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UNIFIED TREATMENT OF EXPLICIT AND TRACE FORMULAS
VIA POISSON-NEWTON FORMULA

VICENTE MUÑOZ AND RICARDO PÉREZ MARCO

Abstract. We prove that a Poisson-Newton formula, in a broad sense, is associ-
ated to each Dirichlet series with a meromorphic extension to the whole complex
plane of finite order. These formulas simultaneously generalize the classical Pois-
son formula and Newton formulas for Newton sums. Classical Poisson formulas
in Fourier analysis, explicit formulas in number theory and Selberg trace formu-
las in Riemannian geometry appear as special cases of our general Poisson-Newton
formula.

We dedicate this article to Daniel Barsky and Pierre Cartier for their interest and
constant support.

1. Introduction

All classical Poisson formulas for functions in Fourier analysis result from the gen-
eral distributional Poisson formula

(1)
∑

n∈Z

ei
2π
λ
nt = λ

∑

k∈Z

δλk ,

which is an identity of distributions identifying an infinite sum of exponentials, con-
verging in the sense of distributions, and a purely atomic distribution. This distribu-
tional formula is related to the simplest finite Dirichlet series

f(s) = 1− e−λs .

It is interesting to observe that on the left hand side of (1) we have an exponential
sum

W (f) =
∑

ρ

eρt ,

where the sum runs over the zeros ρn = 2πi
λ
n, n ∈ Z, of f , and on the right hand

side of (1) we have a sum of atomic masses at the multiples of the fundamental
frequency λ. One can say that the frequencies associated to the zeros are resonant
at the fundamental frequencies. Taking the Fourier transform we obtain the dual
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2 V. MUÑOZ AND R. PÉREZ MARCO

Poisson formula that is of the same form where we exchange zeros and fundamental
frequencies. Thus the fundamental frequencies are also resonant at the zeros.

The main purpose of this article is to show that this type of formulae are general
and to each meromorphic Dirichlet series f we can associate a distributional Poisson
formula

(2) W (f) =
∑

ρ

nρe
ρt =

∑

k

〈λ,k〉bk δ〈λ,k〉 ,

where the first sum of exponentials runs over the divisor of f , i.e., zeros and poles
ρ with multiplicities nρ, and the second sum runs over non-zero sequences k =
(k1, k2, . . .) ∈ N∞ of non-negative integers, all of them zero but finitely many, and
〈λ,k〉 =

∑
λjkj. The coefficients bk are determined by the formula − log f(s) =∑

k
bke

−〈λ,k〉s. The equality holds in R∗
+. Conversely, we prove that any such Poisson

formula comes from a Dirichlet series.

The distribution
W (f) =

∑

ρ

nρe
ρt

is well defined in R∗
+ and is called the Newton-Cramer distribution of f . We name it

after Newton because it appears as a distributional interpolation of the Newton sums
to exponents t ∈ R, since in the complex variable1 z = es the zeros are the α = eρ so,
for simple zeros such that ρ− ρ′ 6= 2πik, k ∈ Z,

W (f)(t) =
∑

α

αt ,

and for integer values t = m ∈ Z we recognize (in case of convergence) the Newton
sums

W (f)(m) = Sm =
∑

α

αm .

There is a precise theorem behind this observation. We show that our Poisson-Newton
formula for a finite Dirichlet series f with a single fundamental frequency is strictly
equivalent to the classical Newton relations. This is the reason why we name also
after Newton our general Poisson formulas.

Writing ρ = iγ we see that the sum W (f) of the left hand side of (2) is the Fourier
transform of the atomic Dirac distributions δγ and we can formally write

∑

γ

niγ δ̂γ =
∑

k

〈λ,k〉bk δ〈λ,k〉 .

The form of this formula, relating zeros to fundamental frequencies, strongly reminds
other distributional formulas in other contexts. In number theory, more precisely in

1The variable z = e
s or better z = e

−s is the proper variable when dealing with Dirichlet series.
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the theory of zeta and L-functions, the same type of identities do appear as “explicit
formulas” associated to non-trivial zeros of the zeta and other L-functions. These ex-
plicit formulas, when written in distributional form, reduce to a single distributional
relation that identifies a sum of exponentials associated to the divisor of the zeta or
L-function and an atomic distribution associated to the location of prime numbers.
Usually the sum runs over non-trivial zeros, and the sum over trivial zeros appears
hidden in other forms as a Weil functional, which is classically interpreted as corre-
sponding to the “infinite prime”2. For that reason, Delsarte labeled this formula as
“Poisson formula with remainder” (see [7]), the “remainder” refers to the sum over
the trivial part of the divisor. More precisely, for the Riemann zeta function, we have
in R∗

+ (see [13]) ∑

ρ

nρe
ρt +W0(f) = −

∑

p

∑

k≥1

log p δk log p ,

where the sum on the left runs over the non-trivial (i.e., non-real) zeros ρ, and the sum
over p runs over prime numbers. Conjecturally, the non-trivial zeros are simple, i.e.,
nρ = 1. The term W0(f) is the sum over the trivial (real) divisor and is computable

W0(f)(t) = −et +
∑

n≥1

e−2nt = −et +
1

e2t − 1
,

and corresponds to Delsarte “remainder”, or to the Weil functional of the infinite
prime. Also we have in this case

∑

ρ

nρe
ρt = et/2V (t) + et/2V (−t) ,

where
V (t) =

∑

ℜγ>0

eiγt ,

is the classical Cramer function, studied by H. Cramer [6], where ρ = 1
2
+ iγ. This

motivates that we name our distribution W (f) also after Cramer.

In Riemannian geometry, we have the same structure for the Selberg trace formula
for compact surfaces with constant negative curvature. With the relevant difference
that Selberg zeta function is of order 2, which gives a “remainder” of order 2 also.
Selberg formula relates the length of primitive geodesics, which play the role of prime
numbers, and the eigenvalues of the Laplacian, which give the zeros of the Selberg
zeta function. For non-negative constant curvature, the formulas are of a different
nature and the distribution on the right side are no longer simple atomic Diracs,

2It may be more appropriate to talk of the “prime” p = 1. Actually, Arakelov theory suggests
that what is usually understood as “prime” at infinity is better understood as “prime” 1 (cf. the
“field” with one element).
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but also higher order derivatives appear [8]. It is well known that one of Selberg’s
motivation was the analogy with the explicit formula in Number Theory, that our
approach explains. According to B. Conrey [5]

”The trace formula resembles the explicit formula in certain ways. Many re-
searchers have attempted to interpret Weil’s explicit formula in terms of Selberg’s
trace formula.”

In the context of dynamical systems and semiclassical quantization, we have Gutzwiller
trace formula (see [10]), which relates the periods of the periodic orbits (frequencies
of the zeta function) of a classical mechanical system to the energy levels (zeros of
the zeta function) of the associated quantum system.

Our goal is to put in the proper context, generalize and make precise the analogy
of Poisson and trace formulas, and derive a general class of Poisson formulas that
contain all such instances. More precisely, to each meromorphic Dirichlet series of
finite order we associate a Poisson-Newton formula. All relevant known formulas can
be generated in this way. On the other hand the fact that explicit formulas in number
theory and Selberg trace formula can be seen as a generalization of Newton formulas,
seems to be a new interpretation. It is important to remark that in our general setting
the Poisson-Newton formulas are independent from a possible functional equation for
the Dirichlet series f , contrary to what happens in classical formulas (see remark 7.4
for the precise formulation).

2. Newton-Cramer distribution

Let f be a meromorphic function on the complex plane s ∈ C of finite order (see [1]
for classical results on meromorphic functions). We denote by (ρ) the set of zeros and
poles of f , and the integer nρ is the multiplicity of ρ (positive for zeros and negative
for poles, with the convention nρ = 0 if ρ is neither a zero nor pole). The convergence
exponent of f is the minimum integer d ≥ 0 such that

(3)
∑

ρ6=0

|nρ| |ρ|
−d < +∞ .

We have d = 0 if and only if f is a rational function. We shall assume henceforth
that d ≥ 1. The order o of f satisfies d ≤ [o] + 1. We shall also assume that there
is some σ1 ∈ R such that ℜρ ≤ σ1 for any zero or pole ρ of f .

Associated to the divisor div(f) =
∑
nρ ρ, we define a distribution

(4) W (f) =
∑

nρ e
ρt
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on R∗
+ =]0,∞[, called the Newton-Cramer distribution. Moreover, we define a distri-

bution on the whole of R, vanishing on R∗
− =]−∞, 0[. This means that we have to

make sense of the structure of W (f) at 0 ∈ R.

We start by fixing the space of distributions we will be working on, which are the
distributions Laplace transformable in the terminology of [20, Section 8]. We denote
D = C∞

0 so D′ is the space of all distributions. The space S of C∞-functions of
rapid decay on R consists of those ϕ such that for any n,m > 0, |tn dm

dtm
ϕ| ≤ Cnm.

