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To my mother



ii



iii

TOMÁS.- Entonces...

ASEL.- ¡Entonces hay que salir a la otra cárcel!

¡Y cuando estés en ella, salir a otra, y de ésta, a otra!

La verdad te espera en todas, no en la inacción. Te esperaba

aqúı, pero sólo si te esforzabas en ver la mentira de la

Fundación que imaginaste. Y te espera en el esfuerzo de ese

oscuro túnel del sótano... En el holograma de esa evasión.

La Fundación, Antonio Buero Vallejo

THOMAS.- Then...

ASEL.- Then you must exit into the other jail!

And when you’re in it, go into another, and from it, to still another!

Truth awaits you in all of them, not in inaction. You found it

here, but only by making yourself see the lie of the

Foundation you imagined. And it waits for you in the effort of that

dark tunnel in the basement... in the hologram of that escape.

The Foundation, Antonio Buero Vallejo, Trans. Marion Peter Holt
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UCM), for letting me to be part of them.

I want to thank to the places I have visited scientifically within these years. Thanks

to the Isaac Newton Institute for Mathematical Sciences in Cambridge, UK, and the

organizers of the Moduli Spaces semester in January-June 2011, for giving me the oppor-

tunity to learn from the best ones. Also, to the Department of Mathematics of Columbia

University in New York City, USA, for hospitality. And thanks to Professors Michael

Thaddeus and Robert Friedman for listening to me there.

Here I would like to point out some of the Professors from whom I have learnt or with

whom I have discussed about my work, most directly during these 4 years. Thanks to Luis
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Introducción (en español)

La presente tesis doctoral está dedicada al estudio de la relación entre la inestabilidad

maximal en el sentido de la Teoŕıa Geométrica de Invariantes (que abreviaremos por sus

siglas en inglés, GIT) y la filtración de Harder-Narasimhan para diferentes problemas de

espacios de móduli. Muchos de los problemas de móduli en geometŕıa hacen uso de la

Teoŕıa Geométrica de Invariantes para la construcción de espacios de móduli. Imponemos,

de inicio, una noción de estabilidad en los objetos para los cuales queremos construir un

espacio de móduli y, mediante la Teoŕıa Geométrica de Invariantes, un objeto estable

(resp. semiestable, inestable) se corresponde con un punto GIT estable (resp. GIT

semiestable, inestable) en cierto espacio, estableciendo una correspondencia entre ambas

nociones de estabilidad. El concepto de máxima inestabilidad en el sentido GIT ha

sido estudiado por diferentes autores, y para el presente propósito consideraremos el

tratamiento de Kempf, cuyo art́ıculo [Ke] lo explora. Por otra parte, la filtración de

Harder-Narasimhan, ampliamente usada en muchos problemas en geometŕıa algebraica,

es el objeto geométrico que representa la idea de inestabilidad maximal para la condición

de estabilidad impuesta de inicio sobre los objetos.

En esta tesis se demuestra que ambas nociones de inestabilidad maximal coinciden,

y se muestra una correspondencia entre ellas en diferentes casos. El primer caṕıtulo

contiene nociones generales sobre problemas de móduli, la Teoŕıa Geométrica de Invari-

antes y la filtración de Harder-Narasimhan que usaremos en los caṕıtulos 2 y 3, además

de un ejemplo de construcción de un espacio de móduli para tensores. En el segundo

caṕıtulo estudiamos diferentes problemas de móduli relacionados con haces, o con haces

con estructura adicional. Desarrollamos una técnica para probar la mencionada corres-

pondencia para haces coherentes sin torsión sobre variedades proyectivas de dimensión

arbitraria, pares holomorfos, haces de Higgs, tensores de rango 2, y hacemos algunos co-

mentarios acerca de los tensores de rango 3, siendo el primer caso de tensores para el cual

la técnica desarrollada no funciona. En el tercer caṕıtulo estudiamos representaciones

1



2 INTRODUCCIÓN

de un carcaj, demostrando un resultado similar para representaciones en la categoŕıa de

espacios vectoriales y, nuevamente, haces coherentes vistos como representaciones de un

carcaj de un solo vértice en la categoŕıa de haces coherentes.

Inestabilidad maximal

Considérese un problema de móduli en el que queremos clasificar una clase de obje-

tos algebro-geométricos módulo una relación de equivalencia. Usualmente, tenemos que

imponer una condición de estabilidad en los objetos que clasificamos para obtener un

espacio de móduli con buenas propiedades donde cada punto corresponda a una clase de

equivalencia de objetos. Entonces, añadiendo un dato adicional a los objetos (lo que se

suele llamar en la literatura en inglés to rigidify the data) los inclúımos en un espacio de

parámetros con el que nos es más sencillo trabajar (como pueda ser un esquema af́ın o

proyectivo). Para deshacernos de este nuevo dato añadido, tenemos que tomar el cociente

por la acción de un grupo que está precisamente codificando los cambios en este dato

adicional. Y para tomar este cociente usamos la Teoŕıa Geométrica de Invariantes de

Mumford, (véase [Mu] para la primera edición, [MF] y [MFK] para la segunda y tercera

ediciones) para obtener un espacio de móduli proyectivo clasificando los objetos en el

problema de móduli. El estudio de las órbitas de la acción de este grupo nos lleva a la

noción de estabilidad GIT definiendo puntos, en el espacio de parámetros, que son GIT

estables y otros que son GIT inestables.

En cada problema de móduli en el que usamos GIT, llegado cierto momento tenemos

que demostrar que ambas nociones de estabilidad coinciden, con lo que los objetos estables

corresponden a los puntos GIT estables y los objetos inestables corresponden a los puntos

GIT inestables. A tal efecto, Mumford enuncia un criterio numérico (c.f. [Mu, Theorem

2.1]) basado en ideas de Hilbert en [Hi]. El Teorema 1.1.14, conocido como el criterio de

Hilbert-Mumford, caracteriza la estabilidad GIT a través de subgrupos uniparamétricos,

donde una función numérica (que llamamos el mı́nimo exponente relevante) toma un

valor positivo o negativo dependiendo de que el subgrupo uniparamétrico desestabilice

un punto o no, en el sentido GIT. Además, si un punto es GIT inestable, podemos

hablar de grados de inestabilidad, o de ciertos subgrupos uniparamétricos que son más

desestabilizantes que otros.

Basado en el trabajo de Mumford, Tits y otros autores, podemos medir esto mediante

una función racional en el espacio de subgrupos uniparamétricos, cuyo numerador es la
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función numérica del criterio de Hilbert-Mumford y cuyo denominador es una norma

del subgrupo uniparamétrico que escogemos para evitar reescalar la función numérica

(véase sección 1.4). La conjetura del centro de Tits (c.f. [Mu, p. 64]) establece que

existe un único subgrupo uniparamétrico maximizando esta función, que representa la

inestabilidad maximal en el sentido GIT. Kempf explora estas ideas en un art́ıculo en 1978

(c.f. [Ke]), resolviendo lo que él llama la conjetura de Mumford-Tits (refiriéndose a

la conjetura del centro de Tits, tal como aparece en [Mu]), demostrando que existe un

único subgrupo uniparamétrico con estas propiedades en [Ke, Theorem 2.2, Theorem 3.4]

(para una correspondencia entre las definiciones en [Mu] y [Ke] véase [MFK, Appendix

2B]).

Un objeto inestable proporciona un punto GIT inestable para el cual existe un único

subgrupo uniparamétrico máximamente desestabilizante en el sentido GIT. Los diferentes

subgrupos uniparamétricos producen, de forma natural, banderas formando el complejo

de banderas de un grupo G, estudiado por Tits y Mumford. Por tanto, nos gustaŕıa

considerar la bandera asociada a ese único subgrupo uniparamétrico máximamente de-

sestabilizante en el sentido GIT y construir, a partir de él, una filtración de subobjetos

del objeto inestable original. Los principales resultados de esta tesis consisten en la

traducción de este subgrupo uniparamétrico a una filtración del objeto, demostrar que

esta traducción está bien y uńıvocamente definida (es decir, que no depende de diver-

sas elecciones hechas durante el proceso) y, finalmente, demostrar que coincide con la

filtración de Harder-Narasimhan en los casos en los que esta filtración es ya conocida, o

proporciona una nueva definición de una tal filtración en otro caso.

Teoŕıa Geométrica de Invariantes y espacio de móduli

de tensores

En el primer caṕıtulo se recogen las nociones preliminares acerca de espacios de móduli

y la Teoŕıa Geométrica de Invariantes para presentar el problema estudiado.

La sección 1.1 contiene una descripción de lo que es un problema de móduli, con

su formulación rigurosa. Se proporcionan ejemplos básicos como el espacio de móduli

de las cúbicas complejas no singulares o la formulación del problema del espacio de

móduli de las curvas algebraicas de género g. Entonces, recuperamos las nociones de la

Teoŕıa Geométrica de Invariantes que necesitaremos en lo sucesivo, los diferentes tipos de
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cocientes, linearizaciones de acciones de grupos y el criterio de Hilbert-Mumford, esencial

para tratar con la estabilidad GIT. También damos un ejemplo, el Ejemplo 1.1.4, para

resaltar el concepto de S-equivalencia para las órbitas de la acción de un grupo, o el

ejemplo de combinaciones de puntos en P1
C (véase Ejemplos 1.1.5 y 1.1.15) para aplicar

el criterio de Hilbert-Mumford.

La sección 1.2 está dedicada a presentar un ejemplo completo de construcción de un

espacio de móduli usando la Teoŕıa de Invariantes Geométricos: el espacio de móduli de

tensores sobre una variedad proyectiva. Esta construcción fue primeramente estudiada

para tensores sobre curvas por Schmitt (c.f. [Sch]) y después por Gómez y Sols (c.f.

[GS1]). En la sección, seguimos la referencia [GS1] pero usando el embebimiento de

Gieseker (c.f. subsección 1.2.3) en vez de el de Simpson, como se hace en [GS1]. Con

este embebimiento, los tensores se meten en un espacio de parámetros donde actúa un

grupo. El Teorema 1.2.31 establece que los tensores semiestables corresponden a las

órbitas GIT semiestables bajo la acción del grupo, por lo tanto el conciente GIT será

el espacio de móduli de los tensores semiestables. En este ejemplo aparecen muchos de

los elementos que suelen encontrarse en las construcciones GIT de espacios de móduli,

tales como la dependencia de la estabilidad con un parámetro, la necesidad de probar la

acotación del conjunto de objetos semiestables (una prueba que exige un gran esfuerzo,

basada en resultados de [Ma1, Ma2]), o la identificación de tensores S-equivalentes (véase

la Proposición 1.2.35) como puntos semiestables.

Una vez que hemos discutido la correspondencia entre estabilidad y estabilidad GIT

con el ejemplo del móduli de tensores, recordamos la noción de la filtración de Harder-

Narasimhan en la sección 1.3. Explicamos por qué esta filtración captura la idea de la

máxima forma de desestabilizar un objeto a través de casos sencillos (como en el Ejemplo

1.3.8) y probamos su existencia y unicidad para el caso de haces coherentes sin torsión.

Entonces explicamos la noción de la filtración de Harder-Narasimhan en el contexto

abstracto de una categoŕıa abeliana, como aparece en [Ru].

Finalmente, la sección 1.4 finaliza el caṕıtulo explicando las ideas de [Ke]. En ese

art́ıculo, Kempf prueba la conjetura de Mumford-Tits, enunciando que un punto GIT

inestable tiene un único subgrupo uniparamétrico que lo desestabiliza máximamente, en

el sentido de GIT, maximizando una función, la función de Kempf, en el Teorema

1.4.6. Por tanto, teniendo este subgrupo uniparamétrico dando la máxima forma de

desestabilización GIT, y la filtración de Harder-Narasimhan, podemos conjeturar que

ambas corresponden a la misma noción, y formular la pregunta
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¿Existe una relación entre la filtración de Harder-Narasimhan y el sub-

grupo uniparamétrico dado por Kempf?

En los caṕıtulos 2 y 3 respondemos positivamente la anterior pregunta en diferentes

casos.

Correspondencia entre las filtraciones de Kempf y Harder-

Narasimhan

Primero, resumimos cómo demostrar la correspondencia para el caso principal, haces

coherentes sin torsión sobre variedades proyectivas. Los casos restantes serán probados

de forma análoga a este caso principal, basado en las mismas ideas y técnicas.

• Haces coherentes sin torsión sobre variedades proyectivas

Sea X una variedad proyectiva compleja no singular y sea OX(1) un fibrado de ĺınea

amplio en X. Si E es un haz coherente en X, sea PE su polinomio de Hilbert con respecto

a OX(1), es decir, PE(m) = χ(E⊗OX(m)). Si P y Q son polinomios, escribimos P ≤ Q

si P (m) ≤ Q(m) para m� 0.

Un haz sin torsión E sobre X se llama semiestable si para todo subhaz propio

F ⊂ E, se verifica
PF

rkF
≤ PE

rkE
.

Si no es semiestable, se llama inestable, y posee una filtración canónica

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E ,

que satisface las siguientes propiedades, donde Ei := Ei/Ei−1:

1. Los polinomios de Hilbert verifican

PE1

rkE1
>

PE2

rkE2
> . . . >

PEt+1

rkEt+1

2. Cada Ei es semiestable
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que es llamada la filtración de Harder-Narasimhan de E (véase Teorema 1.3.5).

La construcción del espacio de móduli para estos objetos es originalmente debida

a Gieseker para superficies, y generalizada a dimensión superior por Maruyama (c.f.

[Gi1, Ma1, Ma2]). Para construir el espacio de móduli de haces sin torsión con polinomio

de Hilbert fijo P , elegimos un cierto entero grande m y consideramos el esquema Quot

(siguiendo la nomenclatura de Grothendieck) que parametriza cocientes

V ⊗OX(−m) −→ E , (0.0.1)

donde V es un espacio vectorial fijo de dimensión P (m) y E es un haz con PE = P .

El esquema de cocientes tiene una acción canónica de SL(V ). Gieseker (c.f. [Gi1]) da

una linearización de esta acción en un cierto fibrado de ĺınea amplio, para usar la Teoŕıa

Geométrica de Invariantes para cocientar por la acción. El espacio de móduli de haces

semiestables se obtiene como el cociente GIT.

Sea E un haz sin torsión que es inestable. Eligiendo m suficientemente grande (de-

pendiendo de E), y eligiendo un isomorfismo V ∼= H0(E(m)), obtenemos un cociente

como en (0.0.1). El correspondiente punto en el esquema Quot será GIT inestable y, por

el criterio de Hilbert-Mumford, habrá al menos un subgrupo uniparamétrico de SL(V )

que lo desestabilizará en el sentido de GIT.

Un subgrupo uniparamétrico de SL(V ) es un homomorfismo no trivial C∗ →
SL(V ). A un subgrupo uniparamétrico le asociamos una filtración con pesos como sigue.

Existe una base de V , {e1, . . . , ep}, para la cual el subgrupo uniparamétrico toma la

forma diagonal

t 7→ diag
(
tΓ1 , . . . , tΓ1 , tΓ2 , . . . , tΓ2 , . . . , tΓt+1 , . . . , tΓt+1

)
donde Γ1 < · · · < Γt+1. Sobre todos los subgrupos uniparamétricos, Kempf muestra

que existe una clase de conjugación de máximamente desestabilizantes (es decir, que

maximicen la función de Kempf en la Definición 1.4.4), todos ellos dando una única

filtración de V con pesos, (V•, n•),

0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vt ⊂ Vt+1 = V, (0.0.2)

y números positivos n1, n2, . . . , nt > 0 (c.f. Teorema 2.1.5).

