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Abstract

We prove that in the character group of an abelian topological group, the topology associated (in a
standard way) to the continuous convergence structure is the finest of all those which induce the topology
of simple convergence on the corresponding equicontinuous subsets. If the starting group is furthermore
metrizable (or even almost metrizable), we obtain that such a topology coincides with the compact-open
topology. This result constitutes a generalization of the theorem of Banach-Dieydshich is well
known in the theory of locally aovex paces.

We also characterize completeness, in the class of locally quagéxoetrzable groups, by means
of a property which we have calleéble quasi-convex compactness propeotybrieflyqcp (Section 3).

2000Mathematics subject classificatioprimary 22A05; secondary 46A04, 46A19.

Keywords and phrasesComplete, metrizable group, continuous convergence structure, equicontinuous
weak* topology, compact-open topology, Banach-Dieudotieorem, dual group, locally quasirzex
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Introduction

Let (E, t) be atopological vector spac&,E the vector space of all continuous linear
forms defined ork, ando (ZE, E) the topology onZ E of pointwise convergence
on the elements dE, or weak* topology. Let us denote hy (ZE, E) the topology
on ZE finest of all those which coincide with ((ZE, E) on every equicontinuous
subset ofZ E (The superscripf stands for finest. In the literature it is frequent to
callit justz ).
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2 Montserrat Bruguera and Elena MarPeinador [2]

Many authors have been concerned with the question of wheh(i¢E, E) a
locally convex topology. The Banach-Dieud@theorem provides a positive answer if
(E, 7) isametrizable locally convex space; for it states that, under these circumstances,
' (ZE, E) coincides with the topology of uniform convergence on the precompact
subsets oE.

The topologyr  was first introduced by Collins, who gave it the name of equicon-
tinuous weak* topology or ew*-topology. He proved that in general it fails to be
a locally convex topology, even if the starting spdees locally convex. Komura
gave an example where the ew*-topology fails to be a vector topology, [16]. Wheeler
generalized the latter seeing that for a topological vector sgaagéth uncountable
dimensional dualZ E, the ew*-topology corresponding to the weak topolog¥irs
not a vector topology, [22]. Finally Valdivia produced a device to obtain non-regular
ew*-topologies, [21].

The mentioned notions can be defined and studied in the context of topological
abelian groups, and this is precisely the topic of this paper. An appropriate framework
to develop them is within the theory of convergence spaces, s$ihc& E, E) is
the topology ‘associated’ in a standard way to the continuous convergence structure
defined directly inZ E. Although this is the point of view adopted by Jarchow in
his extensive and deep book on locally convex spaces [15], we think our approach—
focused only on one problem—is more direct.

In the first section we state a few elementary ideas about convergence theory in
order to make the reading of the paper easier. The main result in the second section is
a version of the Banach-Dieudaoatiieorem for abelian topological groups; its proof
leans on the fact that the character group of an abelian metrizable group is a k-space.
This was proved independently by Chasco and AuRenhofer [9, 1]. In the third section
we give a characterization of completenessfor locally quasi-convex metrizable groups,
which resembles some properties of Banach spaces studied by Mazur and by Krein
and Smulian. The last section deals with some links between topological abelian
groups and topological vector spaces, which allow to claim that the results previously
obtained are the natural generalizations of the theorems so well known for the class
of topological vector spaces.

1. The continuous convergence structure

Before defining the continuous convergence structure, we give the notion of a
convergence structure in general.

Let X be a set and suppose that to eadh X is associated a collectidB(x) of
filters on X satisfying:

(i) The ultrafilter{ A C X : x € A}isin E(X).
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(i) fF € E(x)and¥ € E(x),thenthefilter? N¥ = {FUG : F ¢ #,G ¢ ¥}
also belongs tcE (x).

(i) If Z e BE(x) and¥ D Z then¥ c E(Xx).
The family E of all filters E(x) for x in X is called aconvergence structurfer X, the
pair (X, E) aconvergence spa@nd the filtersZ in E(x) are callecconvergento x.
We write.# — x instead ofZ € Z(x) (see [12, 4]).

Every filter gives rise to a net in a standard way and conversely [13]. Thus, by
translating the above properties to the equivalent ones for nets, we could introduce a
convergence structure by specifying the convergent nets restricted to some axioms (for
more details see [5]). The family of all nets on a set cannot be directly considered to
form a set. In order to avoid this inconvenience, we will assume that nets are derived
from filters and use them freely, since intuition is more on the side of nets.

