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Abstract: A new method for fitting a series of Zernike polynomials to point 
clouds defined over connected domains of arbitrary shape defined within 
the unit circle is presented in this work. The method is based on the 
application of machine learning fitting techniques by constructing an 
extended training set in order to ensure the smooth variation of local 
curvature over the whole domain. Therefore this technique is best suited for 
fitting points corresponding to ophthalmic lenses surfaces, 
particularly progressive power ones, in non-regular domains. We 
have tested our method by fitting numerical and real surfaces reaching 
an accuracy of 1 micron in elevation and 0.1 D in local curvature in 
agreement with the customary tolerances in the ophthalmic manufacturing 
industry. 
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1. Introduction 

The robust and accurate fitting of a noisy cloud of 3D points to an analytical surface is a 
problem of paramount importance in fields such as computer aided design, virtual reality, 
computer vision and production engineering [1–3]. This problem was addressed first by 
Hayes and Hallyday [4] who presented a method for fitting a cloud of points to a B-Spline 
surface based on least-squares minimization of a functional defined as the Euclidean distance 
between the B-Splines control points and the measured cloud points. This technique has been 
further refined to address different situations such as scattered point clouds or point cloud 
smoothing [5]. Other authors have focused in enhancing the basic least-squares algorithm by 
considering different forms for the functional to be minimized. In the literature, the technique 
consisting in the minimization of the functional based on the Euclidean distance is known as 
the point distance minimization (PDM) method, while the method which consists in the 
minimization of an alternative functional based on the projected distance along the normal 
direction of the B-Spline surface at the control point is called the tangent distance method or 
TMD [1]. More sophisticated functionals which incorporate the information about the local 
curvatures have been proposed by Wang et al. [1] and Bo et al. [6]. Other refinements of the 
basic technique consist in the addition of different terms to the functional such as a 
regularizing term to avoid overfitting and a smoothness term in order to avoid abrupt 
variations in the local curvatures [6] at the surface borders. 

It is worth to note that, for the techniques mentioned in the previous paragraph, the surface 
to be fitted to the cloud of points is a B-spline function. In optics, however, it is usual to fit 
cloud points to Zernike circle polynomials as they are defined in circular domains which 
match with the shape of many optical components such as lenses or pupils. We can find 
examples of this usage in the fitting of wavefront surfaces [7] but also in fitting data to 
physical surfaces like the surface of the cornea [8]. Despite this extensive usage, fitting a 
cloud of points to a set of Zernike polynomials presents also some drawbacks, as they are not 
able to describe complex wavefronts [7] and, also, as the standard fitting technique has shown 
limitations in the accuracy of the fitted surface [9]. Moreover, being polynomials defined in a 
circular domain they do not adjust well to other domain shapes such as annular or elliptical 
ones. For those cases, new families of orthogonal polynomials have been devised [10,11] but 
their analytical forms are quite complicated and they constitute particular cases difficult to 
generalize for complex regions. 

In this work we present a new technique for fitting Zernike polynomials to noisy clouds of 
points defined over any connected region of arbitrary form located within the limits of the unit 
circle where the polynomials are defined. We make use of the formalism of machine learning 
which provides us with a more flexible way to deal with the fitting problem, particularly in 
defining a suitable cost functional for fitting free form ophthalmic surfaces, in order to obtain 
the desired accuracy for both surface elevation and local curvatures. Although the technique 
has been devised with this particular application in mind (fitting free-form ophthalmic lens 
surfaces) it can be readily adapted to other situations such as wavefront fitting where similar 
techniques have been published to get the wavefront from slope measurements [12]. In this 
latter case we can find a potential issue as it is well known that the Zernike circle polynomials 
are orthonormal only over circular domains. However, in our application we are more 
interested in describing a progressive surface as a sum of analytical functions, in this case 
Zernike polynomials (although the proposed technique can be readily adapted to other 
families of functions such as Chebyshev polynomials or Gaussian functions) and, in any case, 
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we could always perform a Gram-Smidth ortonormalization process to get an orthonormal 
family of polynomials over the domain of interest. Thus we have retained the expansion in 
Zernike polynomials as it constitutes one of the preferred ways of describing free form 
surfaces in optics. 

