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Abstract

We extend chiral perturbation theory to study a meson gas out of thermal equilibrium. Assuming that the system is
initially in equilibrium at T, < T, and working within the Schwinger-Keldysh contour technique, we define consistently the
time-dependent temporal and spatial pion decay functions, the counterparts of the pion decay constants, and calculate them
to next to leading order. The link with curved space-time QFT allows to establish nonequilibrium renormalisation. The
short-time behaviour and the applicability of our model to a heavy-ion collision plasma are also discussed in this work.
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1. Introduction

The chiral phase transition plays a fundamental role in the description of the plasma formed after a
relativistic heavy-ion collision (RHIC), where it is imperative to use meson effective models to describe QCD.
Two of the most successful approaches are the O(4) linear sigma model (LSM), valid only for N; =2 light
flavours, and Chira Perturbation Theory (ChPT), based on derivative expansions compatible with the QCD
symmetries, and whose lowest order action is the nonlinear sigma model (NLSM) [1]. In ChPT, the perturbative
parameter is p/A,, with p a meson energy (like masses, externa momenta or temperature) and A, = 1GeV.
Every meson loop is @( p? /Af() and all the infinities coming from them can be absorbed in the coefficients of
higher order lagrangians [1,2].

In thermal equilibrium at finite temperature T, the chiral symmetry is believed to be restored at T, =
150-200 MeV [3]. In fact, near T, the mean-field LSM is well known to undergo a second-order phase
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transition. The NLSM is equally valid for reproducing the phase transition, provided one works in the large-N
limit [4]. Strictly within ChPT, the |low-temperature meson gas has been studied [5,6] on expansion in T?/AZ,
predicting the correct behaviour of the observables as T approaches T..

The equilibrium assumption is not realistic if one is interested in the dynamics of the expanding plasma
formed after a RHIC, where several nonequilibrium effects could be important. One of them is the formation of
disoriented chiral condensates (DCC), regions in which the chira field is correlated and has nonzero
components in the pion direction [7]. As the plasma expands, long-wavelength pion modes —propagating as if
they had an effective negative mass squared— can develop instabilities growing fast as the field relaxes to the
ground state, an observable consequence being coherent pion emission [8]. This issue has been extensively
studied in the literature, mostly within the LSM assuming initial thermal equilibrium at T, > T, either encoding
the cooling mechanism in the time dependence of the lagrangian parameters [8—11] or describing the plasma
expansion in proper time and rapidity [12]. This phenomenon has also been studied using Gross-Neveu models
[13]. Another important nonequilibrium observable is the photon and dilepton production [14], to which the
anomalous meson sector could significantly contribute [10].

In this work we will construct an effective ChPT-based model to describe a meson gas out of thermal
equilibrium, as an aternative to the LSM approach. Our only degrees of freedom will be then the Nambu-Gold-
stone bosons (NGB) and we will consider the most general low-energy lagrangian compatible with the QCD
symmetries. We will restrict here to N; = 2 (where the NGB are just the pions) and to the chiral limit (massless
quarks), which is the simplest approximation alowing to build the model in terms of exact chiral symmetry.
One of the novelties of our approach is to exploit the analogy between ChPT and the physical regime where the
system is not far from equilibrium and then a derivative expansion is consistent.

2. The NLSM and ChPT out of equilibrium

We will take the system in thermal equilibrium for t < O at a temperature T; < T, and for t> O we let the
lagrangian parameters be time-dependent. We are also assuming that the system is homogeneous and isotropic.
The generating functional of the theory can then be formulated in the path integral formalism, by letting the time
integrals run over the Schwinger-Keldysh contour C displayed in Fig. 1 [15-18]. We will eventually let
t, > — and t; - +, athough we will show that our results are independent of t; and t;. We remark that,
even in that limit, the imaginary-time leg of C has to be kept, since it encodes the KM S equilibrium boundary
conditions [17—19]. With these assumptions, our low-energy model will be the following nonequilibrium NLSM