The dual space S ′ is the Schwartz space of tempered distributions. Then we say that
a distribution W ∈ D′ is (right) Laplace transformable if its support is included in
] −M,∞[, for some M ∈ R, and there exists some c ∈ R such that W e−ct ∈ S ′.
The topology is as follows: a sequence Wk of Laplace transformable distributions
converge to someW if there exists some uniformM, c such that Supp(Wk) ⊂]−M,∞[
and Wk e

−ct → W e−ct in S ′. Note also that the space of Laplace transformable
distributions is stable by differentiation, and differentiation is continuous in this space
(and the same constant c works for the sequence of derivatives).

To make sense of (4), we are going to construct explicitly a d-th primitive of it
which is a continuous function. For this, we introduce a parameter σ ∈ C which
serves as origin for defining the primitive of W (f). The relevant function is

Kd,σ(t) =

(
nσ
td

d!

)
1R+

+
∑

ρ6=σ

(
nρ

(ρ− σ)d
e(ρ−σ)t

)
1R+

.

This is a Laplace transformable distribution (see Lemma 2.1 below). Set

(5) Wσ(f) = eσt
Dd

Dtd
(
(Kd,σ(t)−Kd,σ(0))1R+

)
,

where D
Dt

denotes the distributional derivative. The following justifies our definition
of the Newton-Cramer distribution (4).

Lemma 2.1. For finite sets A, consider the family of locally integrable functions

W̃A(f) =

(∑

ρ∈A

nρe
ρt

)
1R+

.

There is a family of Laplace transformable distributions WA,σ(f) which coincides with

W̃A(f) in R∗, and which converges in R (over the filter of finite sets A), to the Laplace
transformable distribution Wσ(f) (converging as Laplace transformable distributions).

Proof. We prove first the lemma when σ is not a zero nor pole of f . Let α = σ1−ℜσ ∈
R. We define

(6) Kℓ(t) =
∑

ρ

(
nρ

(ρ− σ)ℓ
e(ρ−σ)t

)
1R+

.
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(We drop the subscript σ from the notation during this proof.) Then for ℓ ≥ d, Kℓ is
absolutely convergent for t ∈ R+, since

∣∣e(ρ−σ)t
∣∣ = eℜ(ρ−σ)t ≤ eαt ,

and

|e−α tKℓ| ≤
∑

ρ

|nρ|

|ρ− σ|ℓ
<∞ .

So Kℓ is a uniformly convergent on compact subsets of R+, and hence it is continuous
in R∗. The function

Fℓ(t) = (Kℓ(t)−Kℓ(0))1R+

is a continuous function on R, for ℓ ≥ d.

For a finite set A, denote by

Kℓ,A(t) =
∑

ρ∈A

(
nρ

(ρ− σ)ℓ
e(ρ−σ)t

)
1R+

the corresponding sum over ρ ∈ A, and Fℓ,A(t) = (Kℓ,A(t) − Kℓ,A(0))1R+
. Then

Fℓ,A → Fℓ uniformly on compact subsets of R. More precisely, |Fℓ,A − Fℓ| ≤ cAe
αt

with cA → 0. In particular, e−(α+ǫ)tFℓ,A → e−(α+ǫ)tFℓ in S ′, for some ǫ > 0. On R∗,

W̃A(f) =

(∑

ρ∈A

nρ e
ρt

)
1R+

= eσt
dd

dtd
Fd,A(t).

We consider

WA,σ(f) = eσt
Dd

Dtd
Fd,A,

taking the distributional derivative.

Let K be a smooth function on R. It is easy to check that D
Dt
(K1R+

) = K ′1R+
+

K(0)δ0, as distributions in D′. This formula holds also for Laplace transformable
distributions. We apply this to Fℓ,A, using that K ′

ℓ,A = Kℓ−1,A. We get

Dd

Dtd
Fd,A = K0,A(t) +K1,A(0)δ0 +K2,A(0)δ

′
0 + . . .+Kd−1,A(0)δ

(d−2)
0

= K0,A(t) +

(∑

ρ∈A

nρ

ρ− σ

)
δ0 +

(∑

ρ∈A

nρ

(ρ− σ)2

)
δ′0 + . . .+

(∑

ρ∈A

nρ

(ρ− σ)d−1

)
δ
(d−2)
0 .

Thus the difference between W̃A(f) and WA,σ(f) is a distribution supported at {0}.

We have the convergence Fd,A → Fd as Laplace transformable distributions (with
c = α + ǫ fixed uniformly). Then differentiating, we have WA,σ(f) → Wσ(f) as
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Laplace transformable distributions, where

Wσ(f) = eσt
Dd

Dtd
Fd ,

which is a Laplace transformable distribution with support on R+, as stated.

When σ is part of the divisor, then we do the same proof with

Kℓ(t) =

(
nσ
tℓ

ℓ!

)
1R+

+
∑

ρ6=σ

(
nρ

(ρ− σ)ℓ
e(ρ−σ)t

)
1R+

,

which adds to Wσ(f) a term nσe
σt. �

Definition 2.2. We call Wσ(f) defined in (5) the Newton-Cramer distribution asso-
ciated to f (with parameter σ ∈ C).

We can write

W (f) =Wσ(f)|R∗

+
= lim

A
W̃A(f)|R∗

+
=
∑

ρ

nρ e
ρt ,

as a distribution on R∗
+. Note that W (f) is independent of σ, since the only depen-

dence on σ of Wσ(f) is located at 0.

Proposition 2.3. The distribution Wσ(f) has support contained in R+, and it is
Laplace transformable (with c > σ1).

Proof. By definition, Wσ(f) is a Laplace transformable distribution. By the proof of
Lemma 2.1, we have that e−ct Fd ∈ S ′ with c = α + ǫ, α = σ1 − ℜσ, σ1 = sup{ℜρ}.

As Wσ(f) = eσt Dd

Dtd
Fd, we have that e−(ℜσ)te−ctWσ(f) ∈ S ′. So this means that

e−(σ1+ǫ)tWσ(f) ∈ S ′

This means that we can pair Wσ(f) with e
−st for ℜs > σ1,

〈Wσ(f), e
−st〉 := 〈e−(σ1+ǫ)tWσ(f), λ(t)e

−(s−(σ1+ǫ))t〉 ,

where λ(t) is any infinitely smooth function with support bounded on the left which
equals 1 over a neighborhood of the support of Wσ(f) (see [20, p. 223]). �

Let f(s) be a meromorphic function with exponent of convergence d, and fix σ as
before. We have defined a distribution Wσ(f)(t) supported on R+. If we make the
change of variables t 7→ −t, we have the distribution Wσ(f)(−t) defined as

Wσ(f)(−t) = (−1)de−σt D
d

Dtd
(
(Kd,σ(−t)−Kd,σ(0))1R−

)
.

This is independent of σ on R∗
− and has a contribution at zero dependent on the

parameter.
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Definition 2.4. We define the symmetric Newton-Cramer distribution as Ŵσ(f) =
Wσ(f)(t) +Wσ(f)(−t).

The symmetric Newton-Cramer distribution is a distribution supported on the

whole of R and symmetric. It satisfies that there is some c > 0 such that h(t)Ŵσ(f) ∈
S ′, where h is smooth with h = e−(c+ǫ)|t| for |t| ≥ 1. Note also that the only depen-
dence on σ is at zero.

Formally, Wσ(f)(t) = (
∑
nρe

ρt) 1R+
and Wσ(f)(−t) = (

∑
nρe

−ρt) 1R−
, so we can

write

Ŵσ(f) =
∑

ρ

nρe
ρ|t|.

3. Poisson-Newton formula

Let f be a meromorphic function on C of finite order. Let (ρ) be the divisor defined
by f , and assume that the convergence exponent is d, that is, (3) is satisfied. We
have the Hadamard factorization of f (see [1, p. 208])

f(s) = sn0eQf (s)
∏

ρ6=0

Em(s/ρ)
nρ ,

where m = d− 1 ≥ 0 is minimal for the convergence of the product with

Em(z) = (1− z)ez+
1

2
z2+...+ 1

m
zm ,

and Qf is a polynomial uniquely defined up to the addition of an integer multiple of
2πi. The genus of f is defined as the integer

g = max(degQf , m) ,

and in general we have d ≤ g + 1 and g ≤ o ≤ g + 1 (see [1, p. 209]).

The origin plays no particular role, thus we may prefer to use the Hadamard product
with origin at some σ ∈ C,

(7) f(s) = (s− σ)nσeQf,σ(s)
∏

ρ6=σ

Em

(
s− σ

ρ− σ

)nρ

.

This can be obtained as follows: translate the divisor (ρ) to (ρ − σ), consider the
usual Hadamard factorization, and then do the change of variables s 7→ s− σ.

Taking the logarithmic derivative of (7), we obtain

(8)
f ′(s)

f(s)
= Q′

f,σ(s) +G(s),
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where

G(s) =
nσ

s− σ
−
∑

ρ6=σ

nρ

(
1

ρ− s
−

d−2∑

l=0

(s− σ)l

(ρ− σ)l+1

)

=
nσ

s− σ
+
∑

ρ6=σ

nρ
(s− σ)d−1

(ρ− σ)d−1

1

s− ρ
.

is a meromorphic function on C, which has a simple pole with residue nρ at each ρ.