The paper is organized as follows: in the next section we will show the theoretical basis of 
our technique. Afterwards, we will present the results obtained for both synthetic and real data 
and, finally, we will draw the relevant conclusions to finish the paper. 

2. Theoretical foundations 

Before presenting our technique we will give some brief definitions of the key concepts of the 
Machine Learning techniques employed to fit data to models, further information is given in 
reference [13] or any other generic book on Machine Learning. The goal of Machine Learning 
is to deduce automatically patterns from a set of data, which can be done with or without 
previous knowledge about the data. In the former case we speak of “supervised learning” 
while the latter case is known as “unsupervised learning”. In this context, data fitting is a 
special case of “supervised learning” as we have a set of input points which maps into another 
set of output points, being both sets known in advance, so that the goal of data fitting is the 
determination of the optimum values of the constants characterizing the function which 
models the mapping between the input and output set of points. In the language of Machine 
Learning we refer to the “training set” as the set formed by both input and output points. As 
we will see later, the usual way to get the coefficients of the fit is through the minimization of 
an error function [13] whose inputs are the points of the training set. 

Therefore, in the context of Machine Learning [13] the problem of data fitting can be 
stated in the following terms. The set of data points can be represented by a collection of M 
row vectors called features so { }( ) (i) (i) (i) (i)

0 1 2 1, 2 ,...,
, , , ...,

i

N i M
x x x x

=
=x , being customary to set ( )

0
1

i
x i= ∀ . 

According to this definition, M is the number of points (or examples as they are known in the 
context of Machine Learning) of the data point set while N is the number of features 
considered which corresponds to the dimension of the feature vector x(i). Together with the 

features, an output vector { }(1) (2) (3) ( )

1,2,...,
, , ,..., M

i M
y y y y

=
=y is defined so that the set of pairs 

{ }( ) ( )

1,2,...,
,i i

i M
y

=
x  form the training set, as stated before. In order to relate the features with the 

output, a function known as hypothesis h is defined so that 

 ( )( ) ( ) .i iy h= x  (1) 

In our case we will perform a linear optimization, so the hypothesis function will have the 
form 

 ( )( ) ( ) ( )

0
, .

Ni i i
j jj

h xθ
=

= ≡ ⋅x θ x θ  (2) 

Where the elements of the column vector { }1, ,..,
T

Nθ θ θ0=θ  with T the transpose operator, 

are called the parameters or weights of the hypothesis function (or fitting coefficients 
according to the definition employed in the first paragraph of this section). In these conditions 
the goal of the optimization is to set the optimum values of the parameters by minimizing a 
cost functional. An example of this functional is the following 

 ( )( )2
( ) ( )

1 1

1
( ) , ,

2

M N
i i

j
i j

J y h
M

λ θ
= =

= − + θ x θ  (3) 

Where the first term of the right side of Eq. (3) is the ordinary least squares term and the 
second one is known as the regularization term (being λ the regularization parameter) which 
is included to minimize the risk of overfitting. Equation (3) is referred in the literature as ridge 
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regression [13,14] and it can be solved using two approaches: an iterative one, known as 
gradient descent or a direct solution based in the so-called normal equation. In this second 
case, the solution of (3) is given by the following expression [13,14] 

 ( ) 1
· · ,T T T

opt Dλ
−

= +θ I X X X y  (4) 

where X is a matrix defined from the feature vectors ( )ix  as 

 

(1)

(2)

( )

,

M

 
 
 =
 
 
  

x

x
X

x


 (5) 

and ID is a variation of the ( )M N×  identity matrix which takes into account the fact that the 

parameter θ0 is not regularized so its mathematical form is: 

 

0 0 0

0 1 0
.