Every topology on a seX defines a convergence structure; the topology could be
recovered from previous knowledge of the convergentfilters or nets. For a convergence
structure, restricted only to the above axioms (i)—(iii), there iagsociated topology
in fact, the ‘convergence closed’ subsets satisfy the axioms required to be the closed
sets of a topology. However this topology has more convergent filters than the ‘a
priori’ convergent ones. Topological notions, like continuity, compactness, being
Hausdorff, regularity, etc. also make sense for convergence spaces. The reader may
find a good survey in [4].

The continuous convergence structure is defined on the set of all continuous
functions between two convergence spaces, which in particular can be topological
spaces, as follows. LeX,Y be convergence spaces. A net of continuous functions
{f.}eea C C(X,Y) is said to converge tdé € C(X, Y) in thecontinuous convergence
structure A (fa—A> f) if for every net{x;}zcg in X convergent tax, the combined
net{f,(Xs)}w.pecaxs CONverges tof (x) in Y. Here the seA x B is directed by the
‘product direction’, that is(«, B) < (&, 8) if « <5 &’ @andB <g B'. It can be
easily checked that the continuous convergence structu@gX) Y) is the coarsest
convergence structure for which the evaluation mapping C(X,Y) x X — Y,
defined by( f, x) — f(x), is continuous. It also makes sense for subse®(f, Y).

There is a standard way to define the topology associated to a convergence. In
particular, we describe the topology, associated to the continuous convergence
structureA, by the statement:

%) L c C(X,Y) is closed int, if and only if
%

for every net{ f,} C L such thatf, A f it follows that f e L.

A set satisfying £) is alsoA-closed for the convergence theory; goandz, give
rise to the same closed sets. However, the convergent net®afy coincide with the
A-convergent nets whef derives from a topology, which in general is not the case.
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It is easy to check thata—A> f implies f,— f. So it can be said that, is a topology
coarser tham\. In factit is the finest topology among all those coarser than

We will be mainly concerned with the case whéiis an abelian topological group,
andY = T is the multiplicative group of complex numbers modulus one, endowed
with the euclidean topology. The homomorphisms from an abelian topological group
G into T are called characterEG will denote the group of all continuous characters
(operation is defined pointwise). The dual group®fn the sense of Pontryagin is
I'G endowed with the compact-open topology, we call it justG*. The symbols
0 (G, 'G) ando (I'G, G) stand for the topologies d& and onl"G respectively, given
by uniform convergence on the elements of the second space in each pair.

The continuous convergence structure defined @ngives rise to a convergence
group, from now on denoted Hy,G and called the convergence dual®f In fact,
it is straightforward to check that addition of elements and taking the inverB&in
are A-continuous operations. The convergence dual of a topological gBoigpno
longer a topological group, unle&sis locally compact.

2. The Banach-Dieudone theorem for abelian topological groups

Let (G, t) be an abelian topological group. The finest topologylua of all
those which induce (I'G, G) in the equicontinuous subsets Bfs will be called
the gew*-topology(g stands for ‘group’) orr F (I'G, G). The result mentioned in
the title of this section will be obtained in two steps. First, we seeth@tG, G)
coincides with the topology associated to the continuous convergence strudie in
(Theorem 2.2). Next, we prove that in the class of almost metrizable groups, it is
precisely the compact-open topology (Theorem 2.5).

LeEmMmMA 2.1. Let G be a topological group andy,,x € A} C I'G a net whose
range is an equicontinuous subset. Then} convergesto some e I'G in A if and
only if it converges tg in o (I'G, G).

PROOF. If ¢, ¢ it is straightforward, without any conditions, thag 2% ¢.

Conversely, lep, 2% ¢. Take any nefx,, € B} in G such thak, — x. For
any W neighbourhood of 1 iff, we consider another on&” such thaWw'w’ c W.
Based on the equicontinuity condition, we deternihe 45 (0) with ¢, (V) c W/,
Va € A. By theo(I'G, G)-convergence ofgp,}, there existsy, € A such that
¢ (X) € e(X)W' for o > «g. Pick nowp, € B such thatx; € x + V, VB > B,.
Thusg,(Xs) € g, (X + V) C ¢, (X)W C (X)W, Y(a, B) > (a0, Po); in other words,
@a(Xg) = @(x) in T, which implies thatpa—[\ﬂp. O
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The following relationships hold among the indicated convergencESin

A A Tco o(I'G,G)

If M C T'G is equicontinuous, all of them coincide M by Lemma 2.1; hence, the
continuous convergence structure on equicontinuous subsgfs &f topological.

