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1. Introduction

It is now over 65 years since Alfred Winslow Jones founded the �rst hedge
fund in 1949, and some 60 plus years since Markowitz (1952) developed portfolio
theory. This 'alternative investment' vehicle has been the focus of a lot of atten-
tion by investors, regulators, and politicians. There have been some incidents
that have caught the world's attention, such as the decision by George Soros'
Quantum Fund to sell sterling short in the fall of 1992, which is believed to have
brought pressure on the currency and hastened its departure from the ERM. In
1997 hedge funds again attracted adverse publicity when the then Prime Min-
ister of Malaysia protested that sales of Asian currencies by hedge funds led to
depreciation of the ringitt. More recently there was the collapse of Long Term
Capital Management in 2000, and also the multi-billion dollar pro�ts of Paulson
& Company during the recent �nancial crisis.

There has been a spectacular growth in the size of funds under management
in this sector. At the time of writing, BarclayHedge reported a total of 6314
reporting funds in their database. Our focus in this paper, however, is not on
the performance of individual hedge funds, but on the relative performance of
di�erent sectors in the alternative investment universe, as represented by the
EDHEC series of indices.

The development by Markowitz (1952) of portfolio theory led to the founda-
tion of classical �nance, leading directly to the development of the Capital Asset
Pricing Model (CAPM) by Sharpe (1964), Lintner (1965), Mossin (1966) and
Treynor (1962). Markowitz (1952, 1959) suggested choosing the portfolio with
the lowest risk for a given level of portfolio return and de�ned such portfolios
as being 'e�cient'. Merton (1972) demonstrated the parabola that constitutes
the e�cient frontier in the mean-variance space.

Despite the theoretical elegance and appeal of Markowitz portfolio theory, its
practical application has been less successful. Michaud (1989, p. 33) observed
that: 'MV optimizers are, in a fundamental sense, �estimation-error maximiz-
ers�. They have a tendency to over-weight (under-weight) those securities which
have large (small) estimated returns, negative (positive) correlations and small
(large) variances.'

Various adjustment approaches for tackling estimation risk have been sug-
gested in the literature. Bayesian techniques have featured prominently, and
early recommendations were based on the use of di�use priors; see for example,
Barry (1974), and Bawa et al. (1979), or 'shrinkage' estimators, see, for exam-
ple, Jobson et al. (1979), Jobson and Korkie (1980) and Jorion (1985, 1986)
for examples of these approaches. More recently, Pástor (2000) and Pástor and
Stambough (2000) have used an asset pricing approach to tackle the same issue.

The early development of portfolio theory was by no means dominated by
mean/variance analysis. Markowitz considered a number of downside risk mea-
sures as alternatives (1959, 1991) and Roy (1952) developed his 'safety-�rst'
asset selection criteria. Rockafellar et al. (2006a, 2006b, 2007) developed the
mean-deviation approach to portfolio selection, providing an extension to the
classic mean-variance approach. Rockafellar et al. extended the results to
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the one fund theorem, (2006a), CAPM (2006b), and provided a derivation of
market equilibrium using di�erent deviation measures (2007). Subsequently,
Zabarankin et al. (2014) used a draw-down measure to measure betas and
alphas based on draw-downs in a CAPM framework.

In this paper our concern is with how well alternative investments as a class
performed during the Global Financial Crisis (GFC) and through the subsequent
turmoil in Europe, which constituted the European Debt Crisis (EDC). We are
concerned with both spillovers and correlations of risk across the sector, as well
as the risk diversi�cation properties of alternative investments. Diebold and
Yilmaz (2009, 2012) have developed a Spillover Index model which provides
precise and separate measures of return spillovers and volatility spillovers. They
adopt vector autoregressive (VAR) models in their measurement of return and
volatility spillovers, in the broad tradition of Engle et al. (1990). They use
variance decompositions to aggregate spillover e�ects across markets, which
permits the concentration of a great deal of information into a single spillover
measure.

We use this metric to analyse return spillovers across the various hedge fund
sector indices, and then proceed to a portfolio analysis of the diversi�cation
properties of the sector using a variety of methods which include: Markowitz
mean variance analysis with positive constraints, Conditional Value at Risk
(CVar), Conditional Draw-Down (CDaR), Average Draw-Down (AveDD), Maximum-
Draw-Down (MaxDD), plus draw-down metrics set at 95% con�dence levels
(CDaR95) and (CDaRmin95). The e�ectiveness of these procedures is assessed
in a series of out-of-sample hold-out and backtests.

The paper is organised into �ve sections. The introduction is followed by a
discussion of research methods in section 2 which discusses the spillover index
model plus the various portfolio optimisation strategies adopted, beginning with
Markowitz mean-variance analysis, CVaR, and a variety of optimal draw-down
approaches. Section 3 introduces the data set and its characteristics, while
section 4 presents the results. A conclusion follows in section 5.