Note that Pf,σ = −Q′
f,σ is a polynomial of degree ≤ g−1. We call it the discrepancy

polynomial of f . We have

Pf,σ = G−
f ′

f
.

The main result of this section is the following Poisson-Newton formula for a general
meromorphic function f of finite order and with divisor contained in a left half plane,
as above. Denote by L the Laplace transform and by L−1 the inverse operator.

Theorem 3.1. Let f be a meromorphic function of finite order with convergence
exponent d and its divisor contained in a left half plane. Fix σ ∈ C. Let Wσ(f) be its
Newton-Cramer distribution and Pf,σ(s) = c0(σ) + c1(σ)s + . . . + cg−1(σ)s

g−1 be the
discrepancy polynomial. We have (as distributions on R),

Wσ(f) =

g−1∑

j=0

cj(σ)δ
(j)
0 + L−1(f ′/f).
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Proof. We prove the theorem by taking the right-sided Laplace transform of Wσ(f).
Here we have to choose ℜs > σ1.

L(Wσ(f)) = 〈Wσ(f), e
−st〉R+

=

〈
Dd

Dtd
Fd(t), e

(σ−s)t

〉

R+

=

∫ ∞

0

(−1)d(Kd(t)−Kd(0))
dd

dtd
e(σ−s)tdt

= nσ(−1)d
(σ − s)d

d!

∫ +∞

0

tde(σ−s)t dt+

+
∑

ρ

nρ

(ρ− σ)d
(−1)d(σ − s)d

(∫ +∞

0

e(ρ−σ)te(σ−s)tdt−

∫ +∞

0

e(σ−s)tdt

)

=
nσ

s− σ
−
∑

ρ

nρ
(s− σ)d

(ρ− σ)d

(
1

ρ− s
−

1

σ − s

)

=
nσ

s− σ
−
∑

ρ

nρ
(s− σ)d−1

(ρ− σ)d−1

1

ρ− s
= G(s) =

f ′(s)

f(s)
+ Pf,σ(s) .

By uniqueness of the Laplace transform for Laplace transformable distributions
(see [20, Theorem 8.3-1]), we have

Wσ(f) = L−1(f ′/f) + L−1(Pf,σ),

where L−1(Pf,σ) is the inverse Laplace transform of the polynomial Pf,σ. This is a
distribution supported at {0}. If Pf,σ(s) = c0 + c1s+ . . .+ cg−1s

g−1, then

L−1(Pf,σ) = c0δ0 + c1δ
′
0 + . . .+ cg−1δ

(g−1)
0 ,

where cj = cj(σ). �

Note in particular that

W (f) = Wσ(f)|R∗

+
= L−1(f ′/f)|R∗

+
.

The inverse Laplace transform L−1(F ) is a well defined distribution of finite order
when F has polynomial growth on a half plane [20, Theorem 8.4-1]. For f a meromor-
phic function of finite order whose divisor is contained on a left half plane, F = f ′/f
has polynomial growth on a half plane (see [14]), hence L−1(F ) is well-defined (al-
though this is also clear from theorem 3.1).

Let us recall how to compute L−1(F ) from [20, p. 236]. Take m0 which is two units
more than the order of growth of F , that is F (s)|s|−m0 ≤ C/|s|2 for ℜs ≥ σ2 > 0.
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Define

L(t) =

∫ +∞

−∞

F (c+ iu)

(c+ iu)m0
e(c+iu)t du

2π
.

This is a continuous function, which vanishes on R−. It is independent of the choice
of c (subject to c > max{σ1, σ2} and for F holomorphic). Then

L−1(F )(t) =
Dm0

Dtm0
L(t),

which is a distribution of order at most m0 − 2.

More explicitly, for an appropriate test function ϕ, letting ψ(t) = ϕ(t)ect, we have

(9)

〈L−1(F ), ϕ〉 = 〈L(t), (−1)m0ϕ(m0)(t)〉

=

∫

R

∫ +∞

−∞

F (c+ iu)

(c+ iu)m0
(−1)m0ϕ(m0)(t)e(c+iu)t du

2π
dt

=

∫ +∞

−∞

(−1)m0
F (c+ iu)

(c+ iu)m0

(∫

R

ϕ(m0)(t)e(c+iu)tdt

)
du

2π

=

∫ +∞

−∞

F (c+ iu)

(c+ iu)m0

(∫

R

(c+ iu)m0ϕ(t)e(c+iu)tdt

)
du

2π

=

∫ +∞

−∞

∫

R

F (c+ iu)ϕ(t)e(c+iu)tdt
du

2π

=

∫ +∞

−∞

F (c+ iu)ψ̂(−u)
du

2π
,

doing m0 integrations by parts in the fourth line.

We can give a symmetric version of the Poisson-Newton formula for

Ŵ (f) =
∑

nρe
ρ|t|.

Theorem 3.2. We have, as distributions on R,

Ŵσ(f) = 2

g−1

2∑

l=0

c2l(σ) δ
(2l)
0 +

(
L−1(f ′/f)(t) + L−1(f ′/f)(−t)

)
.

Proof. It follows from the definition Ŵσ(f)(t) = Wσ(f)(t) + Wσ(f)(−t) and theo-

rem 3.1. Note that doing the change of variables t 7→ −t on
∑g−1

l=0 cl δ
(l)
0 , we get∑g−1

l=0 (−1)lcl δ
(l)
0 . �
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Furthermore, we have a parameter version of our main theorem by doing the change
of variables s 7→ αs + β, with α > 0 and β ∈ C. Take σ′ = σ−β

α
. We denote, as a

slight abuse of notation,

e−
β
α
|t|Ŵσ(f)(t) = e−

β
α
tWσ(f)(t) + e

β
α
tWσ(f)(−t) .

(multiplication of a distribution by a non-smooth function is not defined in general,
so we have to give an explicit meaning to the left hand side). Note that formally,

e−
β
α
|t|Ŵσ(f)(t/α) =

∑

ρ

nρe
(ρ−β)|t|/α .

Corollary 3.3. We have the equality of distributions on R

e−
β
α
|t|Ŵσ(f)(t/α) = 2

g−1

2∑

l=0

c′2l δ
(2l)
0 +

(
e−

β
α
tL−1(f ′/f)(t/α) + e

β
α
tL−1(f ′/f)(−t/α)

)
,

for some c′j explicitly determined in the proof below.

Proof. Consider the meromorphic function g(s) = f(αs + β), which has all its zeros
in a half-plane. The zeroes of g are ((ρ− β)/α). By the definition (5), we have

Wσ′(g)(t) = e−
β
α
tWσ(f)(t/α).

The discrepancy polynomials satisfy Qg,σ′(s) = constant+Qf,σ(αs+ β). Therefore

Pg,σ′(s) = αPf,σ(αs+ β)

Write c′0 + c′1s + . . . + c′g−1s
g−1 = α(c0 + c1(αs + β) + . . . + cg−1(αs + β)g−1). The

penultimate line of equation (9) implies that

L−1(g′/g)(t) = e−
β
α
tL−1(f ′/f)(t/α).

Then theorem 3.2 applied to g implies the result. �

We end up with an application for a real analytic function. Note that for a non-
holomorphic function h, with polynomial decay in the right half-plane, the Laplace
transform depends on the line of integration. We denote L−1

β (h) for the integration
along ℜs = β, with β large enough.

Corollary 3.4. For a real analytic function f and β ∈ R to the right of all zeroes of
f , we have as distributions on R,

e−
β
α
|t|Ŵσ(f)(t) = 2

g−1

2∑

l=0

c′2l δ
(2l)
0 + e−

β
α
tL−1

β (2ℜ(f ′/f)) (t/α).
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Proof. We only have to prove that, for a real analytic function F , and γ to the right
of the zeroes, we have

e−γtL−1(F )(t) + eγtL−1(F )(−t) = e−γtL−1
γ (2ℜF ) (t).

By (9), we have

〈e−ctL−1(F )(t), ϕ(t)〉 =

∫ +∞

−∞

F (c+ iu)ϕ̂(−u)
du

2π

Analogously,

〈ectL−1(F )(−t), ϕ(t)〉 = 〈e−ctL−1(F )(t), ϕ(−t)〉 =

∫ +∞

−∞

F (c + iu)ϕ̂(−u)
du

2π

=

∫ +∞

−∞

F (c− iu)ϕ̂(u)
du

2π
=

∫ +∞

−∞

F (c+ iv)ϕ̂(−v)
dv

2π
.

Adding both, we get

∫ +∞

−∞

2 (ℜF (c+ iv)) ϕ̂(−v)
dv

2π
= 〈e−ctL−1

c (2ℜF ) , ϕ(t)〉,

as required. �

For later use, we also need to determine the relation between Qf,σ and Qf,0 = Qf .
In particular, the relation between the coefficients c0(σ) and c0(0) = c0. Let f be of
finite order and consider the Hadamard factorization of f

f(s) = sn0eQf (s)
∏

ρ6=0

Em(s/ρ)
nρ ,

and the corresponding Hadamard factorization centered at σ ∈ C,

f(s) = (s− σ)nσeQf,σ(s)
∏

ρ6=σ

Em

(
s− σ

ρ− σ

)nρ

.

