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We prove the convergence of the solutions for the incompressible homogeneous
magnetohydrodynamics (MHD) system to the solutions to ideal MHD one in the
inviscid and non-resistive limit, detailing the explicit convergence rates. For this
study we consider a fluid occupying the whole space IR* and we assume that
the viscosity effects in this fluid can be described by two different operators: the
usual Laplacian operator affected by the inverse of the Reynolds number or by a
viscosity operator introduced by S.I. Braginskii in 1965.

1. Introduction

The magnetohydrodynamic (MHD) equations govern the macroscopic be-
havior of electrically conducting fluids submitted to the influence of magnetic
fields and they are obtained by coupling the Navier-Stokes system for the
fluid flow and the quasi-stationary Maxwell’s equations (see, for instance,
Cowling? or Strhmer?4).

The nondimensional form of the one-fluid homogeneous incompressible
MHD system in the whole space IR? is given by

3 a ]_

8—‘; +(u-V)u—F (u) +Vp+SV (§B2> ~S(B-V)B=f in (0,T)x I’,
B

aa_t+(u-v)B—(B-v)u+umrot(rotB) =0 in (0,7) x I?,
divu = 0 in (0,7) x IR?,
divB = 0 in (0,T) x IR?,
u(0, 2) = ug () on I,

| B(0,2) = By(x) on R,

(1.1)
for a fixed T' > 0, where u = (u;);_; 5 3 is the fluid velocity, B = (B;);, 1 =



1,2,3, the magnetic field, p the pressure of the fluid and f € IR® represents
a (nondimensional) volume density force. The two dimensionless numbers
appearing in (1.1) are the magnetic viscosity v, := ﬁ (with Rm := L, U,op
being the magnetic Reynolds number, which is proportional to the magnetic
permeability 1 and the electric conductivity of the fluid o, being L, and U,
the characteristic magnitudes for length and velocity) and the constant S
which is proportional to p. We have denote by F (u) the viscosity forces
acting on the flow which will be specified later on.

When in the above system we neglect the viscosity forces in the fluid and
we assume it to be perfectly conductor, i.e., non-resistive, we are under the
hypothesis of ideal magnetohydrodynamics whose mathematical equations
are given by

du’ 0 0,5 0)2 0 0 0 . 3
W+(u -V)u—|—§V(B) —S(B -V)B +Vp° =f in (0,T) x IR?,
aBO 0 0 0 0 : 3
W—F(u-V)B—(B-V)u =0 in (0,T) x IR®,
divu®= 0 in (0,T) x IR3,
divB%= 0 in (0,T) x IR3,
u’(0,7) = ud(z) on IR,

[ B%(0,7) = BY(z) on IR,

(1.2)

The MHD systems appear in diverse areas of interest, being the base of many
complex models in astrophysics and nuclear fusion theory (see, for example,
Biskamp?, Freidberg!®). We are specially interested in this last application,
where the incompressible ideal MHD plays an important role, providing the
simplest model for the detection and description of equilibrium and stability
properties for a magnetically confined plasma in fusion reactors as Tokamaks
or Stellarators (see, e.g., Braginskii®, Freidberg!® or Hazeltine and Meiss!®).
In these reactors, there are gases in plasma state, whose behavior is modelled
by the ideal MHD model, coexisting with other gases that are not under the
hypothesis of ideality.

In the present paper we are concerned with the transition from MHD to
ideal MHD in the whole space IR®. Mathematically, this study is equivalent
to establish the convergence of the solutions of the MHD system (1.1) to
solutions of the ideal one (1.2), in the limit to infinity of the electric con-
ductivity o and to zero of the viscosity operator F (the rigorous meaning
of this limit will be cleared up once we have detailed F'). We point out the
analogy between this convergence and the passing from the Navier-Stokes
equations to the Euler’s one in fluid dynamic, for which an extensive bibli-
ography can be found since the pioneer works of Kato!” or Swann®®. In the
study that we develop here, we will suppose that the viscosity effects in the



fluid are described by the usual Laplacian operator affected by the inverse of
the Reynold’s number Re. But we shall also consider the case where viscos-
ity is described by the Braginskii’s operator, introduced by I.S. Braginskii
in 1965, ® which is widely used in the theory of fusion plasmas by magnetic
confinement (see, e.g., Hazeltine and Meiss'®).

We have organized this article as follows: in Section 2 we introduce the
functional framework in which we shall work and we present the operators
that we shall use for describing the viscosity forces in the fluid; in Section 3
we give a local in time existence and uniqueness result for the MHD systems
which we shall use for the setting of the convergence of the solutions. Finally,
in Section 4 we state the convergence for both viscosity operators in the
norms of the Lebesgue space L? and in the Sobolev spaces W2* for s > %,
giving explicit convergence rates. In this direction, we must mention the
existence of two related papers due to Wu3! and Diaz!'!, where the authors
study, by using independent arguments, the convergence of the solution of
the MHD system, with F = g-A, in the limit Re, Rm — +00 and S — 0.
This last limit, which is explicitly used in their proofs, is related with the
degree of capacity of fluids flows to be shaped by using magnetic fields.

