In order to distinguish ‘polar sets’ in topological vector spaces from polars in
topological groups, forM ⊂ E let us denote by

M ◦ := { f ∈ L E : | f .m/| ≤ 1;∀m ∈ M}
and by

◦.M◦/ := {x ∈ E : | f .x/| ≤ 1;∀ f ∈ M ◦}:

LEMMA 4.2. LetU be a circled neighbourhood of zero inE. Then²..4U /◦/ = U F.
Furthermore,◦.U ◦/ = .UF/G.

PROOF. This is Proposition 1.11 of [10].

Clearly by Lemma 4.1 (d),² considered as a mapping from.4U /◦ into U F is a
homeomorphism if both of them are endowed with the corresponding compact-open
topology, which in turn coincides with¦.L E; E/ and with¦.0E; E/ respectively.

By the above comments,² is a homeomorphism from.L E; − f .L E; E// into
.0E; − f .0E; E//, and the following claims are the transcriptions of Theorem 2.2 and
Theorem 2.5.

COROLLARY 4.3. Let E be a topological vector space. The topology associated to
the continuous convergence structure onL E is the finest of all those which induce
¦.L E; E/ on the equicontinuous subsets ofL E.

COROLLARY 4.4. Let E be a metrizable topological vector space. The compact-
open topology onL E is the finest of all those which induce¦.L E; E/ on the
equicontinuous subsets ofL E.

Corollary 4.4 is essentially the Banach-Dieudonn´e theorem. However in the vast
literature existing, as far as we know, it is only stated for locally convex spaces.
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In the previous section we defined the qcp, a property for groups ‘parallel’ to the
convex compactness property (ccp) for locally convex spaces. We check now that
both notions coincide in the realm of locally convex spaces.

Let E be a topological vector space andA ⊂ E a subset. Denote by e.A/ and
co.e.A// the circled and the convex circled hull ofA, respectively.

PROPOSITION4.5. A locally convex spaceE has the qcp if and only ifE has the ccp.

PROOF. If K is a compact subset ofE, it is easy to see that e.K / is also compact.
By the bipolar theorem,co.e.K // = ◦.K ◦/ = ◦..e.K //◦/, and, being e.K / circled,
◦..e.K //◦/ = ..e.K //F/G = Q.e.K //.

If E has the qcp, thenco.e.K // = Q.e.K // is compact.
Conversely, ifE has the ccp, the quasi-convex hullQ.K / ⊆ Q.e.K // = co.e.K //

is a closed subset of a compact set; thusQ.K / is compact.

COROLLARY 4.6. A complete locally convex spaceE equipped with the Bohr topol-
ogy¦.E; E∧/ has the qcp.

PROOF. According to Krein theorem, the spaceE endowed with its weak topology
¦.E; E∗/ has the ccp. By Proposition 4.5, it also has the qcp. The assertion follows
now from the fact that, the¦.E; E∧/-compact subsets ofE are exactly the¦.E; E∗/-
compact subsets [10].

REMARK. A subtle difference between locally convex spaces and locally quasi-
convex groups: For a locally convex spaceE, ÞE is onto if and only ifE has the ccp
or, equivalently, if it has the qcp. However the group of all almost everywhere integer
valued functionsG := L2

Z
.[0;1]/, with the topology as a subspace ofL2.[0;1]/, is a

complete metrizable locally quasi-convex group. By Proposition 3.1,G has the qcp;
howeverÞG is not onto [1, (11.14)]. In this respect, it would be interesting to obtain
the result of the last corollary for locally quasi-convex groups.

REMARK. Although the definition of the associated topology−3 is rather misty,
a geometric description of a zero-neighbourhood basis for the dual of a separable
Hilbert space is given in [18]. Since the original paper may be difficult to read, we
reproduce here the mentioned basis.

Denote byH a separable Hilbert space, byB.p/
r a ball of radiusr in a subspace

L.p/ of codimensionp and, for" > 0, N".A/ stands for the"-neighbourhood inH
of a subsetA ⊂H . The sets of the form

B.0/
r0

∪
∞⋃

i =1

N"i
.B.pi /

r i
/;
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.pi / and .ri / being increasing sequences of natural and real numbers respectively,
such thatri → ∞ and"i > 0, for everyi , constitute a neighbourhood basis of zero
for the topology−3 inH .
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Alhambra, Madrid, 1975).
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