Esta filtración induce una filtración de haces de E, evaluando los espacios de secciones

globales,

0 ⊆ Em
1 ⊆ Em

2 ⊆ · · · ⊆ Em
t ⊆ Et+1 = E ,
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que llamaremos la m-filtración de Kempf de E. Esta filtración depende del entero

m que usamos en la construcción del espacio de móduli y que asegura que los haces

semiestables (resp. inestables) se corresponden con las órbitas GIT semiestables (resp.

GIT inestables). Entonces, el punto principal es probar el siguiente

Teorema 0.0.1 (c.f. Teorema 2.1.6). Existe un entero m′ � 0 tal que la m-filtración de

Kempf es independiente de m, para m′ ≥ m.

Dado un entero m, la m-filtración de Kempf maximiza una función, llamada la

función de Kempf,

µ(V•, n•) =

∑t
i=1 ni(r dimVi − ri dimV )√∑t+1

i=1 dimV iΓ2
i

,

la cual identificamos con una función geométrica (véase Proposición 2.1.13)

µv(Γ) =
(Γ, v)

‖Γ‖
,

donde ( , ) es un producto escalar en Rt+1 dado por una matriz diagonal con elementos

dimV i en la diagonal, y el vector v tiene coordenadas

vi =
1

dimV i dimV

[
ri dimV − r dimV i

]
.

El vector v está relacionado con la filtración V• ⊂ V y el vector Γ está relacionado

con los números n• (poniendo ni = Γi+1−Γi
dimV

) en la filtración de Kempf (0.0.2). Entonces,

fijando un vector v en un espacio Eucĺıdeo, consideramos la función µv(Γ) y nos pregun-

tamos por el vector Γ que proporciona el máximo para µv. Ocurre que la respuesta es

dada por la envolvente convexa del grafo determinado por v (véase Teorema 2.1.9).

Las m-filtraciones de Kempf, (es decir, las filtraciones de E que obtenemos evaluando

(V•, n•) para diferentes enteros m, donde V ' H0(E(m)) ) pueden diferir para diferentes

valores de m. Sin embargo, por una parte son maximales con respecto al valor que la

función de Kempf alcanza en ellas, y por otra parte verifican propiedades de convexidad

con respecto a la función µv(Γ). A partir de esto, podemos probar diferentes propiedades

satisfechas por los filtros que aparecen en las filtraciones, las cuales caracterizan la fil-

tración de Kempf y muestran que es independiente de m (c.f. Teorema 2.1.6).

La filtración que obtenemos, la cual de hecho no depende del entero m, se llama la

filtración de Kempf de E. Entonces, observamos que las dos propiedades de con-

vexidad que estaban impĺıcitas en los argumentos que condujeron a probar el Teorema
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2.1.6, propiedades que quedan descritas en los Lemas 2.1.15 y 2.1.16, son igualmente sa-

tisfechas por la filtración de Kempf (c.f Proposiciones 2.1.28 y 2.1.29). Observamos que

estas propiedades de convexidad, las pendientes descendentes y la semiestabilidad de los

cocientes, son precisamente las propiedades de la filtración de Harder-Narasimhan para

haces (c.f. Teorema 1.3.5). Por consiguiente, por unicidad de la filtración de Harder-

Narasimhan, probamos el siguiente

Teorema 0.0.2 (c.f. Teorema 2.1.7). La filtración de Kempf de un haz coherente sin

torsión E coincide con la filtración de Harder-Narasimhan de E.

Si reemplazamos los polinomios de Hilbert por los grados de los haces, la noción de

estabilidad se transforma en µ-estabilidad (también conocida como estabilidad de las

pendientes) y obtenemos la µ-filtración de Harder-Narasimhan. En [Br, BT], Bruasse y

Teleman dan una interpretación en términos de teoŕıa gauge de la µ-filtración de Harder-

Narasimhan para haces sin torsión y pares holomorfos. Ellos también usan las ideas de

Kempf, pero en el marco del grupo gauge, por lo que tienen que generalizar los resultados

de Kempf a grupos infinito dimensionales.

Una correspondencia similar ha sido recientemente probada por Hoskins y Kirwan

(c.f. [HK]) usando un método diferente. En la referencia se comienza con una filtración

que se encuentra en un estrato de tipo de Harder-Narasimhan fijado (lo que llamamos

m-type, c.f. Definición 2.1.22). Una diferencia con nuestro tratamiento es que ellas usan

la existencia previa de la filtración de Harder-Narasimhan, mientras que nosotros no lo

hacemos.

A continuación, brevemente resumimos otros problemas de móduli para los cuales

mostramos la correspondencia entre la filtración de Harder-Narasimhan y la inestabilidad

maximal GIT, usando un método similar al de los haces sin torsión.

• Pares holomorfos

Sea X una variedad proyectiva compleja no singular. Consideramos pares holomorfos

(E,ϕ : E → OX)

dados por un haz coherente sin torsión de rango r con determinante fijo det(E) ∼= ∆ y

un morfismo al haz de estructura OX . Obsérvese que se trata de un caso perticular de

los tensores estudiados en la sección 1.2, particularizando para c = 1, b = 0 y s = 1.
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Sea δ un polinomio de grado a lo sumo dimX−1 y coeficiente director positivo. Dado

un subhaz E ′ ⊂ E, definimos ε(E ′) = 1 si ϕ|E′ 6= 0 y ε(E ′) = 0 en caso contrario. Un

par holomorfo (E,ϕ) es δ-semiestable si para cada E ′ ⊂ E, se tiene

PE′ − δε(E ′)
rkE ′

≤ PE − δε(E)

rkE
.

Existe una construcción del espacio de móduli de pares holomorfos δ-semiestables

fijando el polinomio de Hilbert P y el determinante det(E) ' ∆ en [HL1] siguiendo las

ideas de Gieseker, y en [HL2] (donde dichos pares son llamados framed modules) siguiendo

las ideas de Simpson.

Un par holomorfo δ-inestable da un punto GIT inestable para el cual obtenemos

un subgrupo uniparamétrico máximamente desestabilizante y una filtración de subpares.

Mostramos que esta filtración no depende del entero m usado en la construcción del espa-

cio de móduli en el Teorema 2.2.9, y que coincide con la filtración de Harder-Narasimhan

para pares holomorfos en el Teorema 2.2.23.

La noción de par holomorfo es dual a la de un par consistente en un haz coherente junto

con una sección. En ambos casos, la condición de estabilidad depende de un parámetro

que es un polinomio. Ésta fue la primera construcción de un espacio de móduli con una

condición de estabilidad dependiente de parámetros.

• Haces de Higgs

Sea X una variedad proyectiva compleja no singular. Un haz de Higgs es un par (E,ϕ)

donde E es un haz coherente sobre X y

ϕ : E → E ⊗ Ω1
X ,

verificando ϕ ∧ ϕ = 0, es un morfismo llamado el campo de Higgs. Si el haz E es

localmente libre hablaremos de fibrados de Higgs. Decimos que un haz de Higgs es

semiestable (en el sentido de Gieseker) si para todo subhaz propio F ⊂ E preservado

por ϕ (i.e. ϕ
∣∣
F

: F → F ⊗ Ω1
X) tenemos

PF
rkF

≤ PE
rkE

,

donde PE y PF son los respectivos polinomios de Hilbert.

Podemos pensar un haz de Higgs (E,ϕ) como un haz coherente E en el fibrado cotan-

gente T ∗X (c.f. Lema 2.3.1) de tal forma que π∗E = E, donde π : T ∗X → X. Usamos la
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construcción de Simpson (c.f. [Si1, Si2]) del espacio de móduli de haces de Higgs con este

punto de vista. Entonces, probamos que el subgrupo uniparamétrico que da la máxima

inestabilidad GIT (en el sentido de [Ke]) produce una filtración de subhaces

0 ⊂ π∗E1 ⊂ π∗E2 ⊂ · · · ⊂ π∗Et ⊂ π∗Et+1 = E

que no depende de los enteros m y l usados en la construcción de Simpson (c.f. Teorema

2.3.8). Aplicando π∗, obtenemos una filtración de subhaces de Higgs

0 ⊂ (E1, ϕ|E1) ⊂ (E2, ϕ|E2) ⊂ · · · ⊂ (Et, ϕ|Et) ⊂ (Et+1, ϕ|Et+1) = (E,ϕ)

y probamos que coincide con la filtración de Harder-Narasimhan para haces de Higgs

(c.f. Corlario 2.3.23).

Este caso tiene la particularidad de usar el embebimiento de Simpson (que depende

de dos enteros m y l) en vez de el de Gieseker, lo que hace que el método funcione,

indistintamente, en ambos casos.

• Tensores de rango 2

Sea X una variedad proyectiva compleja no singular de dimensión n. Sea E un haz

coherente sin torsión de rango 2 sobre X. Llamamos tensor de rango 2 al par

(E,ϕ :

s veces︷ ︸︸ ︷
E ⊗ · · · ⊗ E −→ OX) .

Este es otro caso particular de tensores (c.f. sección 1.2), haciendo c = 1, b = 0, r = 2 y

s arbitrario. Consideramos la construcción del espacio de móduli para tales tensores de

rango 2 con determinante fijo det(E) ∼= ∆. De modo similar, probamos que la filtración

de Kempf no depende del entero m, para m� 0 (c.f. Teorema 2.4.4) para construir una

filtración de Harder-Narasimhan para el tensor (E,ϕ), que en este caso es un subhaz de

rango 1 L,

0 ⊂ (L, ϕ|L) ⊂ (E,ϕ) .

Cuando la variedad X es una curva y el morfismo ϕ es simétrico, podemos inter-

pretar esta noción en términos de recubrimientos. Mirando el lugar de anulación de ϕ

podemos ver el tensor (E,ϕ) como un recubrimiento de grado s, X ′ → X, dentro de la

superficie reglada P(E), para definir una noción de recubrimiento estable y caracterizar

geométricamente el subhaz máximamente desestabilizante L ⊂ E en términos de teoŕıa
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de intersección para superficies regladas. Ocurre que, la expresión de la condición de

estabilidad para tales tensores (c.f. (2.4.9)), puede interpretarse como la estabilidad de

Gieseker del haz E (c.f. Definición 2.1.1) y la estabilidad de una configuración de puntos

en P1
C (c.f. Ejemplos 1.1.5 y 1.1.15), ponderadas por el parámetro de estabilidad.

• Tensores de rango 3 y más allá

El caṕıtulo 2 finaliza con algunas observaciones acerca del caso de los tensores de rango

3. Poniendo s = 2, r = 3 en la Definición 1.2.3, obtenemos el caso más sencillo para el

cual no podemos usar las ideas previas para demostrar que el subgrupo uniparamétrico

máximamente desestabilizante produce una filtración de subtensores que no dependa del

entero usado en la construcción del espacio de móduli, para valores grandes del entero.

La razón de esto es que los resultados en la subsección 2.1.2 no se pueden aplicar. No

podemos ver la función de Kempf (c.f. Definición 1.4.4) como una función en el espacio

Eucĺıdeo tomando valores en los pesos de la filtración (c.f. Proposición 2.1.13) porque

los pesos dependerán de la filtración. En este caso no podemos probar los análogos a los

Lemas 2.2.7 y 2.4.6, por lo que el método que usamos no sirve en general.

La alternativa a esto es comparar filtraciones candidatas a ser la filtración de Harder-

Narasimhan mirando los valores que toma la función de Kempf en ellas, por métodos

elementales. La sección finaliza con la observación de que existe una clase restringida

de tensores (aquéllos para los cuales no se producen estos hechos y podemos probar la

independencia entre los pesos y las filtraciones), tal que los pasos de la prueba de la

correspondencia pueden ser llevados a cabo (véase la Definición 2.5.1).

Representaciones de un carcaj

En el caṕıtulo 3 exploramos las ideas desarrolladas en el caṕıtulo 2 para representaciones

de un carcaj. Probamos la correspondencia análoga para representaciones de un carcaj en

espacios vectoriales finito dimensionales y usamos la construcción functorial de un espacio

de móduli para haces coherentes en [ACK] para dar otra demostración del Teorema 2.1.7.

Sea Q un carcaj finito, dado por un conjunto finito de vértices y flechas entre ellos,

y una representación de Q en k-espacios vectoriales finito dimensionales, donde k es

un cuerpo algebraicamente cerrado de caracteŕıstica arbitraria. Existe una noción de

estabilidad para tales representaciones (c.f. Definición 3.1.1) dada por King en [Ki] y,
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más en general, por Reineke en [Re] (ambas casos particulares de la noción abstracta de

estabilidad para una categoŕıa abeliana que podemos encontrar en [Ru]), y una noción

de existencia de una única filtración de Harder-Narasimhan con respecto a la condición

de estabilidad (c.f. Teorema 3.1.6).

En la sección 3.1 consideramos la construcción de un espacio de móduli para es-

tos objetos dada por King (c.f. [Ki]), y asociamos a una representación inestable un

punto inestable, en el sentido de la Teoŕıa Geométrica de Invariantes, en un espacio

de parámetros donde actúa un grupo. Entonces, el subgrupo uniparamétrico dado por

Kempf (c.f. Teorema 3.1.13), que es máximamente desestabilizante en el sentido GIT,

otorga una filtración de subrepresentaciones. Probamos que esta filtración coincide con

la filtración de Harder-Narasimhan para la representación incial, en el Teorema 3.1.15.

Este caso es ligeramente diferente porque, en los anteriores, el grupo por el cual

estábamos tomando el cociente GIT en la construcción del espacio de móduli, era SL(V ),

pero en este caso se trata de un producto de grupos generales lineales, uno para cada

vértice del carcaj. Entonces, la longitud que elegimos en el espacio de subgrupos uni-

paramétricos al definir la función de Kempf (véase Definición 1.4.2) depende de ciertos

parámetros (uno para cada factor simple en el grupo), y mostramos cómo tenemos que

colocar los parámetros convenientemente eligiendo una longitud particular, para ser ca-

paces de relacionar el subgrupo uniparamétrico GIT máximamente desestabilizante con

la filtración de Harder-Narasimhan.

Finalmente, en la sección 3.2 definimos los Q-haces, que son representaciones de un

carcaj en la categoŕıa de haces coherentes, y damos una noción de estabilidad para

ellos, siguiendo [AC, ACGP]. Para un carcaj de un sólo vértice, un Q-haz es lo mismo

que un haz coherente y usamos la construcción functorial del espacio de móduli para

haces dada en [ACK]. En esta construcción, se relacionan los haces con los módulos

de Kronecker para reescribir la condición de estabilidad en términos de representaciones

de un carcaj en espacios vectoriales. El Teorema 3.2.4 relaciona todas las diferentes

nociones de estabilidad que aparecen envueltas en esta tesis, a saber, la estabilidad de

un haz como Q-haz (que equivale a la estabilidad de Gieseker para haces), la estabilidad

del módulo de Kronecker asociado, la estabilidad de la representación de otro carcaj

asociado Q̃, y la estabilidad GIT del punto correspondiente en el espacio de parámetros.

Usando la equivalencia de las diferentes estabilidades, podemos aplicar el teorema de

Kempf (c.f. Teorema 3.1.13) para encontrar una filtración de Harder-Narasimhan para

la representación asociada de un carcaj en espacios vectoriales y, desde aqúı, obtener la
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filtración de Harder-Narasimhan para el Q-haz en el Teorema 3.2.11.