2. Research method

2.1. Spillover Index Model

A VAR framework provides the advantage of capturing a great deal of infor-
mation about the dynamic structure of the relationships between the variables
considered in the analysis without prior speci�cations or assumptions. Diebold
and Yilmaz (2009) use this property in developing their Spillover Index and con-
struct their measure by taking each asset i, and adding the shares of its forecast
error variance coming from shocks to asset j, for all j 6= i, all in the context of
an N variable VAR. They sum these error variances across all i = 1, ...., N. If
we take the case of a covariance stationary, �rst-order, two variable VAR, we
have:

xt = Φxt−1 + εt,
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where xt = (x1t, x2t) and Φ is a 2×2 parameter matrix. The error εt is s.t.
E(εt | Ft−1) = 0. Ft−1 is the information set at t−1. In the empirical analysis
which follows, x is a vector of hedge fund index returns. The VAR can be
written in a moving average representation, given the existence of covariance
stationarity, as:

xt = Θ(L)εt,

where Θ(L) = (1 − ΦL)−1. L is the back-shift operator and the roots of |
Θ(L) |6= 0 for | L |≤ 1. This can then be conveniently written as a matrix with:

xt = A(L)ut,

where A(L) = Θ(L)Q−1t , ut = Qtεt,E(utu
′

t) = I, and Q−1t is the unique lower-
triangular Choleski factor of the covariance matrix of εt.

Diebold and Yilmaz (2009) then proceed to consider the optimal 1 step ahead
forecast, given as:

xt+1,t = Φxt,

with the corresponding one-step ahead error vector:

et+1,t = xt+1 − xt+1,t = A0ut+1 =

[
a0,11 a0,12
a0,21 a0,22

] [
u1,t+1

u2,t+1

]
,

which has the covariance matrix given by:

E
(
et+1,te

′

t+1,t

)
= A0A

′

0.

This suggests that the variance of a one-step ahead error in forecasting x1,t
is a20,11 + a20,12 and the variance of the one-step ahead error in forecasting x2,t
is a20,21 + a20,22. Diebold and Yilmaz (2009) split the forecast error variances of
each variable into components attributable to the various system shocks. This
means it is possible to distinguish between shocks to the variable itself xi and
shocks to the other variable xj , for i, j = 1, 2, i 6= j.

Their spillover index in the two variable case is constructed as;

S =
a20,12 + a22,1
trace(A0A

′
0)
× 100. (1)

They generalise the measure to take into account multiple securities and multiple
periods as shown below:

S =

∑H−1
h=0

∑N
i,j=1

i6=j

a2h,ij∑H−1
h=0 trace(AhA

′
h)
. (2)

Diebold and Yilmaz (2012) extend their (2009) Spillover Index into a generalized
form which eliminates the possible impact of ordering on the results. They de-
velop their model by considering a covariance stationary N-variable V AR(p), xt =
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∑p
i=1 Φixt−1 + εt, where ε ∼ (0,

∑
) is a vector of i.i.d. disturbances. They sug-

gest a moving average representation can be written as:

xt =

∞∑
i=0

Aiεt−i,

where the N × N coe�cient matrices At obey the recursion, At = Φ1At−1 +
Φ2At−2 + .... + ΦpAt−p, with A0 an N × N identity matrix and At = 0 for
i < 0. Diebold and Yilmaz (2009, 2012) use the fact that the moving average
coe�cients (or transformations in the form of impulse responses or variance de-
compositions, provide a key to the understanding of the dynamics of the system.
They separate the forecast error variances from the variance decompositions into
the parts attributable to the various system shocks. These variance decompo-
sitions enable them to to assess the fraction of H-step-ahead error variance in
forecasting xt that is due to shocks to xj , ∀ 6= i, for each i.

Diebold and Yilmaz (2012) construct their revised Spillover Index in a way
that avoids the restriction that the use of the Cholesky factorization produces
variance decompositions that are dependent on the ordering of the variables.
They adopt the generalised VAR framework of Koop, Pesaran and Potter (1996)
and Pesaran and Shin (1998). This provides variance decompositions that are
invariant to variable ordering.

They proceed by de�ning own variance shares to be the fraction of the
H-step-ahead error variances in forecasting xt due to shocks to xj , for i, j =
1, 2, ..., N, such that i 6= j.

They de�ne their H-step-ahead forecast error variance decompositions by
θgij(H). For H = 1, 2, ...,they have

θgij(H) =
σ−1ij

∑H−1
h=0 (e

′

iAh
∑
ej)

2∑H−1
h=0 (e

′
iAh

∑
A

′
hei)

(3)

where
∑

is the variance matrix for the error vector ε, , σij is the standard
deviation of the error term of the ith equation, while ei is the selection vector
with one as the ith element and zero otherwise. They note that the sum of
the elements of each row in the variance decomposition table is not equal to 1,∑N
j=1 θ

g
ij(H) 6= 1.