— d4 fz(t) 9 T Im®
U] —fc thr LU T(x 1) a*U(x,1) (1)
where [.d*x = [.dt/d®x, U(x,t) € U(2) is the NGB field, satisfying U(x,t; + i 8;) = U(x,t,) with g, =T %,
and f(t) is areal function which in equilibrium and to the lowest order (see Section 4) would be f=f_ =93
MeV (the pion decay constant) i.e, f(t < 0) =f. Note that f(t) cannot be anaytic a t =0 and, in particular, it

t—if

Fig. 1. The contour C in complex time t. The lines C; and C, run between t; +ie and t; +ie and t; —ie and t; — i e respectively, with
€ —0".
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could be discontinuous, like the meson mass in quenched LSM approaches [8—11]. This is a consequence of the
nature of our approach, since the system is driven off equilibrium instantaneously. An alternative, which we
will not attempt here, is to choose f(t) analytic Vt, having equilibrium only at t =t; [20]. Thus, the temporal
evolution of our results will start at t= 0", an infinitesimally small response time. As we will see below, our
approach is consistent because the discontinuities at t = 0 appear to NLO.

We will parametrise the field U as

1 2 2 1/2 .
U(x,t)=f(—t){[f () =72 (x0)] 1 +inmi(x0}; a=123, (2)

where 72 = 737, w2 the pion fields satisfying 7(t; + i 8,) = w(t;) and | and 7, are the identity and Paulli
matrices. Note that with the choice (2) we recover the canonica kinetic term in the action after expanding U in
powers of 7r. Other choices amount to a time-dependent normalisation of the pion fields and should not have
any effect on the physics (see Section 4). For instance, if we redefine 72 = 7 2f(0) /f(t), the action for the
3(x,t) fields is just the equilibrium NLSM multiplied by the time-dependent scale factor f2(t)/f2(0) (see
below).

Our action (1) is manifestly chiral invariant (U(x) — LU(x)R"). Notice that we work in the chiral limit and
hence there are no explicit symmetry-breaking pion mass terms in the action. The conserved axial and vector
currents for the chiral symmetry can be derived by applying the standard procedure [1,2], so that the axial
current reads

£2(1)
4

AX(xt) =i tr[7%(U3,U - UgU")] (3)

Let us now discuss how to establish a consistent nonequilibrium ChPT. The new ingredient we need is the
tempora variation of f(t). We will then consider

2 p2
—o\ a2

X

f(y ~ﬁ( p), fty [fo] | @

P2 A B (Y

AX
and so on, the rest of the chiral power counting being the same as in equilibrium. Therefore, in our approach we
treat the deviations of the system from equilibrium perturbatively, following the ChPT guidelines. Thus, we will
expand our action (1) to the relevant order in pion fields and take into account all the contributing Feynman
diagrams. The loop divergences should be such that they can be absorbed in the coefficients of higher order
lagrangians, which in general will require the introduction of new time-dependent counterterms (see below).
Notice also that according to (4), we can dways describe the short-time nonequilibrium regime, just by
expanding f(t) around t=0". In fact, for times t <f_*, that is equivalent to a chiral expansion, since then
f(0")t/f(0") =&(p/A,) and so on. Nonetheless, we stress that the conditions (4) do not imply working at
short-times, but just to remain close enough to equilibrium.
To leading order in 7 fields, the action (1), after using (2), reads

f(t)
f(t)’
where we have partial integrated in C. Thus, the leading order nonequilibrium effect of our model can be

written as a time-dependent pion mass term, which, as commented before, is a common feature of nonequilib-
rium models [9-12]. Notice that m?(t) can be negative, so that our model accommodates unstable pion modes,

sl7]= -3 [dxm2 (0[O0 +m()]73(x.t)  with mP(t) = - (5)



A. Gomez Nicola, V. Galan-Gonzalez / Physics Letters B 449 (1999) 288—298 291

whose importance we have discussed before. Note also that this mass term does not break the chiral symmetry,
i.e, the axial current is classically conserved. Indeed, to leading order we have, from (3),

[A2(x.1)] = —F(1) 72 x.t) + 8,0 F(D)TA(X,t) (6)

which satisfies 9“A, =0 using [O + m?(t)] 72 =0, the equations of motion to the same order. Had we
included the pion mass term m_ —explicitly breaking the symmetry— the instabilities threshold, to leading
order, would have been m?(t) < —m? instead.