2. The Viscosity Operators

Due to the homogeneous incompressible character of the fluids that we are
dealing with, the natural framework in which we shall work is that of the

3
solenoidal vector fields of L? (R3) . We shall denote by H* the vectorial L?-
3 3
type Sobolev spaces H? (IRS) = W2 (IR3) , with s > 0 (not necessarily

an integer) and we shall use ( , ) and (, )s for the inner product in L? and
H? respectively; ||||, and |||, will be used for the associated norms in those
spaces (throughout this paper we shall use this notation indiscriminately for
scalars and vectors).

Let P be the Leray operator, which maps vector-valued function into
divergence-free vectors, given by Pj, = 6;;, — RjRy, j,k = 1,2,3, where R;
are the Riesz transforms. It is well known (see, e.g., Constantin and Foias®,

Kato and Ponce!? or Cannone®) that this projection it is a bounded operator

3
acting on L2 (IR3) and H?, s > 0. Throughout this paper we shall denote

3
by H¢ the image by P of the H® spaces with s > 0 and by H, = PL? (R3) .
That is,
H;={u€e H®: divu=0}.

Next, let us describe the viscosity force F that appears in (1.1). As we
mentioned in the Introduction, we shall consider viscosity effects described
by two different operators. Usually, in an incompressible liquid these effects



are assumed to be given by

1

F (u) = ReAu. (2.3)
where Re := is the Reynolds number and v the kinematic viscosity of
the fluid. In this paper we shall also contemplate the situation in which vis-
cosity is described by the Braginskii operator F (u) = Vu (see Braginskii®),
that appears very often in the study of fusion plasmas by magnetic confine-
ment (see, for instance, Freidberg!3, Hazeltine and Meiss'®). This operator
is given by

LU
v

~ —omi; . .
(VU)l = aszjv L) = 17273 (24)
(summation under repeated index is understood), where 7;; is the stress
tensor defined by mean of five viscosity coefficients p,, a =0,1,...,4, as:

4
Tij = Z YattaWaij (Ya = =1 if a=0,1,2 and 7, =1 for o = 3, 4),
a=0
with Waij = 2271:0 Aaij,kl (h) Wi and Wy = %’f + g—g}i— — §5MV -u . The

coefficients A,;j x; are polynomials in h := B/ |B| and are given on page 250
of Braginskii,> while the viscosity coefficients 1o (@ = 0,1, ...,4) are positive
and just depend on |B|. Nevertheless, in order to avoid this pathological
situation, we shall use here the approach already followed by Spada and
Wobig?® (see also® for a slightly different approach) where the coefficients
in V result to be independent of the magnetic field (that is, A, are
constants). In particular, we shall assume that the viscosity coefficients i,
are approximated by positive constants.

It is well known (see, e.g., Constantin and Foias®) that, in the absence of
boundaries, the Laplacian operator —A and the Stokes’s one —PA acting
on the H*-spaces are identical (that is, —A and the projection P commute).
It is easy to check, by using the Fourier transform, that, under the above
hypothesis on 11 and Ag;j ki, this commutation also holds for the Braginskii
operator V. Furthermore, we have the following property:

Lemma 2.1. (—‘7, H g) is a continuous and m-dissipative operator acting

on H,.

Proof. In order to prove that (—17, Hg) is a m-dissipative operator in H,

3 3
we use the bilinear form &£ : H! (R3) x H! (RS) — IR introduced by
Spada and Wobig,?

4
8uk 8%-
& = Aai' Aai' dx.
(u,v) azzo%z,ua /1123( ikl + Aqijik) Oz, O X

4



This form is continuous and coercive and verifies (see Spada and Wobig?3)
E(u,v)= (—Vu,v) , Yu,v € HL.

Then, (—V, Hg) is dissipative in H,; in particular (see®3)

(=Vv,v) =& (v,v) = min () [|V¥]§ > 0.

Thus, if we prove there exists \g > 0 such that, Vg € H2 there exists
veH?=D (V) being the unique solution to v — /\OVV = g, we would have
that (—V,H g) is m-dissipative (see, e.g., Cazenave and Haraux’). Indeed,

we consider the restriction of € to the divergence-free space H: x H} and
we define a new bilinear form a: H x H! — IR

a(v,w):=&(v,w)+ (v,w).

This bilinear form is again continuous and coercive, hence we can appeal
to Lax-Milgram’s theorem to conclude that there exists an unique v €

L? (R3)3 such that
v—Vv= g.

Moreover, by elliptic-regularity results (see, for example,'*) and using that
the projection P commutes with Braginskii’s operator, we deduce that v €
H2.

