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Abstract

We extend chiral perturbation theory to study a meson gas out of thermal equilibrium. Assuming that the system is
initially in equilibrium at T -T and working within the Schwinger-Keldysh contour technique, we define consistently thei c

time-dependent temporal and spatial pion decay functions, the counterparts of the pion decay constants, and calculate them
to next to leading order. The link with curved space-time QFT allows to establish nonequilibrium renormalisation. The
short-time behaviour and the applicability of our model to a heavy-ion collision plasma are also discussed in this work.
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1. Introduction

The chiral phase transition plays a fundamental role in the description of the plasma formed after a
Ž .relativistic heavy-ion collision RHIC , where it is imperative to use meson effective models to describe QCD.

Ž . Ž .Two of the most successful approaches are the O 4 linear sigma model LSM , valid only for N s2 lightf
Ž .flavours, and Chiral Perturbation Theory ChPT , based on derivative expansions compatible with the QCD

Ž . w xsymmetries, and whose lowest order action is the nonlinear sigma model NLSM 1 . In ChPT, the perturbative
Ž .parameter is prL , with p a meson energy like masses, external momenta or temperature and L , 1 GeV.x x

Ž 2 2 .Every meson loop is OO p rL and all the infinities coming from them can be absorbed in the coefficients ofx

w xhigher order lagrangians 1,2 .
In thermal equilibrium at finite temperature T , the chiral symmetry is believed to be restored at T ,c

w x150–200 MeV 3 . In fact, near T , the mean-field LSM is well known to undergo a second-order phasec
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transition. The NLSM is equally valid for reproducing the phase transition, provided one works in the large-N
w x w x 2 2limit 4 . Strictly within ChPT, the low-temperature meson gas has been studied 5,6 on expansion in T rL ,x

predicting the correct behaviour of the observables as T approaches T .c

The equilibrium assumption is not realistic if one is interested in the dynamics of the expanding plasma
formed after a RHIC, where several nonequilibrium effects could be important. One of them is the formation of

Ž .disoriented chiral condensates DCC , regions in which the chiral field is correlated and has nonzero
w xcomponents in the pion direction 7 . As the plasma expands, long-wavelength pion modes —propagating as if

they had an effective negative mass squared— can develop instabilities growing fast as the field relaxes to the
w xground state, an observable consequence being coherent pion emission 8 . This issue has been extensively

studied in the literature, mostly within the LSM assuming initial thermal equilibrium at T )T , either encodingi c
w xthe cooling mechanism in the time dependence of the lagrangian parameters 8–11 or describing the plasma

w xexpansion in proper time and rapidity 12 . This phenomenon has also been studied using Gross-Neveu models
w x w x13 . Another important nonequilibrium observable is the photon and dilepton production 14 , to which the

w xanomalous meson sector could significantly contribute 10 .
In this work we will construct an effective ChPT-based model to describe a meson gas out of thermal

equilibrium, as an alternative to the LSM approach. Our only degrees of freedom will be then the Nambu-Gold-
Ž .stone bosons NGB and we will consider the most general low-energy lagrangian compatible with the QCD

Ž . Žsymmetries. We will restrict here to N s2 where the NGB are just the pions and to the chiral limit masslessf
.quarks , which is the simplest approximation allowing to build the model in terms of exact chiral symmetry.

One of the novelties of our approach is to exploit the analogy between ChPT and the physical regime where the
system is not far from equilibrium and then a derivative expansion is consistent.

2. The NLSM and ChPT out of equilibrium

We will take the system in thermal equilibrium for tF0 at a temperature T -T and for t)0 we let thei c

lagrangian parameters be time-dependent. We are also assuming that the system is homogeneous and isotropic.
The generating functional of the theory can then be formulated in the path integral formalism, by letting the time

w xintegrals run over the Schwinger-Keldysh contour C displayed in Fig. 1 15–18 . We will eventually let
t ™y` and t ™q`, although we will show that our results are independent of t and t . We remark that,i f i f

even in that limit, the imaginary-time leg of C has to be kept, since it encodes the KMS equilibrium boundary
w xconditions 17–19 . With these assumptions, our low-energy model will be the following nonequilibrium NLSM

f 2 tŽ .
4 † mw xS U s d x tr E U x ,t E U x ,t 1Ž . Ž . Ž .H m4C

4 3 Ž . Ž . Ž . Ž . y1where H d x'H dtHd x, U x,t gSU 2 is the NGB field, satisfying U x,t q ib sU x,t with b sT ,C C i i i i i
Ž . Ž .and f t is a real function which in equilibrium and to the lowest order see Section 4 would be fs f ,93p