A distinguished class of equicontinuous subset$ & is the one formed by the
polars of the family.#5(0) of all neighbourhoods of zero. The polar of a subset
U C G is defined by

U”:={peTG:oU) cT,},

whereT, := {X € T : Re(x) > 0}, and Re stands for real part. Evidenfly> :
U € 45(0)} is a fundamental family of equicontinuous sets, which means that every
equicontinuous subset &fG is contained in one of those. Note that the détsare
closed ino (I'G, G).

We are ready to prove the following:

THEOREM 2.2. Let G be an abelian topological group. The topology associated to
the continuous convergence structutgis the finest of all topologies oRG which
induceo (I'G, G) on all equicontinuous subsetsioG.

PrOOF. By Lemma 2.1z, inducess (I'G, G) on all equicontinuous subsetsIo6.
In order to prove that it is the finest topology with that property, we must check that

C c I'Gis closed int, if and only if
C N M is closed inM with respect tar,y, for every equicontinuoust.

(%)

Since t, is the topology associated t&4, the proof can be reduced to show the
following: if C c I'G satisfies %), and{¢,}.ca C C is such '[ha'(goa—Aﬂp, then
¢ € C.

Let us consider the classical net of neighbourhoods of G.inlts index set is
B :={8=XU) e G x 4:(0) : x € U}, directed undekx,U) < (x,U") if
and only ifU” € U. The net defined by, y, = X, converges to 0, and therefore
¢.(S) — 1. In particular, there exist, € A andpy = (X, Ug) € B such that
¢ (S) € Ty, Y(a, B) > (a0, Bo). This implies thatp,(Ug) C T, and, sincgg,}
converges pointwise tp, alsop(Uy) C T.. So, fora > ag, ¢, € Ug. Now Ug is
an equicontinuous subset BG such thaty, € C N U, andg, — ¢ € Ug. By the
condition ¢=x) imposed orC, we obtain thap < C. O

REMARK. In Theorem 2.2 the family of all equicontinuous subsets can be substi-
tuted by any fundamental family of equicontinuous sets.
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In [6] it is proved that the topology associated to the continuous convergence
structure in a dual group is not necessarily a group topology. After Theorem 2.2, we
conclude that the gew*-topology InG is not in general a group topology. In order to
find conditions under which it is a group topology, as a first approach, we study when
it coincides with the compact-open topology. To this end we establish the following
lemma.

LEMMA 2.3. Let G be an abelian topological group, and let : G — (G")"
be the natural mapping (defined oy (g)(x) = x(g9) for everyg € G and every
x € G"). The following assertions hald

(@ If M c I'G is equicontinuous and closed in, then M is A-compact and
conversely.

(b) ac : G — G is continuous if and only if any,,-compact subset df G is

equicontinuous.

(c) If ag is continuous, then thé-compact and the.,-compact subsets dfG

coincide.

PROOF. (a) AssumeM C I'G is equicontinuous. Its closure inI'G, G), M, is
also equicontinuous, and by Ascoli’s lemma it mustigecompact. Thus for every net
{¢a}eca C M there is a convergent subnet, call it agairs ¢ € M. By Lemma 2.1,
gaa—Aﬂp, and beingVl A-closedy € M. ThereforeM is A-compact.

Conversely, letM be A-compact. IfM were not equicontinuous, for sonvg <
A4 (1) and for everyV e _15(0), there would exist an elemegt, € M with
ov(V) ¢ W. The net{gpy : V € 45(0)}, where the direction is the usuatrelation,
does not have ang-convergent subnet (clearly, evepy can be matched with an
elementy, € V suchthapy (xy) ¢ W). This contradicts the compactness\bin A.
(b) This is proved in [1, (5.10)].