Diebold and Yilmaz (2012) normalize each entry of the variance decomposi-
tion matrix by the row sum as:

θ̃sij(H) =
θsij(H)∑N
j=1 θ

g
ij(H)

. (4)

They construct their total volatility spillover index as:
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Sg(H) =

N∑
i, j = 1
i 6= j

θ̃gij(H)

N∑
i,j=1

θ̃gij(H)

• 100 =

N∑
i, j = 1
i 6= j

θ̃gij(H)

N
• 100. (5)

We use the Diebold and Yilmaz (2012) version of the spillover index to
analyse the spillover of return shocks across the 13 EDHEC hedge fund indices
for the various categories of hedge funds. Allen et al. (2014) use this in a parallel
study of return and volatility spillovers from Australia's major trading partners.
Diebold and Yilmaz (2014 have recently further generalised their connectedness
measure.

2.2. Naive diversi�cation

In this strategy we consider holding a portfolio where the weights for the
asset, ω

j
= 1/N , is applied for each of the N risky assets. This strategy

ignores the data and does not involve any estimation or optimisation. DeMiguel
et al. (2009) suggest that this can be considered as equivalent to imposing
the restriction that µt ∝

∑
t 1N for all t, implying that expected returns are

proportional to total risk rather than systematic risk.

2.3. Markowitz Mean-Variance Analysis

The Markowitz (1952) approach can be presented as the following non-linear
programming problem:

min
ω

1

n

n∑
i=1

 m∑
j=1

ωj(ri,j − µj

2

s.t.

m∑
j=1

ωjµj = C (6)

m∑
j=1

ωj = 1

ωj > 0, ∀j ∈ {1, .....,m} .

In the above formulation, ω are the portfolio weights for the universe of the
j = 1, .....m assets available, i = 1, ...., n are the number of periods considered for
the returns r and for µj , which is the forecast return. The optimisation involves
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minimizing the portfolio variance subject to the portfolio forecast return being
set to a level C. A full investment constraint and positive constraints on the
weights are included, e�ectively ruling out short sales.

Jagganathan and Ma (2003) demonstrate that the placement of a short-sale
constraint on the minimum variance portfolio is equivalent to shrinking the
elements of the covariance matrix. For this reason, we do not make any other
adjustments for estimation risk, (see for example, the discussions in Best and
Grauer (1992), Chan, Karceski and Lakonishok (1999), and Ledoit and Wolf
(2004)).

2.4. Optimising Conditional Value at Risk (CVaR)

In a series of papers, Uryasev and Rockafellar (1999) have advocated CVaR
as a useful risk metric. P�ug (2000) proved that CVaR is a coherent risk mea-
sure with a number of attractive properties, such as convexity and monotonicity,
among other desirable characteristics. A number of papers apply CVaR to port-
folio optimization problems, (see, for example, Rockafeller and Uryasev (2002,
2000), Andersson et al. (2000), Alexander, Coleman and Li (2003), Alexander
and Baptista (2003) and Rockafellar et al. (2006)).

The conditional value at risk of X at level α ∈ (0, 1) is de�ned by:

CV aRα(X) = expectation of X in its α− tail, (7)

which can also be expressed as:

CV aRα(X) =
1

1− α

ˆ
1
αV aRτ (X)dt. (8)

In terms of portfolio selection, CVaR can be represented as a non-linear pro-
gramming minimisation problem, with an objective function given as:

min
ω, υ

1

na

n∑
i=1

max(0, υ −
m∑
j=1

ωjri,j

− υ (9)

where υ is the α−quantile of the distribution. In the discrete case, this was
shown by Rockfellar and Uryasev (2000) to be capable of being represented by
using auxiliary variables in the linear programming formulation below:

min
ω, d, υ

1

na

n∑
i=1

di + υ

s.t.

m∑
j=1

ωjri,j + υ ≥ −di,∀ ∈ {1, ..., n}
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m∑
j=1

ωjµj=C (10)

m∑
j=1

ωj = 1

ωj ≥ 0,∀j ∈ {1, ...., n}

di ≥ 0,∀i ∈ {1, ...., n}

where υ represents the VaR at the α coverage rate and di the deviations below
the VaR.

2.5. Optimal draw-down portfolios

Chekhlov et al. (2000, 2004, 2005) considered the optimization of portfolios
with respect to the portfolio's drawdown. The Conditional Drawdown (CDD)
measure includes the Maximum Drawdown (MaxDD) and Average Drawdown
(AvDD) as limiting cases. The CDD family of risk functional measures is similar
to Conditional Value-at-Risk (CVaR). Chekhlov et al. (2005) suggest that port-
folio managers would like to avoid large drawdowns and/or extended drawdowns
as it may lead to a loss of mandate or withdrawal of business.