Ž . Ž . Ž .MeV the pion decay constant i.e, f tF0 s f. Note that f t cannot be analytic at ts0 and, in particular, it

Fig. 1. The contour C in complex time t. The lines C and C run between t q ie and t q ie and t y ie and t y ie respectively, with1 2 i f f i

e ™0q.
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w xcould be discontinuous, like the meson mass in quenched LSM approaches 8–11 . This is a consequence of the
nature of our approach, since the system is driven off equilibrium instantaneously. An alternative, which we

Ž . w xwill not attempt here, is to choose f t analytic ; t, having equilibrium only at ts t 20 . Thus, the temporali

evolution of our results will start at ts0q, an infinitesimally small response time. As we will see below, our
approach is consistent because the discontinuities at ts0 appear to NLO.

We will parametrise the field U as

1 1r22 2 aU x ,t s f t yp x ,t Iq it p x ,t ; as1,2,3, 2Ž . Ž . Ž . Ž . Ž .½ 5af tŽ .

2 a a aŽ . aŽ .where p sp p , p the pion fields satisfying p t q ib sp t and I and t are the identity and Paulia i i i a
Ž .matrices. Note that with the choice 2 we recover the canonical kinetic term in the action after expanding U in

powers of p . Other choices amount to a time-dependent normalisation of the pion fields and should not have
Ž . a a Ž . Ž .any effect on the physics see Section 4 . For instance, if we redefine p sp f 0 rf t , the action for the˜

aŽ . 2Ž . 2Ž . Žp x,t fields is just the equilibrium NLSM multiplied by the time-dependent scale factor f t rf 0 see˜
.below .

Ž . Ž Ž . Ž . †.Our action 1 is manifestly chiral invariant U x ™LU x R . Notice that we work in the chiral limit and
hence there are no explicit symmetry-breaking pion mass terms in the action. The conserved axial and vector

w xcurrents for the chiral symmetry can be derived by applying the standard procedure 1,2 , so that the axial
current reads

2f tŽ .
a a † †A x ,t s i tr t U E UyUE U 3Ž . Ž .Ž .m m m4

Let us now discuss how to establish a consistent nonequilibrium ChPT. The new ingredient we need is the
Ž .temporal variation of f t . We will then consider

2
2˙˙ ¨ f tf t p f t pŽ .Ž . Ž .

,OO , , ,OO , 4Ž .2 3 4 2ž / ž /Lf t f t f t LŽ . Ž . Ž .x x

and so on, the rest of the chiral power counting being the same as in equilibrium. Therefore, in our approach we
treat the deviations of the system from equilibrium perturbatively, following the ChPT guidelines. Thus, we will

Ž .expand our action 1 to the relevant order in pion fields and take into account all the contributing Feynman
diagrams. The loop divergences should be such that they can be absorbed in the coefficients of higher order

Ž .lagrangians, which in general will require the introduction of new time-dependent counterterms see below .
Ž .Notice also that according to 4 , we can always describe the short-time nonequilibrium regime, just by

Ž . q y1expanding f t around ts0 . In fact, for times tF f , that is equivalent to a chiral expansion, since thenp

˙ q qŽ . Ž . Ž . Ž .f 0 trf 0 sOO prL and so on. Nonetheless, we stress that the conditions 4 do not imply working atx

short-times, but just to remain close enough to equilibrium.
Ž . Ž .To leading order in p fields, the action 1 , after using 2 , reads

f̈ tŽ .
1 4 a 2 a 2w xS p sy d xp x ,t Iqm t p x ,t with m t sy , 5Ž . Ž . Ž . Ž . Ž .H0 2 f tŽ .C

where we have partial integrated in C. Thus, the leading order nonequilibrium effect of our model can be
written as a time-dependent pion mass term, which, as commented before, is a common feature of nonequilib-

w x 2Ž .rium models 9–12 . Notice that m t can be negative, so that our model accommodates unstable pion modes,
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whose importance we have discussed before. Note also that this mass term does not break the chiral symmetry,
Ž .i.e, the axial current is classically conserved. Indeed, to leading order we have, from 3 ,

LOa a a˙A x ,t syf t E p x ,t qd f t p x ,t , 6Ž . Ž . Ž . Ž . Ž . Ž .m m m0

m 2 awhich satisfies E A s0 using Iqm t p s0, the equations of motion to the same order. Had weŽ .m

included the pion mass term m —explicitly breaking the symmetry— the instabilities threshold, to leadingp
2Ž . 2order, would have been m t -ym instead.p

It is very interesting to rephrase our model as a NLSM in a curved space-time background g , which readsmn

w x21,22 ,
2f 0Ž .

