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ABSTRACT RETI

In this paper, the resolution of stochastic multiple objective programming problems is
stodied. The existence of random parameters in the objective functions has yielded to the
definition of several efficient solution concepts for such problems in the literature, We will
focus our attention in the study of some of these concepts, namely, minimun risk and 3
probability, Once these concepts are defined, the relations among the sets of efficient
solutions obtained are studied.

RESUMEN

En este articulo se estudia Ia resolucidn de problemas de programacién estocistica
multiobjetivo. La existencia de pardmetros aleatorios en las funciones objetivo ha dado lugar
a varios conceptos de solucién eficiente para estos problemas que aparecen en diferentes
trabajos. Nos centramos en el estadio de algunos de estos conceptos, concretamente, minimo
riesgo y probabilidad . Tras la definicion de estos conceptos, se estudian las relaciones entre
los conjuntos de soluciones eficientes obtenidos.
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1. Introduction

Let us consider the following Stochastic Multiple Objective Programming Problem:
Problem SMP:

m;in Z{X, £) = (21 (x,£) ,22(x, £}, ...,Zg(l, 6)){

st.x<D
where x&R™ i the vector of decision variables of the problem and £ is a random vector
defined on aset EC R, We assume that the family of events F is givenand that for every A<F
the probability of A, P(A), s kmown. We also assutne that the distribution of probability,B
is independent of the decision variables X ,X2, ... ¥n..

Wik assume that the functions z (x, £),z2(x, £), ... (x, £) are defined in the space R* < E.We

also assnme that the set DC_R™ is compact, convex and nonemypty and that it is a determin-
istic sct or it has been transformed to its deterministic squivalent by the criterion of chance
constraints.

In this paper we solve the problem in two stages.In the first stage we transform the
stochastic problem into another multipte objective problem that is its_deterarinistic eguiv-
alent, according to some of the criteria of transformation of the stochastic objectives.In the
second stage the set of efficient solutions of the deterministic multiple objective problem
obtained in stage one is calculated.For a stochastic problem it is possibls to obtain different
sets of efficient solutions, one for each of the criteria used io obtain the deterministic equiv-
alent. The choice of the criterion will depend on the characteristics of the decision process
that generate the problem.

Inthis paper we consider two different concepis of efficiency | Minimom rigk efficiency
for levels u1,82, ...,u, and efficiency with probabilities B1182, ., B, and we analyse the
relationship between these two concepts.

2. Minimum risk efficiency for levels u,uo, ...,u,.

This corcept of solution,defined by Stanco-Minasian and Tigan (1984), considers efficient
solutions of the Problem SMP to the efficient solutions of the mmitiple objective deter-
ministic problem that is obtained when we apply the minimum risk criterium to cach of
the objective functions of the problem. For applying this criterion it is necessary o fix
a level of minimmm satisfaction for each of the stochastic ohjectives n1,82,...1q, W ER,
k=1,2...,q.When these values are fixed the minimum tisk problem, the deterministic equiv-
alent of Problem SMP consists of maximizing the probability that each of the stochastic
objectives does not surpass the fixed satisfaction level, in such a way thai the deterministic
equivalent to Problem SMP is:
Probiem MR(u)

max(Plzy(x,8) < ur)yen Pl2g(x,8) <ug))
stx € D
For this problem, Stancu-Minasian and Tigan (1984) define the concept of vectorial




solution minimum risk of Jevel u for the Problem SMP in the following way:

Definition 1.

x€D is a vectorial solution minimem risk of level u if it is an efficient solution to Prob-
lem MR(u).

From now on,we shall cali these solutions as efficient miniraum risk solutions of levels
1,125 v sllg.DEnote by Eng (m), the set of efficient solutions to the Problem MR(u).

The multiple objective deterministic equivalent problem that is obtained applying this
criterion, Problem MR(n) depends,in generl,on the fixed vector of satisfaction levels u,
in such 2 way that, in generat, givenu, v’ €R?,if u7u' then the sets of efficient minipmm
risk solutions of levels u and u* will be differetit: Epg (1) Bam (2%).

3.  Efficient solutions with probabilities 5, 2,, ..., 3,.

The concept of efficiency with probabilities 3;, 83, ..., B, is 2 generalization of a concept
defined previously by Goicoechea, Hansen and Duckstein (1982), the concept of stochastic
nondominated solution of level /3 that they define in the following way:

Definition 2: Stochastic nondominated solution of level 5.

Letzz(x) be a value belonging to the rank of the random variable 7z, (x,£ ),k = 1,2, ..., q.
x€D is a stochastic nondominated solution of level 3 € (0,1) if:

D P{ze{x,8) <z (x)} =8, VEc {1,2,..,q}

(ii)There does not exist a vector yeD, such that:

* Plzn(né) < za() = B,V iE12,..q.