For the continuity of V in H,, we use that Vv € HZ,

4 2 2
5 0 Uk 0 U1 .
V = — Aaz d , = 1, 2, 3
( v)i azzo%z/ﬁa /JRs JH <3mj8xl + 3:z:j3xk> X

Hence, as |y, =1,

3 82vk

a=0

[(7v),
! k=1

2
’ 3 A O dx <
0o /1R3 Z a Z Tataflaijkl Oz ;0 + O0x;0xy, x=

82’Uk 82vl

9 3
< (s o) o)) [, 5,

<K (moz}xua)z VI3

((“)l’jal’l + 8m]3mk

2
}dx




Anijua])?. O

with k’ = (4 maXe, j.k,li

Remark 2.2. From the above proof, it follows that V can be also consider
as a continuous operator acting on H™ into H™ 2, i.e., there exists k" > 0
constant such that

A N L CRLEL

3. Existence Results

The existence and uniqueness of solutions for both the MHD and ideal MHD
systems have been already proved in previous papers, when the viscosity
term in (1.1) is taken to be (2.3). In particular, we shall mention the works
by Duvaut and Lions'? and Sermange and Temam?® for the MHD system
in a bounded domain or in the whole spaces IR", n = 2,3, with periodic
boundary conditions; for the ideal case, we mention the articles by Schmidt?!
and Secchi?? where the existence and uniqueness of local strong solutions
is proved in a bounded domain, and the paper by Sulem? for the whole
3d-space with analytic initial data. Concerning the viscosity operator of
Braginskii (2.4), Spada and Wobig?® proved the existence and uniqueness of
a weak solution for the stationary MHD system in a bounded domain.

In this paper, we give a local existence and uniqueness result in the
spaces H above introduced, for the ideal MHD and MHD systems, for both
(2.3) and (2.4) viscosity operators (for which, from now on, we shall use the
notation F'), whose proof lies on some results for evolution abstracts equation
due to Kato (see'6,!%). In order to apply this theory to the MHD systems
we shall introduce some operators defined on the divergence-free spaces H,.
We start with the linear operator A; defined on H, x H, as

—F 0
A1:<0 _Rl_mA>, (37)

with domain D (A;) = H2 x H2 (when F = RLEA this is a well known result

and in the case of F = V it can be easily checked by using standard elliptic
regularity arguments (see, e.g.,'4)).

Let be & = (u,B) € H. x H., r > 2, fixed. We define another linear
operator on H, x H, by

P(u-V) -SP(B-V) ) (3.8)

A2 () = < —P(B-V) P(u-V)

with D (Ag (®)) = HL x H! (notice that, from Sobolev’s imbedding H”
3 3
(LOO (R3)) whenr > 2, andso (u-V)v e (L2 (R3)) for every v € H}).

6



Finally, let us denote by (A (®),D (A (®))) the operator sum of the two
above introduced, i.e.,

A(®) =A + Ay (®), D(A(®)) = H? x H2.

We get that
Lemma 3.1. Let & € H.x H.,r > 2, be fixed. Then, (—A(®),D (A(®)))
generates a contraction semigroup in H, x H,.

Proof. Let us first note that, as we are working with solenoidal vector fields,
the following identity holds:

(u-V)v,v) =0, Yu€ H’, Vv € H.
Thus, given ® € H] x H],
(A2 (®) ¥, ¥) =0, V¥ € H! x H.

and so (—As (®),H} x H}) is dissipative. Moreover, using that P is an
unitary operator on the H*-spaces and from Sobolev’s imbedding, it follows
the existence of a positive constant ¢ such that

A2 (@) ®[l, =[P (u-V)v-SP(B-V)C|,+|[[P(u-V)C-P(B-V)vl,
< c|lvlly ([all, +[[B[,) +c[[C[; (], + S|B|,) <
< cmax (1, 8) [|®|l, [[®], = k|| ®|l, Y& =(v,C) € H} x H}

which allows us to state that (As (®),D (A (®))) it is A;j-bounded with
relative bound being 0.

Therefore, if we prove that (A, D (A;)) generates a contraction semi-
group in H, x H,, we can appeal to the theory of perturbed operators (see,
for example,'® or?”) and conclude that (—A (@), H2 x H2) is the infinitesi-
mal generator of a contraction semigroup in H, X H,. But when F = ﬁA,
it is a well-known result (see, for instance,”) that (—.A1, D (A;1)) generates a

contraction semigroup on H, x H, given by S (t) = (eﬁm,eﬁm) where

e®t is the heat semigroup. In case that F = YA/, we use that (—YA/, Hg) is a m-
dissipative operator on H, (see Lemma 2.1) and from Hille-Yosida-Phillips’s
theorem (see, e.g.,”), we get that this operator also generates a contraction
semigroup on H,. O

Let S be the isometric isomorphism S := (I — A)1/2 : H" — H™ 1
r > 1, that appears when defining the Sobolev spaces of exponent 2 via
the Fourier transform (see, e.g.,?’). We can consider the restriction of this
operator to the divergence-free spaces, that we shall also denote by S, i.e.,

S =(I-A)?:H — H, r>1



that it is also an isometry (note that the expression of S" in the Fourier
variables is (1 + |¢|?) which commute with the unitary projection P). We
denote by A" the product operator of components A" = (S",S"), i.e., A" :
H] x H] — H,x H,, which verifies the following lemma:

Lemma 3.2. Let be ® € H] x H, r > g fixed. There exits a positive
constant A, just depending on ®, such that

A" AT AT (a1, e,y < A

where [,] denotes the commutator operator.