0 0 1

D

 
 
 =
 
 
 

I





   



 (6) 

Compared to the standard least squares fitting problem (which corresponds to the case 0λ = ) 
Rigde regression provides a modified solution [14] which may present lower square error 
depending on the value of the regularization parameter λ. This means that if we denote θls as 
the solution of the standard least square fitting with 0λ = and θopt is the solution of the ridge 
regression given by Eq. (4) then 

 ,opt ls lsλ= −θ θ Wθ  (7) 

where ( ) 1
'· λ −= +W X X I  according to reference [14]. Equation (7) summarizes the basic idea 

of ridge regression, that is, to substitute the standard least squares solution by a modified one 
which would reduce the errors between the experimental data and the linear model. However, 
it is necessary to take into account the fact that although there is always a value of λ with 
lower mean square errors, according to the existence theorem stated in reference [14]; for high 
values of λ, the solution given by ridge regression presents greater mean square error than the 
standard solution due to the appearance of a so called bias term [14]. Therefore, the selection 
of the correct value of the regression parameter λ is of paramount importance in the context of 
ridge regression, and we will explain latter the procedure that we have followed in order to get 
the optimum value of the regularization parameter λ which minimizes the effect of the bias in 
the mean square error introduced by the ridge regression. 

We will adapt now the formalism of ridge regression which was stated in the preceding 
paragraphs to our particular problem of fitting a cloud of points to a surface defined as a 
combination of Zernike circle polynomials. In a Cartesian coordinate system, the cloud is 

given by a set of M points ( ){ }( ) ( ) ( ) ( ) 3

1,2,...,
, ,i i i i

i M
zξ η

=
= ∈r R which are defined within a compact 

and connected domain ( )D C R⊂ , being C(R) a circle of radius R in R2 centered at the origin 
of the coordinate system. In these conditions, the output vector is given by the set of 

elevations (the third coordinate of each measured point) so ( )(1) (2) ( ), , , Mz z z=y  . Our aim is 

to fit these data to a set of Zernike polynomials defined in a Cartesian coordinate as [15] 
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 (8) 

Note that, in Eq. (8) n and m stands for the indices of the Zernike polynomial, but in this work 
we will adopt instead a single indexing scheme as the one proposed in reference [15]. To do 

so, we will define the set of polynomials as ( ) 0,1, ,
,j j N

Z ξ η
= 

being 
( 2)

2

n n m
j

+ += . As the 

Zernike polynomials given by Eq. (8) are normalized for the unit circle, it is necessary to 

perform a normalization of the coordinates ( )( ) ( )

1,2,
,i i

i M
ξ η

= 
 so we will define the set 

normalized coordinates as 

 
( ) ( )

( )ˆ , ,
i i

iP
R R

ξ η 
=  
 

 (9) 

being R the radius or the circle which contains the domain D where the cloud is defined, as 
stated before. In these conditions, we will define the feature vector as the set of values 
resulting from the evaluation of each Zernike polynomial at a given point, that is 

 ( ) ( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )
0 1 2

1,2, ,

ˆ ˆ ˆ ˆ, , , , ,i i i i i
N

i M
Z P Z P Z P Z P

=
=x


  (10) 

so the hypothesis function will be in our case 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
0 0 1 1

ˆ ˆ ˆ, ... ,i i i i
N Nh Z P Z P Z Pθ θ θ= + + +x θ  (11) 

and the parameters of our model, given by vector θ, are the coefficients of the series of 
Zernike polynomials which best fit our data. These coefficients would be obtained through 

Eq. (4). Note that, ( )( ) ( )
0

ˆ ˆ1i iZ P P= ∀  as this polynomial corresponds to the piston term 

( ) ( )0
0 , 1 ,Z ξ η ξ η= ∀ of the Zernike expansion (8). 