3G (1,2, .., g} such that z,(y)<z(x)

*ze(y) € ze(x)vhk € {1,2, ..., g}, E #1

From this definition, given the Stochastic Multiple Objective Programming Problem, if
we apply the Kataoka criterion to each of the stochastic objective functions of the problem
with a probability &,we obtain the following problem:

1 T
N W= (Uq, Uz, -, U,
(<t ut) ( §R XLV IRETE] q)

stP{za(x, &) <w} =8, k=12,
xeD

and we find that the set of efficient solutions to this problem is the set of nondominated
soiutions of level 2 previously defined, because for each ke {1,2, ..., ¢} the variable uy,
will be a function z (x) that is obtained from the equality P{ 2 (x,£) < u;} = S.Inthis way
wa find that the set of nonlominated sohitions of level § is obtained from the application of
the Kataoka criterion 1o each of the objective functions of the stochastic muttiple objective
problem, fixing the same level of probability for all the stochastic fonctions.

From this concept, it is possible to generalize the idea, considering different levels of
probability for the objective functions of the problem in the following way:

Problem K{3)
. ¢
(?},:uxz)u 7 {1, Uy veey Tg}
shP{o(x,£) Sup} = Fp, k=12...q
=D
Definition 3.

Let xcB. We say that x is an efficient solution with probabilities B, Ba,s . By if there
exists neR? such that (x*,uf)? is an efficient solution of the Problem X(j3).

Denote by Ex (8) C R™ the setof efficient solutions with probabilities & = (B3, Fas ..y F,)"-

Note that the concept of efficient solution with probabilities 8, Bay oy '33 is defined for
the vectors x, though the solutions of the problem to solve are vectors (=t 'Y € RPHL

As inthe case of minimnm risk,shis concept of efficiency is associated with some levels
of probability previonsly fixed, and therefore the deterministic muitiple objective problem
in which efficient solutions with probabilities 8, 83, ..., 8, are obtained (Problem K(3 ‘),
depends, in genetalon the fixed vector of probabilities,3 = (B4, P :..,,(_iq)‘.'l'inen, in
general, given 3, 3¢ RIJL B # 3 the set of efficient solutions for 3 is different to the
one obtained for 8 Ex (3) #ZEx{6").

4. Relations among the efficient minimum risk solutions
of level uj uy ...,u, and the efficient solutions with

probabilities 3; 3, ..., 5,

From the Problem SME lot us consider the following problems:.

Probiem MR(u):
max (P {z{xE) <}, .., P{z(xE) <ug bt
stxeD
and
Probtem K(3):
(ig,i“:g)u=(u1,u2,‘..,uq)‘
st Plom(xf) S} =0y
xcD

corresponding to the deterministic programs from which we obtain the efficient solutions

miimum risk of levelsuy ug, ...,u, and to the efficient solutions with probabilities 5, 8, .-, B,

for the Problem SMPENow we are golng to analyse the relations among the sets of efficient

poinis of these two problems.
e assume that the Feasible sets of both problems, DC R™ and

{(='*) e D xRT| P{z(x:8) S up}=Fr}
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are closed ,bounded and nonempties,and therefore both problems have efficient solutions.
WE also assume that for every ke {1,2,...,4} ,and for every xeD, the distribution
function of the random variable 7;(x,£) is continuous and strictly increasing These hy-
potheses imply that for every probability 3, ,there exists # unique real mumber v such that
Pla(xf) Su} =B
Let By {u) be the set of efficient solutions to the Problem MR(n), and Ex (3) the set
of efficient solitions to the Problem K(3). The following theorem relates both sets.

Theorem 1
Assume that the distribution function of the random variable zy (x,£} is continuous and
strictly increasing Then x is an efficient solution to Problem MR (u) if and only if (x*,u®)*
is an efficient solution to Problem K(/3), with u and /3 such that:
P{Zk(xaf) < uk} = ﬁk Ve {1129 ey q}
Proof
V& demonstrate the theotem by reductio ad absurdum.

(&) If x is an efficient solution to Problem MR(u), then (x*,u*}? is an efficient solution
10 Problem K(A).
It is clear that (x*,n?)? is a feasible solution to Problem K(3).
Let us suppose that (x*,u*)? is not efficient in Problem K(3). Then there exists a feasible
vector (x'* u)* that dominates to (x*,u?)*, and therefore it is verified that:
eh
P{zk(xl=£) < ui} =G, =P {zk(xig) < "'—"‘k} ke {1127'"1 Q}
g <up ,Vk=1,2,..qand u < u,forsomes e {1,2,..,¢}
In accordance with the properties of the distribution function of the random variable
zx(x, £},we have that if u}, < uy andu} < u, then:
Pla(x,8) <upl £ Pzl £) < w}
P{za(x",é’) < '”‘;} < P{za(x',é') = “s-}
Therefore,
P{a(x€) <up} P{x(x,8) < i} < P{alx', ) <w}
Pla(xg) Su} = Pla(d,8) <ul} < P{n(x,£) <u}
and x is not an efficient solution to Problem MR{u) , which contradicts the hypothesis.