Remark 3.3. The above lemma it is formally equivalent (see to
the existence of a bounded linear operator B (®) € L (H, x H,) such that
ANA(P)AN* = A(P)+ B (P). We also note, that the same result also holds
when we consider not the operator A (®) but As (®).

16 OI'19)

Proof. We recall the estimate

H (1= 2)7, (w-9)] (1 - A)”“/2H0 <c||Vul|,_,, for a fixed u € H”
obtained in'® for the study of the Navier-Stokes equations. Due to the

structure of the operator A (®) it suffices to show that an estimate of type
1™ FIS™"[lp < A

holds for the viscosity operator F, where \ is positive constant. For this
purpose we use that their expressions in the Fourier variables are F (F) (¢) =
p (&) for a.e. € € IR® (we have denoted by F the Fourier transform), where
p(&) =1[¢ |2 when F = A and p is a suitable more complicated second order
polynomial in the variable ¢ in the case of the Braginskii operator (2.4) Thus,
by using Parseval’s identity, we obtain that

H {([— A)r/2 ,F] (I — A)*r/Z VHO — H}" ([([_ A)r/Z ,F] (- A)*T/Z V)HO
= [+ 1) )] (1o 167) o= pi (14 162) 7 (1 +168) e
0

which gives the desired result. O

Finally, we can consider the operator A mapping H) x H], r > %, into the
set of generators of contraction semigroupson Hy,x H,, (—A (®),D (A(®))) .
The restriction of this operator to the space HJ x H} with s > g satisfies
the following Lipschitz property:

Lemma 3.4. There exists a positive constant L such that:

1A () — A0 | cgarz s e,y < L 1% — Tl

8

=0



for every ®, ¥ € HS x HS with s > 3.

Proof. We first note that, as we are assuming s > 3, HS x HS — H2 x H?
and hence the above estimate makes sense. Due to the structure of the
operator A (notice that 4; in the definition of A (®) does not depend on
W), the proof of this estimate reduces to show that

|(u-V)w —(v-V)w|, < Llu—vl,||w]|, forevery u,v,w € H;.

But this is straight consequence of Holder’s inequality and the Sobolev
3
imbedding H* ! « L (R3) for s > g Indeed,

[(w-V)w — (v-V)wlly < [lu=vlg [VW][p < cllu—vlgllwl,

where c is the constant appearing in the Sobolev imbedding. O

Remark 3.5. From the above lemma, we can deduce that for a given
® € HI x H., r > 3, the restriction of the operator (A (®),D (A(®))) to
the spaces HS x H; with s > g, it is a linear bounded operator. That is,
A(@) |H§><Hg € E(Hg X Hg—,Ho' X Ho')-

We are now in position to state the existence and uniqueness result for
the MHD systems. We begin with the viscous case:

3 3
Theorem 3.6. Let be T'> 0 and (ug,By) € H® (IR3) x H® (IR3) , 8> g,
such that V-uy = V- By = 0. Let us assume that f € C ([O,T] ;L2 (IR3))

N L (O,T; H} (R3)) . Then, there exists a couple (u,B) being the unique
solution to (1.1), with F given by (2.3) or (2.4), satisfying

(u,B) eC ([O,T’] ; (HS (R3)3>2> nct ([O,T’] s H 2 (1R3)3 % H52 (R3)3>

where T" € (0,T] just depends on the initial data and f. Moreover, there
exists a constant C' > 0, independent of the viscosities, such that

la@®ll, + 1B #)], <C, vt e[0,T]. (3.9)

Proof. In order to prove this theorem, we project the MHD system into the

3
space of solenoidal vector fields of L? (R3) by means of the Leray operator.