In our particular problem of fitting a free-form surface corresponding to an ophthalmic 
lens, it is not enough that the elevation of the fitted surface corresponds accurately with the 
elevation of the points of the cloud, it is also extremely important to ensure the accuracy of 
the local curvatures of the fitted surface, because any error in those curvatures would 
automatically be translated into an error in the lens power. In particular, we are interested in 
the main curvatures κ1 and κ2 which for a surface defined as a Monge’s form are directly 
related to the Gaussian and median curvature as [16] 
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 (12) 

Where H is the mean and K is the Gaussian curvature which are related to the derivatives of 
the elevation ( ),s x y of the surface when it is described as a Monge’s form so that [16] 
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    ∂ ∂ ∂ ∂ ∂ ∂ ∂   + − + +       ∂ ∂ ∂ ∂ ∂ ∂∂ ∂      =
  ∂ ∂  + +    ∂ ∂    

 ∂ ∂ ∂−  ∂ ∂∂ ∂  =
 ∂ ∂ + +   ∂ ∂   

 (13) 

In these conditions, in order to avoid the errors associated to the local curvatures two 
mathematical conditions must be accomplished: First, the local curvatures are expected to be 
continuous and differentiable, which is guaranteed as long as we describe the surface as a 
polynomial series. Secondly, they are also assumed to change slowly along the lens surface 
(brusque curvature variations could be unpleasant and even annoying for the lens user so they 
would impair the lens performance). Mathematically, we will express this latter condition as 
follows 

 

( )

( )

2

2

2

2

,
,

,
,

s x y

x

s x y

y

 ∂
∇ =  ∂ 
 ∂

∇ =  ∂ 

0

0

 (14) 

where ∇ stands for the gradient operator. Equation (14) implies that the gradient of the second 
derivatives of surface elevation, which are related to the local curvatures through Eqs. (12) 
and (13), is close zero which guarantees a slow variation of the local curvatures. We will 
include this condition in our model through an extension of the training set showing in this 
way the flexibility of the machine learning formalism to be easily adapted to different cases. 
To do so, we will define first an additional set of points defined over the unit circle as 

 
( ) ( )

( )

1,2, , '

' 'ˆ ' , .
i i

i

i M

P
R R

ξ η

=

 
=  
  

 (15) 

Note that the original set of points{ }( )ˆ iP  and the new set { }( )ˆ ' iP  are different and some points 

of the new set{ }( )ˆ ' iP  are even located outside the dominion D in which the cloud points to be 

fitted is defined (although they are always within the unit circle). This is important in order to 
ensure a smooth curvature variation even in the points of the surface close to the border of 
dominion D. In these conditions, we will define four new feature sets as 
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which will be combined with the original feature set to form the extended feature set defined 
as 

 
(1) ( ) (1) ( ') (1) ( ')

(1) ( ') (1) ( ')

{ , , ,μ ' , ,μ ' ,μ '' , ,μ '' ,

μ ''' , ,μ ''' ,μ '''' , ,μ '''' },

M M M
ext

M M

X = x x x x x x

x x x x

  

 
 (17) 

with μ a parameter which modulates the relative importance assigned to the constant 
curvature in comparison with the sagitta errors. In the same way we have extended the 
training set the output vector must be also extended as follows 

 [ ]1 ' 1 ' 1 ' 1 ' ,ext M M M M× × × ×=y y 0 0 0 0  (18) 

where 
1 'M×

0  is a row vector of dimensions ( )1 'M× , with all of their elements equal to zero. In 
these conditions if we define matrix Xext as 
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 (19) 

then we can compute the optimum values for the Zernike coefficients as 
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 ( ) ( ) ( )( ) ( )1
, μ μ μ · ,T T T

opt D ext ext ext extλ μ λ
−

= + ⋅ ⋅θ I X X X y  (20) 

so the optimum values of the Zernike coefficients will depend on the election of the two 
parameters λ and μ, which will control the weight of the high order polynomials and the 
smoothness of the main curvatures of the fitting surface, respectively. In next section we will 
show the results obtained after applying our algorithm to simulated and measured surfaces. 

3. Experimental results 

We have carried out a number of experiments to test our model. In the first experiment we 
have fitted a synthetic data set. To do so we have generated first a progressive surface using a 
bi-variate polynomial of order 15 within the unit circle. Afterwards, we have added Gaussian 
noise with a standard deviation of 3·10−4 mm and, finally, we have used a polygonal mask to 
define the surface’s arbitrary domain within the unit circle. The final noisy surface is depicted 
in Fig. 1). 

 

Fig. 1. Map of the elevation of the theoretical surface generated together with the polygonal 
path (white line with circular dots) which defines the region of interest (ROI) where the cloud 
of points is defined. 