(c) Take into account (a) and (b) and the Ascoli lemma stating that every equicontin-
uous closed subset BfG is 7.,-compact. O

PrOPOSITION2.4. Let G be an abelian topological group such that the natural
mappinges : G — G is continuous. The following are equivalent

(@) T'G is ak-space with respect to the compact-open topology.

(b) The compact-open topology @G is the finest of all those topologies which
induceo (I'G, G) on the equicontinuous subsetdusb.

(c) The compact-open topology @rG coincides with the topology, associated
to the continuous convergence structure.

ProOOF. Observe that by Lemma b the family af-compact subsets @fG coin-
cides with that of equicontinuous,-closed subsets, and those form a fundamental
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family of equicontinuous subsets. Thus, statement (a) means that the compact-open
topology inI"G is the finest of all those which indueg"G, G) in the r,,-compact
subsets of"G. So, the equivalence between (a) and (b) is proved. The equivalence
between (b) and (c) is obtained from Theorem 2.2. O

A natural question now is to find those abelian topological gradapshose dual
G” is a k-space. In [9] it is proved that & is an abelian metrizable grou”" is
a k-space. The same assertion holds for the dual of an almost metrizable group [1,
(5.20)]. An abelian topological group is almost metrizable if and only if it contains
a compact subgrould such thaiG/K is metrizable. The class of almost metrizable
groups includes all abelian metrizable groups, all locally compact abelian groups, and
more generally, alCech-complete abelian groups [1, (2.21)]. The above comments
together with Proposition 2.4 prove the following:

THEOREM2.5. If G is an almost metrizable abelian topological group, then the
finest of all those topologies which inducél’G, G) on the equicontinuous subsets
of I'G coincides with the compact-open topologylis and therefore it is a group

topology.

REMARK. The continuity ofag is implicitly required in Theorem 2.5. In fact, for
an almost metrizable grou, o¢ is already continuous [1, (5.21)]. The weaker
assumption of equality between the familiescgfcompact and ,-compact subsets
of I'G would also yield the equivalence of (a) and (b) in Proposition 2.4.

It may happen tha&g be continuous an&”, endowed with the compact-open
topology, be not a k-space. In that cagds the k-extension of,.

For the sake of completeness we reproduce here the example of [6], which, ac-
cording to Theorem 2.2, proves that the gew*-topology may not be a group topology.
Furthermore, it shows that the gew*-topology for the product of two groups is not in
general the product of the corresponding gew*-topologies of the factors. In the vector
spaces context, it is known that the ew*-topology of a prodiigtF is the product of
the respective ew*-topologies i is locally convex andF is finite-dimensional [22,
(3.3)].

ExamMPLE 1. TakeG := R”, a countable product of real lines with the Tychonoff
topologyr andG’ := wR C R its direct sum endowed with, the restriction of the
box topology ofR.

The groupsG andG’ are duals of each other [2, (14.11)]; that is, the following
identifications are valic* = G’ andG'" = G.

SinceG is metrizable, by Theorem 2.5 the compact-open topologys6ono0in-
cides with the topologyt F (I'G, G). On the other hand, sind8 is a k-space, by
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Proposition 2.4 the compact-open topology coincides withil'G’, G’). The product
groupH := G x G is selfdual, thusry is a topological isomorphism, and x t

coincides with the corresponding compact-open topologyHor In [2, (17.9)], it
is proved thatH is not a k-space; again by Projtaan 2.4, ¢/ x t is not equal to
(t x1)" (G xG,G x G).

REMARK. It remains open to characterize those gro@#or which the gew* is
a group topology it G. M. J. Chasco has informed us that, for such groups, the
corresponding gew*-topology may not coincide with the compact-open topology.

3. A property of Mazur-type for abelian topological groups

After [19], we will say that a locally convex spa&hasthe convex compactness
property(shortly,ccp) if the closed circled convex hull of every compact subiset E
is again compact. Mazur proved that a Banach space has the ccp; later, Krein and
Smulian proved that a Banach space endowed with its weak topology has the ccp. In
this line, it is proved in [19] the following:

‘A metrizable locally convex space is complete

(A) if and only if it has the ccp’

We shall extend statement (A) to the larger class of locally quasi-convex metrizable
groups. We recall first some detions connected with quasi-convexity; observe that
all these concepts, as well as the names used, correspond to analogous notions in
locally convex spaces. A subgiet of an abelian topological group is quasi-convex
if for everyx € G\ M there exists a continuous charagtesuch thaty(M) c T, and
¢(X) € T,. Thequasi-convex hulQ(H) of a subsetH C G is the intersection of
all quasi-convex subsets &f containingH . It can be easily checked that it coincides
with the bipolar

(H)*:={x e G :¢(x) e T,,Vp € H}.