The analysis can be developed as follows. Let a portfolio be optimised over
some time interval [0, T ], and let W (t) be the portfolio value at some moment
in time t ∈ [0, T ]. The portfolio drawdown is de�ned as:

maxτ∈[0,t]W (τ)−W (t)/W (t). (11)

If we think in terms of the portfolio's constituent assets and writeW (ω, t) = y
′

tω
as the uncompounded portfolio value at time t, with ω the portfolio weights for
the N constituent assets, and write yt for the cumulated returns, the Draw-down
can be written as:

D(ω, t) = max
0≤τ≤t

{W (ω, τ)} −W (ω, t). (12)

This de�nition can be converted into the three previously mentioned func-
tional risk measures; MaxDD, AvDD and Conditional Draw-down at Risk (CDaR).
CDaR is dependent on the chosen con�dence level α in the same way as CVaR.
CDaR can be de�ned as:

CDaR(ω)α = min
ς
{ς +

1

(1− α)T

ˆ T

0

[D(ω, t)− ς]+dt, (13)

where ς is the threshold value for drawdowns, so that only (1 − α)T observa-
tions exceed this value. The limiting cases of this family of risk functions are
MaxDD and the AvDD. In the case that α→ 1, CDaR approaches the maximum
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draw-down, CDaR(ω)α→1 = MaxDD(ω) = max0≤t≤T {D(ω, t)dt. The AvDD
results from the case in which α = 0. That is CDaR(ω)α→0 = AvDD(ω) =

(1/T
´ T
0
D(ω, t)dt.

These risk functionals can be used in terms of the optimization of a portfolio's
drawdown and implemented as inequality constraints for a �xed share of the
wealth at risk.

The goal of maximizing the average annualised portfolio return with respect
to limiting the maximum draw-down can be written as:

PMaxxDD = arg
ω,u

maxR(ω) =
1

dC
y

′

Tω, (14)

uk − y
′

kω ≤ v1C,

uk ≥ y
′

kω,

uk ≥ uk−1,

u0 = 0,

where u denotes a (T+1×1) vector of slack variables in the program formulation,
in e�ect, the maximum portfolio values up to time period k with 1 ≤ k ≤ T.

We include these three approaches to portfolio optimisation, CDaR, MaxDD,
and AvDD, in our portfolio analyses. We use programs from the R library to
conduct our analysis, in particular the packages fPortfolio, FRAPO and Perfor-
manceAnalytics. We also modify the R code from Pfa� (2013) to undertake the
various draw-down optimisations.

3. Data set

We use a sample of the monthly values of thirteen EDHEC Alternative
Indexes: Convertible Arbitrage, CTA Global, Distressed Securities, Emerging
Markets, Equity Market Neutral, Event Driven, Fixed Income Arbitrage, Funds
of Funds, Global Macro, Long / Short Equity, Merger Arbitrage, Relative Value,
and Short Selling (see: http:www.edhec-risk.com), from the end of January 1997
until the end of August 2014, providing a total of 212 monthly observations on
each sector series.

EDHEC construct the indices using factor analysis to provide one-dimensional
summaries of information conveyed by the various competing indexes for a given
style, and claim the method captures the the largest fraction of the variance ex-
plained. EDHEC suggest that their Alternative Indexes, which are generated as
the �rst component in a factor analysis, have a built-in element of optimality,
given there is no other linear combination of competing indexes that implies a
lower information loss.
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Table 1: Descriptive Statistics of the Edhec alternative indices, monthly arithmetically com-
pounded returns

Alternative Index Mean Median Min Max Std. Dev Skewness Ex. Kurtosis

Convertible Arbirtage 0.00637123 0.00800000 -0.123700 0.0611000 0.01793080 -2.69038 18.5372
CTAGlobal 0.00501274 0.0029500 -0.0543000 0.0691000 0.0238803 0.178014 -0.117779

Distressed Securities 0.00826604 0.0100000 -0.0836000 0.0504000 0.0176540 -1.53124 5.70168
Emerging Markets 0.00737594 0.0114500 -0.192200 0.123000 0.0349562 -1.23175 5.71631

Equity marketNeutral 0.00522642 0.00580000 -0.0587000 0.0253000 0.00844519 -2.36582 15.5672
Event Driven 0.00742406 0.00940000 -0.0886000 0.0442000 0.0173793 -1.58917 5.65087

Fixed Income Arbitrage 0.00489528 0.00605000 -0.0867000 0.0365000 0.0125808 -3.88509 23.8725
Global Macro 0.00638868 0.00535000 -0.0313000 0.0738000 0.0155871 0.903867 2.28122

Long-Short Equity 0.00719906 0.00980000 -0.0675000 0.0745000 0.0212323 -0.422744 1.22353
Merger-Arbitrage 0.00597217 0.00620000 -0.0544000 0.0272000 0.0101187 -1.47871 6.03397
Relative Value 0.00661509 0.00840000 -0.0692000 0.0392000 0.0122530 -1.98352 9.02728
Short-Selling -0.000189151 -0.00520000 -0.134000 0.246300 0.0503101 0.726257 2.79397

Funds of Funds 0.00504953 0.00675000 -0.0618000 0.0666000 0.0165642 -0.415499 3.73789

The 17 year sample period we use, which incorporates both the Global Finan-
cial Crisis (GFC) and subsequent European Debt Crisis (EDC), is challenging
for the application of portfolio investment strategies. The end of month values
of these indices are di�erenced to form arithmetically compounded return series.
Graphs of the returns on these indices, for the whole sample period, are shown
in Figure 1, together with QQ Plots.