) If (x* u*}* is an efficient solution to Problem K{(3), then x is an efficient solution to
Problem MR({u).
It is clear that xcb.,
Suppose that x is not an efficient solution to Problem MR(u), then there exists a feasible
vector x’' €D, and it is verified that
B = Plang) Sm} < Pla(x,8) <wm} k=l2..q
B, Pz, (xg) <u,} < P{z(x,£) <u},forsomes e {1,2,..,4}
For the properties of the distribution function we know that there exist u} uj, ..., up, with

il
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w), <uy, Yk € {1,2,.., 4}, and there exists at least one s€ {1,2,...,q} , such that v} <u,,
verifying that:
Ay, Plzp{xt) <u}= Pla(s g) <up} Ve {1,2,...q}
B, Plz(x€) Su} = P{z(x, &) <u;} se{1,2,..,q}
which is in contradiction with the hypothesis.

Corollary 1.
Uuers {Bur (1)) = Ugen{Ex(B))

,With,@ = {)@ z(ﬂl)ﬁZ‘)"')ﬁQ) ERI | ﬁk € (0! 1)! FLZ:'"?q} .
The proof of this corollary is immediate from the previous results.

From the results obiained we have that the unions of the sets of efficient points of both
problems coincide Moreover, if €D is an efficient solution to Problem K(3), for some
fixed probabilities 8 = (81, Bz, -, B, ) fromtheorem 1, we know that it is also an efficient
minimum risk solution of levels 1y, ... g, maintaining for the satisfaccion levels and the
probabitities the relation that appears in the theorem , and vice versa. This result permits us
to perforn the analysis of these efficient sohutions by one of the two concepts and, from
theorem 1, to obtain the level or the probability for which it is efficient in accordance with
the other

5. Application of the Cantelli inequality to the distribution
function of the stochastic objective

In previous sections we have swudied the concept of efficient minimum risk solution of
levels 1y ,uz, ...,11; and ihe concept of efficient solution with probabilities By, Ba, ..., B,
We also have obtained the relationship betwwen the two concepts.In this section we are
poing to prosent an approach (o try to study some cases in which it is very difficult, if not
impossible, to obtain these solutions.Let us note that in order to obtain efficient solutions
to Problems MR(n) and K(3), it is necessary to know the probability distribuion of the
stochastic objectives of Problem SME and this is not always possible.We propose using
Cantelli inequality (Rao (1973)) in order fo obtain some insight in these cases.

Cautelli inequality

Let £ be a random variable, with expected value E(£) and finite variance crg.Then:

2
o
PIE—E(EY<A} < —L _ifa<0
P = X ;
(0'? + %) (ag +2%)

|

LifAZ0

P{E-E( <A} 2

Letus suppose that we know the expected value of the random variable zi{x£), B {z(x€)}.

anditsvariance Var {2 (x,¢)} .Suppose also that the feasible set of the deterministic equiv-



alent D, is such that the variance is finite and its value is different from zero for all feasible
X.

‘In _this case, if we apply the Cantelli inequality fo the distribution function of the k
objective , forwy, = 7 {2 (x,£}} jtaking X =u; — B {#(x.£)} > 0, we obtain;
Plan(xg) < w) = P(z(xg) — B {2x(x£)} < v — B {z(x.£)} 2
. o ~ E {z(x.8)}*
T Var(a(x£)) + (i — E{a(x6)})?
T we substitute the distribution functions of the objectives by these bounds in Problem

MR{u), we obiain the following new problem;
Problem AMR{(u):

(1 — E{z(x)]* (g - E {z,(x4}1)*

Ea (Var(a ®E) + (01 — E{a(mH 1" Var(g(xe)) + (uy — E {z(x&
st E{n{xL) <uk=1,2,.,q
icD

It is clear that the set of efficient solutions to Problem AMR(u) , that we denote by
Eanm{w), in general does not coincide with the set of efficient solutions of Problem MR (u).
'}"hat’s to say that E vz (w)#Ewg (u), and the set Eqym (u) can only be talen as an approx-
mation of the set Eyg (u),

On the other side ,if we define the set:

8= { (=f,u’)" € R*¥9 | 1/15—,‘;?%\/%:{%(&5)} +E{z{x&)} <w J=12,..q35€ D}

Jfrom the Cantelli inequality it can be proved that:

S {(x,u’)* | P{z{x) Sw} 2 B, . k=12,.q, x €D}
and we state the problem:
Problem AK(3) :

I(leigu = (u11 uz, '--}uq)t

s, B {z(x8)} + “1"’%@;; SVar T B)] < v, k=12,

xeDCR"

As in the minimum risk case, the set of efficient solutions to Problem AX(3), de-
pﬂted by Eax () will be different from the set of efficient solutions to Problem K(A).It
is Eax(8) #Eg(4).in general, but we can take the first one as an approximation of the
second ong,

The following theorem gives us the relation between the efficient solutions of Problems
AMR(u) and AK(3).