4 mn †'w x w xS U s d x yg g tr E U x E U x qj S U, R 7Ž . Ž . Ž .Ž .Hg m n R4 C

plus U independent terms, where gsdet g and the last term accounts for possible couplings between the pion
Ž . Ž Ž . 2 w x.fields and the scalar curvature R x like R x f for a free scalar field f 21 . Now, notice that our

Ž . Ž . Ž Ž .nonequilibrium model 1 is obtained by writing U x in the p parametrisation discussed before i.e, with f t˜
Ž . Ž .. Ž . Ž .replaced by f 0 in 2 , choosing js0 minimal coupling and a spatially flat Robertson-Walker RW

2 2Ž .w 2 2 x Ž .space-time in conformal time, whose line element is ds sa h dh ydx , with the scale factor a h s
Ž . Ž .f h rf 0 . Our effective theory is then not only suitable for a RHIC environment, but also in a cosmological

framework. Notice also that if we take j/0, the lowest order S term we can construct has the form of anR

effective mass term breaking explicitly the chiral symmetry. In fact, it is not difficult to see that we could cancel
2Ž . Ž . w xthe m t term in 5 by choosing js1r6, which is the value rendering the theory scale invariant 21 . This is

just a consequence of the lagrangian chiral and conformal symmetries being incompatible in a curved
w xbackground 22 or, equivalently, at nonequilibrium. In other words, for js0 —which is our choice, since we

w x 2Ž .want to preserve chiral symmetry, as in Ref. 22 — we may interpret the m t term, in the chiral limit, as the
minimal coupling with the background yielding chiral invariance.

The above equivalence turns out to be very useful to renormalise our model, consistently with ChPT. In fact,
Ž . Ž 4.all the one-loop divergences arising from 7 can be absorbed in the coefficients of the OO p action S , which4

consists of the Minkowski terms with indices raised and lowered with g plus new chiral-invariant couplingsmn

w xof pion fields with the curvature 22 . In the chiral limit, those new terms read

R 4 mn mn †'w xS p s d x yg L R x g qL R trE U x E U xŽ . Ž . Ž .Ž .H4 11 12 m n
C

1 4 a 2 2 2 a 4sy d xp f t E y f t = qm t p qOO p 8Ž . Ž . Ž . Ž . Ž .H 1 t 2 12
C

w xwhere R is the Ricci tensor, L and L are two new low-energy constants 22 and we have given themn 11 12
Ž .two-pion contributions in the parametrisation 2 , after partial integration, with our RW metric, where

2˙¨ f tf t Ž .Ž .
f t s12 2 L qL yL ,Ž . Ž .1 11 12 123 4f t f tŽ . Ž .

2˙¨ f tf t Ž .Ž .
f t s4 6L qL qL ,Ž . Ž .2 11 12 123 4f t f tŽ . Ž .

¨ ˙ ˙f t f t q f t f tŽ . Ž . Ž . Ž .1 1 12 ¨m t sy q f t . 9Ž . Ž . Ž .1 12f tŽ .
Ž .for t)0 and f tF0 s0. The above terms are the only ones in S containing two pions and they willi 4

renormalise purely nonequilibrium infinities —which are time-dependent and vanish for tF0—. It is important
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to bear in mind that to cancel the one-loop new divergences only L needs to be renormalised, whereas11
r w xL sL 22 . We will come back to this point below.12 12

w xNext, we will concentrate on the Green functions time-ordered along C 17,18 . Unless otherwise stated, we
Ž .will be using the parametrisation 2 in the remaining of this work. The two-point function defines the pion

abŽ . ² aŽ . aŽ .: abŽ . ab Ž .propagator G x, y syi T p x p y , which to leading order G x, y sd G x, y , by isospinC 0 0

invariance, and

I qm2 x 0 G x , y syd x 0 yy0 d Ž3. xyy 10Ž . Ž . Ž . Ž .� 4 Ž .x 0 C

) Ž . - Ž .with KMS equilibrium conditions G x,t y ib ; y sG x,t ; y , the advanced and retarded propagators0 i i 0 i
Ž X. Ž X X.being defined as customarily along C. Notice that G x, x sG t,t , xyx due to the nonequilibrium lack of

time translation invariance. Therefore, we will define, as customarily, the ‘‘fast’’ temporal variable ty tX and
Ž X. Ž . Ž X. 2 < < 2the ‘‘slow’’ one t' tq t r2, so that F q ,v ,t and F v ,t,t , with v s q , will denote, respectively,0 q q q