It is clear from the QQ plots, also in Figure 1, that all the index return
distributions are non-normal and fat-tailed. Descriptive statistics for the series
are provided in Table 1.

The descriptive statistics in Table 1 suggest that the series have the typical
characteristics of �nancial return series in that these hedge fund index return
series are skewed, mainly negatively, but the CTAGlobal, Global Macro, and
Short-Selling series demonstrate positive skewness. Some of the series demon-
strate extreme kurtosis, with values above 5, in the cases of Convertible Arbi-
trage, Distressed Securities, Emerging Markets, Equity Market Neutral, Event
Driven, Fixed Income Arbitrage, Merger-Arbitrage, and Relative Value. This
suggests that portfolio analysis based on mean-variance analysis is not likely to
match the characteristics of the data sets.

4. Results

4.1. Spillover Index Analysis

Table 2 presents the results of the Spillover Index analysis using the Diebold
and Yilmaz (2012) generalised version of their index, which is invariant to the
ordering of variables. The �rst entry in the �rst row and column of Table 2
shows the proportion of the forecast error variance of the Convertible Arbitrage
index provided by its own shocks, which has a value of 18.8%. The next entry in
row 1 of the table shows that the Convertible Arbitrage sector has virtually no
impact on the CTA Global index, measured at 0.2%. It has a larger in�uence on
all the other hedge fund sector indices, with the greatest impact of 12.4% on the
Relative Value Sector, which makes intuitive sense, given the nature of these two
hedge fund sectors. Its total contribution to explanation of the variances of the
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Figure 1: Plots of Indices arithmetically compounded monthly returns and QQ Plots

(a) Convertible Arbitrage and CTA Global

(b) Distressed Securities and Emerging Markets

(c) Equity Market Neutral and Event Driven

(d) Fixed Income Arbitrage and Global Macro

(e) Long-Short Equity and Merger Arbitrage

(f) Relative Value and Short Selling

(g) Funds of Funds
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Table 2: Spillover Index variance decomposition of the monthly hedge fund index returns

Convertible
Arbitrage

CTA Global Distressed
Securities

Emerging
Markets

Equity
Market
Neutral

Event
Driven

Fixed
Income
Arbitrage

Global
Macro

Long Short
Equity

Merger
Arbitrage

Relative
Value

Short Selling Fund of
Funds

Contribution
from others

Convertible Arbitrage 18.8 0.2 9.4 7.4 3.4 9.9 9..7 3.8 7 7.3 12.4 3.1 7.6 81
CTA Global 0.8 58.2 1 14 4.2 1.8 0.5 20.3 2.2 1.5 1.1 1.8 5.3 42
Distressed Securities 8.1 0 12.9 9.2 4.5 12.1 4.8 4.3 9.7 7.7 10.5 6.7 9.5 87
Emerging Markets 5.6 0.1 9.2 14.3 4.4 10.3 4.2 6.8 10.5 6.8 9.2 7.6 11 86
Equity Market Neutral 5.7 1 7.7 7.5 17.5 9.6 2.3 6.8 10.5 7.8 8.7 4.4 10.5 82
Event Driven 7 0.1 10.8 8.9 5.1 12.6 3.7 4.6 10.4 9.7 10.7 6.9 9.7 87
Fixed Income Arbitrage 14.8 0.3 9.3 8.6 2.8 9.5 16.9 3.9 6 6.3 11.6 2.8 7 83
Global Macro 3.3 6.3 6.5 9.8 6.8 7.8 3.7 18.4 9.8 5.1 6.5 3.5 12.5 82
Long Short Equity 4.6 0.2 8.9 9.6 6.3 11 2.6 6.5 13.6 7.3 9.6 8.4 11.3 86
Merger Arbitrage 5.7 0.2 8.8 7.6 5.4 13 2.7 4 9.5 18.1 10.1 6 9 82
Relative Value 9.9 0.1 9.5 8.7 4.6 11.2 6 4.4 9.9 8.2 13.2 5.5 8.7 87
Short Selling 3 0.2 9.3 9.9 3.8 10.7 1.2 3.7 12.7 7 8 20.2 10.2 80
Fund of Funds 5.2 0.7 9 10.2 6.1 10.4 3.4 8.1 11.4 7.3 8.6 6.8 12.8 87
Contribution to others 74 10 99 99 57 117 45 77 110 82 107 63 112 1053
Contribution including own 93 68 112 113 75 130 62 96 123 100 120 84 125 81.00%

errors of the other sectors is recorded at the end of the row, in the last column
entry, which shows that it contributed 81% to the forecast error variances of the
other sectors.