Theorem 2
x is an efficient sotution to Problem AMR(u) if and only if (x*u?)? is an efficient solu-

tion to Problem AK(/3), with w and 3 such that;

U = l—f%,; VVar {z:(x.€)} + E{z(x€)} n
or equivalently
_ (u — E{z(x£)})? _
er = Vor {Zk(!,g)} T (“k _E {Zk(x,g)})z N fork =1, 2, vy (2)
Proof.,

We demonstrate the theorem by reductio ad absurdum.

{a)Let x be an efficient solution to Problem AMR{(u), €E 4 (w).Suppose that =t ut)t
is not cfficient for Problem AK(3), with 8 = (3,082, ... 5,) , and B, given by (2) ,
YE=1,2,..,4q

It is clear that (x*,u®)* is a feasible solution to Problem AK(3).

There exists a solution (x',u'*)® such that:

xXeDd
I ﬁﬁﬁ‘ Var {z(x', &)} + E {2z, &)} <uf. Ve € {1,2,...,0}
= P
with u}, <uy, for eachke {1,2,...,g}, and u <u,, for some sc {1,2, ..., qt.
Then:

B ar G Bl + B8} < we¥b=120

1-58;
1 fsﬁ VVar{z(x,8)} + E{z(x,£)} < u,,forsomese€ {1,2,...,9}
it is clear that F {z(x',£)} <ux ¥k € {1,2,...,}.
WiE obtain that:
(0 — E {z(x", &) })° _
Be S Var (o, B + G E {mlrh B2 77
(11.9 - E {ZE(X’;g)})Z s€ {1, 2, ...,q} i

< ;
Pe = Var (a0, 8 + o — B (50,80
and according 1o the vales of /3, and 3, ,we have that x is not an efficient solution to
Problem AMR(u) , which is in contradiction with the hypothesis.

(b)Let (x*,u%)* be an efficient solution to Problem AK(83), with 3 given , and with u
givenby (1).vk =1,2,...,¢.

1t is clear than x is a feasible solution to Problem AMR(n).

Suppose that X is not an efficient solution to Problem AMR(u). Then there exists a
vectorx’ €D, verifying that F {2x(x',£)} <u

foreach k = 1,2, ..., ¢, and such that x’ dominates x , that is to say:



(e B (e (x£)))" (o — B {5 (', €)))° fions. ), Reidel Publishing Company.

< .
Var {z(x£)} + (s — B {2(ma)})? = Var {au(x, )} + (s — ¥ {z(x )P Stancu-Minasian LM, and 8. Tigan (1984). "The vectorial Mirimmm Risk Problem ° Proceedings
.and there exists an se {1,2, ..., g} such that : of the Cotloguium on Approximation and Optimization Clnj-Napoca. .
(u; — B {2 (x.£)})° < (u, — E{z{x',£)})? Stancy-Minasian, LM. (1992). ~Sfochastic Programining with Multiple Fractile Crite-
Var {z,(58)] + (5 — E{zE)1 2 = Var (208} + (e — B {z (0, £)12 ria® Rev. Roumaine Math. Pures Appl. 37,10, pp. 939-941.

Szidarovszky,F, MLE. Gershon and L. Duckstein (1986). Techniques for Multiobjective

W& know that; ;
. Decision Making in Systems Management. Elsevier

= (u — F {%{=£)D°
L 7 {ze(x 8)} + (uy — F {2:(x,€)})2

which is equivalent to:

g, = 4 f T fkﬁk VVar {z(x£)} + E {z(x,8)}
forevery ke {1,2,...,q}.

V& have that:
(ux — B {z(x'£)})® _
P S G Tt 1+ (un = E Lo B = 2t
which implies that:

ug > ;1,‘ I f]jﬁk VVar {z(x' )} + E{z(x &)}, k= 1,2,...,¢.

and we have that:

(u, ~ E{z,(x'£)})?
P Var (o £+ (e — B (mw B2 ° € B2
and therefore;

u, > lesﬁ v Var {z,(xE)} + E {z(x'£)}, forsomes € {1,2,..,q9}.

which contradicts the hypothesis that (x*,u?)? is an efficient solution to the Problem
AK(ﬁ) "
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