Lemma 3.5. For d = 2 we have

c0(σ) = c0 +
n0

σ
+
nσ

σ
+
∑

ρ6=0,σ

nρ
−σ

ρ(ρ− σ)
(10)
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Proof. We need to understand the difference between these two factorizations. We
take logarithmic derivatives to get

nσ

s− σ
+Q′

f,σ +
∑

ρ6=0,σ

nρ
(s− σ)m

(ρ− σ)m
1

s− ρ
+ n0

(s− σ)m

(−σ)m
1

s
=

=
n0

s
+Q′

f +
∑

ρ6=0,σ

nρ
sm

ρm
1

s− ρ
+ nσ

sm

σm

1

s− σ

Therefore

Q′
f,σ −Q′

f =n0
(−σ)m − (s− σ)m

(−σ)ms
+ nσ

sm − σm

σm(s− σ)

+
∑

ρ6=0,σ

nρ
sm(ρ− σ)m − (s− σ)mρm

ρm(ρ− σ)m
1

s− ρ

For m = 1 this reduces to

Q′
f,σ −Q′

f =
n0

σ
+
nσ

σ
+
∑

ρ6=0,σ

nρ
−σ

ρ(ρ− σ)
.

�

4. Dirichlet series

We consider a non-constant Dirichlet series

(11) f(s) = 1 +
∑

n≥1

an e
−λns ,

with an ∈ C and

0 < λ1 < λ2 < . . .

with λn → +∞ or (λn) is a finite set (equivalently, take the sequence (an) with all
but finitely many elements being zero). Suppose that we have a half plane of absolute
convergence (see [11] for background on Dirichlet series), i.e., for some σ̄ ∈ R we have

∑

n≥1

|an| e
−λnσ̄ < +∞ .

It is classical [11, p. 8] that

σ̄ = lim sup
log(|a1|+ |a2|+ . . .+ |an|)

λn
.

The Dirichlet series (11) is therefore absolutely and uniformly convergent on right
half-planes ℜs ≥ σ, for any σ > σ̄.
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We assume that f has a meromorphic extension of finite order to all the complex
plane s ∈ C. We denote by (ρ) the set of zeros and poles of f , and the integer nρ is
the multiplicity of ρ. We have, uniformly on ℜs,

lim
ℜs→+∞

f(s) = 1 ,

thus

σ1 = sup
ρ

ℜρ < +∞ ,

so f(s) has neither zeros nor poles on the half plane ℜs > σ1. Sometimes in the
applications σ1 is a pole of f because when the coefficients (an) are real and positive
then f contains a singularity at σ̄ by a classical theorem of Landau (see [11, Theorem
10]). The singularity is necessarily a pole by our assumptions, and in general σ1 = σ̄.

On the half plane ℜs > σ1, log f(s) is well defined taking the principal branch of
the logarithm. Then we can define the coefficients (bk) by

(12) − log f(s) = − log

(
1 +

∑

n≥1

an e
−λns

)
=
∑

k∈Λ

bk e
−〈λ,k〉s ,

where Λ = {k = (kn)n≥1 | kn ∈ N, ||k|| =
∑

|kn| < ∞, ||k|| ≥ 1}, and 〈λ,k〉 =
λ1k1+. . .+λlkl, where kn = 0 for n > l. Note that the coefficients (bk) are polynomials
on the (an). More precisely, we have

(13) bk =
(−1)||k||

||k||

||k||!∏
j kj!

∏

j

a
kj
j .

Note that if the λn are Q-dependent then there are repetitions in the exponents of
(12).

The main result is the following Poisson-Newton formula associated to the Dirichlet
series f .

Theorem 4.1. As Laplace transormable distributions in R we have

Wσ(f) =

g−1∑

k=0

ck(σ)δ
(k)
0 +

∑

k∈Λ

〈λ,k〉 bk δ〈λ,k〉 .

Proof. By theorem 3.1, we only have to prove that the (right) Laplace transform of
the distribution

V =
∑

k

〈λ,k〉 bk δ〈λ,k〉
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equals f ′/f . We compute

〈V, e−ts〉R+
=

〈∑

k

〈λ,k〉 bk δ〈λ,k〉, e
−ts

〉

R+

=
∑

k

〈λ,k〉 bke
−〈λ,k〉s = (log f(s))′ =

f ′(s)

f(s)
,

as required. �

Recalling that W (f) =Wσ(f)|R∗

+
, we have the Poisson-Newton formula on R∗

+,

(14) W (f) =
∑

k∈Λ

〈λ,k〉 bk δ〈λ,k〉 ,

as distributions on R∗
+.

Consider a Dirichlet series f(s) = 1 +
∑
ane

λns and let

f̄(s) = f(s̄) = 1 +
∑

āne
λns

be its conjugate. Then f̄ is a Dirichlet series whose zeros are the {ρ̄} and nρ̄ = nρ.

Also bk(f̄) = bk(f). The Poisson-Newton formula for f̄ is

Wσ̄(f̄)(t) =

g−1∑

l=0

c̄l δ
(l)
0 +

∑

k∈Λ

〈λ,k〉bk δ〈λ,k〉 .

Corollary 4.2. For a real analytic Dirichlet series f , that is f̄(s) = f(s), we have
that for σ ∈ R, the numbers cl and bk are real. The converse also holds.

Proof. For a real analytic Dirichlet series, an are real. Hence bk are real numbers.
The discrepancy polynomial has also real coefficients, so the cl are real. The last
point is due to the fact that the association f 7→W (f) is one-to-one, as its inverse is
the Laplace transform. �

We also have a symmetric Poisson-Newton formula for

Ŵσ(f)(t) =Wσ(f)(t) +Wσ(f)(−t) =
∑

ρ

nρe
ρ|t| .

Theorem 4.3. For a Dirichlet series f , we have as distributions on R,

Ŵσ(f)(t) = 2

g−1

2∑

l=0

c2l(σ) δ
(2l)
0 +

∑

k∈Λ∪(−Λ)

〈λ, |k|〉 b|k| δ〈λ,k〉 ,

where we denote |k| = −k, for k ∈ −Λ. ✷



EXPLICIT AND TRACE FORMULAS VIA POISSON-NEWTON FORMULA 17

For completeness, we also give parameter versions of the Poisson-Newton formulas
for Dirichlet series. Observe that the space of Dirichlet series is invariant by the
change of variables s 7→ αs + β, with α > 0 and β ∈ C. We have the following
Poisson-Newton formula for

e−
β
α
|t|Ŵσ(f)(t/α) =

∑

ρ

nρe
(ρ−β)|t|/α .

Corollary 4.4. Let α > 0 and β ∈ R. We have as distributions on R,

e−
β
α
|t|Ŵσ(f)(t/α) = 2

g−1

2∑

l=0

c′2l δ
(2l)
0 +

∑

k∈Λ∪(−Λ)

α 〈λ, |k|〉e−〈λ,|k|〉β b|k| δα〈λ,k〉 ,

where c′j are given by c′0+c
′
1s+. . .+c

′
g−1s

g−1 = α(c0+c1(αs+β)+. . .+cg−1(αs+β)
g−1).

Proof. This results by applying corollary 3.3 to the Dirichlet series f(s). �

In particular, for α = 1 and g = 1 that we use in the applications, we get
∑

ρ

nρe
(ρ−β)|t| = 2c0(σ) δ0 +

∑

k∈Λ∪(−Λ)

〈λ, |k|〉e−〈λ,|k|〉β b|k| δ〈λ,k〉 .

Here we determine c′0 explicitly: we have g(s) = f(s + β) and σ′ = σ − β. Then
c′0 = c′0(g, σ

′) = c0(f, σ).

5. Basic applications

5.1. Classical Poisson formula. The Poisson-Newton formula that we have proved
in section 4 is a generalization of the well-known classical Poisson formula

(15)
∑

k∈Z

ei
2π
λ
kt = λ

∑

k∈Z

δλk .

where λ > 0. Actually this Poisson formula is associated to a Dirichlet series of only
one frequency.

We derive the classical Poisson formula from the symmetric Poisson-Newton for-
mula. It is also interesting to clarify the structure of the Newton-Cramer distribution
at 0. It helps to understand why the Dirac δ0 appearing in the right side of the clas-
sical Poisson formula is of a different nature than the other δλk for k 6= 0, something
that was intuitively suspected from the analogy with trace formulas (see a comment
on this in [4, p. 2]).

In order to use the symmetric Poisson-Newton formula we compute the discrepancy
polynomial Pf for f(s) = 1− e−λs. We have that σ = 0 is a zero. From the classical
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Hadamard factorization

sinh(πs) = πs
∏

k∈Z∗

(
1−

s

ik

)
e

s
ik ,

we get the Hadamard factorization for f ,

f(s) = 2e−λs/2 sinh(λs/2) = sλe−λs/2
∏

k∈Z∗

(
1−

s

ρk

)
e

s
ρk .

Note that this is equivalent to

G(s) =
1

s
−
∑

k∈Z∗

(
1

ρk − s
−

1

ρk

)
=

λ/2

tanh (λs/2)
.