Ž . Ž X.the fast and mixed in which only the spatial coordinates are transformed Fourier transforms of F x, x . Note
Ž .that F q ,v ,t depends separately on q and v because of the thermal loss of Lorentz covariance and has0 q 0 q

Ž .the extra nonequilibrium t-dependence. Then, in the mixed representation, 10 becomes
2d

X X2 2qv qm t G v ,t ,t syd ty t 11Ž . Ž . Ž .Ž .q 0 q C2dt

Ž . 2Ž . w xThe general solution of 11 is only known explicitly for some particular choices of m t 21,17,18 .
Formally, we can write it as a Schwinger-Dyson equation as

G v ,t ,tX sGeq v ,ty tX q dzm2 z Geq v ,tyz G v , z ,tX 12Ž . Ž .Ž . Ž . Ž . Ž .H0 q 0 q 0 q 0 q
C

eqŽ X. Ž . 2Ž .with G v ,ty t the equilibrium solution of 11 , i.e, with m t s0.0 q
Ž . ) Ž . - Ž .Another object of interest for our purposes is the Lehman spectral function r x, y sG x, y yG x, y

w x eqŽ . Ž . Ž 2 . w x16 , which in equilibrium to leading order is r q sy2p isgn q d q 19 . Note that, by construction,0 0
) Ž . - Ž . Ž . Ž . Ž . Ž .G x, y sG y, x , so that r x, y syr y, x and r q ,v ,t syr yq ,v ,t . The normalisation of r0 q 0 q 0

is
X

q`1 dr v ,t ,tŽ .0 q
q r q ,v ,t s sy1, 13Ž . Ž .H 0 0 0 q

X2p i dty` ts t

Ž . Ž .which can be readily checked by using 12 and r v ,t,t s0.0 q

3. Next to leading order propagator

Ž .We will now obtain the NLO correction to the propagator. For that purpose, we need the action in 1 up to
four-pion terms:

2¨ ˙1 f t f tŽ . Ž .21 14 a m b 2 6w x w xS p sS p q d x E p E p p p q p y qOO p 14Ž . Ž . Ž .H0 m a b2 22 2½ 5ž /f tf t f tŽ .Ž . Ž .C

Ž . Ž . Ž .plus the two-pion terms in 8 . The two diagrams contributing are, respectively, a and b in Fig. 2.

Ž . Ž . .Fig. 2. Diagrams contributing to the NLO pion propagator a,b and axial-axial correlator c . The black dot in b represents the interaction
R Ž .coming from S in 8 .4
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Ž X . XLet us concentrate on G i.e, t,t gC in Fig. 1 and t and t positive, which is the relevant case for our11 1
Ž .purposes, as commented above. We will use dimensional regularisation DR , so that evaluating the above

Ž . Žd .Ž .diagrams, using 10 with d 0 s0, and after some algebra, we obtain in the mixed representation to NLO

2i b v Ti q iX X X X1) )G t ,t sG t ,t 1y f t q f t q coth cos v tq tŽ . Ž . Ž . Ž . Ž .Ž .11 0,11 1 1 q2 22v 2 12 fq

t X X) ) ) )˙ ˙˜ ˜ ˜ ˜ ˜ ˜ ˜q i d t D t ,v G t ,t G t ,t qD t G t ,t G t ,tŽ . Ž . Ž . Ž . Ž .Ž .H 1 q 0 0 2 0 0½
0

Xt X X- - - -˙ ˙˜ ˜ ˜ ˜ ˜ ˜ ˜y d t D t ,v G t ,t G t ,t qD t G t ,t G t ,tŽ . Ž . Ž . Ž . Ž .Ž .H 1 q 0 0 2 0 0
0

t X X- ) - )˙ ˙˜ ˜ ˜ ˜ ˜ ˜ ˜y d t D t ,v G t ,t G t ,t qD t G t ,t G t ,t 15Ž . Ž . Ž . Ž . Ž . Ž .Ž .H 1 q 0 0 2 0 0 5Xt

- Ž X . ) Ž X .and G t,t sG t ,t , where we have suppressed for simplicity the v dependence of the propagators, the11 11 q

˜dot denotes drdt,

2¨ ˙ ˙˜ ˜ ˜1 f t f t f tŽ . Ž . Ž .
2 ¨ ˙˜ ˜ ˜ ˜D t ,v s 6 y5 yv G t y2G t q4 G tŽ . Ž . Ž .Ž .1 q q 0 0 02 ž /˜ ˜ ˜˜ f t f t f tf t ž /Ž . Ž . Ž .Ž .