Conclusiones

Esta tesis contiene ideas en dos direcciones. Por una parte, exploramos la relación entre

las condiciones de estabilidad y las nociones de estabilidad GIT en las construcciones

de espacios de móduli. Por otra parte, relacionamos el concepto natural de máxima

inestabilidad GIT (en el sentido de Kempf) y la filtración de Harder-Narasimhan, lo cual

produce una correspondencia en varios casos donde la filtración de Harder-Narasimhan

es previamente conocida, o da una nueva noción de una tal filtración en otros casos.

El esquema de la prueba es similar en todos los casos. Primero, obtener una filtración

de subespacios vectoriales de secciones globales que maximice la función de Kempf (c.f.

Definición 1.4.4) para el problema GIT considerado, entonces evaluar las secciones para

conseguir una filtración de subobjetos, que llamamos la m-filtración de Kempf. Rela-

cionamos la función de Kempf con una función en el espacio Eucĺıdeo (c.f. Proposición

2.1.13) para aplicar los resultados de convexidad (véase subsección 2.1.2). Seguidamente,

demostramos propiedades de la m-filtración de Kempf que la caracterizan y la harán

independiente del entero m, por lo que obtendremos una filtración que llamamos la fil-

tración de Kempf. Finalmente, en los casos donde la filtración de Harder-Narasimhan

es previamente conocida, probamos que las propiedades de convexidad de la filtración de

Kempf son, precisamente, las de la filtración de Harder-Narasimhan, luego por unicidad

ambas filtraciones coinciden (c.f. Teorema 2.1.7). En otros casos, como los tensores de

rango 2 en la sección 2.4, la filtración de Kempf (que es única) define una filtración de

Harder-Narasimhan. Nótese que, en la sección 3.1, la construcción del móduli no depende

de ningún entero, por tanto no tenemos que probar un análogo al Teorema 2.1.6, y la

correspondencia es mucho más sencilla y rápida.

La noción de longitud (c.f. Definición 1.4.2) que necesitamos para definir la velocidad

del subgrupo uniparamétrico (véase sección 1.4), juega un papel importante. En princi-

pio, diferentes longitudes daŕıan diferentes subgrupos uniparamétricos GIT máximamente

desestabilizantes, por tanto diferentes filtraciones de Kempf candidatas a ser la filtración

de Harder-Narasimhan. En la sección 3.1 observamos cómo, diferentes elecciones de lon-

gitud corresponden a diferentes definiciones de estabilidad en la Definición 3.1.1. Por

tanto, dada una noción de filtración de Harder-Narasimhan (dependiente de la noción de

estabilidad), tenemos que colocar los parámetros en la linearización en la construcción
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del espacio de móduli, y en la definición de longitud en el conjunto de subgrupos uni-

paramétricos (c.f. Proposición 3.1.8), de forma conveniente, para lograr una correspon-

dencia entre las filtraciones de Kempf y Harder-Narasimhan.

Potencialmente, podŕıamos esperar usar estas ideas para definir filtraciones de Harder-

Narasimhan en casos donde no han sido estudiadas, y usarlas como poderosa herramienta

para importantes aplicaciones donde ha sido usada en el pasado, tales como los teoremas

de restricción o el cálculo de los números de Betti y los puntos racionales en espacios de

móduli (c.f. [HN]).

Muchos de los casos donde hemos aplicado el método caen dentro de categoŕıas

abelianas, donde la filtración de Harder-Narasimhan verifica las propiedades de con-

vexidad que se desprenden de su definición. Seŕıa interesante entender si esto impone

una condición para esperar una noción de filtración de Harder-Narasimhan, tal como la

conocemos.

Los resultados principales de esta tesis están recogidos en los preprints [GSZ, Za].

El primero contiene la correspondencia entre la máxima forma de desestabilizar en el

sentido GIT y la filtración de Harder-Narasimhan para haces coherentes sin torsión sobre

variedades proyectivas y para pares holomorfos (secciones 2.1 y 2.2). El segundo contiene

el resultado para representaciones de un carcaj en espacios vectoriales de dimensión finita

(sección 3.1).



Introduction

This Ph.D. thesis is devoted to the study of the relation between the maximal unstability

in the sense of Geometric Invariant Theory and the Harder-Narasimhan filtration in

different moduli problems. Many of the moduli problems in geometry use Geometric

Invariant Theory (abbreviated GIT) in the construction of a moduli space. We impose,

from the beginning, a notion of stability on the objects for which we want to construct

a moduli space and, by the Geometric Invariant Theory, we associate to a stable (resp.

semistable, unstable) object, a GIT stable (resp. GIT semistable, GIT unstable) point in

certain space, establishing a correspondence between both concepts of stability. The GIT

concept of maximal unstability has been studied by several authors, and for our purposes

we consider the work of Kempf, whose paper [Ke] explores it. On the other hand, the

Harder-Narasimhan filtration, widely used in many problems in algebraic geometry, is

the geometrical object which represents the idea of maximal unstability for the previous

notion of stability imposed on the objects.

In this thesis we prove that both notions of maximal unstability do coincide, and

show a correspondence between them in different cases. The first chapter contains general

notions about moduli problems, Geometric Invariant Theory and the Harder-Narasimhan

filtration we will use in chapters 2 and 3, apart from an example of the construction of

a moduli space for tensors. In the second chapter we study different moduli problems

in relation with sheaves, or sheaves with additional structure. We develop a technique

to prove the mentioned correspondence for torsion free coherent sheaves over arbitrary

dimensional projective varieties, holomorphic pairs, Higgs sheaves, rank 2 tensors, and

we discuss rank 3 tensors as the first case of tensors for which the technique we use breaks

down. In the third chapter we study representations of quivers, proving a similar result

for representations on the category of vector spaces and, again, coherent sheaves seen as

representations of a one vertex quiver on the category of coherent sheaves.

15
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Maximal unstability

Consider a moduli problem where we try to classify a class of algebro-geometric objects

modulo an equivalence relation. Usually, we have to impose a stability condition on the

objects we classify, in order to obtain a moduli space with good properties where each

point corresponds to an equivalence class of objects. Then, by adding additional data

to the objects (what is usually called in the literature to rigidify the data) we include

them in a parameter space easier to work with (an affine or projective scheme). To get

rid of these new data we have to quotient by the action of a group which is precisely

encoding the changes in the additional data. And to take this quotient we use Mumford’s

Geometric Invariant Theory (see [Mu] for the first edition, [MF] and [MFK] for second

and third editions) to obtain a projective moduli space classifying the objects in the

moduli problem. The study of the orbits of the action of this group leads to the notion

of GIT stability defining points, in the parameter space, which are GIT stable and points

which are GIT unstable.

In every moduli problem using GIT, at some point one has to prove that both notions

of stability do coincide, then the stable objects correspond to the GIT stable points, and

the unstable ones are related to the GIT unstable ones. To that purpose, Mumford

states a numerical criterion (c.f. [Mu, Theorem 2.1]) based on ideas of Hilbert in [Hi].

Theorem 1.1.14, known as the Hilbert-Mumford criterion, characterizes the GIT

stability through 1-parameter subgroups, where a numerical function (which we call the

minimal relevant weight) turns out to be positive or negative whether the 1-parameter

subgroup destabilizes a point or not, in the sense of GIT. Besides, when a point is GIT

unstable, we are able to talk about degrees of unstability, or some 1-parameter subgroups

which are more destabilizing than others.

Based on the work of Mumford, Tits and other authors, we can measure this notion

by means of a rational function on the space of 1-parameter subgroups, whose numerator

is the numerical function of the Hilbert-Mumford criterion and whose denominator is a

length of the 1-parameter subgroup that we choose to avoid rescaling of the numeri-

cal function (c.f. section 1.4). The center’s conjecture of Tits (c.f. [Mu, p. 64])

establishes that there exists a unique 1-parameter subgroup giving a maximum for this

function, representing the GIT maximal unstability. Kempf explores these ideas in a pa-

per in 1978 (c.f. [Ke]), solving what he calls the Mumford-Tits conjecture (referring

to Tits center’s conjecture as it appears on [Mu]) by proving that there exists a unique
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1-parameter subgroup with these properties in [Ke, Theorem 2.2, Theorem 3.4] (for a

correspondence between definitions in [Mu] and [Ke] see [MFK, Appendix 2B]).

An unstable object gives a GIT unstable point for which there exists a unique 1-

parameter subgroup GIT maximally destabilizing. The different 1-parameter subgroups

produce, in a natural way, flags (giving the flag complex of a group G studied by

Tits and Mumford), hence we would like to consider the flag associated to that unique

1-parameter subgroup GIT maximally destabilizing, and construct a filtration by subob-

jects of the original unstable object, out of this 1-parameter subgroup. The main results

of this Ph.D. thesis consist on translating this 1-parameter subgroup to a filtration of

the object, proving that this translation is well and uniquely defined (i.e. it does not

depend on several choices made during the process) and, finally, proving that it coincides

with the Harder-Narasimhan filtration in cases where it is already known, or gives a new

notion of such filtration in other cases.

Geometric Invariant Theory and moduli space of ten-

sors

In the first chapter I collect the necessary background about moduli spaces and Geometric

Invariant Theory to present the problem studied.

Section 1.1 contains a description of what a moduli problem is, with its rigorous

formulation. We provide basic examples as the moduli space of non singular complex

cubics or the formulation of the problem of the moduli space of algebraic curves of

genus g. Then, we recall the notions of Geometric Invariant Theory we will need in

the following, the different types of quotients, linearizations of actions of groups and the

Hilbert-Mumford criterion, essential to deal with GIT stability. We also give an example

(c.f. Example 1.1.4) to realize the concept of S-equivalence for the orbits of the action

of a group, or the classical example of combinations of points in P1
C (c.f. Examples 1.1.5

and 1.1.15) to apply the Hilbert-Mumford criterion.

Section 1.2 is devoted to present a complete example of a construction of a moduli

space using Geometric Invariant Theory: the moduli space of tensors over a projective

variety. This construction was first studied for tensors over curves by Schmitt (c.f. [Sch])

and then by Gómez and Sols (c.f. [GS1]). In the section, we follow [GS1] but using the

embedding of Gieseker (c.f. subsection 1.2.3) instead of Simpson’s, as it is done in [GS1].
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With this embedding, tensors are collected in a parameter space on which a group is

acting. Theorem 1.2.31 establishes that the semistable tensors correspond to the GIT

semistable orbits under the action of the group, hence the GIT quotient will be a moduli

space for semistable tensors. In this example, many of the general features which appear

in GIT constructions of moduli spaces take place, such as the dependence of the stability

notion with a parameter, the necessity of proving the boundedness of the set of semistable

objects (a proof which usually takes a big effort, based on results in [Ma1, Ma2]), or the

identification of S-equivalent tensors (c.f. Proposition 1.2.35) as semistable points.

Once we have discussed the correspondence between stability and GIT stability with

the example of the moduli of tensors, we recall the notion of the Harder-Narasimhan

filtration in section 1.3. We explain why this filtration captures the idea of the maximal

way of destabilizing an object through easy cases (as in Example 1.3.8) and prove its

existence and uniqueness for the case of torsion free coherent sheaves. Then we explain

the notion of the Harder-Narasimhan filtration in the abstract context of an abelian

category, which appears in [Ru].

Finally, section 1.4 closes this chapter explaining the ideas of [Ke]. There, Kempf

proves the Mumford-Tits conjecture, asserting that a GIT unstable point has a unique 1-

parameter subgroup which maximally destabilizes it, in the sense of GIT, by maximizing a

function, the Kempf function (c.f. Definition 1.4.4), in Theorem 1.4.6. Hence, having

this 1-parameter subgroup giving GIT maximal way of destabilizing and the Harder-

Narasimhan filtration, we can conjecture that they do correspond to the same notion,

and formulate the question

Is the Harder-Narasimhan related to the 1-parameter subgroup given by

Kempf?

In chapters 2 and 3 we answer positively the previous question for different cases.

Correspondence between Kempf and Harder-Narasimhan

filtrations

First, we summarize how to prove the correspondence for the main case, torsion free

sheaves over projective varieties. The rest of cases will be proven in an analogous way to
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this main case, based on the same ideas and techniques.

• Torsion free coherent sheaves over projective varieties

Let X be a smooth complex projective variety and let OX(1) be an ample line bundle

on X. If E is a coherent sheaf on X, let PE be its Hilbert polynomial with respect to

OX(1), i.e., PE(m) = χ(E ⊗ OX(m)). If P and Q are polynomials, we write P ≤ Q if

P (m) ≤ Q(m) for m� 0.

A torsion free sheaf E on X is called semistable if for all proper subsheaves F ⊂ E,

it is
PF

rkF
≤ PE

rkE
.

If it is not semistable, it is called unstable, and it has a canonical filtration

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E ,

satisfying the following properties, where Ei := Ei/Ei−1:

1. The Hilbert polynomials verify

PE1

rkE1
>

PE2

rkE2
> . . . >

PEt+1

rkEt+1

2. Every Ei is semistable

which is called the Harder-Narasimhan filtration of E (c.f. Theorem 1.3.5).

The construction of the moduli space for these objects is originally due to Gieseker

for surfaces, and generalized to higher dimension by Maruyama (c.f. [Gi1, Ma1, Ma2]).

To construct the moduli space of torsion free sheaves with fixed Hilbert polynomial P , we

choose a suitably large integer m and consider the Quot scheme parametrizing quotients

V ⊗OX(−m) −→ E , (0.0.3)

where V is a fixed vector space of dimension P (m) and E is a sheaf with PE = P . The

Quot scheme has a canonical action by SL(V ). Gieseker (c.f. [Gi1]) gives a linearization

of this action on a certain ample line bundle, in order to use Geometric Invariant Theory

to take the quotient by the action. The moduli space of semistable sheaves is obtained

as the GIT quotient.
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Let E be a torsion free sheaf which is unstable. Choosing m large enough (depending

on E), and choosing an isomorphism V ∼= H0(E(m)), we obtain a quotient as in (0.0.3).

The corresponding point in the Quot scheme will be GIT unstable and, by the Hilbert-

Mumford criterion, there will be at least one 1-parameter subgroup of SL(V ) which

destabilizes the point in the sense of GIT.

A 1-parameter subgroup of SL(V ) is a non trivial homomorphism C∗ → SL(V ).

To a 1-parameter subgroup we associate a weighted filtration as follows. There is a basis

{e1, . . . , ep} of V where it has a diagonal form

t 7→ diag
(
tΓ1 , . . . , tΓ1 , tΓ2 , . . . , tΓ2 , . . . , tΓt+1 , . . . , tΓt+1

)
with Γ1 < · · · < Γt+1. Among all these 1-parameter subgroups, Kempf shows that there

is a conjugacy class of maximally destabilizing 1-parameter subgroups (i.e. maximizing

the Kempf function in Definition 1.4.4) all of them giving a unique weighted filtration

(V•, n•) of V ,

0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vt ⊂ Vt+1 = V, (0.0.4)

and positive numbers n1, n2, . . . , nt > 0 (c.f. Theorem 2.1.5).

