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From Nearly Tilted Waves to Cavity Phase Solitons
in Broad Area Lasers with Squeezed Vacuum
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Phase domains and phase solitons in two-level amplifying media damped by a squeezed vacuum are
predicted for the first time. Two different types of pattern formation are found depending on the relative
value of the cavity detuning to the squeezed parameter: the usual one in lasers via a supercritical Hopf

bifurcation and a new one via pitchfork bifurcation.
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The formation and dynamics of transverse light pat-
terns in broad area lasers and other nonlinear optical
resonators have been a field of intense research in recent
years [1-8]. In lasers, the phase of the radiation can have
an arbitrary value and the transition from the nonlasing
to the lasing regime is described by a supercritical Hopf
bifurcation. For positive cavity detunings, transverse
traveling waves are favored above threshold. In this situ-
ation, the laser emission is off axis (tilted waves), which
helps the laser to emit on resonance. This phenomenon
has been experimentally observed by Staliunas et al [8]
and by Hegarty et al [9]. Laser systems can be modified
in order to show amplitude optical bistability (OB) re-
sponse which corresponds to a change of the nature of the
Hopf bifurcation being in this case a subcritical Hopf
bifurcation. This phenomenon leads to the formation of
bright localized structures or spatial cavity solitons
(CSs). These localized structures are of great interest
due to their potential applicability to information pro-
cessing [10,11]. Laser CSs have been only shown to exist
provided a passive element (a saturable absorber) is
placed inside the resonator [12,13], or in the presence of
two-photon amplification [14]. Cavity solitons have also
been obtained recently in purely two-level amplifying
medium including local-field effects as the mechanism
responsible for the amplitude OB [15]. However, the
threshold value of the local-field parameter to achieve
OB, and thus CSs, involves a high density medium. In this
regime, the effect of radiation trapping should not be
neglected since the excited state population is consider-
able and could prevent the appearance of OB [16]. On the
other hand, it has been pointed out that a bad cavity
condition is required in order to allow local-field effects
to become appreciable [17].

In this Letter we propose an alternative scheme of
generation of CSs in purely two-level lasers which over-
comes the above mentioned difficulties. Furthermore, in
our model, phase OB is obtained instead of the usual
amplitude OB, i.e., the localized structures that appear in
our system are cavity phase solitons. Besides, this system
does not require any intracavity optical element such as
saturable absorbers [12,13] or spatial filters [15]. In the
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new schema that we propose, the atoms are damped by a
squeezed vacuum field. Squeezed light sources have be-
come available in laboratories, and in recent years atten-
tion has turned to their interaction with optical systems
[18,19]. The underlying physics relies on the fact that the
squeezed vacuum introduces a phase-dependent relaxa-
tion process in the polarization quadratures which decay
at different rates. This phenomenon breaks the phase
invariance of the laser field and leads to a phase-locked
steady-state laser field [20,21].

The starting point for our analysis is with the
Maxwell-Bloch equations for a broad area homogene-
ously broadened two-level laser with plane and parallel
mirrors in the rotating wave, slowly varying amplitude,
and single-longitudinal-mode approximations, and by
considering the two-level atomic medium damped by
the squeezed vacuum field. The Maxwell-Bloch equations
read as follows:
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E, P, and D are the dimensionless envelopes of the
electric field, the electric polarization, and the population
inversion, respectively. y = y;/y, and o = k/y, are
the population inversion decay rate and the cavity losses,
respectively, in units of the polarization decay rate (y ).
A = (wy; — w)/7y] is the rescaled detuning between the
atomic line center and the cavity frequency. r represents
the pumping parameter. Light diffraction is taken into
account by means of the transverse Laplacian term in the
field equation, and is measured by the diffraction co-
efficient a = ¢?/(2wy | d?), where d is the spatial trans-
verse size of the laser. A| = 92 + a§ is the transverse
Laplacian where x and y are normalized with the spatial
scale d. The time 7 is normalized versus the polarization
decay rate (7 = 7y, t). Finally, M is the parameter that
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characterizes the squeezing of the vacuum field. The
term proportional to P* in Eg. (2) is responsible for
the change in the behavior of the pattern formation. For
the sake of simplicity, we will assume that M has a
real and positive value as in Refs. [20,21]. Equations
(1)-(3) reduce to those derived by Marte et al. [20,21]
by setting a = 0 and A = 0. We have numerically inte-
grated Egs. (1)—(3) in a square bidimensional lattice of
126 X 126 cells with periodic boundary conditions by
means of a finite-difference algorithm.