Then, using the operators that we have introduced all along this section, we
can write the projected system as the Cauchy problem

{ @ 1 A(D) P =G(t)

®(0) = (up, Bo) , (3.10)

9



f(t)

0
Lemmas 3.1, 3.2 and 3.4 allow us to appeal to the theory developed in Kato!®
(see also!?) for abstract evolution equations and conclude the existence of
an unique ® = (u, B), solution of (3.10) satisfying

where ® takes value on the Hilbert space H, x H, and G (t) :=

deC([0,T*]; H: x HYNC([0,T*]; H, x H,) (3.11)

for some T* € (0,T] which just depends on initial data (we note that the
bounds in Lemmas 3.2 and 3.4 do not depend on the viscosities v,,, Re or
[ha)-
These results by Kato!' prove the existence and uniqueness of local in time
solutions for quasi-linear equations of type (3.10), where ® (¢) takes values
in a Banach space X; A(®) is a linear operator on X and there exist a
subspace Y < X dense, such that for every ® € Y, (—A(®),D (A (P)))
generates a C° semigroup on X. Roughly speaking, the proof of this result
lies in showing the existence of a fixed point for the mapping ¥ — &
where @ solves 22 + A(¥)® = G (t) with & (0) = (ug, Bg), by means of
the contraction mapping theorem. To this end, the operator A must satisfy
a Lipschitz condition similar to that of Lemma 3.4. In the case of the MHD
system, we have chosen H, x H, to play the role of X and space Y is taken
to be HJ x H?, where s > g is the lowest exponent for which Lemma 3.4
holds.

The additional regularity on @, i.e., ® € C1 ([0,7*],H: 2 x HS %), is a
consequence of

%(t) C_A@ ) D)+ F (1) € H2 x H2, Wi 0,7 (3.12)

being a continuous function on [0,7%]. Indeed, from the regularity in (3.11)
we know that A1 ® € C ([0,T*]; HS™2 x H:™2); moreover, H:~! is a Banach
algebra for s > 2 (see, e.g.,') and so Ay (@) ® € C ([0,T*]; HE™" x HE™Y).

Finally, let us prove (3.9). Given ¢ € [0,T*], we multiply the equation in
(3.10) by @ (t) = (u(t),B(t)) in H® x H® :

1d
2dt

By using the estimate

1@)F + (A8, @), = — (A2 (2) @, %), (1) + (G, ®), (1) . (3.13)

)
(v-V)w,w). | <c|v|, lw|? for all v,w € H. with r > 2’ (3.14)

with ¢ > 0 a constant (proved in®) and since the operator A; is dissipative,
we obtain

1d 2 3
——||® <cl|®|: +||f |, .

10



Using Young’s inequality we find that ||®(¢)]|? satisfies

S

%H‘P(t)lls <cll®|l; +IEDlls, 12Oy =Il(uo,Bo)lls,  (3.15)

and thus, ||® (t)||; < ¢(t),where ¢ is the solution to the scalar Cauchy
problem

Ywy =20+ IEOll, ¢O=lltwBoll, (316

Since f € L' (0,T; HE), it is clear that (3.16) admits an unique solution ¢
defined in an interval [0,7"], T" > 0 and that 7", ¢ are independent of the
viscosities Re !, Rm~! and j,. O

For the ideal case we have: 5 5
Theorem 3.7. Let be T > 0, (u),BY) € H® (IR3) x H* (IR3) , 8 >
2, such that V- u = V-B} = 0, and assume f € C ([O,T] ; L2 (IR3))
NnL (OjT; HE (IR3)) . Then, there exists Ty € (0,7, just depending in the

initial data, and an unique solution (u® BY) of (1.2) verifying

3 3 3\ 2
(u’,B% eC ([O,To] 1 (R) < 1 (IR?) )mcl ([O,To] ; <H“ (R?) ) )
and such that, VT™ < Tj the following estimate holds

[ (o o], v, e @

Moreover, if Ty < oo, then at least one of the above integrals blows-up for
some T* < Ty.

Proof. As in the previous theorem, we consider the projected ideal MHD
system into the divergence-free spaces. The resulting system can be regarded
as the initial value problem

ddilo + Ay (2°) @° = G(t)

@.0(0) = (ug,Bg) )

(3.18)

in H, x H,, with ®° = (u’ B°). Again, we appeal to the existence and
uniqueness results of Kato!® which apply in this case, provided that, for a
fixed ® € HS x HS, the operator (—Az (®),D (Az (®))) generates a C-
semigroup on H, X H,. We remark that this is the only point that remains

11



to be proved for the As operator (Lemmas 3.2 and 3.4 hold if we replace
A by As). Due to the structure of As, it suffices to show that, for a fixed
v € H}, the operators (P (v-V),H,)and (—P (v -V), H,) are infinitesimal
generators of C%-semigroups on H,.

Let v € H? be fixed. Tt is a well-known result (see, e.g.,!?,3%) that the

3
transport operator (v-V) with domain H' — L2 (IR3) generates a CO-

3
isometries group on L2 (R3) (note that the fixed vector v is solenoidal).

Since H! is a closed subset of H! and P is unitary, the operator P (v - V)
acting on H! is also a generator of a C%-isometries group on H,. Further-
more, this result also holds for (—P (v - V), H}), which is possible since we
are dealing with the generator of a group, and so we can conclude the desired
result.