We have fitted this surface to the set composed by the first 209 Zernike polynomials. Note 
that the number of degrees of freedom of the synthetic surface is around 120 which 
corresponds to the number of monomials of the surface, but we have chosen a higher number 
of terms for the Zernike expansion. Although, for the surface selected this may cause 
overfitting problems (which may be alleviated by the regularization term as we will see latter) 
in a realistic case, we would not know in advance the complexity of the surface, so we would 
need a high number of polynomials so that we can measure any kind of surface regardless of 
its complexity. In order to get the residual errors, we have fitted the whole surface, i.e. that 
which is defined over the circular domain, to the Zernike polynomials and we have done the 
same for the subset defined over the ROI shown in Fig. 1). In both cases, in order to get the 
residual error, we have not added noise to the original surface and we have set λ = 0 and μ = 
0, so neither regularization nor curvature smoothnes were employed. We have computed the 
elevation error which is defined as the standard deviation of the distribution of the residues 
between the elevations of the fitted surface and that of the theoretical one. In these conditions, 
the elevation error obtained is 5

1.4·10zδ −= mm for the whole surface and 54.8·10zδ −=  mm for 
the subset surface. The lower elevation error obtained for the whole surface is due to the fact 
that Zernike polynomials are orthogonal within the unit cirle and that we have not used the 
regularization terms. Regarding the values of the expansion coefficients obtained, we have 
depicted in Fig. 2(a) the coefficients obtained for the Zernike series over the whole surface 
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and in Fig. 2(b) the coeffcients obtainend when fitting the subset surface defined over the 
non-regular domain. As it can be expected [12], there are differences between these two sets 
of coefficients as the surface which they are fitting are defined over different domains. As it 
should be expected and it is shown in Fig. 2(b) the standard fit of Zernike polynomials over a 
cloud of points defined in a non-circular region clearly presents an overfitting with huge 
variations of the Zernike coefficients. 

 

Fig. 2. a) Plot of the values of the first 50 coefficients corresponding to the standard fit (with λ 
= 0 and μ = 0) of a Zernike polynomial series to the theoretical surface of Fig. 1), defined 
over the entire circular region, b) values of the coefficients corresponding ot the fit of the same 
surface but defined over the ROI delimited by the white line of Fig. 1). In both plots the 
piston term have been removed for clarity. 

After performing the standard fitting, we have fitted the surface defined over the irregular 
domain using two different training sets, those defined in Eqs. (10) and (17) with the cost 
function given in Eq. (3). In order to obtain the optimum values of the parameters λ and μ, we 
have followed the next procedure: First, we have varied the value of the regularization 
parameter λ keeping μ = 0 and we have computed the elevation error δz within the ROI for 
each value of λ. We have done this calculation adding Gaussian noise to the theoretical 
surface with three different values of the standard deviation, 10−4, 3·10−4 and 10−3 mm, being 
the result shown in Fig. 3(a). 

As it can be seen in Fig. 3(a), regardless of the amount of noise, the elevation error varies 
with λ in a similar fashion: First, the elevation error decreases with λ and then, after reaching 
a minimum, it raises due to the effect of the bias associated to the ridge regression [14]. As we 
can see in Fig. 3(a), the optimum value of λ increases with the noise, so that we have chosen 
the value λ = 10−6 which corresponds to the minimum of the elevation error for the noise with 
standard deviation of 3·10−4 mm. We have selected this value of noise because, as we will see 
latter, it matches with the accuracy of the profilometer that we have employed for measuring 
the surfaces of the lenses. Once we have obtained the optimum value for λ, we have followed 
the same procedure to obtain μ, that is, we have varied the value of μ (keeping λ = 10−6) and 
we have computed the corresponding elevation error for three different noise levels. As it can 
be seen in Fig. 3(b), for the intermediate noise with standard deviation of 3·10−4 mm, the 
optimum value of μ is around 3·10−5. 
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Fig. 3. a) Plot of the elevation error versus the regularization parameter λ for three different 
levels of noise added to the theoretical surface, b) plot of the elevation error versus the 
curvature smoothing parameter μ for the same noise levels and λ = 10−6. These plots are useful 
in order to get the optimum values of the parameters λ and μ. 