Thus Qf(s) = (log λ+ 2πin)− λ
2
s, with n ∈ Z, and

Pf(s) = −Q′
f (s) = c0 =

λ

2
.

Therefore we can apply the symmetric Poisson-Newton formula (theorem 4.3) and
we get ∑

k∈Z

ei
2π
λ
k|t| = 2c0δ0 + λ

∑

k∈Z∗

δλk = λδ0 + λ
∑

k∈Z∗

δλk = λ
∑

k∈Z

δλk .

We finally observe that

∑

k∈Z

ei
2π
λ
k|t| = 1 + 2

+∞∑

k=1

cos

(
2π

λ
k|t|

)
= 1 + 2

+∞∑

k=1

cos

(
2π

λ
kt

)
=
∑

k∈Z

ei
2π
λ
kt ,

because we can reorder freely a converging (in the distribution sense) infinite series
of distributions.

5.2. Newton formulas. We show now how the Poisson-Newton formula is a gener-
alization to Dirichlet series of Newton formulas which express Newton sums of roots of
a polynomial equation in terms of its coefficients (or elementary symmetric functions).

Let P (z) = zn + a1z
n−1 + . . . + an be a polynomial of degree n ≥ 1 with zeros

α1, . . . , αn repeated according to their multiplicity. For each integer m ≥ 1, the
Newton sums of the roots are the symmetric functions

Sm =
n∑

j=1

αm
j .

From the fundamental theorem on symmetric functions, these Newton sums can be
expressed polynomially with integer coefficients in terms of elementary symmetric
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functions, i.e., in terms of the coefficients of P . These are the Newton formulas. For
instance, if for k ≥ 1

Σk =
∑

1≤i1<...<ik≤n

αi1 . . . αik = (−1)kak ,

then we have

S1 = Σ1

S2 = Σ2
1 − 2Σ2

S3 = Σ3
1 − 3Σ2Σ1 + 3Σ3

S4 = Σ4
1 − 4Σ2Σ

2
1 + 4Σ3Σ1 + 2Σ2

2 − 4Σ4

...

We recover them applying the Poisson-Newton formula to the finite Dirichlet series

f(s) = e−λnsP (eλs) = 1 + a1e
−λs + . . .+ ane

−λns .

The zeros of f are the (ρj,k) with j = 1, . . . , n, k ∈ Z, and

eρj,k = α
1/λ
j e

2πi
λ

k .

Thus, using the classical Poisson formula (with σ = 0), its Newton-Cramer distribu-
tion can be computed in R as

∑

ρ

eρ|t| =
n∑

j=1

α
(1/λ)t
j

∑

k∈Z

e
2πi
λ

kt =
n∑

j=1

α
(1/λ)t
j λ

∑

m∈Z

δmλ

= λ
∑

m∈Z

(
n∑

j=1

αm
j

)
δmλ = λ

∑

m∈Z

Sm δmλ .

Now, using the Poisson-Newton formula in R∗
+

∑

ρ

eρt =
∑

k∈Λ

〈λ,k〉 bk δ〈λ,k〉 ,

taking into account the repetitions in the right side, and that λ = (λ1, . . . , λn) =
(λ, 2λ, . . . , nλ), we have, using the formula (13) for the bk,

Sm = m
∑

k1+2k2+...+nkn=m

bk = m
∑

k1+2k2+...+nkn=m

(||k|| − 1)!∏
j kj

∏

j

Σ
kj
j ,

which gives the explicit Newton relations. Moreover, Newton relations are equivalent
to the Poisson-Newton formula in R∗

+ in this case.
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For example, for m = 4,

S4 = 4 (b(4,0,0,0) + b(2,1,0,0) + b(1,0,1,0) + b(0,2,0,0) + b(0,0,0,1)) ,

and from b(4,0,0,0) = 1
4
Σ4

1, b(2,1,0,0) = −Σ2
1Σ2, b(1,0,1,0) = Σ1Σ3, b(0,2,0,0) = 1

2
Σ2

2 and
b(0,0,0,1) = −Σ4, we get

S4 = Σ4
1 − 4Σ2Σ

2
1 + 4Σ3Σ1 + 2Σ2

2 − 4Σ4 .

6. Functional equations

When a Dirichlet series satisfies a functional equation, we can deduce a constraint
on the structure at zero of Wσ(f) for σ the center of symmetry (theorem 6.9). We
start by giving a precise definition of the property of “having a functional equation”,
as we know of no reference in the classical literature. We start with a simple remark.

Lemma 6.1. For θ1 < θ2, θ2−θ1 < π, denote by C(θ1, θ2) the cone of values of s ∈ C

with θ1 < Arg s < θ2. If {ρ} is contained in a cone α + C(θ1, θ2), α ∈ R, then

W (f)(t) =
∑

ρ

nρe
ρt ,

is a holomorphic function on the variable t in C(π/2− θ1, 3π/2− θ2).

Proof. For t ∈ C(π/2− θ1, 3π/2− θ2) we have ℜ((ρ− α) t) < 0, whence
∣∣eρt
∣∣ < eαt ,

and the series Kℓ(t) defined in (6) is holomorphic in that region, so the result follows.
�

From this we obtain the following straightforward corollary:

Corollary 6.2. The divisor of any Dirichlet series cannot be contained in a cone
α + C(θ1, θ2) for π/2 < θ1 < θ2 < 3π/2.

Proof. From the Poisson formula (14), we get that the distribution W (f) is an atomic
distribution on R∗

+. Thus the sum of exponentials associated to the zeros cannot be
a convergent series for t ∈ R∗

+. But lemma 6.1 gives the analytic convergence of the
sum if the divisor is contained in the cone α + C(θ1, θ2) . �

We say that the divisor D1 is contained in the divisor D2, and denote this by
D1 ⊂ D2 if any zero, resp. pole, of D1 is a zero, resp. pole, of D2, and |nρ(D1)| ≤
|nρ(D2)| for all ρ ∈ C. Also if D1 =

∑
nρ ρ and D2 =

∑
mτ τ are two divisors, then

the sum and difference are defined by D1 +D2 =
∑
nρ ρ +

∑
mτ τ and D1 − D2 =∑

nρ ρ+
∑

(−mτ ) τ .
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Definition 6.3. The meromorphic function f has a functional equation if there exists
σ∗ ∈ R and a divisor D ⊂ div(f) contained in a left cone α + C(θ1, θ2), with π/2 <
θ1 < θ2 < 3π/2, such that div(f) − D is infinite and symmetric with respect to the
vertical line ℜs = σ∗.

Proposition 6.4. If f has a functional equation and the divisor of f is contained in
a left half plane then σ∗ ∈ R is unique.

Proof. Otherwise, if they were two distinct values σ∗, then div(f) would have an
infinite subdivisor invariant by a real translation and this contradicts the hypothesis
that the divisor of f is contained in a left half plane. �

Proposition 6.5. If f has a functional equation and the divisor of f is contained in
a left half plane then div(f) −D is contained in a vertical strip. The minimal strip
{σ− < ℜs < σ+}, σ+ ≤ σ1, with this property is the critical strip and σ∗ = σ−+σ+

2
is

its center.

Proof. Since div(f) has no zeros nor poles for ℜs > σ1, the divisor of div(f) −D is
contained in a vertical strip due to the symmetry. The minimal vertical strip has to
be compatible with the functional equation, hence σ∗ = σ−+σ+

2
. �

Proposition 6.6. If f has a functional equation and the divisor of f is contained in
a left half plane then there is a unique minimal divisor D (i.e., with |nρ(D)| minimal
for all ρ ∈ C), and a unique decomposition D = D0 + D1, D0 and D1 with disjoint
supports, with D0 contained in a left cone σ∗ +C(θ1, θ2), with π/2 < θ1 < θ2 < 3π/2,
and D1 a finite divisor contained in the half plane ℜs > σ∗, such that div(f)−D is
infinite and symmetric with respect to the vertical line ℜs = σ∗.

Proof. We start with D minimal as in the definition, and we define D0 to be the part
of D to the left of ℜs = σ∗ and D1 the remaining part. It is easy to see that D0 is
contained in a left cone with vertex at σ∗. �

Proposition 6.7. If f has a functional equation and the divisor of f is contained in a
left half plane then there exists a meromorphic function χ with div(χ) = D ⊂ div(f),
such that the function g(s) = χ(s)f(s) satisfies the functional equation

g(2σ∗ − s) = g(s) .

Moreover, we can write χ = χ0 ·R with div(χ0) = D0−τ
∗D1 and div(R) = D1+τ

∗D1,
where τ is the reflexion along ℜs = σ∗, and R is a unique rational function up to a
non-zero multiplicative constant.

The meromorphic function χ (or χ0) is uniquely determined up to a factor exp h(s−
σ∗) where h is an even entire function. If f has convergence exponent d < +∞, then
we can take χ of convergence exponent d, and then χ is uniquely determined up to
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a factor expP (s − σ∗) where P is an even polynomial of degree less than d. In
particular, when f is of order 1 then χ and χ0 are uniquely determined up to a non
zero multiplicative constant.