Then, by Katol® (Theorems 6 and 7), there exists Ty € (0,7] and an
unique ®° = (u’, BY) solution of (3.18) such that

% e C ([0,Tp]; HE x HEYNC ([0, Ty]; Hy x Hy).

Furthermore, we can use that H*~! x H*7! is a Banach algebra for s > g
and hence, by the above regularity, we get that

d®? - -

—r =A@ O)2 (1) + F (1) €C((0,T]: Hy x Hy').
Finally, the Beale-Kato-Majda’s type condition (3.17) for the ideal MHD
equation is a result due to Caflisch, Klapper and Steele®. O

4. Convergence of the MHD Solutions to the Ideal MHD ones

In this section we prove the convergence of the solutions (u, B) of the MHD
for a viscous and resistive fluid found in Theorem 3.6, to the solutions
(ug, Bp) of the ideal MHD equations (1.2). We shall start by establishing
this convergence in the L?-norm:

Theorem 4.1. Let (ug,Bg) € HS x HE, s > 5. Assume that (u,B) and
(u®,BY) are the solutions to (1.1) with Braginskii viscosity (2.4) and to (1.2)
respectively, both with initial data (ug,Bg) , given in Theorems 3.6 and 3.7.
Then,

[Ju () = (1)]fo + S1|B (1) = B ()]s <

1t K *\2 0((2 1 0 2
< exp (t—)—QS Jo n(s)ds) /0 [k (1)~ ||J°||5 + R HVB HO] ds,
(4.19)
where k is a positive constant, pu* := max, pia, 8" = max (1,5) and 7 (t) =
[[Vu® (8)]| ;0 + |[|[VBO (t)]|; 0. Furthermore, V¢ < T', with T' < +oo satis-
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fying (3.17) we have
(u(t).B(1) — (u°(1),B° (1) in 2 (R*) x L* (R*)°

when Rm — 4oo and po — 0, « = 0,1,...,4, with convergence rates
. 1
o(p*)+o (R—m> .

Proof. Let us denote by (v, C) the difference between the solutions of the
MHD and ideal MHD systems with initial data (ug, Bg) stated in theorems
3.6 and 3.7, i.e., (v,C) = (u,B) — (u’ B?); this couple satisfies

'%+(v-V)u°+(u-V)v—S(C-V)BO—S(B-V)C

S 2 0 % 0y _
+§V(B —B)—Vu—i—V(p—p)—O
8—C+( -V)B’+(u-V)C—(C-V)u’ - (B-V) L aB=o
ot v v Rm -

divv =0, divC =0
( V/t=0 = Cjt=0 =0

(4.20)

3
Let us fix t € (0,7"] and multiply in L? (]R?’) the first two equations in
(4.20) by v (t) and B (¢) respectively. Then

53 VO = (Fu@.v ) = (v 9)uv) 0
+ s((c.V)BO,v) t)+S((B-V)C,v)(t) (4.21)
and
Y lCOIE = B0, (1v-VB.C) (0

1
Rm
+ ((C-V)u’,C) )+ (B-V)v,C) ()  (4.22)

where we have used that the terms (V (p — p°) ,v (¢)), (u(t) - V) v (¢) ,v (2)),
and —5 (V (B2 — (B%)?) (¢),v (t)) vanish since v (t) and u (¢) are divergence-
free (this can be easily seen by integrating by parts). Similarly, — ((u- V) C, C(t))
vanish too.

We shall estimate the integrals in (4.21) and (4.22), in order to derive
an energy inequality for v (¢) and C (t) in L? (IR3)3. Let us start with the
terms containing the viscosity operators; we know (Lemma 2.1) that these

13



operators are dissipative in L? and continuous from H? to L?, hence we can
appeal to Holder’s and Young’s inequalities to get

(Vu(),v(n) (Vv @), v®) + (Va' (), v ()

< = (mingwa) IV (O + b (max ) [0 @, v (8)]g
k

— (minpua) Vv (0)]5 + 5

vV (4.23)

IN

(masa) [ 0 +

in the case of the fluid viscosity (here, k is the continuity constant in Lemma
2.1). Similarly, for the magnetic viscosity term we have

1
Rm

1 9 2 1 9
< T - .
(AB(1),C (1) <~ IVC O + 0], + 3 el
(4.24)
We proceed now to estimate the transport terms in (4.21) and (4.22). For
this purpose, we apply again Cauchy-Schwarz’s and Young’s inequalities and

we arrive to

@) [(v-¥)uv)[ <[[Va® ()], v O],

(ii) S|((C-V)B%,v)| < S[VB® (1) o [Iv (1)lly [IC (®)]]g
< $(VB* (1)l (Iv @Il + IC OI15) -
(4.25)
(iii) (v V)B",C) (1)] < [|VB® (1)]|, IV ®)lly lIC (1)l
<LIVBY ()], (Iv I + IS @) ,
(iv) ((C-V)u’,0) (1) < [Vu ()], IC @I