Observe that the quasi-convex hull of a subsébafepends only ol G. If v denotes
another group topology d@ such thal" (G, v) = I'G, we will say thab is compatible
for the duality(G, I'G) (see [10] for a detailed description of group dualities). The
guasi-convex subsets @ areo (G, I'G)-closed, therefore closed in the topology
of G, and also closed in any group topology compatible for the dué@Btyl" G).

An abelian Hausdorff topological group is locally quasi-convexf the quasi-
convex neighbourhoods of zero constitute a basis for the zero-neighbourhoods. Further
information on locally quasi-convex groups is given in [2].
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We will say that an abelian topological gro@has thequasi-convex compactness
property(qcp) if the quasi-convex hull of every compact subseak again compact.
Let us call a topological abelian groupn Neumann compleiféts closed precompact
subsets are compact. Evidently, any complete group is von Neumann complete. Next,
we establish some results related with the gcp.

ProOPOSITION3.1. Let G be a locally quasi-convex topological group.Gfis von
Neumann complete, or if the natural mappiag: G — G”" is onto,G has the qcp.

ProOF. LetK c G be compact. TheK* is a zero neighbourhood @", andK >~
is compact inG*". Being G locally quasi-convexgs : G — G is injective and
open onto its image [2, (14.3)], that i8g" : ac(G) — G is continuous. Therefore
(K*)* = ag' (K™ Nag(G)) is precompactirG. On the other hand, it is (G, I'G)-
closed, and consequently closed3n By the von Neumann completeness®fwe
have that K*)* is compact.

Notice also that, ifxg : G — G is onto, by the above argumenig® is
a continuous mapping. Thug;'(K*) = (K*)® is compact for every compact
KcG. O

PrROPOSITION3.2. Let G be a locally quasi-convex group. The quasi-convex hull
of every precompact subset®fis again precompact.

PrROOF. Let us callG the completion ofz, which is a locally quasi-convex group
[3]. By Proposition 3.1G has the gcp. Denote Yl a precompact subset 6. After
identification ofG and the corresponding dense subgrougofve can claim that
Qs(M) € Qs(M) (the subscript§, G indicate the group in which the quasi-convex
hull is to be taken). Now is compact, an®s (M) is also compact. We obtain that
Qg (M) is precompact taking into account th@g (M) € Qg(M) = QG(I\7I). O

PrOPOSITION3.3. Let G be an abelian topological group and let, , be locally
guasi-convex topologies 08, compatible for the dualitfG, I'G), and such that
7, < To. If (G, 71) has the qcp, so do€&, 1,).

ProOF. Take K C G 1,-compact. In particular it is;-compact, and by the
assumptionQ(K) is alsor;-compact. Thus it ig;-complete. In order to prove that
(Q(K), 1p) is also complete, take g-Cauchy nefx,,a € A}. Sincer; < 1o, it
is t;-Cauchy, and thereforg-convergent to somg € G. By [10, (3.9 b))], there
exists a zero neighbourhood basis foformed byo (G, I' G)-closed subsets, which
consequently are alsg-closed. Takeé/ symmetric in such a basis, and tet € A
be such thak, — x; € V forall o, B > «g. Fixing 8 > o, and taking into account
thatV is 7;-closed, we have thag, € x5 + V for all @ > «, implies thatx € x; + V.
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Since this holds for alp > «q, we obtain thafx,, @ € A} is eventually inx + V, and
thus it converges ta in ..

On the other hand, by Proposition 3Q(K) is precompact in,. So Q(K) is
7,-compact. O

PrOPOSITION3.4. Let G be an abelian topological group for which the natural
mappingag is continuous. The®” has the qcp.

PrOOF. Firstwe prove that the quasi-convex hull of an equicontinuous subB& of
is again equicontinuous. L& c I'G be equicontinuous. There exisfse .45(0)
such thatM c V>. Now Q(M) = M*>* c (V*)** = V*, which implies thatQ(M) is
equicontinuous. Finally, by Lemma 2.3 (b), we obtain tBathas the qcp. O

COROLLARY 3.5. Every reflexive grougs has the qcp.