This filtration induces a sheaf filtration of E by evaluating the spaces of global sec-

tions,

0 ⊆ Em
1 ⊆ Em

2 ⊆ · · · ⊆ Em
t ⊆ Et+1 = E ,

which we call the m-Kempf filtration of E. This filtration depends on the integer m

which we use to construct the moduli space and assure that the semistable sheaves (resp.

unstable) correspond to GIT semistable (resp. GIT unstable) orbits. Then, the main

point is to prove the following

Theorem 0.0.1 (c.f. Theorem 2.1.6). There exists an integer m′ � 0 such that the

m-Kempf filtration is independent of m, for m′ ≥ m.

Given an integer m, the m-Kempf filtration maximizes a function, called the Kempf

function,

µ(V•, n•) =

∑t
i=1 ni(r dimVi − ri dimV )√∑t+1

i=1 dimV iΓ2
i

,

which we identify with a geometrical function (c.f. Proposition 2.1.13)

µv(Γ) =
(Γ, v)

‖Γ‖
,
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where ( , ) is an inner product in Rt+1 given by a diagonal matrix with elements dimV i

in the diagonal, and the vector v having coordinates

vi =
1

dimV i dimV

[
ri dimV − r dimV i

]
.

The vector v is related with the flag V• ⊂ V and the vector Γ is related with the

numbers n• (by setting ni = Γi+1−Γi
dimV

) in the Kempf filtration (0.0.4). Then, fixing a vector

v in an Euclidean space, consider the function µv(Γ) and ask for the vector Γ which gives

maximum for µv. It turns out that the answer is given by the convex envelope of the

graph produced by v (c.f. Theorem 2.1.9).

The m-Kempf filtrations, (i.e. the filtrations of E we obtain by evaluating (V•, n•) for

different integers m, where V ' H0(E(m))) can differ for different values of m. However,

they are, on the one hand, maximal with respect to the value the Kempf function achieves

on them and, on the other hand, verify convexity properties with respect to µv(Γ). From

this, we can prove different properties satisfied by the filters appearing in the filtrations,

which characterize the Kempf filtration and show that it is independent of m (c.f.

Theorem 2.1.6).

The filtration we obtain, which does actually not depend on the integer m, is called the

Kempf filtration of E. Then, we observe that the two convexity properties which were

implicit in the arguments leading to prove Theorem 2.1.6, properties which are described

by Lemmas 2.1.15 and 2.1.16, are also satisfied by the Kempf filtration (c.f Propositions

2.1.28 and 2.1.29). And we realize that these convexity properties are precisely the

properties of the Harder-Narasimhan filtration for sheaves (c.f. Theorem 1.3.5), the

descending slopes and the semistability of the quotients. Therefore, by uniqueness of the

Harder-Narasimhan filtration, we prove the following

Theorem 0.0.2 (c.f. Theorem 2.1.7). The Kempf filtration of an unstable torsion free

coherent sheaf E coincides with the Harder-Narasimhan filtration of E.

If we replace Hilbert polynomials with degrees, the notion of stability becomes µ-

stability (also known as slope stability) and we obtain the µ-Harder-Narasimhan filtra-

tion. In [Br, BT], Bruasse and Teleman give a gauge-theoretic interpretation of the

µ-Harder-Narasimhan filtration for torsion free sheaves and for holomorphic pairs. They

also use Kempf’s ideas, but in the setting of the gauge group, so they have to generalize

Kempf’s results to infinite dimensional groups.

A similar correspondence has been proved recently by Hoskins and Kirwan (c.f. [HK])

by using a different method. They start with a filtration which lays on a stratum with
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fixed Harder-Narasimhan type (what we call m-type, c.f. Definition 2.1.22). One differ-

ence with our approach is that they use the previous existence of the Harder-Narasimhan

filtration, whereas we do not use it.

Now, we briefly summarize other moduli problems for which we show the correspond-

ence between the Harder-Narasimhan filtration and the GIT maximal unstability, using

a similar method as in the case of torsion free sheaves.

• Holomorphic pairs

Let X be a smooth complex projective variety. Let us consider holomorphic pairs

(E,ϕ : E → OX)

given by a coherent torsion free sheaf of rank r with fixed determinant det(E) ∼= ∆ and a

morphism to the structure sheaf OX . Observe that this is a particular case of the tensors

studied in section 1.2, by setting c = 1, b = 0 and s = 1.

Let δ be a polynomial of degree at most dimX − 1 and positive leading coefficient.

Given a subsheaf E ′ ⊂ E, let ε(E ′) = 1 if ϕ|E′ 6= 0 and ε(E ′) = 0 otherwise. A

holomorphic pair (E,ϕ) is δ-semistable if for every E ′ ⊂ E

PE′ − δε(E ′)
rkE ′

≤ PE − δε(E)

rkE
.

There is a construction of the moduli space of δ-semistable holomorphic pairs with

fixed Hilbert polynomial P and fixed determinant det(E) ' ∆ in [HL1] following Gieseker’s

ideas, and in [HL2] (where these pairs are called framed modules) following Simpson’s

ideas.

A δ-unstable holomorphic pair give a GIT unstable point for which we obtain a 1-

parameter subgroup GIT maximally destabilizing and a filtration of subpairs. We show

that this filtration does not depend on the integerm used in the construction of the moduli

space in Theorem 2.2.9, and that it coincides with the Harder-Narasimhan filtration for

holomorphic pairs in Theorem 2.2.23.

This notion of holomorphic pair is dual to the pair consisting on a coherent sheaf

together with a section. In both cases, the stability condition depends on a parameter

which is a polynomial. This was the first construction of a moduli space with a stability

condition depending on parameters.
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• Higgs sheaves

Let X be a smooth complex projective variety. A Higgs sheaf is a pair (E,ϕ) where E

is a coherent sheaf over X and

ϕ : E → E ⊗ Ω1
X ,

verifying ϕ∧ϕ = 0, a morphism called the Higgs field. If the sheaf E is locally free we

talk about Higgs bundles. We say that a Higgs sheaf is semistable (in the sense of

Gieseker) if for all proper subsheaves F ⊂ E preserved by ϕ (i.e. ϕ
∣∣
F

: F → F ⊗Ω1
X) we

have
PF

rkF
≤ PE

rkE
,

where PE and PF are the respective Hilbert polynomials.

A Higgs sheaf (E,ϕ) can be thought as a coherent sheaf E on the cotangent bundle

T ∗X (c.f. Lemma 2.3.1) such that π∗E = E, where π : T ∗X → X. We use the construc-

tion of Simpson (c.f. [Si1, Si2]) of a moduli space for Higgs sheaves with this point of

view. Then, we prove that the 1-parameter subgroup giving the GIT maximal unstability

(in the sense of [Ke]) provides a filtration of subsheaves

0 ⊂ π∗E1 ⊂ π∗E2 ⊂ · · · ⊂ π∗Et ⊂ π∗Et+1 = E

which does not depend on the integers m, l used in Simpson’s construction (c.f. Theorem

2.3.8). By applying π∗, we get a filtration of Higgs subsheaves

0 ⊂ (E1, ϕ|E1) ⊂ (E2, ϕ|E2) ⊂ · · · ⊂ (Et, ϕ|Et) ⊂ (Et+1, ϕ|Et+1) = (E,ϕ)

and we prove that it coincides with the Harder-Narasimhan filtration for Higgs sheaves

(c.f. Corollary 2.3.23).

This case has the particularity of using the embedding of Simpson (which depends on

two integers m and l) instead of Gieseker’s, what makes the method work, indistinctly,

both cases.

• Rank 2 tensors

Let X be a smooth complex projective variety of dimension n. Let E be a rank 2 coherent

torsion free sheaf over X. We call a rank 2 tensor the pair

(E,ϕ :

s times︷ ︸︸ ︷
E ⊗ · · · ⊗ E −→ OX) .
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This is another particular case of tensors (c.f. section 1.2), by setting c = 1, b = 0,

r = 2 and arbitrary s. Consider the given construction of the moduli space for such

rank 2 tensors with fixed determinant det(E) ∼= ∆. Similarly we prove that the Kempf

filtration does not depend on the integer m, for m� 0 (c.f. Theorem 2.4.4) to construct a

Harder-Narasimhan filtration for the tensor (E,ϕ), which in this case is a rank 1 subsheaf

L,

0 ⊂ (L, ϕ|L) ⊂ (E,ϕ) .

When the variety X is a curve and the morphism ϕ is symmetric, we can interpret this

notion in terms of coverings. Looking at the vanishing locus of ϕ we can see the tensor

(E,ϕ) as a degree s covering X ′ → X lying on the ruled surface P(E), to define a notion

of stable covering and characterize geometrically the maximally destabilizing subsheaf

L ⊂ E in terms of intersection theory for ruled surfaces. It turns out that, the expression

of the stability condition for such tensors (c.f. (2.4.9)), can be seen as the Gieseker’s

stability of the sheaf E (c.f. Definition 2.1.1) and the stability of a configuration of

points in P1
C (c.f. Examples 1.1.5 and 1.1.15), pondered by the stability parameter.

• Rank 3 tensors and beyond

Chapter 2 finishes with some observations about the rank 3 tensors case. Setting s = 2,

r = 3 on Definition 1.2.3 we obtain the easiest case for which we cannot use the previous

ideas to prove that the 1-parameter subgroup GIT maximally destabilizing produces a

filtration of subtensors which does not depend on some integer used in the construction

of the moduli space, for large values of the integer.

The reason is that results on subsection 2.1.2 do not apply. We cannot see the Kempf

function (c.f. Definition 1.4.4) as a function on the Euclidean space taking values on the

weights of the filtration (c.f. Proposition 2.1.13) because the weights will depend on the

filtration. In this case we cannot prove analogous to Lemmas 2.2.7 and 2.4.6, hence the

method we use does not apply in general.

The alternative is to compare candidates to be the Harder-Narasimhan filtration by

looking at the values the Kempf function takes at them, by elementary methods. The

section finishes with the observation that there exists a restricted class of tensors (those

for which the features discussed before do not apply and we can prove the independence

between weights and filtrations), such that the steps of the proof of the correspondence

do hold (c.f. Definition 2.5.1).
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Representations of quivers

In chapter 3 we explore the ideas developed in chapter 2 for representations of quivers. We

prove the analogous correspondence for representations of quivers on finite dimensional

vector spaces and use the functorial construction of a moduli space for coherent sheaves

in [ACK] to give another proof of Theorem 2.1.7.

Let Q be a finite quiver, given by a finite set of vertices and arrows between them, and

a representation of Q on finite dimensional k-vector spaces, where k is an algebraically

closed field of arbitrary characteristic. There exists a notion of stability for such repre-

sentations (c.f. Definition 3.1.1) given by King in [Ki] and, more generally, by Reineke

in [Re] (both particular cases of the abstract notion of stability for an abelian category

that we can find in [Ru]), and a notion of the existence of a unique Harder-Narasimhan

filtration with respect to that stability condition (c.f. Theorem 3.1.6).

In section 3.1 we consider the construction of a moduli space for these objects by

King (c.f. [Ki]), and associate to an unstable representation an unstable point, in the

sense of Geometric Invariant Theory, in a parameter space where a group acts. Then,

the 1-parameter subgroup given by Kempf (c.f. Theorem 3.1.13), which is maximally

destabilizing in the GIT sense, gives a filtration of subrepresentations. We prove that it

coincides with the Harder-Narasimhan filtration for the initial representation, in Theorem

3.1.15.

This case is slightly different because, in the previous ones, the group we were taking

the GIT quotient by in the construction of the moduli space, was SL(N), but in this case it

is a product of general linear groups, one for each vertex of the quiver. Then, the length

we choose in the space of 1-parameter subgroups when defining the Kempf function (c.f.

Definition 1.4.2) depends on some parameters (one for each simple factor in the group),

and we show how we have to set the parameters conveniently by choosing a particular

length, to be able to relate the 1-parameter subgroup GIT maximally destabilizing with

the Harder-Narasimhan filtration.

Finally, in section 3.2 we define Q-sheaves, which are representations of a quiver

on the category of coherent sheaves, and give a stability notion for them, following

[AC, ACGP]. For a one vertex quiver, a Q-sheaf is the same that a coherent sheaf and

we use the functorial construction of a moduli space for sheaves given in [ACK]. In this

construction, sheaves are related to Kronecker modules, then the stability condition turns

out to be rewritten in terms of representations of quivers on vector spaces. Theorem 3.2.4
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relates all different notions of stability involved in this thesis, say, stability of the sheaf

as a Q-sheaf (equivalent to Gieseker’s stability for sheaves), stability of the Kronecker

module associated, stability of the representation of another quiver associated Q̃, and

GIT stability of the corresponding point in the parameter space. Using the equivalence

of different stabilities, we can apply the Kempf theorem (c.f. Theorem 3.1.13) to find

a Harder-Narasimhan filtration for the associated representation of a quiver on vector

spaces and, from it, obtain the Harder-Narasimhan filtration for the Q-sheaf in Theorem

3.2.11.

Conclusions

This thesis contains ideas in two directions. On the one hand, we explore the relation

between stability conditions and GIT stability notions in constructions of moduli spaces.

On the other hand, we relate a natural concept of GIT maximal unstability (in the sense

of Kempf) and the Harder-Narasimhan filtration, which gives a correspondence in several

cases where the Harder-Narasimhan filtration is previously known or gives a new notion

of a such filtration in other cases.

The sketch of the proof is similar in all cases. First, obtaining a filtration of vector

subspaces of global sections which maximizes the Kempf function (c.f. Definition 1.4.4)

for the GIT problem considered, then evaluate the sections to get a filtration of subob-

jects, called the m-Kempf filtration. We relate the Kempf function with a function

in the Euclidean space (c.f. Proposition 2.1.13) to apply results on convexity (c.f. sub-

section 2.1.2). Next, we prove properties of the m-Kempf filtration which characterize

it and will make it not to depend on the integer m, hence we get a filtration called the

Kempf filtration. Finally, in cases where the Harder-Narasimhan filtration is known,

we prove that the convexity properties of the Kempf filtration are, precisely, the ones of

the Harder-Narasimhan filtration, hence by uniqueness both filtrations do coincide (c.f.

Theorem 2.1.7). In other cases, as rank 2 tensors in section 2.4, Kempf filtration (which

is unique) defines a Harder-Narasimhan filtration. Note that, in section 3.1, the moduli

construction does not depend on any integer, hence we do not have to prove an analogous

to Theorem 2.1.6, and the correspondence is much easier and quicker.

The notion of length (c.f. Definition 1.4.2) we need to define the speed of the 1-

parameter subgroups (c.f. section 1.4) plays an important role. In principal, different

lengths would give different 1-parameter subgroups GIT maximally destabilizing, hence
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different Kempf filtrations candidates to be the Harder-Narasimhan filtration. In sec-

tion 3.1 we observe how, different choices of length correspond to different definitions

of stability in Definition 3.1.1. Hence, given a notion of Harder-Narasimhan filtration

(depending on the notion of stability), we have to set the parameters in the linearization

in the construction of the moduli space, and in the definition of the length in the set

of 1-parameter subgroups (c.f. Proposition 3.1.8), conveniently, in order to achieve a

correspondence between the Kempf and the Harder-Narasimhan filtrations.

Potentially, we could expect to use these ideas to define Harder-Narasimhan filtrations

in cases where it has not been studied, and use them as a powerful tool for very important

applications where it has been used in the past, as restriction theorems or calculation of

Betti numbers and rational points of moduli spaces (c.f. [HN]).

Many of the cases where we have applied the method fall into abelian categories, where

the Harder-Narasimhan filtration verifies the convexity properties out of its definition.

It would be interesting to understand if this imposes a condition to expect a notion of

Harder-Narasimhan filtration, as we usually know.