Putting together the preceding estimates and (4.23), (4.24) we obtain:

1d

2 2 . 2 S 2
57 (IVOIE+S1COI5) + (minpa) [VVIE + 2= IVC 1) <

5+ 3 (Iv @I+ s11cl2)
+[[ve® @), (Iv @15 + SIICIE) + S [VB° )], (Iv @Il + IS (1)I]F)
+S((B-V)C,v(t)+S((B-V)v,C(t))

< 3 (1 (maeq 1o)? [[0 ]2 + 55

(4.26)
(We have used here that S is a positive constant).
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Let us set S’ = max (1, S) . By dropping the positive terms in the left hand
side of (4.26) and using the identity ((B-V)C,v (¢)) = — ((B-V)v,C (¢))

(see, e.g. , Temam??), we can write

d 2 S 2

2 (v is +stc @) S<kﬁmﬂaud2HwWﬂH1+§;§HABOU”%>+
+i (1) (IIv (0I5 + S OII5) -

where 7 (t) := 1+ 2||Vu® (t)|| + 25" |[VB® (¢)||... We note that 1 is an
integrable function on [0, ¢] for ¢ < T" satisfying (3.17). Thus, we can apply
to Gronwall’s inequality to

00 < (b (mpxe)” o 0 +

where @ (t) := ||v (t)||g +5|C (t)||g and hence we obtain (4.19). The con-
vergence in the statement of the theorem follows from this inequality. O

o) + e

When the viscosity in (1.1) is given by (2.3) we arrive to an analogous
result:
Theorem 4.2. Let be (ug,By) € HS x H, s > 3. Assume that F = Re 'A
in (1.1) and that (u,B) and (u® BP) are the solutions to the MHD and ideal
MHD systems respectively, with initial data (ug, By) , given by Theorems 3.6
and 3.7. Then,

I(w =) )2+ 511(B ~ B) (]2 <

< exp (t+25'f[f77(3)d3)/0 [ HVu H + HVBOH ]
(4.27)

where S’ = max (1, S) and 7 () = ||[Vu® (t)|| ;e +||VB® (t)|| ;« - In particu-

lar, Vt < T'" with T" < 400 verlfylng (3.17) we conclude that
3 3
(u(t),B(t) — (u0 (t),B° (t)) in L2 (133) x L2 (133)
as Re, Rm — 400 with a convergence rate o( ) + o( ) .

Proof. Let be (v,C) = (u,B) — (uy,Bg) as before. The proof of this
theorem is analogous to the previous one, being the dissipative term in (4.21)
the only difference. To estimate this term we proceed as in (4.24), i.e.,

1

o (A1), v (1) < — o [TV + o (M) <

Re
2 1 o2, 1 2
e IV @I + s A+ S IvOIB, @)
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and hence, repeating the calculus as in theorem 4.2 we obtain the following
energy estimate:
2
)+
0

GveR+sicor) < (g law;
+ 7 (vl +slemi) .

with 77 as in the preceding proof. Then, we can apply Gronwall’s inequality
to ||v (#)]12 + S ||C (t)||3 which yields to (4.27). O

Finally, we study the convergence in the H® norm. We have:
Theorem 4.3. Let us assume (ug,Bg) € H x H3 with s > g. Then, if
(u%,B?) and (u,B) are as in theorem 4.2, the following inequality holds

(- u?) (t>||‘:‘_2+sH(B—B°) Ol
:|d7'

§exp(2fg§(7)dT)/0t[

where k is a positive constant, p* := max, p, and £ € C ([0,7']) does not
depend on Rm or .. Moreover, Vi < T' with T' < +o0 satisfying (3.17) we
have

, =

(4.29)

o [P

(u(t).B(1) — (u*(1),B° (1)) in 72 ()" x B ()’ -strong

as Rm,Re — +oo with a convergence rate of o ( ) +o0 (ﬁ)

Proof. As in the previous cases, we consider the couple (v,C) := (u,B) —
(u?,BY) which satisfies the system (4.20). Multiplying (4.20) by v () and

C (t) with the inner product of H*=2, for t € (0,T"] fixed, we obtain
Ld oz, = (v S((C-V)B® S((B-V)C
5 VO, = (Vuv)  +5(C-V)B"v), ,+5((B-V)Cv),,
- ((V’ ' V) uoav)372 - ((u ' V) V,V)S_2 ) (43())
and
Llcwlz, =-=(aB,0), ,+((C-V)u".C)  +(B-V)v.C)
2 dt 52 Rm ’ 5—2 ’ 59 ’ 5—2

~((v-V)B%C), ,~((u-V)C,C). (4.31)

_9o "
As before, we have used that V.-v(t)=V- C( ) =
(V(p=1°),v(#),_, and =5 (V (B = (B%)?) (1), v (¢)
theless, this is no longer true for the products ((u ( ) \Y
(- V) C.C 1)),