˙ ˙˜ ˜f t f tŽ . Ž .1 12 ¨˜ ˜ ˜q iv f t y f t y i q f t , 16Ž . Ž . Ž . Ž .q 2 1 12˜f tŽ .

˜G tŽ .0˜D t s , 17Ž . Ž .2 2 ˜f tŽ .

Ž 0. Ž . Ž .and G z 'G z, z is the equal-time correlation function. We observe that 15 is t and t independent,0 0 i f
Ž .which is a good consistency check. Notice also that by replacing the equilibrium propagators in 15 , we recover

T 2
X Xeq ) eq )G ty t sG ty t 1y 18Ž . Ž . Ž .11 0,11 2ž /12 f

w x Žwhich agrees with 4 note that we have derived it for the contour C, including both imaginary-time and
.real-time thermal field theory and is finite in the chiral limit, where there is no tadpole renormalisation in DR

w x2 . However, out of equilibrium, the NLO propagator is in general divergent, even in the chiral limit, and the
Ž .infinities have to be absorbed in the two-pion counterterms in 8 .

4. The nonequilibrium pion decay functions

In a thermal bath, the concepts of LSZ and asymptotic states are subtle, and so is then the extension of
low-energy theorems like PCAC. Thus, pion decay constants are more conveniently defined through the thermal

ab Ž . ² aŽ . bŽ .:axial-axial correlator A x, y s T A x A y . At T/0 the loss of Lorentz covariance in the tensorialmn C m m
s Ž . t Ž .structure of A implies that one can define two independent and complex f spatial and f temporal , theirmn p p
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real and imaginary parts being related respectively with the pion velocity and damping rate in the thermal bath
w x w x23 . Nevertheless, to one-loop in the chiral limit one has 5,4,23

2T22s t 2f T s f T s f 1y , 19Ž . Ž . Ž .p p 2ž /Tc

' Ž .with T s 6 f , 228 MeV. Despite it being just the lowest order in the low temperature expansion, 19c p

predicts the right behaviour and a reasonable estimate for the critical temperature, although, strictly speaking,
Ž . w x s t s, t w xf T is not the order parameter 4 . To higher orders, f / f and Im f /0 23 .p p p p

Let us then analyze Aab in our nonequilibrium model. The relevant quantity, as far as f is concerned, is themn p
) - ab ab Ž . Žspectral function r sA yA , with A sd A . We readily realise that r q ,q,t syr yq ,ymn mn mn mn mn mn 0 nm 0

.q,t . Then, from rotational symmetry,

r q ,q ,t sq q r q ,v ,t qd r q ,v ,t 20Ž . Ž . Ž . Ž .i j 0 i j L 0 q i j d 0 q

Ž . Ž . 3 Ž . Ž .with r q syr yq and r q ,q,t sq r q ,v ,t . Therefore, r is characterized, in principleL,d 0 L,d 0 j0 0 j S 0 q mn

by the four functions r , r , r and r . However, they are related through the A conservation Ward IdentityL d S 00 m

Ž . x mn Ž . y mn Ž .WI E r x, y sE r x, y s0, which also holds in our model. Thus, we getm n

i
0 2q r q ,v ,t yv r q ,v ,t y r q ,v ,t s0,Ž . Ž . Ž .˙00 0 q q S 0 q 00 0 q2

i
0 2q r q ,v ,t yv r q ,v ,t q r q ,v ,t qr q ,v ,t s0, 21Ž . Ž . Ž . Ž . Ž .˙S 0 q q L 0 q S 0 q d 0 q2

w xwhere the dot denotes ErEt . Thus, only two components of r are independent, as in equilibrium 4 , wheremn

there are no time derivatives in the above equation.
2 Ž 0. Ž 2 .At Ts0 one has r s2p f sgn q d q , since there exist NGB states. That is not the case at T/0,L p

w x Ž .where the pion dispersion relation is not in general a d-function 4 . In fact, to define properly f T requiresp
q w xtaking the v ™0 limit, in which a zero-energy excitation still exists 4 , although to NLO there is no need toq

take that limit. Extending these ideas to nonequilibrium, we will define the time-dependent pion decay functions
Ž .PDF as