The main results of this thesis are collected on the preprints [GSZ, Za]. First one

contains the correspondence between GIT maximal way of destabilizing and the Harder-

Narasimhan filtration for torsion free coherent sheaves over projective varieties and holo-

morphic pairs (sections 2.1 and 2.2). Second one contains the result for representations

of quivers on finite dimensional vector spaces (section 3.1).
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Chapter 1

Moduli spaces and maximal

unstability

1.1 Constructions of moduli spaces using Geometric

Invariant Theory

1.1.1 Moduli problems

Since decades, the study of moduli spaces seems to be the right answer to various classifi-

cation problems in algebra and geometry. A general classification problem should consist

on a collection of objects A and an equivalence relation ∼ on A. The problem is, then, to

describe the set of equivalence classes A/ ∼. We usually refer to A/ ∼ as the quotient

space.

In principle, we can think of the solution to our problem as just the quotient set where

each equivalence class corresponds to a point. But in the field of algebraic geometry, the

objects we are dealing with have rich algebraic and geometric structures, so we would

like this quotient set to have similar properties. Besides, it is usual to have continuous

families of objects in A and we want to reflect this fact in the quotient space. In other

words, if two objects in A are very close, or are very similar (more similar than other

objects in A), we want them to be also very close in the quotient.

Thus, the ingredients of a moduli problem are three: the class of objects A we are

trying to classify, the equivalence relation ∼ and a notion of family and equivalence

of families. The object of the theory of moduli spaces is to provide good spaces (to

29
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be defined later, meaning spaces with good algebraic and geometric properties) for the

quotient space A/ ∼.

Sometimes there are discrete invariants which divide A/ ∼ into a countable number

of subsets, but this does not give a complete solution, usually. However, in many cases,

in order to consider a useful moduli space we fix these invariants and try to classify the

subclass of these objects. Examples of this are fixing rank and degree when studying the

moduli space of vector bundles over a Riemann surface, or fixing dimension and degree

to consider the moduli space of hypersurfaces in a projective space.

First basic examples of moduli spaces can be the complex projective space PnC as the

space of lines in Cn+1 which pass through the origin or, more generally, the Grassmannian

GR(k, n) as the moduli space of all k-dimensional linear subspaces of Cn.

Another classic example is to construct a moduli space for the collection A of all the

non-singular complex cubics. Two curves X and X ′ are equivalent, X ∼ X ′, if they are

isomorphic. By a change of coordinates we consider that all of them are of the form

y2 = x(x− 1)(x− λ), where λ ∈ C. Then we define

j(X) = j(λ) = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2
,

called the j-invariant of the curve X. It can be proved that two cubics are equivalent,

i.e. X ∼ X ′, if and only if j(X) = j(X ′) (c.f. [Ha, Theorem 4.1]). We see that all the

non-singular complex cubics are parametrized by the affine complex line (an algebraic

variety), the corresponding points in the line given by the j-invariant of each isomorphism

class of curves. Hence, to classify cubics up to isomorphism is the same that to give a

1-dimensional variety where each point corresponds to a class of cubics.

The fact of having many non-trivial automorphisms for some of the objects being

classified makes it difficult to have a moduli space as the set of isomorphism classes.

This will be the object of study of the theory of stacks which we will not face here.

Stacks can give a different answer for the classification problem. Indeed, a stack problem

is formulated as a 2-functor problem, whose answer falls in a more general category of

spaces. To avoid that, in many cases we restrict the class of objects A we are trying

to classify to some subclass for which we will be able to give a moduli space. The best

example of this is the notion of stability for vector bundles or sheaves, where we can give

a solution for the moduli problem when restricting to the semistable objects.

In the same direction, it is often possible to consider a modified moduli problem,

meaning to classify the original objects together with additional data, chosen in such a
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way that the identity is the only automorphism also respecting the additional data. This

choice of additional data is usually called to rigidify the objects or to rigidify the

data. With a suitable choice of the rigidifying data, the modified moduli problem will

have a moduli space. One of the most successful approaches to construct moduli spaces

is this rigidifying the data. Consider an object A ∈ A and suppose it to be enriched to

(A,α), where α represents an additional data. In this situation, an action by a group G

appears, taking (A,α) to (A,α′), this is, changing the additional data for a given object

A ∈ A. Hence, in our moduli problem, two objects will be equivalent if they lay on the

same orbit by the action of the group G. Then, in order to get rid of this choice of data,

we have to quotient by the action of G. This is the object of the Geometric Invariant

Theory, developed by David Mumford, which provides moduli spaces as quotients of

affine or projective spaces by the action of groups.

The origin of the theory of moduli spaces started with the theory of elliptic functions,

where one can show that there exists a continuous family of these functions parametrized

by the complex numbers, as in the previous example. Riemann showed in a famous

article in 1857 (c.f. [Ri]) that there is a 3g − 3 dimensional family of complex structures

a compact topological surface of genus g ≥ 2 can be endowed with. In this paper, it was

coined the term moduli, referring to the number of parameters for the complex structure.

The modern formulation of moduli problems and definition of moduli spaces dates

back to Alexander Grothendieck, (1960/1961), “Techniques de construction en géométrie

analytique. I. Description axiomatique de l’espace de Teichmüller et de ses variantes”

(c.f. [Gr]) in which he described the general framework, approaches and main problems

using Teichmüller spaces in complex analytic geometry as an example. The text describes

a general method to construct moduli spaces.

Another general approach is primarily associated with Michael Artin. Here the idea

is to start with any object of the kind to be classified and study those objects which are

closer to it, in the sense that they can be seen as deformations of the object. This is

called deformation theory.

1.1.2 Formulation of moduli problems

Given a moduli problem, i.e. a class of objects A, an equivalence relation ∼ between

objects and a notion of family and equivalence of families, we want to give an algebraic

structure or geometric structure to the set A/ ∼. This structure will depend on the

category we are working on and the precise context (it can be an algebraic variety, an
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scheme or an algebraic space, for example). In the following, we will consider the category

Schk of schemes over a field k, and recall that this category has fiber products. Let us

denote by Sets the category of sets.

By a family of objects in A we understand a proper flat morphism of k-schemes

f : X → S, where fibers Xs (i.e. Xs is the pull back of f along the inclusion s ∈ S) of

the morphism f are objects in A. We say that X is a family of objects in A parametrized

by S.

To formulate a moduli problem we need that the equivalence relation ∼ verifies certain

conditions (c.f. [Ne, Conditions 1.4])

• A family parameterized by a one point scheme {p} is a single object of A.

• There exists a notion of equivalence between families reducing to ∼ for single ob-

jects in A. Then equivalence of objects turns out to be equivalence of families

parametrized by {p}.

• The equivalence for families is functorial, i.e. for any morphism ϕ : S ′ → S and

a family X parameterized by S (i.e. f : X → S), there is an induced family ϕ∗X

parameterized by S ′ and this operation satisfies functorial properties.

Definition 1.1.1. Let A be a class and let ∼ be an equivalence relation for families in

A. A moduli functor is a contravariant functor

F : Schk → Sets

where F(S) denotes the set of equivalence classes of families parameterized by S. The

triple (A,∼,F) is called a moduli problem.

Suppose that M is a k-scheme with underlying set A/ ∼. To have a family X of

objects in A/ ∼ parameterized by a k-scheme S is the same that a map ν[X] : S → M

and we would like all the different morphisms ν[X] : S → M to be in correspondence

with the different equivalence classes of families [X] parameterized by S. In the language

of categories and functors this is expressed with the moduli functor in Definition 1.1.1.

Let Hom(−,M) be the functor of points of M . Recall that the functor of points of a

k-scheme M is the contravariant functor from the category of k-schemes to the category

of sets, which sends a k-scheme S to the set of morphisms from S to M . There is a

natural transformation

Φ : F → Hom(−,M)
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where ΦS : F(S)→ Hom(S,M) is the natural map given by ΦS([X]) = ν[X].

To give a moduli problem is to give a functor F as in Definition 1.1.1 and ask if there

exists any k-scheme M such that F and the functor of points of M are related, meaning

that the set of equivalence classes of families parameterized by S, F(S), is related with

the set of different morphisms from S to M . In particular, for a one point scheme {p},
F(p) will be the set of equivalence classes of objects, so will be in correspondence with

the points of M , Hom({p},M). Hence, such M will be the moduli space we are seeking.

Definition 1.1.2. A moduli functor F : Schk → Sets is representable if there exists a

k-scheme M such that F is isomorphic to the functor of points of M Hom(−,M). Denote

such isomorphism by Φ and say that the pair (M,Φ) represents the functor F . A fine

moduli space for the moduli problem considered is a pair (M,Φ) which represents the

functor F .

Note that, by Definition 1.1.2, if (M,Φ) represents F we have a natural bijection

Φ(p) : A/ ∼= F(p)→ Hom(p,M) = M

where p is a one point k-scheme. Moreover, the identity morphism 1M determines, up to

equivalence, a family U parameterized by M such that every family X parameterized by

a k-scheme S is equivalent to ν∗XU , where ν∗X : S → M is the morphism corresponding

to the family. The family U is called a universal family for the moduli problem con-

sidered. Therefore, we can define a fine moduli space as a k-scheme M together with

a universal family U parameterized by M such that every family is given as the pull

back from U by the corresponding morphism.

Definition 1.1.3. A moduli functor F : Schk → Sets is corepresentable if there exists

a k-scheme M and a natural transformation Φ : F → Hom(−,M) to the functor of

points of M such that, for every k-scheme N and a natural transformation Φ′ : F →
Hom(−, N), there exists a unique natural transformation Ψ : Hom(−,M) → Hom(−N)

such that Φ factors through Ψ. Such pair (Φ,M) is said to corepresent the functor F
and, if it exists, it is unique up to unique isomorphism. If furthermore, Φ(p) : F(p)→M

is bijective, where p is a one point k-scheme, we say that (M,Φ) is a coarse moduli

space for the moduli problem considered.

There are many moduli problems for which we cannot find a fine moduli space. The

existence of a coarse moduli space turns out to be a weaker solution. Note that, if (M,Φ)

is a fine moduli space, it is automatically a coarse moduli space.
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One reason for the non existence of a moduli space with good properties, easy to ex-

plain, is the jump phenomenon. It happens when there exists a family X parametrized

by a scheme S of dimension ≥ 0 for which there is a point s0 ∈ S such that

• Xs ∼ Xt for all s, t ∈ S − {s0}

• Xs � Xs0 for all s ∈ S − {s0}

With this feature, if we include in the hypothetical moduli space the equivalence or the

isomorphism class of Xs0 , the moduli space would be non separated. This is the usual

property shared by the unstable objects (those which behave like Xs0). The notion of

stability was introduced first by Mumford, in order to construct moduli spaces for the

subclass of semistable objects.

As an example, we can formulate the problem of finding a moduli space of algebraic

curves of genus g. Consider the class A of smooth projective curves of genus g over an

algebraically closed field k, and the equivalence relation∼ being the isomorphism between

curves. A family of curves parametrized by S is a proper flat morphism f : X → S

between algebraic varieties where fibers are curves of genus g. There exists a moduli

space, denotedMg, for this moduli problem. Define a curve to be stable if it is complete,

connected, has no singularities other than double points, and has only a finite group of

automorphisms. The moduli space of stable curves of genus g is usually denoted byMg.

The space Mg is projective and it is a compactification of Mg.

1.1.3 Results on Geometric Invariant Theory

In this section we recall the basic results of Geometric Invariant Theory we need when

taking quotients by the action of groups in moduli problems.

Let G be an algebraic group over an algebraically closed field k. A right action on

an scheme X is a morphism σ : X × G → X, where σ(x, g) = x · g, ∀x ∈ X, such that

x · (gh) = (x · g) · h and x · e = x, e being the identity element of G. A left action is

defined by (hg) · x = h · (g · x).

We denote by x · G the orbit of x ∈ X by a right action of G (resp. G · x for a left

action). A morphism f : X → Y between two varieties endowed with G-actions is called

G-equivariant if it commutes with the actions, that is f(x) · g = f(x · g). In the case

that the action on Y is trivial (i.e. y · g = y, for all g ∈ G and y ∈ Y ), then a morphism

f which is G-equivariant is called G-invariant.
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If X is an affine scheme, to construct affine quotients is much simpler when the group

G is reductive. Recall that G is reductive if its radical is isomorphic to a direct product

of copies of k∗. On the other hand, G is geometrically reductive if, for every linear

action of G on kn, and every G-invariant point v of kn, v 6= 0, there exists a G-invariant

homogeneous polynomial f of degree ≥ 1 such that f(v) 6= 0. Due to results of Weil,

Nagata, Mumford and Haboush, it turns out that every reductive group is geometrically

reductive and, if a reductive group G is acting on a finitely generated k-algebra R (as it

is the ring of functions of an affine variety X, R = A(X)), the ring of invariants RG is

finitely generated. Therefore, we define the quotient of an affine variety X by the action

of a reductive group G, as the affine variety whose ring of functions is A(X)G.

The following example shows that the quotient of an affine scheme X by the action

of a reductive group G can differ of an orbit space (c.f. Definition 1.1.8), because the

quotient A(X)G can possibly identify different orbits in the same point in the quotient

space.

Example 1.1.4. Consider the action

σ : C∗ × C2 // C2

(λ, (x, y)) � // (λx, λ−1y)

whose orbits are represented in Figure 1.1. The orbits are the hyperboles xy = constant,

Figure 1.1: Orbits of the action in Example 1.1.4
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plus three special orbits, the x-axis, the y-axis and the origin. Observe that the origin is

in the closure of the x-axis and the y-axis.

The ring of functions of C2 is C[X, Y ] and the ring of invariants is C[X, Y ]C
∗ '

C[XY ] ' C[Z]. So, the ring of invariants does not distinguish between the three special

orbits, and identifies them in a unique single point in the quotient space. Hence, the orbit

space (the space where each point corresponds to an orbit) would be non separated, but

the quotient space whose ring of functions is C[X, Y ]C
∗ ' C[Z] is the affine line, which

is separated.

The case when G acts on a projective scheme X is more complicated. We call

ψ : G×X → X, a linearization of the action on an ample line bundle OX(1). It consists

of giving an action on the total space L of the line bundle OX(1), σ : G×L −→ L, such

that for every g ∈ G and x ∈ X, there exists a isomorphism which takes one fiber onto

another Lx −→ Lg·x (i.e. σ is linear along the fibers and the projection L → X is G-

equivariant). A linearization is the same thing as giving, for each g ∈ G, an isomorphism

of line bundles g̃ : OX(1) −→ ϕ∗gOX(1), (ϕg = ψ(g, ·)) which also satisfies the previous

associative property. We say also that σ = ψ̃ is a lifting to L of the action ψ:

G× L σ=ψ̃ //

��

L

��
G×X ψ // X

If OX(1) is very ample, then a linearization is the same thing as a representation of

G on the vector space H0(OX(1)) such that the natural embedding

X ↪→ P(H0(OX(1))∨)

is G-equivariant.

Then, if we have a group G acting on a projective scheme X and consider the set of

orbits X/G, when can we define X/G as a scheme M , i.e., the points of X/G correspond,

in a natural way, to the points of M?

The next example (c.f. [Gi2]) illustrates some of the features which can arise when

trying to define X/G.