Taking into account the ideas involved in Section 4, it is clear that the following
theorem is an extension of statement (A).

THEOREM 3.6. A locally quasi-convex metrizable gro@is complete if and only
if the quasi-convex hull of every compact suliset G is again compacfthat is, if
G has the qcp

ProOOF. The direct implication holds even without the assumption of metrizability
(Proposition 3.1).
The converse implication can be derived from the following facts:

(1) For any abelian metrizable gro@there exists a metrizable complete grdsip
which densely containg.

(2) The compact-open topology for the dual of a complete or even of a von Neu-
mann complete, groupl coincides with the topology of uniform convergence on the
precompact subsets b&f.

(3) Forany dense subgrotipof a metrizable topological group, the dual mapping
of the inclusion is a topological isomorphism. Thd$ andG” can be algebraically
and topologically identified (See [9, 1]).

(4) If G is a metrizable abelian group ad c G a dense subspace, every neigh-
bourhood of zerd/ in G* contains the polar of an adequate null sequenda,ift,
(4.3)].

Take a Cauchy sequente= {x, : n € N} C G. ltsrangel. is a precompactset i@,
thusL* is a zero-neighbourhood . By fact(4), there exist&, : n € N} ¢ G with
a, — Osuchthafa, : n e N}> Cc L>. Now{a,:ne N}’ D> L> D {X, : n € N}.
The set{a, : n € N}** is compact by the assumption, and, being metrizable, it is
also sequentially compact. This means that the Cauchy seq@ence € N} has
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a subsequence convergent to some {a, : n € N}**. Thereforex, — X and the
groupG is complete. O

REMARK. If metrizability is dropped, the assertion of Theorem 3.6 does not hold in
general. The example given by Komura of a reflexive, non-complete topological vector
spacek, considered as an abelian topological group, would suit as a counterexample.
The natural mappinge : E — E”" is onto, therefore, by Proposition 3.E, has
the qcp.

CoROLLARY 3.7. The additive group of the rational numbers does not have the qcp.

Observe that a direct proof of the previous statement would entail tedious calcu-
lations of quasi-convex hulls. We point out that there are other totally inconnected
groups which do have the qcp. For instance, the additive group of integers, being the
dual group ofT, by Proposition 3.4, has the qcp.

4. Topological vector spaces as abelian topological groups

Let E be a real topological vector space. If only &gtoh is consideredE is an
abelian topological group. Let us ca#.E the dual space oE endowed with the
continuous convergence structure. It is a convergence vector space in the natural
sense, and viewed as a grouff, E is bicontinuously isomorphic to'.E. Let us
establish more precisely the parallelism betwg€g andT'E:

ProPOSITION4.1. If E is a topological vector space, the exponential mapping
o ZE — I'E defined by (f) = exp(2rif), satisfies the following assertians

(a) p is an algebraic isomorphism.

(b) p: Z.E — T'.Eis abicontinuous isomorphism.

() p:(ZE, 1)) — (T'E, 1,) is a topological homeomorphism.

(d) p:Z.E — E"is atopological isomorphism.

(e) p:(XE,0(ZE, E)) > (I'E,o(T'E, E)) isacontinuous isomorphism, which
is not open(unlessZE = {0}).

PrOOF. Observe that all isomorphisms mentioned are group-isomorphisms.
(a) and (d) are proved in [2, (2.3)].
(b) This is [8, Satz 1].
(c) The symbok, has two different interpretations, but no confusion is likely. The
continuity of the natural identitieg : T'.E — (I'E, 7,) andk : £LE — (ZE, 1)),
together with (b) show that the mappings: .%.E — (I'E, r,) andp*k : T .E —
(ZE, 7,) are continuous. Now apply the following general principle whose proof
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is easy: A mapping from a convergence spa¢¥, E) into a topological spac¥
is continuous if and only if it is continuous frotd with the associated topology
into Y.