It is very interesting to rephrase our model as a NLSM in a curved space-time background g,,,, which reads
[21,22],
2( 9 [ gy t
slul= fd 9)g* trg,u’(x)aU(x) + £S[U,R] (7)

plus U mdependent terms, where g = det g and the last term accounts for possible couplings between the pion
fields and the scalar curvature R(x) (like R(x)¢? for a free scalar field ¢ [21]). Now, notice that our
nonequilibrium model (1) is obtained by writing U(x) in the 7= parametrisation discussed before (i.e, with f(t)
replaced by f(0) in (2)), choosing &= 0 (minima coupling) and a spatially flat Robertson-Walker (RW)
space-time in conformal time, whose line element is ds? = a?(n)[dn? — dx?2], with the scale factor a(n) =
f(n)/f(0). Our effective theory is then not only suitable for a RHIC environment, but also in a cosmological
framework. Notice also that if we take ¢ # 0, the lowest order S; term we can construct has the form of an
effective mass term breaking explicitly the chiral symmetry. In fact, it is not difficult to see that we could cancel
the m?(t) term in (5) by choosing &= 1/6, which is the value rendering the theory scale invariant [21]. Thisis
just a consequence of the lagrangian chiral and conforma symmetries being incompatible in a curved
background [22] or, equivalently, at nonequilibrium. In other words, for £ =0 —which is our choice, since we
want to preserve chiral symmetry, as in Ref. [22]— we may interpret the m?(t) term, in the chiral limit, as the
minimal coupling with the background yielding chiral invariance.

The above equivalence turns out to be very useful to renormalise our model, consistently with ChPT. In fact,
al the one-loop divergences arising from (7) can be absorbed in the coefficients of the @( p*) action S,, which
consists of the Minkowski terms with indices raised and lowered with g, plus new chira-invariant couplings
of pion fields with the curvature [22]. In the chiral limit, those new terms read

Sil7]

fd“ )[ L R(X) g + Ly, R ] trg,UT(x) ,U( x)

—%/;:d“mra[fl(t)atz—fz(t)V2+mf(t)]w“r@’(fr“) (8)

where R,, is the Ricci tensor, L;; and L,, are two new low-energy constants [22] and we have given the
two-pion contributions in the parametrisation (2), after partial integration, with our RW metric, where

o [fo]
12)f3(t) _L12 f4(t) )

f(t fol?]
fo(t) =4{(6Ly + L) f3((t)) + Ly [f‘f(t))]

f,(t) = 12[(2L,, + L

f,(1) f(1) + (1) f(t)
f(t)

for t>0 and f(t<0)=0. The above terms are the only ones in S, containing two pions and they will
renormalise purely nonequilibrium infinities —which are time-dependent and vanish for t < 0—. It isimportant

m(t) = - +3f(1) . (9)
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to bear in mind that to cancel the one-loop new divergences only L,; needs to be renormalised, whereas
L, = L%, [22]. We will come back to this point below.

Next, we will concentrate on the Green functions time-ordered along C [17,18]. Unless otherwise stated, we
will be using the parametrisation (2) in the remaining of this work. The two-point function defines the pion
propagator G2°(x,y) = —i{T.73(x)w(y)), which to leading order G2°(x,y) = §3"G,(x,y), by isospin
invariance, and

{0+ mM(x°)}Go(x,y) = =8:(x° = y*) 8P (x —y) (10)
with KMS equilibrium conditions Gy (x,t; —iB;;y) = Gy (X,t;;y), the advanced and retarded propagators
being defined as customarily along C. Notice that G(x,x’) = G(t,t',x — x’) due to the nonequilibrium lack of
time trandation invariance. Therefore, we will define, as customarily, the *‘fast’”’ tempora variable t —t' and
the “‘slow’” one 7= (t +1')/2, so that F(qp,w,,7) and F(w,,t,t"), with of = |gl?, will denote, respectively,
the fast and mixed (in which only the spatial coordinates are transformed) Fourier transforms of F(x,x’). Note
that F(qo,wq,f) depends separately on g, and o, because of the thermal loss of Lorentz covariance and has
the extra nonequilibrium 7-dependence. Then, in the mixed representation, (10) becomes
2

— + ol +m(t)

02 Go(wq,t,t’)= —éc(t—1t") (11)

The general solution of (11) is only known explicitly for some particular choices of m?(t) [21,17,18].
Formally, we can write it as a Schwinger-Dyson equation as

qr-

Go(“’ t t,) = Ggq(a)q,t—t’) + /dzmz( Z)Ggq(“’q’t_ Z)GO(wq’Z’t,) (12)
c

with Ggq(wq,t —t') the equilibrium solution of (11), i.e, with m?(t) = 0.