Example 1.1.5. [Gi2] Let N be an integer and consider the set of all homogeneous

polynomials of degree N in two variables, VN = {
∑
i

aiX
i
0X

N−i
1 }. Let P(VN) be its projec-
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tivization. The group G = SL(2,C) acts on VN as

P g(X0, X1) = P (g−1

(
X0

X1

)
)

where P ∈ VN . The vanishing locus of each P ∈ VN consists of a finite set of points in P1

where their multiplicities are the orders as zeroes of P . Then, we can think of {P = 0}
as a divisor Df on P1, and P(VN) as the space of divisors of degree N on P. Observe

that G acts on divisors moving them by linear fractional transformations.

The orbit space P(VN)/G is not a variety, because it is not Hausdorff. To see this,

let P ∈ P(VN) and let P ∈ VN be a polynomial in the corresponding line. We look

for an element Q in the orbit of P so that XN
1 occurs in Q(X0, X1) (i.e., Q(X0, X1) =

a0X
N
0 + a1X

N−1
0 X1 + ...+ aN−1X0X

N−1
1 +XN

1 ). Let Qt(X0, X1) = tNQ(tX0, t
−1X1) and

note that Qt(X0, X1) lays in the orbit of P and Q for every t 6= 0, since Qt(X0, X1) =

tN · Qgt(X0, X1), with gt =

(
t−1 0

0 t

)
, and all of them give the same point in P(VN).

Therefore, P(VN)/G cannot be given a Hausdorff topology so that φ : P(VN) −→ P(VN)/G

is continuous. Indeed, if φ were continuous, it would be

limQt(X0, X1)
t→0

= Q0(X0, X1) = XN
1 ,

we would have

φ(P ) = φ(Q) = limφ(Qt)
t→0

= φ(XN
1 )

and the image of φ would be one single element. The reason of this is that the polynomial

XN
1 is not in the orbit of f and g, but it is in its adherence. Then, when we try to define

a continuous quotient map, the adherent orbits have to go to the same point.

As we have seen in Examples 1.1.4 and 1.1.5, in order to obtain a quotient space with

good properties (for example, being Hausdorff), we have to make some considerations

about the orbits of the action of the group G, putting together in the quotient space

all orbits whose closures have non empty intersection. We will call two of these orbits

S-equivalent (c.f. Remark 1.1.16).

Geometric Invariant Theory, abbreviate GIT, will be a technique to construct such

quotients with good properties.

Definition 1.1.6. Let X be a scheme endowed with a G-action. A categorical quotient

is a scheme M with a G-invariant morphism p : X −→ M , such that for every scheme
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M ′, and every G-invariant morphism p′ : X −→M ′, there is a unique morphism ϕ with

p′ = ϕ ◦ p
X

p

��

p′

!!CCCCCCCC

M ∃!ϕ
//___ M ′

Definition 1.1.7. Let X be a scheme endowed with a G-action. A good quotient is a

scheme M with a G-invariant morphism p : X −→M such that

1. p is surjective and affine.

2. p∗(OGX) = OM , where OGX is the sheaf of G-invariant functions on X.

3. If Z is a closed G-invariant subset of X, then p(Z) is closed in M . Furthermore,

if Z1 and Z2 are two closed G-invariant subsets of X with Z1 ∩ Z2 = ∅, then

f(Z1) ∩ f(Z2) = ∅.

Definition 1.1.8. A geometric quotient is a good quotient p : X → M such that

p(x1) = p(x2) if and only if the orbit of x1 is equal to the orbit of x2.

Note that a geometric quotient is a good quotient, and a good quotient is a categorical

quotient.

Let X be a projective scheme, let G be a reductive algebraic group and an action

σ : G × X −→ X of G on X. We call σ̃ a linearization of the action on an ample line

bundle OX(1).

Definition 1.1.9. A closed point x ∈ X is called GIT semistable if, for some m > 0,

there is a G-invariant section s of OX(m), s ∈ H0(X,OX(m)), such that s(x) 6= 0. If,

moreover, the orbit of x is closed in the open set of all GIT semistable points, it is called

GIT polystable and, if furthermore, this closed orbit has the same dimension as G (i.e.

if x has finite stabilizer), then x is called a GIT stable point. We say that a closed

point of X is GIT unstable if it is not GIT semistable.

With this definition, the stable points are precisely the polystable points with finite

stabilizer.

Remark 1.1.10. We consider X embedded in a projective space by the ample line bundle

OX(1),

X ↪→ P(H0(OX(1))∨) = P(V ) .
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Then, we can see a section s ∈ H0(OX(m)) as a homogeneous polynomial of degree

m in V . Then, the GIT unstable points are those for which, for all m > 0, all G-

invariant homogeneous polynomials vanish at the point. As all homogeneous polynomials

(in particular the G-invariant ones) vanish at zero, the points which contains zero in the

closure of their orbits will be GIT unstable.

This idea of considering invariant homogeneous polynomials comes from Hilbert who

calls them nullforms in [Hi].

The central result of Mumford’s Geometric Invariant Theory is the following theorem:

Theorem 1.1.11. [Mu, Proposition 1.9, Theorem 1.10] Let Xss (respectively, Xs) be the

subset of GIT semistable points (respectively, GIT stable). Both Xss and Xs are open

subsets. There is a good quotient Xss −→ Xss//G (where closed points are in one-to-one

correspondence to the orbits of GIT polystable points), the image Xs//G of Xs is open,

X//G is projective, and the restriction Xs → Xs//G is a geometric quotient.

Hence, to construct good quotients, first we have to get rid of the unstable points.

To find these unstable points there exists a numerical criterion based on the use of

1-parameter subgroups of G. It was first used by Hilbert and later by Mumford, to

characterize the GIT stability.

Definition 1.1.12. Let G be an algebraic group over the field k. A 1-parameter sub-

group of G, Γ, is a non-trivial algebraic homomorphism Γ : k∗ −→ G.

Let X be a projective scheme where the group G acts. Suppose that this action

is linearized on a line bundle OX(1) and call the linearization σ. Then, given Γ, a 1-

parameter subgroup of G, and given x ∈ X, we can define Φ : k∗ −→ X by Φ(t) = Γ(t)·x.

We say lim Γ(t) · x
t→0

= ∞ if Φ cannot be extended to a map Φ̃ : k −→ X. If Φ can be

extended, we write lim Γ(t) · x
t→0

= x0.

Then, the criterion is the following:

Theorem 1.1.13. Let x̃ be a point in the affine cone over X, lying over x ∈ X. With

the previous notations:

• x is semistable if for all 1-parameter subgroups Γ, ∃lim Γ(t) · x̃
t→0

6= 0 or lim Γ(t) · x̃
t→0

=

∞.

• x is polystable if it is semistable and the orbit of x̃ is closed.
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• x is stable if for all 1-parameter subgroups Γ, lim Γ(t) · x̃
t→0

=∞ (then the stabilizer

of x is finite).

• x is unstable if there exists a 1-parameter subgroup Γ such that lim Γ(t) · x̃
t→0

= 0.

The point x0 is, clearly, a fixed point for the action of k∗ on X induced by Γ. Thus,

k∗ acts on the fiber of OX(1) over x0, say, with weight γ. One defines the numerical

function

µ(Γ, x) := γ .

We will call this γ the minimum relevant exponent of the action of Γ over x.

With the definition of µ(Γ, x) we can state the Hilbert-Mumford criterion of GIT

stability:

Theorem 1.1.14 (Hilbert-Mumford criterion). [Mu, Theorem 2.1], [Ne, Theorem

4.9] With the previous notations:

• x is semistable if for all 1-parameter subgroups Γ, µ(Γ, x) ≤ 0.

• x is stable if for all 1-parameter subgroups Γ, µ(Γ, x) < 0.

• x is unstable if there exists a 1-parameter subgroup Γ such that µ(Γ, x) > 0.

Example 1.1.15. Returning to Example 1.1.5 (c.f. [Gi2]), we apply the Hilbert-Mumford

criterion in Theorem 1.1.14. Let G = SL(2,C) and VN = {
∑
i

aiX
i
0X

N−i
1 }. Consider the

following 1-parameter subgroup of G

Γ(t) =

(
t−r 0

0 tr

)
, r > 0 .

Let P (X0, X1) =
∑
aijX

i
0X

j
1 be a polynomial in VN . We want to know when limP Γ(t)

t→0
=

lim Γ(t) · P
t→0

= 0. It is P Γ(t)(X0, X1) =
∑
aijX

i
0X

j
1t
r(i−j), hence, limP Γ(t)

t→0
= 0 implies

that aij = 0, if j ≥ i. This means that, if P has a factor of Xk
0 with degree k > N

2
,

in that case, P is unstable. For a general 1-parameter subgroup, it turns out that P is

semistable if and only if P has no linear factors of degree greater that N
2

.

Remark 1.1.16. A theorem of Geometric Invariant Theory (c.f. [Si1, Lemma 1.10])

says that, if G · v is the orbit of a point v ∈ V , in its closure G · v there is a unique orbit
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Y ⊂ G · v such that Y is closed in G · v, so it is closed also in the whole space V . The GIT

polystable points are in correspondence with these closed orbits. Two orbits, G·v and G·w,

with the same closed orbit Y in their closures G · v, G · w, are called S-equivalent. The

points of the moduli space are in correspondence with these distinguished closed orbits, so

the moduli space we obtain classifies polystable points, or points modulo S-equivalence.

Remark 1.1.17. Geometric Invariant Theory states that we can reach every point in the

closure of an orbit through 1-parameter subgroups. It can be proved (c.f. [Ne, Proposition

4.3], [Mu, Proposition 2.2]) that a point x is GIT semistable if 0 /∈ G · x̂, where x̂ lies

over x in the affine cone. Then, GIT stability measures whether 0 belongs to the closure

of the lifted orbit or not, belonging which can be checked through 1-parameter subgroups.

1.2 Example of a construction of a moduli space us-

ing GIT: Moduli of tensors

Here, we present a complete example of the construction of a moduli space through Geo-

metric Invariant Theory. We construct a moduli space for tensors over higher dimensional

projective varieties following the Gieseker-Maruyama method. This was constructed by

Alexander Schmitt in [Sch] for curves.

This section follows the paper [GS1], where the authors carry out the same construc-

tion, but using the method of Simpson.

1.2.1 Definitions and stability of tensors

Let X be a smooth projective variety of dimension n over C. Fix an ample line bundle

OX(1) on X. Fix a polynomial P of degree n, and integers s, c, b. Let R be an scheme

and fix a locally free sheaf D on X ×R, i.e. a family {Du}u∈R of locally free sheaves on

X parametrized by R, where given a point u ∈ R, we denote by Du the restriction of D
to the slice X × u.

Definition 1.2.1. [GS1, Definition 1.1] A tensor is a triple (E,ϕ, u), where E is a

coherent sheaf on X with Hilbert polynomial PE = P , u is a point in R, and ϕ is a

homomorphism

ϕ : (E⊗s)⊕c −→ (detE)⊗b ⊗Du ,
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that is not identically zero. Let (E,ϕ, u) and (F, ψ, v) be two tensors with PE = PF ,

detE ' detF , and u = v. A homomorphism between (E,ϕ, u) and (F, ψ, v) is a pair

(f, α) where f : E → F is a homomorphism of sheaves, α ∈ C, and the following diagram

commutes

(E⊗s)⊕c

ϕ

��

(f⊗s)⊕c // (F⊗s)⊕c

ψ
��

(detE)⊗b ⊗Du
f̂⊗α // (detF )⊗b ⊗Dv

(1.2.1)

where f̂ : detE −→ detF is the homomorphism induced by f . In particular, (E,ϕ, u)

and (E, λϕ, u) are isomorphic for λ ∈ C∗.

Remark 1.2.2. This notion of isomorphism can be restricted by considering only iso-

morphisms for which α = 1. In this case we would obtain another category where, for

example, if E is simple, the set of automorphism of (E,ϕ, u) is C∗, but if α = 1, the

set of automorphisms is Z/(rb − s)Z (provided rb − s 6= 0). If rb − s 6= 0, the set of

isomorphism classes will be the same (changing f into α1/(rb−s)f)), and then the moduli

spaces will be the same. If rb− s = 0, the set of isomorphism classes is not the same.

Let δ be a polynomial with deg(δ) < n = dimX

δ(t) = δ1t
n−1 + δ2t

n−2 + · · ·+ δn ∈ Q[t], (1.2.2)

and δ(m) > 0 for m� 0. We denote τ = δj(n−j)! where δj is the leading coefficient of δ.

We will define a notion of stability for these tensors, which depends on the polarization

OX(1) and δ, and we will construct, using Geometric Invariant Theory, a moduli space

for semistable tensors.

A weighted filtration (E•, n•) of a sheaf E is a filtration

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ( Et+1 = E, (1.2.3)

and rational positive numbers n1, n2, . . . , nt > 0. We denote ri = rk(Ei). If t = 1 (what

we will call one-step filtration), then we set n1 = 1. The filtration is called saturated

if all sheaves Ei are saturated in E, i.e. if E/Ei is torsion free for all i.

Let γ be a vector of Cr defined as γ =
∑t

i=1 niγ
(rkEi) where

γ(k) :=
( k︷ ︸︸ ︷
k − r, . . . , k − r,

r−k︷ ︸︸ ︷
k, . . . , k

)
(1 ≤ k < r) .
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Hence, the vector is of the form

γ = (
rkE1︷ ︸︸ ︷

γr1 , . . . , γr1 ,

rkE2︷ ︸︸ ︷
γr2 , . . . , γr2 , . . . ,

rkEt+1︷ ︸︸ ︷
γrt+1 , . . . , γrt+1) ,

where ni =
γri+1

− γri
r

.

Now let I = {1, ..., t+ 1}×s be the set of all multi-indexes I = (ii, ..., is) and define

µ(ϕ,E•, n•) = min
I∈I
{γri1 + · · ·+ γris : ϕ|(Ei1⊗···⊗Eis )⊕c 6= 0}. (1.2.4)

If P1 and P2 are two polynomials, we write P1 ≺ P2 if P1(m) < P2(m) for m � 0,

and analogously for ”≤” and ”�”.

Definition 1.2.3. [GS1, Definition 1.3] Let δ be a polynomial as in (1.2.2). We say that

(E,ϕ, u) is δ-semistable if for all weighted filtrations (E•, n•) of E, it is

( t∑
i=1

ni(rPEi − riPE)
)

+ δµ(ϕ,E•, n•) � 0 (1.2.5)

We say that (E,ϕ, u) is δ-stable if we have a strict inequality in (1.2.5) for every

weighted filtration. If (E,ϕ, u) is not δ-semistable we say that it is δ-unstable.

We assume that ϕ is not identically zero, then (1.2.4) is well defined.

Remark 1.2.4. It is enough to consider saturated filtrations in Definition 1.2.3. Indeed,

it is PEi ≤ PEi for Hilbert polynomials, if Ei is the saturation of a subsheaf Ei ⊂ E.

Also it suffices to consider filtrations with rk(Ei) < rk(Ei+1). If not, suppose Ei (
Ei+1 and rkEi = rkEi+1, then Ei is not saturated in Ei+1 and Ei+1/Ei has torsion.

Therefore E/Ei has torsion and Ei is not saturated in E. Note that the definition of

(1.2.4) coincides for Ei and Ei.