In the following we study the spatiotemporal dynamics
for pump values close to the threshold. We consider the
following parameters: o = 0.5, y = 0.2, and a = 0.0001.
We use a squeezing parameter M = 0.5 in agreement with
Marte et al. [20,21]. We start by analyzing the case of
near-zero or small cavity detuning (A = 0.3) for the
pump value r = 1. After an initial transient the system
reaches a steady state where a homogeneous solution is
present. This state corresponds to the spatially homoge-
neous stationary solution of the system of Egs. (1)—(3)
which can be written as E = |E| exp(i¢), with |E| = r —
1 ++M?— A% and sin(2¢) = A/M. This expression
represents two physically equivalent solutions with the
same amplitude but two phases differing by 7. At small
cavity detunings the solution asymptotically leads to one
of these two homogeneous distributions. At large and
negative values of the detuning, we find stationary pat-
terns showing separated domains, characterized by one of
the two values of the phase inside each domain. These
phase domains present a labyrinth structure as displayed
in Figs. 1(a)-1(c). We can see that the intensity field
vanishes along the lines separating the two phases, which
are called domain boundaries. The power spectrum shows
a ringlike structure with a wave vector k =47. This

(b) (c)
r’ 50
£\§ .

> 50 0 50

)

L]
0

N
[ ]
02 04 2 0 2 -0 0 50

FIG. 1. (a),(d) The intensity field; (b),(e) the phase field; and
(c),(f) the power spectrum, for (a),(b),(c) A = —0.6, r = 1.2,
and (d),(e),(f) A = —1, r = 1.5. The rest of parameters are
=05, y=02, a=0.0001, and M = 0.5. All the magni-
tudes presented in this figure are dimensionless.
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labyrinth structure evolves to a roll pattern by increasing
the cavity detuning to A = —1 [see Figs. 1(d)-1(f)]. Note
that a zigzag behavior remains in the roll pattern. As we
can see in the power spectrum [see Fig. 1(f)], two oppo-
site waves govern the dynamics. Then, from Egs. (1)—(3)
and assuming a stationary laser field formed by stripes

E(X) « cos(k - X), we obtain the resonant wave vector k =

V—Ac/[a(1 + M)], which agrees with the numerical
simulation results. It means that the characteristic spatial
scale of the pattern can be controlled by means of the
squeezing parameter M. For intermediate and negative
values of the detuning (A = —0.3) we show in Fig. 2 a
stationary pattern formed by four minimum phase do-
mains. The interest of these localized structures or cavity
phase solitons is increasing [22—24] since they are easier
to achieve experimentally than the usual spatial solitons
which appear in subcritical systems. Let us analyze the
case of a cavity detuning larger than the squeezing pa-
rameter. Figure 3 shows the intensity field, the phase field,
and the power spectrum for A = 1 and r = 1.2. After an
initial transient the system reaches a steady state where
strong and weak counterpropagating traveling waves are
present (wave vector k = 87). This leads to a small modu-
lation of the intensity field [see Fig. 3(a)]. We call this
pattern a nearly tilted wave. We would like to point out
that following the recent work by Valcarcel and Staliunas
in a passive system (self-oscillatory system) [25], these
nearly tilted waves could be interpreted as Bloch-like
stripe patterns.