Another object of interest for our purposes is the Lehman spectral function p(x,y) =G~ (x,y) — G<(X,y)
[16], which in equilibrium to leading order is pgi(q) = —2misgn(q,)8(g?) [19]. Note that, by construction,
G~ (x,y)=G=(y,x), sothat p(x,y) = —p(y,x) and p(qy, wy,7) = — p(—0p, wy,7). The normaisation of p,
is

1 +o dpo(wq,t,t’)
o) o) - Py &
which can be readily checked by using (12) and po(w,,t,t) = 0.

3. Next to leading order propagator

We will now obtain the NLO correction to the propagator. For that purpose, we need the action in (1) up to
four-pion terms:
1 f(t)y  f2(t)
— - +@(mwb 14
£2(t) ()  f2(1) () (14)

plus the two-pion terms in (8). The two diagrams contributing are, respectively, () and (b) in Fig. 2.

a) Q b) ) Q
.

Fig. 2. Diagrams contributing to the NLO pion propagator (a,b) and axial-axia correlator (c). The black dot in b) represents the interaction
coming from SR in (8).

b 1 2
[é)ﬂﬂ'aa“ﬂ' Ty + 5 (7m?)

S[w]=so[w]+%fcd4x{
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Let us concentrate on G, (i.e, t,t' € C, in Fig. 1) and t and t’' positive, which is the relevant case for our
purposes, as commented above. We will use dimensiona regularisation (DR), so that evaluating the above
diagrams, using (10) with 8(¥(0) = 0, and after some algebra, we obtain in the mixed representation to NLO

G (1) = Gt~ H 10 4100 + oo 28| T oo 1)
+|{jdt f,0,)G (E)Gg (T.t) + 4,(DGs (TG (T.1)]
—[ot'df[ 4,(F0g)G5 (F0) G (L) + (D65 (F0) G5 (T1)]
—fdt 1)Gs (EDGg (T.t) + 4,(D Gy (T.)Gy (tt)]} (15)

and G5 (t,t') = G (t',t), where we have suppressed for simplicity the w, dependence of the propagators, the
dot denotes d /df,

i 1 fh  (f(DH)
Albed) = (g (6f<f> ‘S(fm) i

21G,(T) — 2Gy(1) + 4 8 oD

f,(E) (T .
Fi2] (D) ~ (D) —i[% +%f1(t>k (19)
. Gyt
(1) = fz((f)) ' (17)

and G,(z°) = G,(z,2) is the equal-time correlation function. We observe that (15) is t; and t, independent,
which is a good consistency check. Notice also that by replacing the equilibrium propagators in (15), we recover

G~ (t—t) =Ggir (t—t)

T2
1- 1

which agrees with [4] (note that we have derived it for the contour C, including both imaginary-time and
real-time therma field theory) and is finite in the chiral limit, where there is no tadpole renormalisation in DR
[2]. However, out of equilibrium, the NLO propagator is in general divergent, even in the chiral limit, and the
infinities have to be absorbed in the two-pion counterterms in (8).

4. The nonequilibrium pion decay functions

In a thermal bath, the concepts of LSZ and asymptotic states are subtle, and so is then the extension of
low-energy theorems like PCAC. Thus, pion decay constants are more conveniently defined through the thermal
axial-axial correlator A20(x,y) = (To A%(x) AX(y)). At T+ 0 the loss of Lorentz covariance in the tensorial
structure of A, implies that one can define two independent and complex f? (spatial) and f, (temporal), their
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real and imaginary parts being related respectively with the pion velocity and damping rate in the thermal bath
[23]. Nevertheless, to one-loop in the chiral limit one has [5,4,23]

2

T
1— —

[ =[] =1- =], (19)

with T,=V/6f_= 228 MeV. Despite it being just the lowest order in the low temperature expansion, (19)
predicts the right behaviour and a reasonable estimate for the critical temperature, although, strictly speaking,
f_(T) is not the order parameter [4]. To higher orders, f¥#f! and Imf>'+ 0 [23].