`1 d2 Xsf t s lim dq q r q ,v ,t s lim i r v ,t ,t 22Ž . Ž .Ž . Ž .Hp 0 0 L 0 q L qq q X2p dtv ™0 v ™0y` ts tq q

`1
s tf t f t s lim dq r q ,v ,t s lim r v ,t ,t 23Ž . Ž . Ž .Ž . Ž .Hp p 0 S 0 q S qq q2p v ™0 v ™0y`q q

`i d
X1sf t g t sy lim dq q r q ,v ,t s lim r v ,t ,t 24Ž . Ž . Ž .Ž . Ž .Hp p 0 0 S 0 q S q2q q X2p dtv ™0 v ™0y` ts tq q

sŽ . t Ž .The functions f t and f t are the nonequilibrium counterparts of the spatial and temporal pion decayp p

Ž .constants respectively, whereas g t vanishes in equilibrium. However, the above PDF are related through thep

Ž .WI. Integrating in q in 21 , we get0

1 d
s t sf t g t s f t f t , 25Ž . Ž . Ž . Ž . Ž .p p p p2 dt

w xso that only two PDF are independent, as in equilibrium 23 . Let us now check the consistency of our
Ž . LO Ž X. Ž . Ž X. Ž X. Ž .definitions to leading order. From 6 , r v ,t,t s if t f t r v ,t,t and r s0, so that, using 13 yieldsL q 0 q d

3 w x Ž 0 . L 2 2 2 Ž 0 . TOur r and r correspond in in the notation of 4 , to sgn q r q rv q and sgn q r respectively.L d A 0 q A
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sŽ .2 2Ž . Ž .f t s f t , i.e, the PDF coincides with f t to leading order, as it should be. Similarly, we findp LO
t s ˙Ž . Ž . Ž . Ž . Ž .f t s f t s f t and g t s f t , so that our definitions are consistent to leading order.p LO p LO p LO

Ž 3. Ž .To NLO, we need the axial current up to OO p . From 3 ,

˙1 f tŽ .LOa a a 2 2 a 2 a 5A x ,t s A x ,t y p E p yp E p yd p p qOO p 26Ž . Ž . Ž . Ž .m m m m m0ž /2 f t f tŽ . Ž .
LO Ž .with A in 6 . Thus, according to our chiral power counting, we have three types of NLO corrections to A .m mn

The first is the NLO correction to the pion propagator we have evaluated in Section 3, coming from the product
Ž . Ž . Ž 3. .of the OO p terms above. The second is the product of the OO p with the OO p , represented by diagram c in

Ž .Fig. 2, and the third comes from the modification in A due to the action 8 , which amounts to prefactorsm

w Ž .x w Ž .x Ž . Ž1q f t and 1q f t in A and A respectively. Then, evaluating r to NLO, after using 15 we take,1 2 0 j mn
X . Ž . Ž .without loss of generality, both t,t gC and positive and 22 – 23 , we finally arrive to1

2s 2f t s f t 1q2 f t y f t y2 iG t 27Ž . Ž . Ž . Ž . Ž . Ž .p 2 1 0

2t 2f t s f t 1q f t y2 iG t 28Ž . Ž . Ž . Ž . Ž .p 2 0

Ž . 4for t)0. This is the main result of this work. It provides the NLO relationship between the PDF and f t .
sŽ . t Ž .Notice that f t / f t to NLO, unlike the equilibrium case, due to the effect of nonequilibrium renormalisa-p p

w sŽ .x2 w t Ž .x2 2Ž .w Ž . Ž .xtion. However, note that f t y f t s f t f t y f t , which is finite, since it depends only on L ,p p 2 1 12

which does not renormalise. This is indeed an interesting consistency check, because the one-loop infinities
Ž . sŽ . t Ž .appearing in G t can then be absorbed in L , rendering both f t and f t finite. We also remark that we0 11 p p

q Ž . Ž . Ž . Ž . Ž .did not need to take v ™0 in 22 – 23 to arrive to 27 – 28 there are still NGB to NLO . Note also thatq
s, t Ž . Ž .both f are real to this order. We have performed the following consistency checks on 27 – 28 : first, thep