The diagonal entries in Table 2, showing the in�uence of each sector index
on itself, reveal that by far the most independent of the hedge fund sector
indices is the CTA Global sector, which explains 58.2% of its own variance. The
next largest entry on the diagonal is Short Selling, which explains 20.2% of its
own variance. The smallest entry on the diagonal is 12.8% for Fund of Funds,
revealing that this sector explains the least amount of its own variance. This
also makes intuitive sense, in that Fund of Funds is a conduit for investment in
all the other hedge fund sectors. The penultimate entries at the foot of each
column in Table 2 show the contribution of that sector to the other sectors.
The Event Driven sector appears to make the biggest contribution, recorded at
110%. It is closely followed by Long Short Equity at 110%, and by Relative
Value at 107%.

Figure 2 provides a rolling window analysis of the spillovers, using a forecast
period of 10 months, and a window of 36 months. It can be seen clearly in
Figure 2, that the total size of the spillovers varies over time, and becomes more
pronounced in times of �nancial distress, as suggested by the peak in 2008/2009,
and then again late in 2010.

The results in Table 3 are produced by applying Markowitz portfolio opti-
misation, with a positive weights constraint, as applied to a �ve year estimation
period window, and then the weights are maintained for the next year in a
one-year out-of-sample test. The procedure is then rolled forward through the
data one year at a time. Given that we only had 8 observations for 2013 we
did not run the out-of-sample test in 2014. The results suggest that Markowitz
optimisation with positive weights produces a higher Sharpe ratio in 10 years
of the 12 years of hold-out periods. Paradoxically, the return produced by a
strategy of equal weighting is higher in 8 of the 12 years. However, the increase
in risk associated with the higher level of return produces a lower Sharpe ra-
tio. This performance is much better than the previous �ndings of DeMiguel
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Figure 2: Total Spillover Rolling Window Analysis, 36 month window, 10 month forecasts

et al. (2009), who suggested, that in their sample and simulation analysis,
it took around 3000 months, for a portfolio of 25 assets, to outperform the
naive diversi�cation strategy. Similarly, Allen et al. (2014), in their analysis of
European markets, found no evidence that a Markowitz optimisation strategy
outperformed naive diversi�cation.

By contrast, the results in Table 3 are much more favourable to a Markowitz
optimisation strategy. This is probaby because the 'securities' analysed are
hedge fund sector indices, and their return behaviour does not seem to be sub-
ject to as much estimation risk as are normal equity securities. For example, the
EquityMarketNeutral sector appears in 9 of the 12 hold-out portfolios, Short-
Selling also appears in 12 of 12, and FixedIncomeArbitrage also in 12 from
12.

A non-parametric sign test on the Sharpe ratios, in which the Sharpe ratio
for the Markoitz strategy is superior in 10 of 12 cases, produced a probability
value of 0.019 in a one-tail test. Similarly, a Wilcoxon signed rank test of the
di�erences also had a probability value of 0.019 in a one-tail test. Even a two-
tailed t-test of the di�erence in the means of the Sharpe ratios, obtained for
Markowitz optimisation in the hold-out samples, and those obtained by naive
diversi�cation, gave a probability of 0.059.

The other notable feature of Table 3 is that FundofFunds never appears as
a component of an optimal portfolio. It appears that certain hedge fund sectors
have such di�erent investment strategies that they are powerful components of
an e�ective diversi�cation strategy. However, these bene�ts are not so readily
available to the average retail investor.

The Spillover analysis, reported in Table 2, suggested that CTAGlobal is
the most self-contained of the sectors, making the smallest contribution to the
variances of the returns of the other sectors. This sector appeared in 6 of the 12
hold-out sample portfolios. FixedIncomeArbitrage, EquityMarketNeutral and
ShortSelling also made low contributions to the variances of other sectors and
appeared as very regular components of the Markowitz hold-out portfolios, in
8, 10, and 12 cases of 12, respectively.
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They also appeared in the Markowitz portfolio retrospectively �tted to the
entire sample, shown in the top line of Table 3. By contrast, this portfolio �tted
across the whole period, had a lower Sharpe ratio than a naive diversi�cation
strategy.

4.2. Draw-down portfolio analyses

In the next part of the analysis, we explore the characteristics of portfolio
draw-downs.

Figure 3 shows the draw-downs of the global minimum variance portfolio.
The trajectory of draw-downs of the global minimum variance portfolio, shown
in Figure 3, reveals that the biggest impact on the hedge fund sectors was in
2008-2009.