Let us then analyze Afj? in our nonequilibrium model. The relevant quantity, as far as f_ is concerned, is the
spectral function p,, =A7, — A, with A% = §2°A . We readily realise that p,,(dy,0,7) = —p,,(— 0o, —

g,7). Then, from rotational symmetry,
pij(QO!q'T) =0 q pu( QO:wan) + 6 Pd(%:‘”qa’r) (20)

with p ((gg) = —p o(—0) * and Pjo(do,0,7) = q; ps(Q, wg, 7). Therefore, p,, is characterized, in principle
by the four functions p,, pg, ps and po,. However, they are related through the A, conservation Ward Identity
(WD 3Xp*"(x,y) = 4’p*"(X,y) = 0, which aso holds in our model. Thus, we get

i
qopoo(QO’wq:T) - wgps(%qu"f) - EPOO(qO’wq’T) =0,

i
qops(%’wqﬁ) - wSPL(QOiquT) + EPS(QO’%-T) + pa( o, @q,7) =0, (21)

where the dot denotes d/dr. Thus, only two components of p,, are independent, as in equilibrium [4], where
there are no time derivatives in the above equation.

At T=0 one has p_=27f?sgn(q®)8(g?), since there exist NGB states. That is not the case at T+ 0,
where the pion dispersion relation is not in general a §-function [4]. In fact, to define properly f,_(T) requires
taking the w, — 0" limit, in which a zero-energy excitation still exists [4], although to NLO there is no need to
take that limit. Extending these ideas to nonequilibrium, we will define the time-dependent pion decay functions
(PDF) as

1 - d
2 1 H H !
[f2(0]" =5~ w!% f_md%%PL(%qu:t) = w:grg)gam(wq-t,t ) L (22)
1 . *® .
OO = 57 [ Sorden) = I o) @
i e o d ,
fr(g.(t) = =57 lim, | doigtl ps(Go. 0 1) = 2, im, grsleatt)] (24)

The functions f3(t) and f!(t) are the nonequilibrium counterparts of the spatial and temporal pion decay
constants respectively, whereas g_(t) vanishes in equilibrium. However, the above PDF are related through the
WI. Integrating in g, in (21), we get

f3(t t 1OIf‘tht 25
‘n'( )gﬂ'()_Ea[ 71'()77( )]’ ( )
so that only two PDF are independent, as in equilibrium [23]. Let us now check the consistency of our

definitions to leading order. From (6), p/°(w,,t,t") = if (D f(t') po( wg,t,t') and py =0, so that, using (13) yields

*0ur p_ and py correspond in in the notation of [4], to sgn(q®) pa2 / w2q? and sgn(q®)pf respectively.
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fS()?5 =f2(t), i.e, the PDF coincides with f(t) to leading order, as it should be. Similarly, we find
fi(t) o =F3(t) o ="f(1) and g_(t) o = f(t), so that our definitions are consistent to leading order.
To NLO, we need the axial current up to #(2). From (3),

o 1 f(t)
]

- 21(0) 729wt — mY,m? —~ Suomw

with AILLO in (6). Thus, according to our chiral power counting, we have three types of NLO correctionsto A, ,.
The first is the NLO correction to the pion propagator we have evaluated in Section 3, coming from the product
of the @(ar) terms above. The second is the product of the @ () with the @ (%), represented by diagram c) in
Fig. 2, and the third comes from the modification in A, due to the action (8), which amounts to prefactors
[1+f(D]and [1+f,(D]in Ay and A; respectively. Then, evaluating p,, to NLO, after using (15) (we take,
without loss of generality, both t,t' € C; and positive) and (22)—(23), we finaly arrive to

[£2(0)]7 =2(t)[1+ 2f,(t) — f,(t)] — 2iGy(t) (27)