Ž . Ž . eq 2equilibrium result 19 is recovered for the contour C simply by replacing G syiT r12 and f s f s0.0 1 2
Ž . Ž . Ž .Second, by calculating g t from r , through 24 , we check explicitly that the WI 25 holds and, third, wep S

have calculated A in the p parametrisation, arriving to the same result.˜mn

Ž . Ž . Ž .Therefore, 27 – 28 allow to express nonequilibrium observables like decay rates, masses, etc to one loop
Ž .in ChPT, in terms of the physical f t , which could be measured, for instance, in nonequilibrium lepton decaysp

Ž .p™ ln . At this stage one can follow different approaches. Exact knowledge of f t would require to solvel

self-consistently the plasma hydrodynamic equations or, equivalently, Einstein equations for the metric.
Ž . Ž . Ž .Alternatively, one can treat f t as external —so that 27 – 28 provide the system response— and study

Ž . w x Ž .simple choices consistently with 4 20 . In what follows, we shall take f t arbitrary and expand it near
ts0q, analysing thus the short-time evolution.

Ž .For short times, the particular form of f t is not important and we can parametrise the nonequilibrium
Ž . qdynamics in terms of the values of f t and its derivatives at ts0 . As we discussed in Section 2, this

Ž . Žapproach is justified for times t- t with t ,1rf 0 , 2 fmrc compare to the typical plasma timemax max p

w x. Ž .scales 5–10 fmrc 12 . The general solution of 11 with KMS conditions at t can be constructed in terms ofi

two independent solutions to the homogeneous equation, which have to be continuous and differentiable ; tgC
w xso that the solution is uniquely defined 17 . Therefore, they have to match the equilibrium solution and its first

Ž . qtime derivative at ts0. With these conditions and expanding both f t and the solutions near ts0 we find to
the lowest order

i b vi q11 2 2 4 4G v ,t ,t sy coth 1ym t qOO m t 29Ž . Ž .Ž .0 q 2v 2q

2 ¨ q q 2Ž . Ž .for t)0, with m syf 0 rf 0 . For m -0 we see the unstable modes threshold, making the pion
correlation function grow with time. The effect of those modes is not important for short times though, where

4 Ž . Ž . Ž . Ž . Ž . Ž .G t , f t and f t depend implicitly on f t , through 10 and 9 .0 1 2



( )A. Gomez Nicola, V. Galan-GonzalezrPhysics Letters B 449 1999 288–298´ ´ ´296

Ž .the exponential growth of the correlator is not appreciable. Observe that in 29 the time dependence factorises,
so that the momentum dependence is the same as in equilibrium and then we can integrate it in DR, yielding the

Ž . Ž . Ž .finite answer 18 . Then, from 27 – 28 we get

2 2T T2 2 i is , t s , t 2 2 2 3 2f t s f 1y q2 Hty m 1y yH t qOO p rL 30Ž . Ž .Ž .p R x2 2½ 5ž /T Tc c

˙ q qŽ . Ž .for t)0, where Hs f 0 rf 0 , with the renormalised constants

2s 2 q 2 2f s f 0 q4 L y6L m yL HŽ . Ž .R 12 11 12

2t 2 q 2 2f s f 0 q4 y L q6L m qL H 31Ž . Ž . Ž .R 12 11 12

Ž Ž .and where the H and m parameters which are OO p and play the role of the Hubble constant and the
˙ q ¨ q. Ž . Ž .deceleration parameter in the Universe expansion also get renormalised, in terms of f 0 , f 0 and so1,2 1,2

on, but those are subleading contributions. Thus, for short times, all the effect of the S terms, which is T4 i
Ž q.independent, is to redefine f 0 , since there are no infinities coming from G in DR. We insist that this is justp 0

Ž .the effect of truncating the series in t and it is not true in general. Notice that 31 implies necessarily a nonzero
Ž q. Ž .jump D fs f 0 y f see our comments in Section 2 so that the divergent part of L can be absorbed in11

2Ž q. s, t s, tf 0 rendering a finite D f sD f . In fact, that effect is very small compared to the other contributions inR p

Ž . sŽ . t Ž . r r y3 w x30 , and so it is the difference f t y f t , since L , L ,10 22 . Notice also that for the particular casep p 11 12
2 2 2Ž q. 2 2 s tH sm )0, renormalising as f 0 s f q24m L we get f s f and D s0.11 p p fp