Therefore we have performed the fit for the theoretical surface selecting for the first 
training set the value of the regularization parameter of 6

10λ −= , while for the extended 

training set we kept the same value for the regularization parameter and we fixed 5
μ 3·10

−= , 

and we have added to the theoretical surface a noise with Gaussian deviation of 3·10−4 mm. In 
these conditions, we have computed the error maps that can be seen in Fig. 4). The analysis of 
the fitting residuals, computed in a region within the ROI in order to avoid distortions by the 
border points results in a mean value of 0.1 μm and a standard deviation of 0.08 μm for the 
first training set, see Fig. 4(a), and a mean of 0.08 μm with a standard deviation of 0.06 μm 
for the extended training set as it can be seen in Fig. 4(b). Therefore, in spite of the added 
noise, the algorithm has been able to fit the surfaces keeping the elevation errors below 1 
micron according to the standard fixed by the ophthalmic lens manufacturing industry [17]. 

 

Fig. 4. a) Map of the elevation error along the lens surface obtained for the first training set, 
i.e., setting λ = 10−6 and μ = 0 and b) elevation error map obtained for the extended training set 
with λ = 10−6 and μ = 3·10−5. In both cases the elevation error is lower than 1 micron for the 
ROI. The ROI is limited by the white line and the red line delimits an inner region for 
computing the statistical magnitudes (mean and standard deviation) of the fitting residues. The 
green area outside the ROI represents the circular domain where the Zernike polynomials are 
defined. 
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However, as stated before, the assessment of the elevation error is not enough in our case, 
because we must check also that brusque variations in surface curvature are not present so that 
the surface can be used in an ophthalmic lens. To do so, we have first computed the main 
curvatures κ1 and κ2, being always κ2 the greater one, for both the fitted and theoretical 
surface. From these curvatures, we have defined the local sphere as 

 ( )( )
2 1

1 / 2,S n κ κ= − +  (21) 

and the local cylinder as 

 ( )( )
2 1

1 ,C n κ κ= − −  (22) 

being n the refractive index which have been taken as 1.55n =  in our computations. We use 
the local sphere and cylinder because if the surface forms part of an ophthalmic lens, they are 
directly related with the sphere and cylinder experienced by the lens user. In these conditions, 
the lens manufacturers use to characterize the surface errors in terms of local sphere and 
cylindrical errors [17]. In fact, the usual rule followed by the industry is to keep the errors in 
local sphere and cylinder lower than 0.1 D (ideally, the value should be close to 0.01 D) along 
the whole surface while the elevation error should be lower than 1 μm for any point of the 
surface. 

 

Fig. 5. a) Map of the spherical error in the ROI obtained for a theoretical progressive surface 
by setting λ = 10−6 and μ = 0 (original training set), b) map of the equivalent spherical error for 
the same surface obtained using the extended training set (λ = 10−6 and μ = 3·10−5), c) map of 
the cylindrical error obtained with the original training set and d) map of the cylindrical error 
obtained with the extended training set. The effect of the training set extension can be noticed 
as a reduction on the errors thorough the whole ROI particularly for the spherical equivalent 
power. 
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In Fig. 5) we have plotted the equivalent sphere and cylinder error maps for the two 
training sets employed. We have also computed the mean and standard deviation for these 
errors within a region located inside of the surface domain (marked with red line in the figures 
as in the preceding case). As it can be seen in Fig. 5(a) the error in the equivalent spherical 
refractive power obtained for the first training set is within the tolerance of 0.1 D and the 
same happens with the cylindrical power depicted in Fig. 5(c). However, we can appreciate an 
increment in the errors for the points located close to the border of the ROI selected. The high 
values of spherical equivalent and cylindrical at the ROI borders can be lowered if we enforce 
the condition of smooth curvature variation by setting a value of 5