In summary, we have found two main regimes in the
pattern formation in lasers with squeezed vacuum which
can be controlled by means of the ratio between the cavity
detuning and the squeezing parameter. A first regime
takes place for cavity detunings lower than the squeezing
parameter. The pattern dynamics is based on the selection
of the phase field showing phase domains and phase CSs.
These types of spatial structures have been previously
found in passive optical media such as degenerate optical
parametric oscillators (DOPOs) and degenerate four-
wave mixers (DFWMs) and are associated with a pitch-
fork bifurcation [26—28]. This pattern formation is
completely different from the usual case in standard
lasers. A second regime appears for cavity detunings
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FIG. 2. (a) The intensity field and (b) the phase field for A =
—0.3 and r = 1.1. The rest of the parameters are the same as
in Fig. 1.
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larger than the squeezing parameter and consists of
strong and weak counterpropagating waves (nearly tilted
waves) which seem to be closer to the usual pattern
dynamics in lasers. So this result represents conceptually
a new scenario in the pattern formation, where two differ-
ent mechanisms lead to the spatial structures. Now, a
natural question arises: what is the behavior of this type
of laser near the transition between both regimes (A =
M)? In order to show this behavior we analyze the sta-
tionary state of the laser field at A = 0.5 and r = 1.1(see
Fig. 4). We can see in Fig. 4 that both the intensity field
and the phase field have the same shape. The power
spectrum [see Fig. 4(c)] reveals that the pattern is formed
by a combination of a homogeneous solution (k = 0) and
two weak counterpropagating waves (k = 70). That is, the
two characteristic spatial structures that appear for cavity
detunings just below and above the squeezing parameter
value, combine to form a new spatial structure.

In order to obtain a further physical insight on the
numerical simulations, we have developed a linear sta-
bility analysis of the nonlasing solution (E = P =0,
D = r). Following the same procedure as in Ref. [5],
we linearize about this trivial solution and expand the
variables as Fourier series of transversal modes of wave
vectors k. The eigenvalue problem has been approached
numerically. Let us first analyze the case with a cavity
detuning larger than the squeezing parameter. The sta-
tionary pattern was shown in Fig. 3 which is formed by
strong and weak counterpropagating waves. We find that
the bifurcation takes place through a complex eigenvalue,
that is, by means of a Hopf bifurcation. This is the usual
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FIG. 3. (a) The intensity field, (b) the
phase field, and (c) the power spectrum
in logarithmic scale, for A = 1 and r =
1.2. The rest of the parameters are the
same as in Fig. 1.

case in standard lasers and this is the reason why we call
this pattern as a nearly tilted wave. We have studied the
dependence of the wave vector selected above threshold
on the cavity detuning and we found the same usual
relation, i.e., k = \/A/a. Let us continue with the case
of a cavity detuning lower than the squeezing parameter.
In this regime we have found several patterns [see Figs. 1
and 2] which are characteristic of passive optical media
such as DOPOs and DFWMs. We find that the bifurcation
is governed by a real eigenvalue which indicates that a
pitchfork bifurcation is responsible for the dynamics. We
have checked that the most unstable spatial size agrees
with the numerical simulation results. Finally, we have
analyzed the bifurcation for the case A = M, and we have
found that the two previous instabilities occur simulta-
neously. Therefore, a combination of both regimes is
expected to form a new type of pattern (see Fig. 4).

In conclusion, we have shown that a very rich laser
pattern formation takes place when the two-level atomic
medium is damped by a squeezed vacuum field. We have
found two main regimes depending on the ratio between
the cavity detuning (A) and the parameter that measures
the squeezing (M) of the vacuum field. When the cavity
detuning is lower than the squeezing parameter the phase
field is fixed at threshold and the pattern formation is
completely different in comparison to the usual case in
lasers. Here, we have obtained phase domains and phase
solitons which are associated to a pitchfork bifurcation.
This is the first prediction of these types of patterns in
amplifying cavities (i.e., in lasers). On the other hand,
when the cavity detuning is larger than the squeezing

FIG. 4. (a) The intensity field, (b) the
phase field, and (c) the power spectrum
in logarithmic scale, for A = 0.5 and
r = 1.1. The rest of the parameters are
the same as in Fig. 1.
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parameter, the system behaves very close to the usual
lasers, that is, the pattern formation is governed by a
supercritical Hopf bifurcation. However, instead of the
usual transverse traveling wave (tilted wave) we obtain a
new pattern formed by strong and very weak counter-
propagating traveling waves. We denominated to this
pattern as a nearly tilted wave. Finally, a new type of
pattern arises at the transition between both regimes,
which presents features of both behaviors. A linear stabil-
ity analysis of the nonlasing solution has been carried out
confirming the above results.
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