A comparison of the draw-downs for the various strategies is shown in Figure
4. The imposition of an average draw-down constraint to optimise the portfolio
can still result in large draw-downs, as shown in the �rst graph labelled �(a)
AveDD�, in the top left-hand panel of Figure 4. The draw-down of -80% is
much greater than the other draw-down optimiser outcomes, with the minimum
CDaR, in panel (d) of Figure 4, producing the smallest draw-down.

In Table 4, we analyse these portfolios �tted to historic data, in terms of
their weights, risk contributions and diversi�cation ratios.

Table 4 demonstrates how the portfolio weights vary if we apply the various
strategies across the entire 17-year sample period. The GMV strategy with pos-
itive weights, places 1.73% of the portfolio in the CTAGlobal sector, 41.22% in
the Equity Market Neutral Sector, 9.7% in Fixed Income Arbitrage, 38.85% in
Merger Arbitrage, and the remainder of around 8.5% in Short Selling. The other
strategies, which concentrate on minimising the maximum draw-down, average
draw-down, or conditional average draw-downs, or minimum draw-downs, at
a 95% con�dence level, produce much less diversi�ed portfolios, with MaxDD
placing 100% in the Global Macro Sector, AveDD placing 49.3% in Equity Mar-
ket Neutral, 46.06% in Fixed Income Arbitrage and 4.64% in Global Macro.
The CDaR95 strategy places 35.19% in Emerging Markets, 1.72% in Equity
Market Neutral, 0.58% in Fixed Income Arbitrage, 62.51% in Global Macro.
The CDaRMIN95 strategy places 35.19% in Emerging Markets, 1.72% in Eq-
uity Market Neutral, 0.58% in Fixed Income Arbitrage, and 62.51% in Global
Macro.

The impact on reducing diversi�cation is shown in the bottom line of Table 6,
which reports the Diversi�cation Ratio, which is lowest for the MaxDD strategy,
for which it has a value of 1, re�ecting that this strategy places 100% in Global
Macro. The Diversi�cation Ratio was developed by Choueifaty and Cognard
(2008) and Choueifaty et al. (2011), and provides a measure of the degree of
diversi�cation of long only portfolios. It has a lower bound of one, which is
achieved in single asset portfolios. The most diversi�ed portfolio of hedge fund
sectors is the GMV strategy, which has a diversi�cation ratio of 2.11.

The expected shortfalls at the 95% level, are shown in the penultimate row
of Table 4. The lowest expected shortfall at a 95% con�dence level, not sur-
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Figure 3: Comparison of draw-downs
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Table 4: Comparison of portfolio allocations and characteristics

GMV MaxDD AveDD CDaR95 CDaRMin95
ConvertibleArbitrage

Weight 0.00 0.00 0.00 0.00 0.00

CTAGlobal

Weight 1.73 0.00 0.00 0.00 0.00

DistressedSecurities

Weight 0.00 0.00 0.00 0.00 0.00

EmergingMarkets

Weight 0.00 0.00 0.00 35.19 35.19

EquityMarketNeutral

Weight 41.22 0.00 49.30 1.72 1.72

EventDriven

Weight 0.00 0.00 0.00 0.00 0.00

FixedIncomeArbitrage

Weight 9.70 0.00 46.06 0.58 0.58

GlobalMacro

Weight 0.00 100.00 4.64 62.51 62.51

LongShortEquity

Weight 0.00 0.00 0.00 0.00 0.00

MergerArbitrage

Weight 38.85 0.00 0.00 0.00 0.00

RelativeValue
Weight 0.00 0.00 0.00 0.00 0.00
ShortSelling
Weight 8.50 0.00 0.00 0.00 0.00
FundofFunds
Weight 0.00 0.00 0.00 0.00 0.00
Overall

ES 95% 0.788 0.088 0.095 0.113 0.091

Div Ratio 2.110 1.00 1.207 1.093 1.093
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Table 5: Draw-Downs Comparisons

Drawdowns(MVRet)

From Trough To Depth Length To Trough Recovery

1 31/05/2011 30/09/2011 31/12/20131 -0.0114 8 5 3

2 31/05/2010 31/05/2010 31/07/2010 -0.0045 3 1 2

3 30/09/2012 31/10/2012 30/11/2012 -0.0030 3 2 1

4 31/03/2014 31/03/2014 31/05/2014 -0.002 3 1 2

5 31/08/2013 31/08/2013 30/09/2013 -0.0081 2 1 1

Drawdowns(CDRet)

From Trough To Depth Length To Trough Recovery

1 31/05/2013 30/09/2011 31/12/2012 -0.0346 20 5 15

2 31/05/2010 31/05/2010 31/08/2010 -0.0138 4 1 3

3 31/12/2009 31/01/2010 31/03/2010 -0.0098 4 2 1

4 30/11/2010 30/11/20130 31/12/2010 -0.0061 2 1 1

5 310/06/2013 30/06/2013 31/07/2013 -0.0052 2 1 1

prisingly, is obtained via the CDaRMin95 strategy, which yields an expected
shortfall of 0.091.