Definition 1.2.5. [GS1, Definition 1.7] We say that (E,ϕ, u) is slope-τ-semistable if

E is torsion free, and for all weighted filtrations (E•, n•) of E, it is

( t∑
i=1

ni(r degEi − ri degE)
)

+ τµ(ϕ,E•, n•) ≤ 0 (1.2.6)

We say that (E,ϕ, u) is slope-τ-stable if we have a strict inequality in (1.2.6) for every

weighted filtration. If (E,ϕ, u) is not slope-τ -semistable we say that it is slope-τ -unstable.
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Recall the relation

τ = δj(n− j)!

between the parameter τ and the leading coefficient of polynomial δ and note that we

have the following implications

slope− τ − stable⇒ δ − stable⇒ δ − semistable⇒ slope− τ − semistable

Note that, if the dimension of the variety X is n = 1, Definitions 1.2.3 and 1.2.5 do

coincide.

Let I = {1, ..., t + 1}×s be the set of all multi-indexes I = (i1, ..., is). Let us call

νi(I) the number of times that i appears on the multi-index I and νi(I) the number of

elements k in I with k ≤ i. Note that νi+1(I) = νi+1(I) − νi(I). Given a multi-index

I ∈ I, we have

γri1 + · · ·+ γris =
t∑
i=1

γiν
i(I) =

t∑
i=1

γri(νi+1(I)− νi(I))

= sγrt+1 −
t∑
i=1

(γri+1
− γri)νi(I) = sγr −

t∑
i=1

nirνi(I)

= s(
t∑
i=1

niri)−
t∑
i=1

nirνi(I) =
t∑
i=1

ni(sri − νi(I)r) .

Now let I0 be the multi-index giving minimum in (1.2.4). We will denote by εi(ϕ,E•, n•)

(or just εi(E•) if the rest of the data is clear from the context) the number of elements k

of the multi-index I0 such that rk ≤ ri. Let us call εi(E•) = εi+1(E•)− εi(E•). Therefore,

we can rewrite (1.2.4) as

µ(ϕ,E•, n•) =
t∑
i=1

ni(sri − εi(E•)r) . (1.2.7)

In the following we will consider the stability and slope-stability conditions, (1.2.5) and

(1.2.6), with the calculation made in (1.2.7).

Remark 1.2.6. Note that, if (E,ϕ, u) is δ-semistable, then it is torsion free. Indeed,

consider the filtration 0 ( T (E) ( E where T (E) is the torsion subsheaf, and apply

(1.2.5). Then we obtain this inequality of polynomials

rPT (E) − rk(T (E))PE + δµ(0 ( T (E) ( E) = rPT (E) + δµ(0 ( T (E) ( E) � 0
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which is a contradiction, because we have that the leading coefficient of PT (E) is positive

and µ(0 ( T (E) ( E) = 0 by (1.2.7). Then T (E) = 0 and E is torsion free.

Lemma 1.2.7. [GS1, Lemma 1.4] There is an integer A1 (depending only on P , s,

c, b and D) such that it is enough to check the stability condition (1.2.5) for weighted

filtrations with ni ≤ A1 for all i.

Proof. Let I = {1, . . . , t + 1}×s be the set of multi-indexes I = (i1, . . . , is) and note

that (1.2.4) is a piece-wise linear function of γ ∈ C, where C ⊂ Zr is the cone defined by

γ1 ≤ . . . ≤ γr. This is due that it is defined as the minimum among a finite set of the

linear functions γri1 + · · ·+ γris for those I ∈ I giving a non-zero restriction of morphism

ϕ, i.e. ϕ|(Ei1⊗···⊗Eir )⊕c 6= 0. Decompose C =
⋃
I∈I CI into a finite number of subcones

CI := {γ ∈ C : γri1 + · · ·+ γris ≤ γri′1
+ · · ·+ γri′s

for all I ′ ∈ I} ,

such that (1.2.4) is linear on each cone CI . Maybe some subcones I are irrelevant, meaning

that ϕ vanishes on them, then we set µ(ϕ,E•, n•)|I = 0. Choose one vector γ ∈ Zr in

each edge of each cone CI and multiply all these vectors by r, so that all their coordinates

are divisible by r, and call this set of vectors S. The vectors in S come from weights

ni > 0, i = 1, . . . , t + 1, given by the formula γ =
∑t

i=1 niγ
(ri). Hence, to obtain the

finite set S of vectors it is enough to consider a finite set of values for ni, therefore there

is a maximum value A1.

Finally, we will show that it is enough to check (1.2.5) for the weights associated to

the vectors in S. Indeed, since the first term in (1.2.5) is linear on C, then it is also linear

on each CI . Then the expression in the left side of (1.2.5) is linear on each subcone CI ,
and hence, it is enough to check its non-positivity on all the edges of all the cones CI ,
then it is enough to check it for weights associated to vectors in S.

Note that the reason why we have to consider filtrations instead of just subsheaves

is that (1.2.4) is not linear as a function of the weights {ni}. But, nevertheless, we can

compare (1.2.4) for subfiltrations of a given filtration with the following Lemma. It will

be used in the proof of Theorem 2.5.

Lemma 1.2.8. [GS1, Lemma 1.6] Let (E•, n•) be a weighted filtration and let T ′ be a

subset of T = {1, ..., t}. Let (E ′•, n
′
•) be the subfiltration obtained by considering only

those terms Ei for which i ∈ T ′. Then

µ(ϕ,E•, n•) ≤ µ(ϕ,E ′•, n
′
•) +

∑
i∈T −T ′

nisri .
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Proof. We index the filtration (E ′•, n
′
•) with T ′. Let I ′ = (i′1, ..., i

′
s) ∈ {T ′ ∪ {t + 1}}×s

be the multi-index giving minimum for the filtration (E ′•, n
′
•). In particular, we have

ϕ|(Ei′1⊗···⊗Ei′s )⊕c 6= 0. Then

µ(ϕ,E•, n•) = min
I∈I
{γri1 + · · ·+ γris : ϕ|(Ei1⊗···⊗Eir )⊕c 6= 0} ≤

γri′1
+ · · ·+ γri′s

=
t∑
i=1

ni(sri − νi(I ′)r) =
t∑
i=1

ni(sri − εi(E ′•)r) =

∑
i∈T ′

ni(sri − εi(E•)r) +
∑

i∈T −T ′
ni(sri − εi(E ′•)r) ≤ µ(ϕ,E ′•, n

′
•) +

∑
i∈T −T ′

nisri .

A family of coherent sheaves parametrized by a scheme T is a coherent sheaf

ET on X × T which is flat over T , such that, Et := ET |X×{t} is a coherent sheaf over X

for every point t ∈ T . Let us define the ingredients of our moduli problem.

A family of δ-semistable tensors parametrized by a scheme T is a tuple

(ET , ϕT , uT , N), consisting of a torsion free sheaf ET on X×T , flat over T , that restricts

to a torsion free sheaf with Hilbert polynomial P on every slice X × {t}, a morphism

uT : T −→ R, a line bundle N on T and a homomorphism ϕT ,

ϕT : (E⊗sT )⊕c −→ (detET )⊗b ⊗ uT ∗D ⊗ π∗TN , (1.2.8)

(where we define uT = idX ×uT ) such that if we consider the restriction of this homo-

morphism on every slice X × {t},

ϕt : (E⊗st )⊕c −→ (detEt)
⊗b ⊗DuT (t) ,

the triple (Et, ϕt, uT (t)) is a δ-semistable tensor for every t. Particularly, ϕt is not iden-

tically zero. Two families (ET , ϕT , uT , N) and (E ′T , ϕ
′
T , u

′
T , N

′) parametrized by T are

isomorphic if uT = uT ′ and there are isomorphisms f : ET −→ E ′T , α : N −→ N ′, such

that the induced diagram

(E⊗sT )⊕c

ϕT

��

(f⊗s)⊕c // (E
′⊗s
T )⊕c

ϕ′T
��

(detET )⊗b ⊗ uT ∗D ⊗ π∗TN
f̂⊗π∗Tα// (detE ′T )⊗b ⊗ u′T

∗D ⊗ π∗TN ′

(1.2.9)

commutes, where πT : X × T → T is the natural projection.
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Therefore, we have a category of objects, o notion of stability, a notion of isomorphism

between objects and a notion of family and equivalence of families. We are ready to define

the functor for our moduli problem.

LetMδ (respectivelyMs
δ) be the contravariant functor from the category of schemes

over C, locally of finite type, (Sch /C) to the category of sets (Sets) which sends a scheme

T to the set of isomorphism classes of families of δ-semistable (respectively stable) tensors

parametrized by T , and send a morphism f : T ′ −→ T to the morphism of sheaves

f̃ : E ′T ′ −→ ET given by the pullback diagram

E ′T ′
f̃ //

��

ET

��
T ′ ×X

f×id // T ×X

and similarly for the morphism Φ : ϕ′T ′ −→ ϕT .

We will construct schemes Mδ, Ms
δ corepresenting the functorsMδ andMs

δ (c.f. Def-

inition 1.1.3). In general Mδ will not be a coarse moduli space, because non-isomorphic

tensors can correspond to the same point in Mδ. Then, we will declare two such tensors

S-equivalent, and Mδ will become a coarse moduli space for the functor of S-equivalence

classes of tensors (c.f. Remark 1.1.16). This is the main theorem (c.f. Theorem [GS1,

Theorem 1.8]):

Theorem 1.2.9. Fix P , s, c, b and a family D of locally free sheaves on X parametrized

by a scheme R. Let d be the degree of a coherent sheaf whose Hilbert polynomial is P .

Let δ be a polynomial as in (1.2.2).

There exists a coarse moduli space Mδ, projective over Picd(X)×R, of S-equivalence

classes of δ-semistable tensors. There is an open set Ms
δ corresponding to δ-stable tensors.

Points in this open set correspond to isomorphism classes of δ-stable tensors.

In Proposition 1.2.33 we will give a criterion to decide when two tensors are S-

equivalent. We will prove Theorem 1.2.9 in subsection 1.2.5.

Therefore, in the language of Section 1.1, we have our moduli problem stated where

A is the class of δ-semistable (resp. δ-stable) tensors, the equivalence relation ∼ is given

by the notion of S-equivalence (c.f. Remark 1.1.16) for which we will give a criterion

in Proposition 1.2.33 (resp. isomorphism of tensors in Definition 1.2.1), and the notion

of equivalence of families given by (1.2.9). See [GS1, Remark 1.9] and [Si1, p. 60] for
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a comment on the notion of equivalence of families giving, as a result, moduli functors

which are not sheaves.

Remark 1.2.10. The obtention of a fine moduli space also requires the existence of a

universal family EMδ
over Mδ such that for every family ET of tensors over T , there is a

unique morphism ET −→Mδ induced by pulling back the universal family (c.f. Definition

1.1.2). As we will see, this cannot be done for the case of tensors as in the case of sheaves.

1.2.2 Results on boundedness

In this section we reformulate the stability for tensors using some boundedness results

to prove Theorem 1.2.19. First we recall definitions and well known results by Simpson,

Grothendieck and Maruyama.

Definition 1.2.11. A set E = {Ei}i∈I of coherent sheaves is bounded if there exists a

family ET −→ X × T parametrized by T , a scheme of finite type over C, such that for

every i ∈ I there exists t ∈ T with Ei ' Et.

Recall that a scheme T is of finite type over C if T can be covered by a finite

number of open affine subsets SpecAi, where each Ai is a finitely generated C-algebra.

Definition 1.2.12. A sheaf E is called m-regular if hiE(m− i)) = 0 for i > 0.

Lemma 1.2.13. If E is m-regular then the following holds

1. E is m′-regular for m′ > m.

2. E(m) is globally generated.

3. For all m′ ≥ 0 the following homomorphisms are surjective

H0(E(m))⊗H0(OX(m′)) −→ H0(E(m+m′)) .

Proposition 1.2.14. The following properties for a family of sheaves E = {Ei}i∈I are

equivalent:

1. E is bounded.

2. The set of Hilbert polynomials {PE}E∈E is finite and there exists a uniform bound

m0 ∈ Z such that all E ∈ E is m0-regular.
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3. The set of Hilbert polynomials {PE}E∈E is finite and there is a coherent sheaf F

such that all Ei ∈ E admit surjective homomorphisms F −→ Ei.

Note that, given a bounded set E of coherent sheaves, the set of Hilbert polynomials

{PE}E∈E is finite and hence, {rkE}E∈E and {degE}E∈E , are bounded as sets of numbers.

We denote

POX (m) =
αn
n!
mn +

αn−1

(n− 1)!
mn−1 + ...+

α1

1!
m+

α0

0!
, (1.2.10)

the Hilbert polynomial of OX , where αn = g = degOX(1), and

PE(m) =
rg

n!
mn +

d+ rαn−1

(n− 1)!
mn−1 + ... , (1.2.11)

the Hilbert polynomial of a sheaf E with rank r and degree d. For the following

Lemma, see [Si1, Lemma 1.5 and Corollary 1.7] and [LeP, Lemme 2.4].

Lemma 1.2.15. [HL2, Lemma 2.2] Let r > 0 be an integer. Then there exists a constant

B with the following property: for every torsion free sheaf E with 0 < rk(E) ≤ r, we

have

h0(E) ≤ 1

gn−1n!

(
(rk(E)− 1)([µmax(E) +B]+)n + ([µmim(E) +B]+)n

)
,

where g = degOX(1), [x]+ = max{0, x}, and µmax(E) (resp. µmin(E)) is the maximum

(resp. minimum) slope of the semistable factors of the Mumford-Harder-Narasimhan

filtration of E (c.f. Definition 1.3.3 and Remark 1.3.4).

Lemma 1.2.16. [Gr, Lemma 2.5] Let E be a bounded set of sheaves E and fix a constant

C. The set of torsion free quotients E � E ′′ of the sheaves E ∈ E, with | deg(E ′′)| ≤ C,

is bounded.

Theorem 1.2.17. [Ma3] Fix a constant C. The family of sheaves E with fixed Hilbert

polynomial P and such that µmax(E) ≤ C, is bounded.

Recall that we denote by µ(E) = degE
rkE

the slope of a sheaf. As a consequence of

Maruyama’s result in Theorem 1.2.17, we can prove the boundedness of the set of δ-

semistable tensors:

Corollary 1.2.18. The set of δ-semistable tensors (E,ϕ, u) with fixed Hilbert polynomial

P is bounded.
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Proof. Let (E,ϕ, u) a δ-semistable tensor. Then, we have seen that (E,ϕ, u) is τ -slope-

semistable, where τ = δj(n− j)!. Then, for every weighted filtration and, in particular,

for every one-step filtration 0 ⊂ E ′ ⊂ E, the expression (1.2.6) holds, hence

(r deg(E ′)− rk(E ′) degE)
)

+ τ(s rk(E ′)− ε(E ′ ⊂ E)r) ≤ 0 .

Then, dividing by r · rk(E ′) we obtain this condition for the slopes

µ(E ′) ≤ µ(E)τ(
s

r
+
ε(E ′ ⊂ E)

rkE ′
) ≤ µ(E)− τ(

s

r
+ s) = C ,

where C is a constant depending only on P , τ and s, which are fixed. Hence, we apply

Theorem 1.2.17, provided µ(E ′) ≤ µmax(E), for every subsheaf E ′ ⊂ E.

This is the main theorem of this section, whose proof we will give after some prelim-

inary results.

Theorem 1.2.19. (c.f. [GS1, Theorem 2.5]) There is an integer N0 such that if m ≥
N0, the following properties of tensors (E,ϕ, u), with E torsion free and PE = P , are

equivalent.

1. (E,ϕ, u) is semistable (resp. stable).