(e) The continuity is straightforward. I#E # 0, p cannot be a topological iso-
morphism. In the simplest case & = R, we can identify algebraically R and
ZR with R. However(I'R, o ('R, R)) is a totally bounded subgroup &f, while
(ZR,0(ZR, R)) can be topologically identified with the real line. O

It must also be stated that there is a ‘good’ correspondence between the equicon-
tinuous subsets o E and of "'E; more precisely, from the next lemma we can
conclude thap carries a fundamental family of equicontinuous subset®’ & into a
fundamental family of equicontinuous subsetd"'d&.

In order to distinguish ‘polar sets’ in topological vector spaces from polars in
topological groups, foM c E let us denote by

Me:={f e ZE:|f(m)| <1,Vme M}
and by
‘(M) :={xe E:|f(xX)] <1 Vfe M)

LEMMA 4.2. LetU be a circled neighbourhood of zeroih Thenop ((4U)°) = U”.
Furthermore(U°) = (U>)".

ProOOF. This is Proposition 1.11 of [10]. O

Clearly by Lemma 4.1 (d)p considered as a mapping frofdU)° into U~ is a
homeomorphism if both of them are endowed with the corresponding compact-open
topology, which in turn coincides with ((Z E, E) and witho (T'E, E) respectively.

By the above comments, is a homeomorphism frolMZE,  f(ZE, E)) into
(TE, t"(I'E, E)), and the following claims are the transcriptions of Theorem 2.2 and
Theorem 2.5.

COROLLARY 4.3. Let E be a topological vector space. The topology associated to
the continuous convergence structure #tE is the finest of all those which induce
o (ZE, E) on the equicontinuous subsetsgiE.

COROLLARY 4.4. Let E be a metrizable topological vector space. The compact-
open topology onZE is the finest of all those which induee(ZE, E) on the
equicontinuous subsets 4fE.

Corollary 4.4 is essentially the Banach-Dieuderthéorem. However in the vast
literature existing, as far as we know, it is only stated for locally convexssg.
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In the previous section we defined the qcp, a property for groups ‘parallel’ to the
convex compactness property (ccp) for locally convex spaces. We check now that
both notions coincide in the realm of locally convex spaces.

Let E be a topological vector space akdc E a subset. Denote by(A) and
co(e(A)) the circled and the convex circled hull 8f respectively.

ProPOSITION4.5. Alocally convex spack has the gcp if and only E has the ccp.

ProOOF. If K is a compact subset @, it is easy to see thaiK) is also compact.
By the bipolar theoremzo(e(K)) = °(K°) = °((e(K))°), and, being &) circled,
°((e(K))?) = ((e(K))")® = Q(e(K)).

If E has the qcp, theoo(e(K)) = Q(e(K)) is compact.

Conversely, ifE has the ccp, the quasi-convex hQI[K) € Q(e(K)) = co(e(K))
is a closed subset of a compact set; thu¥ ) is compact. O

COROLLARY 4.6. A complete locally convex spaBeequipped with the Bohr topol-
ogyo (E, E*) has the qcp.

ProOOF. According to Krein theorem, the spaBeendowed with its weak topology
o (E, E*) has the ccp. By Proposition 4.5, it also has the gcp. The assertion follows
now from the fact that, the (E, E")-compact subsets & are exactly ther (E, E*)-
compact subsets [10]. O

RemMARK. A subtle difference between locally convex spaces and locally quasi-
convex groups: For a locally convex spd€gue is onto if and only ifE has the ccp
or, equivalently, if it has the qcp. However the group of all almost everywhere integer
valued functionss := L2([0, 1]), with the topology as a subspaceldf([0, 1]), is a
complete metrizable locally quasi-convex group. By Proposition@.has the qcp;
howeverag is not onto [1, (11.14)]. In this respect, it would be interesting to obtain
the result of the last corollary for locally quasi-convex groups.

ReEMARK. Although the definition of the associated topologyis rather misty,
a geometric description of a zero-neighbourhood basis for the dual of a separable
Hilbert space is given in [18]. Since the original paper may be difficult to read, we
reproduce here the mentioned basis.

Denote by.»#’ a separable Hilbert space, Bf® a ball of radiug in a subspace
L™ of codimensionp and, fore > 0, N,(A) stands for the-neighbourhood in7#
of a subseA C 2#. The sets of the form

B U N, (B™),
i=1
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(pi) and (r;) being increasing sequences of natural and real numbers respectively,
such that; — oo andg; > 0, for everyi, constitute a neighbourhood basis of zero
for the topologyr, in 27.
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