These results are obtained by �tting the optimisations to the entire data set
and are of limited use. The crucial tests are the out of sample ones, and these
are considered next, using rolling one year windows for analysis purposes. In
the next section, we compute the draw-down portfolio solutions, and use the
maximum draw-down of the minimum variance portfolio as a benchmark value.
The CDaR portfolios are calculated for a con�dence level of 95%.

4.3. Portfolio comparisons using back-tests

We conducted further analyses to compare the results of the minimum vari-
ance strategy with the various conditional draw-down as risk strategies. The
back-tests are carried out using a recursive window of 60 months, or �ve years
of monthly data. The CDaR portfolio is optimised for a conditional draw-down
of 10% at a 95% con�dence level. The GMV portfolio is again constrained to
be long only.

Figure 5 provides a graph of the wealth trajectories of the CDaR strategy,
contrasted with the GMV one. An initial wealth of 100 units is assumed. The
surprising feature of Figure 5 is that, for most of the period considered, the
wealth trajectory of the CDaR portfolio is above that of GMV. This demon-
strates that a portfolio of hedge fund sectors, combined with risk-minimising
strategies, is a very e�ective way of preserving wealth.

Table 5 provides an analysis of the �ve greatest draw-downs, that resulted
from the implementation of each strategy. The �rst draw-down for the CDaR
strategy is surprisingly deeper (-0.0346) than for MVRet (-0.0114), and with a
longer total period of 15 months as compared to 3 months for MVRet.
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Figure 4: Comparison of wealth trajectories
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Figure 5: Comparison of Wealth Trajectories

Figure 8 provides a comparison of the draw-down trajectories. It is readily
apparent that the CDaR strategy successfully minimises draw-downs, but it
does not necessarily provide compensating returns.

It can be seen in Table 6 that the GMV optimiser works better than the
CDaR optimiser in terms of this set of hedge fund sector returns. GMV has a
lower VaR and ES, than the CDaR optimiser at 95% levels, and it has a higher
Sharpe ratio than CDaR. The number of draw-downs is the same, but is always
relatively smaller for GMV than for CDaR.
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Figure 6: Comparison of Draw-Down Trajectories
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Table 6: Relative performance statistics GMV versus CDaR

Statistics GMV CDaR

Risk/return

VaR 95% 0.271 0.929

ES 95% 0.406 1.24

Sharpe ratio 0.4341370 0.05088481

Return annualised % 0.143 0.159

Draw-down

Count 9 9

Minimum 0.0679 0.001469

1st Quartile 0.1452 0.336000

Median 0.1691 0.516500

Mean 0.3034 0.869400

3rd Quartile 0.3002 0.975700

Maximum 1.1400 3.464000

The maximum draw-down in Table 6 is practically 3 times larger for CDaR
than for GMV.

5. Conclusion

In this paper we examined the diversi�cation and portfolio optimisation ca-
pabilities of a set of 13 major hedge fund sector indices, as represented by the
EDHEC series, for a 17-year period of monthly returns. We commenced our
application by using the Diebold and Yilmaz (2012) Spillover Index to analyse
the inter-connectedness of these series. This analysis revealed that the least
connected hedge fund sectors, on this measure, were the CTAGlobal and Short-
Selling sectors.

We then contrasted a naive diversi�cation strategy with a Markowitz di-
versi�cation strategy, using a 5-year estimation period and one year hold-out
samples. The Markowitz strategy appeared to work well, on this investment
universe of hedge fund indices, out-performing a naive diversi�cation strategy
across the hold out samples, as demonstrated by superior Sharpe ratios, which
were con�rmed as being signi�cant in non-parametric tests.

Then we examined the e�ectiveness of a variety of portfolio optimisation
strategies using CVaR optimisers, plus a further set using four di�erent applica-
tions of draw-down optimisers: MaxDD, AveDD, CDaR95, CDaRMin95. These
were evaluated using a series of rolling �ve-year window back tests.

The most successful of the optimisation strategies was Markowitz with pos-
itive constraints. The CVaR strategy did not seem to dominate Markowitz.
Even more surprising was the fact that the draw-down optimisation techniques
neither dominated Markowitz, nor successfully diminished extreme adverse out-
comes, as compared with Markowitz optimisation.
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These results contrast with the results in Allen et al. (2014), in their previous
work on portfolio diversi�cation in European equity markets, which suggested
the primacy of naive diversi�cation, consistent with the results of DeMiguel
et al. (2009). These results on hedge fund sector indices favour Markowitz
optimisation techniques, and possible re�ect the distinctive characteristics of
the Alternative Investment universe. The Markowitz portfolios did not appear
to be plagued by the customary estimation risk, and the securities and weights
chosen were reasonably consistent from year to year, in the annual hold-out
portfolios.
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