[ =121+ (1] - 2iGo(1) (28)
for t> 0. This is the main result of this work. It provides the NLO relationship between the PDF and f(t) “.
Notice that f3(t) # f!(t) to NLO, unlike the equilibrium case, due to the effect of nonequilibrium renormalisa-
tion. However, note that [ fS(t)]* — [ f1(t)]* = f2(D[ f(t) — f,(t)], which is finite, since it depends only on L,
which does not renormalise. This is indeed an interesting consistency check, because the one-loop infinities
appearing in G,(t) can then be absorbed in L,,, rendering both f5(t) and f!(t) finite. We also remark that we
did not need to take w, — 0" in (22)«(23) to arrive to (27)—(28) (there are still NGB to NLO). Note also that
both f>' are red to this order. We have performed the following consistency checks on (27)—(28): first, the
equilibrium result (19) is recovered (for the contour C) simply by replacing G§%= —iT?/12 and f, =f, =0.
Second, by calculating g_(t) from pg, through (24), we check explicitly that the W1 (25) holds and, third, we
have calculated A, inthe 7 parametrisation, arriving to the same result.

Therefore, (27)—(28) alow to express nonequilibrium observables (like decay rates, masses, etc) to one loop
in ChPT, in terms of the physical f_(t), which could be measured, for instance, in nonequilibrium lepton decays
7 — ly,. At this stage one can follow different approaches. Exact knowledge of f(t) would require to solve
self-consistently the plasma hydrodynamic equations or, equivalently, Einstein equations for the metric.
Alternatively, one can treat f(t) as external —so that (27)—(28) provide the system response— and study
simple choices consistently with (4) [20]. In what follows, we shall take f(t) arbitrary and expand it near
t=0", analysing thus the short-time evolution.

For short times, the particular form of f(t) is not important and we can parametrise the nonequilibrium
dynamics in terms of the values of f(t) and its derivatives at t=0". As we discussed in Section 2, this
approach is justified for times t <t,,, with t,., =1/f (0)= 2 fm/c (compare to the typical plasma time
scales 5-10 fm/c [12]). The general solution of (11) with KMS conditions at t; can be constructed in terms of
two independent solutions to the homogeneous equation, which have to be continuous and differentiable Vt € C
so that the solution is uniquely defined [17]. Therefore, they have to match the equilibrium solution and its first
time derivative at t = 0. With these conditions and expanding both f(t) and the solutions near t = 0" we find to
the lowest order

A1) = [ Ad(x.t) 272| + @ (%) (26)

[ Biw
G (wq.tit) = —2—%C0th[7q}[l—mzt2+ﬁ(m4t4)] (29)

for t>0, with m?= —f(0")/f(0*). For m?><0 we see the unstable modes threshold, making the pion
correlation function grow with time. The effect of those modes is not important for short times though, where

4 Gy(t), f,(t) and f,(t) depend implicitly on f(t), through (10) and (9).
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the exponential growth of the correlator is not appreciable. Observe that in (29) the time dependence factorises,
so that the momentum dependence is the same as in equilibrium and then we can integrate it in DR, yielding the
finite answer (18). Then, from (27)—(28) we get

2

[£2(0]"= [fsvtlz{l‘ % 2H-

c

-2
201 — =

1 2
Cc

—H?2

t?+o( p3/A§)} (30)
for t > 0, where H = f(0*) /f(0*), with the renormalised constants

[f5]°=12(0%) +4[(Ly, — 6Lyy) P — Ly H?]

[£4]%=12(0%) + 4] = (Lyp + 6Lyy) M2 + Ly, H?] (31)

and where the H and m parameters (which are #(p) and play the role of the Hubble constant and the
deceleration parameter in the Universe expansion) also get renormalised, in terms of f1 ,(07), f1 ,(0") and so
on, but those are subleading contributions. Thus, for short times, all the effect of the S, terms, which is T,
independent, is to redefine f_(0"), since there are no infinities coming from G, in DR. We insjst that this isjust
the effect of truncating the seriesin t and it is not true in general. Notice that (31) implies necessarily a nonzero
jump Af=f(0") —f (see our comments in Section 2) so that the divergent part of L,; can be absorbed in

f2(0") rendering a finite A f§' = AfS% In fact, that effect is very small compared to the other contributions in
(30), and so it is the dlfference fs(t) —f! (t) since Ln, L%, = 1073 [22]. Notice also that for the particular case
H?2=m?> 0, renormalising as £2(0%) = £2 + 247 L, weget fS=f'and A, =0.