Ž .Finally, we will estimate some physical effects related to f t . For that purpose, we will ignore, forp

Ž .simplicity, the effect of L and L and, based upon 19 , define the plasma effective temperature as11 12
2Ž . 2w 2Ž . 2 x Ž .f t s f 1yT t rT . Therefore, we can also define a critical time as T t sT and a freezing timep c c c
Ž . Ž . Ž .T t s0. Thus, we will impose 0-T t -T and then, through our short-time results for f t , determinef c p

Ž Ž . .either t or t , depending on the initial conditions T t is just quadratic in time to this order . Notice that wec f
Ž .are following a similar approach as in equilibrium when one extrapolates 19 until TsT . Let us then takec

< < < < 2 2typical values T , H , m ,100 MeV and retain only the leading order in x'T rT , consistently with thei i c
2 2 Ž .Ž . 2chiral expansion. Then, if Hs0, the system cools down until t m ,yx 1qx t ,0.2 fmrc if m -0,f f

2 2 2 Ž .whereas for m )0 it is heated until t m s1 t ,2 fmrc , independent of T . For H)0, there is coolingc c i
< < Ž . 2 < < Ž . Žuntil t H ,xr2 t ,0.2 fmrc . Finally, for H-0 and m )0 there is heating until t H , 1y3 xr4 r2 tf f c c

. 2 < < Ž .,2 fmrc , whereas if m -0, there is heating until a maximum t H , 1qxr2 r2 and then cooling downm
< < Ž . Ž 2 .until t H ,1qx t ,2.3 fmrc . We observe that the effect of the unstable modes m -0 is always to coolf f

down the system and that the freezing time for H-0 is much longer than that for H)0. Some of these time
scales are indeed longer than those to which our short-time approximation remains valid, but they have to be

Ž .understood as estimates, similarly to estimating T at equilibrium through 19 , even though the low T approachc

is less reliable near T,T .c
w x Ž . Ž . Ž .Comparing with 12 , naively identifying the LSM order parameter Õ t , f t in proper time , we see ap

similar short-time evolution, although our estimates for the time evolution duration are somewhat lower. This
w x < <was expected, since the initial values in Ref. 12 correspond to T , 200 MeV and H , 400 MeV, which arei

w x Ž .too high for our low-energy approach. An important remark is that in typical simulations like 12 , Õ t reaches
Ž .a stationary value, about which it oscillates thermalisation . It is clear that we cannot predict that type of

behaviour only within our short-time approach, quadratic in time, but only estimate the time scales involved
—similarly as to why ChPT cannot see the phase transition—. Therefore, in view of the above estimates, we
believe that our ChPT model may be useful for studying the different nonequilibrium observables evolution,
from a stage where some cooling has already taken place onwards. In principle, we could approach closer to Tc

by considering enough orders in our ChPT, although in practice, beyond one-loop, some resummation method,
like large N, will need to be implemented.
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5. Conclusions and Outlook

We have extended chiral lagrangians and ChPT out of thermal equilibrium. The chiral power counting
Ž . Ž .requires all time derivatives to be OO p and to lowest order our model is a NLSM with f™ f t . This model

accommodates unstable pion modes and corresponds to a spatially flat RW metric in conformal time with scale
Ž . Ž . Ž .factor a t s f t rf 0 and minimal coupling. We have exploited this analogy to establish the renormalisation

procedure, which allows to construct the fourth order lagrangian absorbing all the loop divergences, which in
general will be time-dependent.

We have applied our model to study the time-dependent pion decay functions, extending the equilibrium pion
decay constants. In general there are two independent PDF, as in equilibrium, and to NLO in ChPT they already
differ, unlike equilibrium, due to renormalisation. We have obtained them to NLO in terms of the equal-time
correlation function, analysing their lowest order short-time coefficients and their dependence with T , andi

discussing the relevant time scales involved within the context of a RHIC plasma.
Among the aspects of our model which are worth to be studied further are the long-time evolution, by

Ž .choosing suitable parametrisations for f t , including the analytic approach, and the behaviour of the two-point
correlation function at different space points, which would allow us to investigate the formation of regions of

Ž . w xunstable vacua DCC 20 . Other applications and extensions, to be explored in the future include photon
Ž 0 .production in the pion sector by gauging the theory and including p anomalous decay , the quark condensate

Ž .time dependence by including the mass explicit symmetry-breaking terms , the N s3 case, large Nf

resummation and proper time evolution.
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