Proof. From proposition 6.5 we know that σ∗ is uniquely determined as the center
of the critical strip (which is defined only in terms of the divisor of f). Translating
everything by σ∗ we can assume that σ∗ = 0. By minimality the divisor of χ is
uniquely determined. Then χ is uniquely determined up to a factor exp h(s) where h
is an entire function. If χ̂(s) = (exp h(s))χ(s) gives also a functional equation for f ,
then we have

f(s) =
χ(−s)

χ(s)
f(−s) =

χ(−s)

χ(s)

χ̂(s)

χ̂(−s)
f(s).

Therefore

exp(h(s)− h(−s)) = 1,

so for some k ∈ Z,

h(s)− h(−s) = 2πik .

Specializing for s = 0 we get k = 0 and h is even.

When f is of convergence exponent d < +∞, and since the divisor of χ is contained
in the divisor of f , then we can take χ of convergence exponent at most d. �

If f is real analytic, then it is easy to see that χ must be real analytic up to the
Weierstrass factor. We will always choose χ to be real analytic. Then g = χf is real
analytic, and we have a four-fold symmetry and g is symmetric with respect to the
vertical line ℜs = σ∗.

Example 6.8. For the Riemann zeta function f(s) = ζ(s) we have σ∗ = 1/2, σ− = 0,
σ+ = 1, D0 = −2N∗, D1 = {1}, and

χ(s) = π−s/2Γ(s/2)s(s− 1),

χ0(s) = π−s/2Γ(s/2),

R(s) = s(s− 1).

Note that

g(s) = χ(s)ζ(s) = π−s/2Γ(s/2)s(s− 1)ζ(s) = 2ξ(s)

(using Riemann’s classical notation for ξ).

Let f be a meromorphic function of finite order which has its divisor contained in
a left half plane and which has a functional equation. In order to simplify we assume
that σ∗ is not part of the divisor. For g(s) = χ(s)f(s) we have

g(2σ∗ − s) = g(s) ,
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and when we express this symmetry in the Hadamard factorization, we get

Qg,σ∗(2σ∗ − s) = Qg,σ∗(s) ,

hence if we write

Qg,σ∗(s) =
∑

k

ak(s− σ∗)k ,

the symmetry implies that all odd coefficients are zero a1 = a3 = . . . = 0.

Theorem 6.9. Let f be a meromorphic function of exponent of convergence d = 2,
which has its divisor contained in a left half plane and has a functional equation. We
assume that σ∗ is not part of the divisor. Write g = χ f as before, and χ = χ0R,
where R is a rational function symmetric with respect to σ∗. Then we have

c0(χ0, σ
∗) + c0(f, σ

∗) = 0.

Proof. We observe that

Qg,σ∗ = Qχ,σ∗ +Qf,σ∗ ,

and for the discrepancy polynomials

Pg,σ∗ = Pχ,σ∗ + Pf,σ∗ .

By the above considerations, Qg,σ∗(s) =
∑
2k≤g

a2k(s− σ∗)2k. Taking derivatives,

Pg,σ∗(s) = c0 + c1s+ . . .+ cg−1s
g−1 = −

∑

2k≤g

2ka2k(s− σ∗)2k−1.

If the exponent of convergence is d = 2, then g = 1, so the discrepancy polynomial
is constant and we have c0(g) = 0. Also c0(g) = c0(χ) + c0(f) and c0(χ) = Pχ =
Pχ0

= c0(χ0). Therefore we obtain the result. �

Another important property which follows from the definition of having a functional
equation is the following.

Proposition 6.10. (Group property) Dirichlet series having a functional equation
with a fixed axis of symmetry form a multiplicative group.

Next, we determine when a finite Dirichlet series satisfies a functional equation.

Proposition 6.11. A finite Dirichlet series

f(s) = 1 +
N∑

n=1

ane
−λns ,
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satisfies a functional equation if and only if it is of the form

f(s) = eµs
[(N−1)/2]∑

n=0

ai(e
(−λn+µ)s + c e(λn−µ)s) ,

where c = 1 if N is even, c = ±1 if N is odd.

Proof. The Dirichlet series f(s) is of order 1. Suppose that there is some χ(s) of order
1 with zeros and poles in a left cone such that g(s) = χ(s)f(s) is symmetric with
respect to ℜs = σ∗. By translating, we can assume σ∗ = 0.

The zeros of f(s) lie in a strip, since e−λnsf(−s) is also a Dirichlet series. There-

fore χ(s) has finitely many zeros and poles, and hence χ(s) = Q1(s)
Q2(s)

eµs, for some

polynomials Q1(s), Q2(s). The functional equation g(s) = g(−s) reads

Q1(s)Q2(−s)
N∑

n=0

ane
(µ−λn)s = Q2(s)Q1(−s)

N∑

n=0

ane
(λn−µ)s ,

where we have set a0 = 1, λ0 = 0.

From this it follows that Q1(s)Q2(−s) = cQ2(s)Q1(−s), c ∈ C∗. It follows easily
that c = ±1. Also 0, λ1, . . . , λN is a sequence symmetric with respect to µ = λN/2.
So λN−i = 2µ− λi and aN−i = ai.

If N even, then λN/2 = µ, c = 1, and

N∑

n=0

ane
−λns = eµs

N/2−1∑

i=0

ai(e
(−λi+µ)s + e(λi−µ)s) + aN/2e

µs .

If N is odd, then

N∑

n=0

ane
−λns = eµs

(N−1)/2∑

i=0

ai(e
(−λi+µ)s + c e(λi−µ)s) ,

where if c = −1, we have χ(s) = s eµs. �

An example without functional equation. Consider the elementary Dirichlet
series

(16) f(s) = 1 + a1e
−λ1s + a2e

−λ2s

with 0 < λ1 < λ2 and aj 6= 0. It is an entire function on C of order 1.

If λ1, λ2 are rationally dependent, then we may write f(s) = 1 + a1
(
eλs
)k1 +

a2
(
eλs
)k2, for λ1 = k1λ, λ2 = k2λ, k1, k2 > 0 and coprime. We can compute the zeros

solving the algebraic equation 1+a1X
k1 +a2X

k2 = 0. Therefore, the zeros of f(s) lie
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in at most k2 vertical lines, and they form k2 arithmetic sequences of the same purely
imaginary step.

If λ1, λ2 are rationally independent, then we cannot compute explicitly the zeros in
general. We know that they lie in a half-plane ℜs < σ1. Also a−1

2 eλ2sf(s) converges
to 1 for ℜs → −∞. So the zeros of f(s) are located in a half-plane ℜs > σ2. Hence
in a strip. By Corollary 6.2, there are infinitely many zeros in that strip.

Now, let (ρ) be the set of zeros. Then Λ = {k = (k1, k2) ∈ N2 | (k1, k2) 6= (0, 0)},
and

bk =
(−1)k1+k2

k1 + k2

(
k1 + k2
k1

)
ak11 a

k2
2

and the Poisson-Newton formula on R∗
+ is

∑

ρ

nρe
ρt =

∑

k

(λ1k1 + λ2k2)bkδλ1k1+λ2k2 .

By Proposition 6.11, the Dirichlet series (16) does not have a functional equation
unless λ2 = 2λ1.

Examples of infinite Dirichlet series with no functional equation. Consider
an infinite Dirichlet series g with meromorphic extension to C satisfying a functional
equation with an infinite number of poles (taking any infinite Dirichlet series g satis-
fying a functional equation, either g or g−1 has this property). For example we can
take g = 1/ζ . Consider also the previous example f(s) = 1 + a1e

−λ1s + a2e
−λ2s, with

a1, a2 6= 0, with frequencies λ1 and λ2 rationally independent with those of g, and
λ2 6= 2λ1 so that f does not have a functional equation.

Then the product h = f g is an infinite Dirichlet series with meromorphic extension
to C. If h had a functional equation then the axes of symmetry would be the same
as the one for g (because of the symmetry of the poles), but then f = h g−1 will have
a functional equation from the group property 6.10, which is a contradiction.

These functions without functional equation do have a Poisson-Newton formula,
but in general the lack of knowledge about the location of its divisor, and the lack of
structure of the set of frequencies makes the explicit formula of limited usefulness.

An interesting question is to determine when a classical Hurwitz zeta function has
a functional equation.

7. Explicit formulas for Riemann zeros

In this section we apply our Poisson-Newton formula to the Riemann zeta function.
We obtain a non-classical form of the Explicit Formula in analytic number theory.
The classical forms can be derived from our distributional formula.
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Explicit formulas in analytic number theory go back to the original memoir of
Riemann [15] on the analytic properties of Riemann zeta function where it is the
central point of the derivation of Riemann’s asymptotic formula for the growth of the
number of primes. It relates prime numbers with non-trivial zeros of Riemann zeta
function. Despite the mystery about the precise location of the non-trivial zeros, many
of such formulas were developed at the end of the XIX century and the beginning of
the XX century (see [12]). Later, general explicit formulas were developed by A.P.
Guinand [9], J. Delsarte [7], A. Weil [19] and K. Barner [3], these last ones in general
distributional form. A classical form of this Explicit Formula is the following by K.
Barner [3].