μ 3·10
−=  as it can be 

appreciated in the maps depicted in Figs. 5(b) and 5(d). These tendencies are confirmed by the 
numerical results. For the spherical equivalent power error, the mean error is 0.02 D and the 
standard deviation is 0.03 D for the original training set. For this set, the cylindrical power 
error has mean 0.03 D with a standard deviation of 0.04 D. If the extended set is employed, 
the value of the mean is lowered to 0.007 D for the spherical equivalent power error and 0.01 
D for the cylindrical power error, being the values of the standard deviation 0.009 D for the 
spherical equivalent and 0.013 for the cylinder. Therefore, we can conclude that using the 
extended training set a reduction on the standard deviation of the spherical and cylindrical 
errors is achieved. 

 

Fig. 6. a) Plot of the elevation error recovered for different values of the standard deviation of 
the added Gaussian noise, b) plot of the spherical error and c) cylindrical error versus Gaussian 
noise. We have computed the value of error for three cases: no regularization and no curvature 
smoothing (blue curve), regularization but no curvature smoothing (red curve) and 
regularization and curvature smoothing (yellow curve). 

In order to state more clearly the accuracy of the fitting technique proposed we have 
followed a procedure, similar to that described in references [18,19], which consists in the 
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computation of the elevation, sphere and cylinder errors for the theoretical surface within the 
same ROI with different values of the added noise Gaussian. We have computed three 
different cases: The first one is the standard fit with no regularization neither curvature 
smoothing, that is 0λ = andμ 0.= For the second case, 610λ −= andμ 0= , that is we have 
considered regularization but no curvature smoothing and, finally, we have set the values of 
parameters λ and μ to the optimum ones as determined from the plots of Fig. 3), so that we 
have fixed 6

10λ −= and 5
μ 3·10

−= . In Fig. 6) we have plotted the results obtained and we can see 
how the regularization term lowers the error in both the elevation and the spherical and 
cylindrical powers and how the introduction of a curvature smoothing diminishes the errors in 
the local curvatures as it can be appreciated in Figs. 6(b) and 6(c). Regarding the magnitude 
of the errors, although we have observed certain dependence with the ROI size and shape we 
can conclude that both the elevation and curvature errors are below the limits fixed by the 
ophthalmic industry (1 micron for elevation and 0.1 D for power). 

 

Fig. 7. a) Elevation map measured with the CMM of a progressive surface. b) Plot of the 50 
first coefficients of the Zernike polynomial expansion corresponding to the surface defined in 
Fig. 7(a) for the whole circular domain. c) Equivalent sphere and b) cylindrical refractive 
power maps computed for the reference surface from the elevation map of Fig. 7(a). As in 
former cases, we have defined a ROI region whose border is given by the white line with 
circular markers. 

In a second experiment we have measured the progressive surface of a progressive power 
lens using a coordinate measuring machine (CMM) [17,20]. The CMM used is a custom made 
one, with a resolution of 10−4 mm in the X, Y and Z directions [20] and an accuracy estimated 
in around 3·10−4 mm which corresponds to the standard deviation of the residues obtained 
after measuring a reference spherical surface [20]. As the lens surfaces are defined within a 
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circle of 25 mm of radius, we have computed the Zernike polynomial series for an arbitrary 
region within the circle defining the lens. For comparison purposes, we have computed the 
spherical equivalent and cylindrical refractive power maps for the whole surface using a 
standard Zernike fitting in a circular domain, see Fig. 7) and we have compared these maps in 
the ROI with the ones obtained after fitting the surface using our technique. In this way we 
will be able to show how our technique is able to fit a surface within an arbitrary region 
obtaining the same power maps (within this region) as the ones resulting from a conventional 
Zernike polynomial fitting in a circular domain. We have also computed the elevation error 
defined as the difference between the elevation of the points measured within the ROI and the 
elevation of the points computed from the Zernike fit using our technique. 