0 and so the terms
(t)),_o vanish. Never-
)v

(), v (1)), o and
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The viscosity operators —V and —A are dissipative in the space H* 2.
This is well-known for the Laplacian, while for the Braginskii’s operator it

N 3
comes from the fact that —V being dissipative in L? (R3) and commuting
with $*2 = (1 — A)SE_2 . Thus,

s—2

v (L amax e ) [ 0] v )1

a=0,...,

+(Va® (1), v() <

s—2

IN

IN

k”
3<ar%ax Am) |u* H Hv =2

where we have also used that V is a continuous operator from H $into HS 2
being k" the continuity constant (see Lemma 2.1). Also,

(AC(1).C (t))s_2 b (ABY(0,00) <

B + 5 Ic R

2o (AB(),C(),y =g

_1 9
< Rm IVC (#)|l5_ +

2Rm”
From the choice of s it follows that H*~2 is a Banach algebra (note that
s —2> %), hence

(v-9)v) 0 <19 Ol v (012,

(c-vute) 0| <Ivw o], .Icol..

s—2

Analogously, Young’s inequality yields to
(C-V)B%v), , ()| < [VB ()], , 1€ Oz v (B)]l,—

<LVBY ()]l (IC B2 + IV O)II3—2)

(- V)B°v), , ()] < 3 [VBY ()], (IC ()25 + v ()]12s)

For the remaining terms in (4.30) and (4.31) we use the estimate (3.14) to
get

(- V) vov) o (0] <elu@l_s v @Ol
(w-v)c,0)_, )] <clu@®l, »IC®HI .
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and also,

(B-V)C,v),_o () + ((B-V)v,C),_,(t) < ((B-V)(v+C),v+C),_, (1
—((B-V)v,v), 5 (1) = ((B-V)C,C), ,(t)

<3¢B (@), (Iv B2, + IC (B)I12_,)

where ¢ is the constant in (3.14).
Collecting all the estimates that we have obtained for the terms appearing
in (4.30) and (4.31) we arrive to

LA (SICWIE s+ IVII3,) < 3" (maxao, _apa)” [0 (1) + 52 [BC (1)]2
+8c(Iv @125+ IC@I2,) (la @, o +31B @), )
+ (IIvu (1), + S [VB® (1), ) (Iv Iz + IC ®I3-)

+3 (v OI2 5 +SICOIE,)

< 3k () 0 O + gre (B 02+ (IvI5, > + S ICI, ) € ().
wheref(t) =K (Hu (t)“s—2 + ||B (t)“s—2 + ||Vu0 (t)||s—2 + ||VB0 (t)”s—Z + %)
and K := max (1,5, 3c) is a positive constant that just depend on S and on
the exponent s. Moreover, from the regularity of (u,B) and (u’ B?), it
follows that & : (0,7") — IR is continuous and uniformly bounded with
respect to p, and Rm, a =0, ...,4, in [0,7"] (see Theorem 3.6, (3.9);

Thus, we can apply Gronwall’s inequality to [|v||>_, + S ||C (¢)]|>_, and
using that (v (0),C(0)) = (0,0), we get

v @2 5+ SIcm?, <
<exp (2fe€(r)dr) i [k (maxa—o,_apa)? [00]2 + 525 |BC)?] dr,

which concludes the proof of the theorem. O

S

Arguing in a similar way, for F = ﬁA, we obtain
Theorem 4.4. Assume (ug,Bg) € H x H with s > %, and let be (u’, B?)
and (u,B) as in Theorem 4.2. Then

la—u®) @I, + 5](B-B") )|, <

<exp (20" (ryar) [ t {é [val % |ve?|

0

} dr
(4.32)

-2
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where " € C([0,T"]) does not depend on Rm or Re. Moreover, Vi < T’
with 77 < 400 verifying (3.17), (4.32) yields to

(u(t). B (1) — (u*(1).B° (1)) in B2 ()" x 02 ()’

as Re, Rm — 400 with a convergence rate o (ﬁ) +o0 (Rim)

Remark 4.5. In order to simplify the exposition, we have considered the

same initial data for both, the MHD and the ideal MHD systems. Never-

theless, the convergences and convergence rates obtained in theorems 4.1

(respectively, 4.2) and 4.3 (respect., 4.4) remain true if we consider different
vs vs

initial data (ug®,B§*) and (u), BY) for (1.1) and (1.2) respectively, verifying

when Rm — oo and po — 0, a = 0,1,...,4 (respect., as o (ﬁ) + o(ﬁ)
when Re, Rm — +00), for the first case, or

in the second case.
Remark 4.6. The same remark holds if we consider different force terms f
for the MHD system and for the ideal MHD one.

o w5 B, = 085 007 0 (i)

u — uf

s—2 + HBSZS N Bg

S—

. 1
2—>0aso(,u)+o(R—m>
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