The Riemann zeta function is defined for ℜs > 1 by

ζ(s) =
∑

n≥1

n−s =
∑

n≥1

e−s logn ,

which is a Dirichlet series with λn = log(n + 1) and σ1 = 1 in our notation. It has
a meromorphic extension to the complex plane s ∈ C with a single simple pole at
s = 1. It has order o = 1, convergence exponent d = 2, and genus g = 1 (see [17]).

The Riemann zeta function has a single simple pole at ρ = 1, and simple real zeros
at ρ = −2n, for n = 1, 2, . . ., and non-real zeros in the critical strip 0 < ℜs < 1,
ρ = 1/2+ iγ. The Riemann Hypothesis conjectures that γ ∈ R, i.e., that all non-real
zeros have real part 1/2.

Theorem 7.1. We have∑

ρ

nρe
(ρ−1/2)|t| = 2c0(ζ, 1/2) δ0 −

∑

p,k≥1

(log p)p−k/2 (δk log p + δ−k log p) ,

where

c0(ζ, 1/2) == −
log π

2
−
π

4
−
γ

2
−

3

2
log 2.

Proof. For ℜs > 1 we have the Euler product which gives the relation of the zeta
function with prime numbers,

ζ(s) =
∏

p

(1− p−s)−1 ,

where the product is running over the prime numbers p. Thus

− log ζ(s) = −
∑

p, k≥1

p−ks

k
= −

∑

p, k≥1

1

k
e−k(log p)s .

The vector of fundamental frequencies is λ = (log 2, log 3, log 4, . . .). We have bk =
−1/k for 〈λ,k〉 = k log p, and bk = 0 otherwise. Therefore the stated formula follows
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by applying the Poisson-Newton formula with parameters, corollary 4.4, for β = 1/2
and σ = 1/2.

For computing the value of c0(ζ, 1/2), we use that the Riemann zeta function has a
functional equation with σ∗ = 1/2, σ− = 0 and σ+ = 1. We have, using the notations
of section 6,

g(s) = g(1− s),

g(s) = χ(s)ζ(s),

χ(s) = π−s/2Γ(s/2)s(s− 1),

χ0(s) = π−s/2Γ(s/2),

R(s) = s(s− 1).

By theorem 6.9, c0(ζ, 1/2) = −c0(χ0, 1/2). The value of

c0(χ0, 0) =
log π

2
+
γ

2
follows from the Hadamard factorization of the Γ-function

(17)
1

Γ(s/2)
=
s

2
e

γ
2
s
∏

n≥1

E1(s/(−2n)),

thus

(18) c0 (1/Γ(s/2), 0) = −
γ

2
.

The zeros of χ0 are the negative integers −2n, n ≥ 0, and are simple. Hence the
formula (10) reads (for σ not a pole of χ0)

−c0(χ0, σ) + c0(χ0, 0) = −
1

σ
+

∞∑

n=1

(−1)
−σ

(−2n)(−2n− σ)

= −
1

σ
+

∞∑

n=1

(
1

2n
−

1

2n+ σ

)
=

1

2

Γ′(σ/2)

Γ(σ/2)
+
γ

2
,

where the last formula follows from the expression for the logarithmic derivative of
the Γ-function, the digamma function ψ,

(19) ψ(s) =
Γ′(s)

Γ(s)
= −

1

s
− γ +

+∞∑

n=1

(
1

n
−

1

n+ s

)
,

which results from (17).

Finally we have, for σ /∈ −2Z

c0(χ0, σ) =
log π

2
−

1

2
ψ(σ/2) .
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In particular, for σ = 1/2, we have (see [2], combine entries 6.3.3, 6.3.7 and 6.3.8, p.
258) that ψ(1/4) = −π

2
− 3 log 2− γ. Hence

c0(ζ, 1/2) = −c0(χ0, 1/2) = −
log π

2
−
π

4
−
γ

2
−

3

2
log 2 .

�

Note that our “explicit formula” (theorem 7.1) is more concise than the classical
formulation. Even more if we use corollary 4.4 with β = 0, as follows:

Theorem 7.2. We have∑

ρ

nρe
ρ|t| = 2c0(ζ, 0) δ0 −

∑

p,k≥1

(log p) (δk log p + δ−k log p) ,

and
c0(ζ, 0) = − log(2π) .

Proof. We can compute c0(ζ, 0) from the known Hadamard factorization of the Rie-
mann zeta function. We have (see [17, p. 31])

ζ(s) =
ebs

2(s− 1)Γ(s/2 + 1)

∏

ρ

E1(s/ρ)
nρ =

ebs

s(s− 1)Γ(s/2)

∏

ρ

E1(s/ρ)
nρ ,

where the product is over the non-trivial zeros and b = log(2π)− 1− γ/2.

Now, we have
1

s− 1
= −es (E1(s/1))

−1 ,

thus
c0(ζ, 0) = −Qζ = −b− 1 + c0 (1/Γ(s/2), 0) .

Using (18) we get c0(ζ, 0) = − log(2π). �

We can compute explicitly the contribution of the real divisor to the distribution
on the left handside of Theorem 7.1,

W0(t) = −e|t|/2+e−|t|/2
∑

n≥1

e−2n|t| = −e|t|/2+e−5|t|/2 1

1− e−2|t|
= −e|t|/2+e−

3

2
|t| 1

2 sinh |t|
.

So the associated Poisson-Newton formula on R is∑

γ

eiγ|t| +W0(t) = 2c0(ζ, 1/2) δ0 −
∑

p,k≥1

(log p)p−k/2 (δk log p + δ−k log p) ,

where ρ = 1/2 + iγ run over the non-trivial zeros of ζ , the p over prime numbers.
Following the tradition we repeat these zeros according to their multiplicity, so we
may skip the multiplicities nρ = 1.
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Let us see now how one can recover the classical formulation from our Poisson-
Newton formula.

Theorem 7.3. For a test function ϕ such that h(t)ϕ(t) ∈ S, where h is smooth with
h(t) = e−(1/2+ǫ)|t| for |t| ≥ 1, we have

∑

γ

ϕ̂(γ) = ϕ̂(i/2) + ϕ̂(−i/2) +
1

2π

∫

R

Ψ(t)ϕ̂(t) dt

−
∑

p,k≥1

(log p)p−k/2 (ϕ(k log p) + ϕ(−k log p)) ,

where

Ψ(t) = − log π + ℜ

(
Γ′

Γ
(1/4 + it/2)

)
.

Proof. We want to pair the distributional formula in theorem 7.1 with a test function
ϕ. By our construction, the Poisson-Newton formula in theorem 7.1 is associated to
ζ(s− 1

2
), which has σ1 =

1
2
. Hence we take ϕ such that h(t)ϕ(t) ∈ S, with h smooth

with h = e−(1/2+ǫ)|t| for |t| ≥ 1.

Consider the Fourier transform

ϕ̂(x) =

∫

R

ϕ(t)e−ixt dt .

Observe that

ϕ̂(γ) =

∫

R

ϕ(t)e−iγt dt =

∫

R+

(
ϕ(t)e−iγt + ϕ(−t)e−i(−γ)t

)
dt .

By the real analyticity of ζ(s), the set of non-trivial zeros is real symmetric, (γ) =
(−γ), hence

∑

γ

ϕ̂(γ) =

∫

R+

(ϕ(t) + ϕ(−t))

(∑

γ

eiγt

)
dt .

Thus applying now our Poisson-Newton formula to the test function ϕ we get
∑

γ

ϕ̂(γ) +W0[ϕ] = 2c0(ζ, 1/2)ϕ(0)−
∑

p,k≥1

(log p)p−k/2(ϕ(k log p) + ϕ(−k log p)) ,

where W0[ϕ] is the functional

W0[ϕ] =

∫

R

W0(t)ϕ(t) dt .
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We compute more precisely this functional. We have

W0(t) = −e−|t|/2(W (χ)(t) +W (χ)(−t))

= −e−|t|/2(W (χ0)(t) +W (χ0)(−t) +W (R)(t) +W (R̄)(−t)) .

Note that by our assumptions, ϕ̂ is holomorphic in a neighborhood of the strip
|ℑt| ≤ 1/2. Then we have by the general symmetric Poisson-Newton formula (or by
direct computation)

〈−e−|t|/2(W (R)(t) +W (R)(−t)), ϕ〉 = −

∫

R

e−|t|/2(e|t| + 1)ϕ(t) dt

= −

∫

R

2 cosh(|t|/2)ϕ(t) dt = −

∫

R

2 cosh(t/2)ϕ(t) dt

= −

∫

R

ϕ(t)et/2 dt−

∫

R

ϕ(t)e−t/2 dt = −ϕ̂(i/2)− ϕ̂(−i/2).

Now, again using corollary 3.4 with α = 1 and β = 1/2 applied to χ0 that is real
analytic, we have

e−|t|/2(W (χ0)(t) +W (χ0)(−t)) = 2c0(χ0, 1/2)δ0 + L−1
1/2

(
2ℜ

(
χ′
0

χ0

))
.