 

Fig. 8. a) Distribution of the elevation error without curvature smoothing and b) with curvature 
smoothing, c) difference of the equivalent spherical refractive power between the measured 
and reconstructed surfaces with no curvature smoothing, d) Same difference as in case c) but 
with curvature smoothing. Difference between the measured and reconstructed cylindrical 
refractive power e) with no curvature smoothing and f) with curvature smoothing. 
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In Fig. 8) we have represented the elevation error as defined in the preceeding paragraph, 
together with the difference between spherical equivalent and cylindrical refractive power 
maps computed using our technique and the conventional Zernike fitting to a circular domain. 
The measured power maps have been computed with and without curvature smoothing. For 
the first case, the fit parameters have been set as 610 , 0λ μ−= = , while for the second case 

we have set 6 510 , 3·10λ μ− −= =  in order to force a smoother variation of the local curvatures. 
As it can be seen in Figs. 8(a) and 8(b) the elevation error is kept below 1 micron for the 

ROI considered with an standard deviation of 2.7·10−4 mm with no curvature smoothing and 
2.6·10-4 mm with curvature smoothing which are quite similar as expected as the curvature 
smoothing has no effect on the elevation values as seen in Fig. 6(a). In Figs. 8(c)-8(f) we can 
see that the errors are lower for both the spherical and cylindrical refractive powers, when the 
Zernike expansion is computed with 0μ ≠ that is, when the smoothness of local curvatures is 
enforced. This is confirmed by the values of the standard deviation of the differences between 
the measured and original power maps. 

With no curvature smoothing, the standard deviation is 0.02 D for the spherical power 
error and 0.025 D for the cylindrical error. When the extended training set is chosen, then the 
standard deviation of the mean spherical equivalent error is 0.014 D and the standard 
deviation for the cylindrical error is 0.017 D. These values are greater than the ones obtained 
for the fitting to the theoretical surface due, basically, to the measurement noise and to the 
strong curvature variation which present the surface in the ROI selected as can be appreciated 
in Figs. 7(c) and 7(d). In any case, the values of the standard deviation in both spherical 
equivalent and cylindrical error improve when the extended training set is selected. 

The effect of the extended training set can be illustrated by representing in Fig. 9) the 
coefficients of the 50 first Zernike polynomials of the serial expansion with and without 
curvature smoothing. As it can be seen in Fig. 9(b) when we select the curvature smoothing 
fit, only Zernike polynomials with relatively lower index contribute to the fitting so the 
resulting surface will present smooth curvatures as it is composed by a sum of lower order 
Zernikes. 

 

Fig. 9. Plot of the values of the first 50 coefficients corresponding to the fit of the surface to a 
Zernike polynomial series to the measured surface within the non regular region delimited by 
the white line in Figs. 7) and 8). The plot of panel a) correspond to the fitting with no 
curvature smoothing while that of panel b) corresponds to the fitting with curvature smoothing. 
In both plots the piston term have been removed for clarity. 

4. Conclusions 

A new algorithm for fitting a cloud of points defined over non regular region to a set of 
Zernike polynomials have been defined. The proposed algorithm uses the techniques of 
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machine learning, particularly an extension of the ridge regression in order to ensure a smooth 
variation of the surface curvatures through the ROI selected. In this way, the algorithm can be 
employed for fitting surfaces presenting smooth curvature variation as it happened with the 
ophthalmic lens surfaces, particularly for progressive surfaces. Despite having been 
developed for fitting ophthalmic lens surfaces, the algorithm can be readily adapted to other 
applications of interest in Optics, such fitting of wavefronts defined over non regular regions 
(non circular pupils). 

The algorithm has been tested with both synthetic and real data. For synthetic data, we 
have shown that the elevation errors are kept below one micron and the curvature errors are 
lower than 0.1 D in agreement with the tolerances usually employed in the ophthalmic 
manufacturing industry. 

We have also fitted a measured cloud of points corresponding to a surface measured using 
a CMM. In this case, we have compared our technique with a conventional Zerkine fitting 
algorithm showing that, within the region of interest the errors in both elevation (2.7·10−4 
mm) and spherical and cylindrical powers (0.015 D) are also under the tolerance value. We 
have also shown that using an extended training set enforces the condition of smooth 
curvature variation by selecting low order Zernike polynomials avoiding, in this way, 
overfitting problems. 
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