Finally, we will estimate some physical effects related to f (t) For that purpose, we will ignore, for
simplicity, the effect of L;; and L;, and, based upon (19), deﬁne the plasma effective temperature as
f2(t) =11 — T2(t)/T2]. Therefore, we can also define a critical time as T(t)) =T, and a freezing time
T(t;) = 0. Thus, we will impose 0 < T(t) < T, and then, through our short-time results for f_(t), determine
either t, or t;, depending on the initial conditions (T(t) is just quadratic in time to this order). Notice that we
are following a similar approach as in equilibrium when one extrapolates (19) until T=T,. Let us then take
typical values T,,/H|,/m/= 100 MeV and retain only the leading order in x=T.2/T2, consistently with the
chiral expansion. Then, if H =0, the system cools down until t?m? = —x(1+ x)(t,; = 0.2 fm/c) if m* <0,
whereas for m? > 0 it is heated until t2m? = 1(t_ = 2 fm/c), independent of T,. For H > 0, there is cooling
until t;|H|=x/2(t; = 0.2 fm/c). Findly, for H < 0 and m? > O there is heating until t_|H|= (1 — 3x/4)/2(t,
=2 fm/c), whereas if m? <0, there is heating until a maximum t,,|H|= (1 + x/2) /2 and then cooling down
until t;|H|= 1+ x(t; = 2.3 fm/c). We observe that the effect of the unstable modes (m? < 0) is always to cool
down the system and that the freezing time for H < 0 is much longer than that for H > 0. Some of these time
scales are indeed longer than those to which our short-time approximation remains valid, but they have to be
understood as estimates, similarly to estimating T, at equilibrium through (19), even though the low T approach
is less reliable near T=T..

Comparing with [12], naively identifying the LSM order parameter v(t) =f_(t) (in proper time), we see a
similar short-time evolution, athough our estimates for the time evolution duration are somewhat lower. This
was expected, since the initial values in Ref. [12] correspond to T; = 200 MeV and |H|= 400 MeV, which are
too high for our low-energy approach. An important remark is that in typical simulations like [12], v(t) reaches
a stationary value, about which it oscillates (thermalisation). It is clear that we cannot predict that type of
behaviour only within our short-time approach, quadratic in time, but only estimate the time scales involved
—similarly as to why ChPT cannot see the phase transition—. Therefore, in view of the above estimates, we
believe that our ChPT model may be useful for studying the different nonequilibrium observables evolution,
from a stage where some cooling has already taken place onwards. In principle, we could approach closer to T,
by considering enough orders in our ChPT, although in practice, beyond one-loop, some resummation method,
like large N, will need to be implemented.
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5. Conclusions and Outlook

We have extended chiral lagrangians and ChPT out of therma equilibrium. The chiral power counting
requires al time derivatives to be #( p) and to lowest order our model is a NLSM with f— f(t). This model
accommodates unstable pion modes and corresponds to a spatialy flat RW metric in conformal time with scale
factor a(t) = f(t)/f(0) and minimal coupling. We have exploited this analogy to establish the renormalisation
procedure, which allows to construct the fourth order lagrangian absorbing all the loop divergences, which in
general will be time-dependent.

We have applied our model to study the time-dependent pion decay functions, extending the equilibrium pion
decay constants. In genera there are two independent PDF, as in equilibrium, and to NLO in ChPT they already
differ, unlike equilibrium, due to renormalisation. We have obtained them to NLO in terms of the equal-time
correlation function, analysing their lowest order short-time coefficients and their dependence with T;, and
discussing the relevant time scales involved within the context of a RHIC plasma.

Among the aspects of our model which are worth to be studied further are the long-time evolution, by
choosing suitable parametrisations for f(t), including the analytic approach, and the behaviour of the two-point
correlation function at different space points, which would allow us to investigate the formation of regions of
unstable vacua (DCC) [20]. Other applications and extensions, to be explored in the future include photon
production in the pion sector (by gauging the theory and including 7° anomalous decay), the quark condensate
time dependence (by including the mass explicit symmetry-breaking terms), the N;,=3 case, large N
resummeation and proper time evolution.
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