And using theorem 6.9, c0(χ0, 1/2) + c0(ζ, 1/2) = 0. The Poisson-Newton formula
applied the test function ϕ is

∑

γ

ϕ̂(γ) = ϕ̂(i/2) + ϕ̂(−i/2) +

〈
L−1

1/2

(
2ℜ

(
χ′
0

χ0

))
, ϕ

〉

−
∑

p,k≥1

(log p)p−k/2(ϕ(k log p) + ϕ(−k log p)) ,

Now, we have
χ′
0(s)

χ0(s)
= −

1

2
log π +

1

2

Γ′(s/2)

Γ(s/2)
,

so 〈
L−1

1/2

(
2ℜ

(
χ′
0

χ0

))
, ϕ

〉
=

1

2π

∫

R

Ψ(t)ϕ̂(t) dt ,

where

Ψ(t) = − log π + ℜ

(
Γ′

Γ
(1/4 + it/2)

)
.

Thus we recover the classical form of the Explicit formula given in the statement.
�
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Historically this form is due to Barner that gave a new form of the Weil functional.
Barner’s derivation is based on an integral formula, Barner formula, that can be
directly derived from our general Poisson-Newton formula.

Remark 7.4. The functional equation for ζ only serves in theorem 7.1 to compute
c0(ζ, 1/2). Without it, we obtain theorem 7.3 except for the value of the constant in
the function Ψ(t).

Remark 7.5. (General Explicit Formulas) The derivation given of the classical
distributional Explicit Formula is general and applies to any Dirichlet series of order
1 with the required conditions. In this sense the Poisson-Newton formula can be
seen as the general Explicit Formula associated to a Dirichlet series. The structure
at 0 needs to be computed in general. But when we have a functional equation, one
can apply the Poisson-Newton formula with the parameter well chosen so that the
structure at 0 vanishes (using theorem 6.9). The divisor on the left cone gives the
general “Weil functional” and again, by application of the general Poisson-Newton
formula with parameters we get a general Barner integral formula for the functional.
Thus we get a general Explicit Formula with the same structure as for the classical
one for the Riemann zeta function.

8. Selberg Trace formula

It is well known that Selberg trace formula was developed by analogy with the
Explicit Formulas in analytic number theory and that this was the original motivation
by Selberg (see [16], [4]). In this section we explain this folklore analogy by showing
that Selberg Trace Formula results from the Poisson-Newton formula applied to the
Selberg zeta function. The approach is very similar to that of the previous section
and we have a unified treatment of both formulas. The only relevant difference is
that Selberg zeta function is of order 2.

We consider a compact Riemannian surface X of genus h ≥ 2 with a metric of
constant negative curvature. Let P be the set of primitive geodesics. The Selberg
zeta function is defined in the half plane ℜs > 1 by the Euler product

ζX(s) =
∏

p∈P

∏

k≥0

(
1− eτ(p)(s+k)

)
,

where τ(p) is the length of the geodesic p.
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We have

− log ζX(s) =
∑

p

∑

k≥0

∑

l≥1

1

l
e−τ(p)(s+k)l =

∑

p,l≥1

1

l
e−τ(p)ls 1

1− e−τ(p)l

=
∑

p,l≥1

1

l
eτ(p)l/2

1

2 sinh(τ(p)l/2)
e−τ(p)ls .

Thus we get the coefficients

bp,l =
1

l
eτ(p)l/2

1

2 sinh(τ(p)l/2)
,

and the frequencies

〈λ, (p, l)〉 = λp,l = τ(p)l .

One of the fundamental results of the theory is that ζX has a meromorphic extension
to the complex plane of order 2, exponent of convergence d = 3, thus genus g = 2
(see [14]), has a functional equation with σ∗ = 1/2, and its zeros are the following
(see [18, p. 129]):

• Trivial zeros at s = −k with k = 0, 1, 2, . . . with multiplicity 2(h− 1)(2k+1).
• Non-trivial zeros s = 1/2± iγn, n = 0, 1, 2, . . ., where 1/4 + γ2n are the eigen-
values of the positive Laplacian −∆X on X counted with multiplicity. The
lowest eigenvalue 0 yields two zeros, s = 1 that is simple, and the trivial zero
s = 0 with multiplicity 2(h− 1) (we exclude the case of 1/4 as eigenvalue).

For n < 0 write γn = −γ−n. In the sense of section 6, ζX satisfies a functional
equation with σ∗ = 1/2 and ζX = χ g, where g(2σ∗ − s) = g(s). The Newton-Cramer
distribution decomposes as

W (ζX) =W (χ) +W (g) ,

where W (χ) is the contribution of the trivial zeros and W (g) of the non-trivial ones.
We compute on R∗ with β = 1/2 and σ = 1/2,

Ŵ (χ)(t) =
∑

n∈Z

2(h− 1)(2n+ 1)e(−n−1/2)|t|

= 4(h− 1)
∑

n≥0

(n + 1/2)e−(n+1/2)|t|

= −4(h− 1)
d

d|t|

(
1

2 sinh(|t|/2)

)
= (h− 1)

cosh(t/2)

(sinh(t/2))2
,

Ŵ (g)(t) =
∑

n∈Z

eiγn|t| = 2
∑

n≥0

cos(γnt) .
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Now we apply the symmetric Poisson-Newton formula with parameter (corollary
4.4) with β = 1/2, and we get

Ŵ (ζX) = Ŵ (χ) + Ŵ (g) = 2c′0(ζX , 1/2)δ0 +
∑

p,l∈Z∗

|〈λ, (p, l)〉|e−|〈λ,(p,l)〉|/2 bp,|l| δ〈λ,(p,l)〉 .

To compute c′0(ζX , 1/2), we use the Hadamard factorisation of ζX . We are assuming
that s = 1/2 is not part of the divisor (n(1/2) = 0). According to (8) with σ = 1/2,
we write PζX ,1/2(s) = c0 + c1s with

−(log ζX)
′(s) =c0 + c1s−

+∞∑

n=0

2(h− 1)(2n+ 1)
(s− 1/2)2

(−n− 1/2)2
1

s+ n

−

∞∑

n=0

(
(s− 1/2)2

(iγn)2
1

s− 1/2− iγn
+

(s− 1/2)2

(−iγn)2
1

s− 1/2 + iγn

)
.

Equivalently,

−(log ζX)
′(s+ 1/2) =c0 + c1(s+

1

2
) +

+∞∑

n=0

(2− 2h)(2n+ 1)
s

−n− 1/2

(
1

s+ n+ 1/2
−

1

n+ 1/2

)

− 2s

∞∑

n=0

(
1

s2 + γ2n
−

1

γ2n

)
.

Now, by formulas (4.9), (4.12) and (4.17) in [4] (formula (4.17) follows from formula
(2.27) therein which can be obtained from the resolvent of the elliptic operator −∆X),
we have

−(log ζX)
′(s+ 1/2) = (2− 2h)2s(log Γ)′(s+ 1/2)− 2bs− 2s

∞∑

n=0

(
1

s2 + γ2n
−

1

γ2n

)
,

for some b ∈ C. Using (19), we have

(log Γ)′(s+ 1/2) = −
1

s + 1/2
− γ +

+∞∑

n=1

(
1

n
−

1

s+ n+ 1/2

)
.

Multiplying by (2− 2h)2s and rearranging, we get

(2− 2h)2s(log Γ)′(s+ 1/2) =(2− 2h)4s− 2s(2− 2h)γ + 2s(2− 2h)

+∞∑

n=1

(
1

n
−

1

n+ 1/2

)

+
+∞∑

n=0

(2− 2h)(2n+ 1)
s

−n− 1/2

(
1

s + n+ 1/2
−

1

n+ 1/2

)
.
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Putting everything together, this means that

c0 + c1(s+ 1/2) = b′s,

for some b′ ∈ C. This means that c1 = −2c0 and hence PζX ,1/2(s) = c1(s− 1/2).

Now we use Corollary 4.4 applied to ζX with α = 1, β = 1/2 (in which case we
have c′1 = c1 = b′ and c′0 = c0 + c1β = 0), obtaining

∑

γ

eiγt + (h− 1)
cosh(t/2)

(sinh(t/2))2
= 2

∑

p,l∈Z∗

τ(p)

4 sinh(τ(p)|l|/2)
δτ(p)l .

This yields the classical Selberg Trace Formula as stated in [4].

Theorem 8.1. (Selberg Trace Formula) We have on R,

1

2

∑

γ

eiγt = −
1

2
(h− 1)

cosh(t/2)

(sinh(t/2))2
+
∑

p,l∈Z∗

τ(p)

4 sinh(τ(p)|l|/2)
δτ(p)l .

Remark 8.2. We can now manipulate the integral expression for the “Weil functional”
à la Barner, using the general Poisson-Newton formula as we have done in the previous
section. These computations will be done elsewhere.

Remark 8.3. (Gutzwiller Trace Formula) The Selberg trace formula is just a
particular case of the Gutzwiller Trace formula in Quantum Chaos (see [10]). The
Gutzwiller Trace Formula, that is the central formula in quantum chaos, results from
the application of the Poisson-Newton formula to the dynamical zeta function of the
Dynamical System when this zeta function has an analytic extension to the whole
complex plane. Thus non-trivial zeros are related to the quantum energy levels and
the frequencies to the classical periodic orbits. This will be treated elsewhere.
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