2. P (m) ≤ h0(E(m)) and for every weighted filtration (E•, n•) as in (2.1.6),

(
t∑
i=1

ni
(
rh0(Ei(m))− riP (m))

)
+ δ(m)µ(ϕ,E•, n•) ≤ 0

(resp. <).

3. For every weighted filtration (E•, n•) as in (2.1.6),

( t∑
i=1

ni(r
iP (m)− rh0(Ei(m)))

)
+ δ(m)µ(ϕ,E•, n•) ≤ 0

(resp. <).

Furthermore, for any tensor (E,ϕ, u) satisfying these conditions, E is m-regular.

The set of tensors (E,ϕ, u), with E torsion free and PE = P , satisfying the weak

version of conditions 1− 3 will be called Ss, S ′m and S ′′m, respectively.
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Lemma 1.2.20. There is an integer N1 and a positive constant D, such that if (E,ϕ, u)

belongs to S = Ss ∪
⋃
m≥N1

S ′′m, then for all saturated weighted filtrations (E•, n•), the

following holds for all i:

µ(Ei) ≤ µ(E) +D (1.2.12)

and, either µ(E)−D ≤ µ(Ei), or

1. rh0(Ei(m)) < ri(P (m)− sδ(m)), if (E,ϕ, u) ∈ Ss and m ≥ N1

2. rPEi − riP − risδ ≺ 0, if (E,ϕ, u) ∈
⋃
m≥N1

S ′′m

Proof. Let (E•, n•) be a weighted filtration of E and let B be as in Lemma 1.2.15. Let

G be the following polynomial,

G(m) =
1

gn−1n!

(
(r − 1)(µ(E) + τs(1− 1

r
) + gm+B)n + (µ(E)−D + gm+B)n

)
=

1

gn−1n!

[
rgnmn + ngn−1(rµ(E) + τs

(r − 1)2

r
−D + rB)mn−1 + · · ·

]
.

Then, the leading coefficient of G− (P − sδ) (i.e. the coefficient of mn) is

r
g

n!
− r g

n!
= 0 ,

but the coefficient of mn−1 is[ 1

(n− 1)!
(rµ(E) + τs

(r − 1)2

r
−D + rB)

]
−
[ 1

(n− 1)!
(d+ rαn−1) + τs

]
,

so we can choose D large enough so that the leading coefficient of G−(P−sδ) is negative.

We choose D also to verify D > τs.

Let N1 be large enough so that, for m ≥ N1, the following three expressions hold:

δ(m) ≥ 0 (1.2.13)

µ(E)−D + gm+B > 0 (1.2.14)

G(m)− (P (m)− sδ(m)) < 0 . (1.2.15)

Given that the filtration is supposed to be saturated, and E to be torsion free, we

have 0 < ri < r.

Case 1. Suppose that (E,ϕ, u) ∈ Ss. Then, (E,ϕ, u) is τ -slope-semistable hence, for

each i, consider the one-step filtration Ei ( E and apply (1.2.6),

r degEi − ri degE + τ(sri − εi(Ei ( E)r) ≤ 0 .
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Dividing by ri · r we get

µ(Ei) ≤ µ(E)− τ(
s

r
+
εi(Ei ( E)

ri
) ≤ µ(E) + τs(1− 1

r
) < µ(E) +D

using D > τs, hence (1.2.12).

Let Ei,max ⊂ Ei be the term in the Harder-Narasimhan filtration of Ei with maximal

slope (c.f. Definition 1.3.3 and Remark 1.3.4). Then, the same argument as before,

applied to the filtration Ei,max ( E, gives

µmax(Ei) = µ(Ei,max) ≤ µ(E) + τs(1− 1

r
). (1.2.16)

Suppose that the first alternative does not hold, i.e.

µ(Ei) < µ(E)−D .

Then, by Lemma 1.2.15,

h0(Ei(m)) ≤ 1

gn−1n!

(
(ri−1)([µmax(Ei)+gm+B]+)n+([µmin(Ei)+gm+B]+)n

)
, (1.2.17)

where note that µmax(Ei(m)) = µmax(Ei) + gm and µmin(Ei(m)) = µmin(Ei) + gm.

Combining the hypothesis, the expression

µmin(Ei) ≤ µ(Ei) < µ(E)−D ,

and the expressions (1.2.16) and (1.2.14), the formula (1.2.17) becomes

h0(Ei(m)) ≤ 1

gn−1n!

(
(ri − 1)(µ(E) + τs(1− 1

r
) + gm+B)n + (µ(E)−D + gm+B)n

)
≤ ri
rgn−1n!

(
(r− 1)(µ(E) + τs(1− 1

r
) + gm+B)n + (µ(E)−D + gm+B)n

)
=
ri
r
G(m) .

Now, by using (1.2.15), it is

rh0(Ei(m)) < riG(m) < ri(P (m)− sδ(m)) ,

hence we obtain condition 1.

Case 2. Suppose that (E,ϕ, u) ∈ S ′′m for some m ≥ N1. For each i, consider the

quotient Ei = E/Ei. Let Ei
min be the last factor of the Mumford-Harder-Narasimhan



1.2. EXAMPLE: MODULI OF TENSORS 53

filtration of Ei (c.f. Definition 1.3.3 and Remark 1.3.4), i.e. µ(Ei
min) = µmin(Ei). Let E ′

be the kernel

0 −→ E ′ −→ E −→ Ei
min −→ 0 ,

and consider (1.2.15) in the form

G(m)

r
− P (m)− sδ(m)

r
< 0 .

Using (1.2.13), we apply condition 3 in Theorem 1.2.19 to the one-step filtration E ′ ( E

(note that (E,ϕ, u) ∈ S ′′m) to get

G(m)

r
<
h0(Ei

min(m))

rkEi
min

− δ(m)
(s rkE ′ − ε(E ′ ( E)r)

r rkEi
min

− δ(m)
s

r

≤ h0(Ei
min(m))

rkEi
min

+ δ(m)s(−1

r
− 1

rkEi
min

(
rkE ′

r
− 1)) =

h0(Ei
min(m))

rkEi
min

.

Applying Lemma 1.2.15,

G(m)

r
<

1

gn−1n! rkEi
min

(
(rkEi

min−1)[µmax(E
i
min)+gm+B]n+ +[µmin(Ei

min)+gm+B]n+
)
.

By definition, Ei
min is semistable, then

µ(Ei
min) = µmax(E

i
min) = µmin(Ei

min), (1.2.18)

hence
G(m)

r
<

1

gn−1n!

(
[µ(Ei

min) + gm+B]n+
)
.

By definition of G and (1.2.14), we have 0 < G(m), hence µ(Ei
min) + gm + B > 0 and,

then,
G(m)

r
<

1

gn−1n!

(
µ(Ei

min) + gm+B)n
)
.

This inequality of polynomials holds for some m ≥ N1, therefore, it holds for larger values

of m, and hence, we will have this inequality between the second coefficients (note that

leading coefficients are equal),

1

(n− 1)!
(µ(E) + τs

(r − 1)2

r2
− D

r
+B) <

1

(n− 1)!
(µ(Ei

min) +B) .

Now, µ(Ei
min) ≤ µ(Ei) = d−degEi

r−rkEi
and, using r−rkEi

rkEi
< r and D > τs, previous inequality

gives (1.2.12).
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Now, suppose that the first alternative does not hold, i.e.

µ(Ei) < µ(E)−D ,

then
degEi
rkEi

<
d

r
−D <

d

r
− τs < d− τs

r
,

which is equivalent to

r degEi − rkEir + τs rkEi < 0 ,

and hence, the leading coefficient of the polynomial rPEi − riP − risδ is negative,

therefore, condition 2 holds.

Lemma 1.2.21. The set S = Ss ∪
⋃
m≥N1

S ′′m is bounded.

Proof. Let (E,ϕ, u) ∈ S. Let E ′ be a subsheaf of E, and E ′ the saturation of E ′ on E.

Then we have this exact sequence

0 −→ E ′ −→ E ′ −→ T (E ′) −→ 0

and, by additivity of the Hilbert polynomial on exact sequences, and rkE ′ = rkE ′, we

get deg(E ′) ≤ deg(E ′). Then, Lemma 1.2.20 gives (1.2.12), then

µ(E ′) ≤ µ(E ′) ≤ µ(E) +D

and, therefore, by Theorem 1.2.17, the set S is bounded.

Lemma 1.2.22. Let S0 be the set of sheaves E ′ such that E ′ is a saturated subsheaf of

E for some (E,ϕ, u) ∈ S, and furthermore

|µ(E ′)− µ(E)| ≤ D. (1.2.19)

Then, S0 is bounded.

Proof. Let E ′ ∈ S0. The sheaf E ′′ = E/E ′ is torsion free and

| deg(E ′′)| = | deg(E)− deg(E ′)| ≤ | deg(E)|+ | deg(E ′)| ≤ 2| deg(E)|+ rD ,

where in last inequality we use (1.2.19). Then, as degE is fixed, by Lemma 1.2.16, the

set of sheaves E ′′ obtained in this way is bounded, and hence, also S0 is bounded.
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Lemma 1.2.23. There exists an integer N2 such that for every weighted filtration (E•, n•)

as in (2.1.6), with Ei ∈ S0, ∀i, the inequality of polynomials (1.2.5) in Definition 1.2.3,

( t∑
i=1

ni(rPEi − riP )
)

+ δµ(ϕ,E•, n•) � 0 ,

holds if and only if it holds for a particular value of m ≥ N2. The same holds for ≺.

Proof. Since S0 is bounded by Lemma 1.2.21, the set of polynomials PE′ , for E ′ ∈ S0,

is finite. Lemma 1.2.7 implies that we only need to consider a finite number of values for

ni, hence the result follows from it.

Proof of Theorem 1.2.19. Given that S and S0 are bounded, let N0 > max{N1, N2}
(c.f. Lemmas 1.2.20 and 1.2.23) and such that all sheaves in S and S0 are N0-regular,

and E1 ⊗ · · · ⊗ Es is sN0-regular for all E1, ..., Es in S0. Let m ≥ N0.

(2.⇒ 3.) Let (E,ϕ, u) ∈ S ′m and consider a weighted filtration (E•, n•) as in (2.1.6).

Note that the functor of global sections is only left exact, then applying it to the exact

sequence

0 −→ Ei(m) −→ E(m) −→ Ei(m) −→ 0 ,

we obtain

0 −→ H0(Ei(m)) −→ H0(E(m)) −→ H0(Ei(m)) ,

and we have this inequality for the dimensions of the vector spaces

h0(E(m)) ≤ h0(Ei(m)) + h0(Ei(m)) . (1.2.20)

Then, using hypothesis P (m) ≤ h0(E(m)) and (1.2.20), we get

( t∑
i=1

ni(r
iP (m)− rh0(Ei(m))

)
+ δ(m)µ(ϕ,E•, n•) =

( t∑
i=1

ni(r(P (m)− h0(Ei(m)))− riP (m))
)

+ δ(m)µ(ϕ,E•, n•) ≤

( t∑
i=1

ni(r(h
0(E(m))− h0(Ei(m)))− riP (m))

)
+ δ(m)µ(ϕ,E•, n•) ≤

( t∑
i=1

ni(rh
0(Ei(m))− riP (m))

)
+ δ(m)µ(ϕ,E•, n•) ≤ 0 ,
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therefore (E,ϕ, u) ∈ S ′′m, and similarly for the strict inequality.

(1. ⇒ 2.) Let (E,ϕ, u) ∈ Ss and consider a saturated weighted filtration (E•, n•).

Since E is N0-regular, P (m) = h0(E(m)). If Ei ∈ S0 (meaning that (1.2.19) holds), by

choice of N0, it is also PEi(m) = h0(Ei(m)). If Ei /∈ S0 then, by definition of S0 (c.f.

1.2.19), the second alternative of Lemma 1.2.20 holds, hence, as (E,ϕ, u) ∈ Ss, we have

assertion 1.,

rh0(Ei(m)) < ri(P (m)− sδ(m)) .

Let T ′ ⊂ T = {1, ..., t} be the subset of those i for which Ei ∈ S0. Let (E ′•, n
′
•) be the

corresponding subfiltration. Hence, previous argument and Lemma 1.2.8 shows that

( t∑
i=1

ni(rh
0(Ei(m))− riP (m))

)
+ δ(m)µ(ϕ,E•, n•) ≤ (1.2.21)

(∑
i∈T ′

n′i(rPEi(m)− riP (m))
)

+ δ(m)µ(ϕ,E ′•, n
′
•)+

( ∑
i∈T −T ′

ni(rh
0(Ei(m))− riP (m)) + δ(m)sri

)
≤

(∑
i∈T ′

ni(rPEi(m)− riP (m))
)

+ δ(m)µ(ϕ,E ′•, n
′
•) ≤ 0 ,

where last inequality follows from (E,ϕ, u) ∈ Ss. The condition that Ei is saturated can

be dropped, since h0(Ei(m)) ≤ h0(Ei(m)) and µ(ϕ,E•, n•) = µ(ϕ,E•, n•), where Ei is

the saturated subsheaf generated by Ei in E. Therefore, (E,ϕ, u) ∈ S ′m and similarly for

the strict inequality.

(3. ⇒ 1.) Let (E,ϕ, u) ∈ S ′′m and consider a saturated weighted filtration (E•, n•).

Since E is N0-regular, P (m) = h0(E(m)). If Ei ∈ S0, then also PEi(m) = h0(Ei(m)).

Hence, h1(Ei(m)) = 0 and (1.2.20) becomes an equality. Then, using the additivity of the

Hilbert polynomial on exact sequences, we get h0(Ei(m)) = PEi(m). Now, hypothesis 3.

applied to the subfiltration (E ′•, n•) consisting on those terms such that Ei ∈ S0, implies( ∑
Ei∈S0

ni(r
iP (m)− rPEi(m))

)
+ δ(m)µ(ϕ,E ′•, n

′
•) ≤ 0

and, using Lemma 1.2.23, this is equivalent to( ∑
Ei∈S0

ni(rPEi − riP )
)

+ δµ(ϕ,E ′•, n
′
•) � 0 .
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If Ei /∈ S0 then, by definition of S0 (c.f. (1.2.19)) the second alternative of Lemma 1.2.20

holds, hence, as (E,ϕ, u) ∈ S ′′m, we have

rPEi − riP + risδ ≺ 0 .

Therefore, previous arguments together with Lemma 1.2.8 give

( t∑
i=1

ni(rPEi − riP )
)

+ δµ(ϕ,E•, n•) �

( ∑
Ei∈S0

n′i(rPEi − riP )
)

+ δµ(ϕ,E ′•, n
′
•) +

( ∑
Ei /∈S0

ni(rPEi − riP + δsri)
)
� 0 .

We proceed similarly for the strict inequality. As before, the condition that the filtration

is saturated can be dropped, and this finishes the proof of the Theorem.

Corollary 1.2.24. Let (E,ϕ, u) be δ-semistable, m ≥ N0, and suppose that there exists

a weighted filtration (E•, n•) with

( t∑
i=1

ni(rh
0(Ei(m))− riP (m))

)
+ δ(m)µ(ϕ,E•, n•) = 0 .

Then Ei ∈ S0 and, by choice of N0, h0(Ei(m)) = PEi(m) for all i.

Proof. By the proof of the part (1. ⇒ 2.) of Theorem 1.2.19, if we have this equality

then all inequalities in (1.2.21) are equalities, hence T = T ′ and Ei ∈ S0, for all i.

Note that in Theorem 1.2.19 we are assuming that E is torsion free. To apply the

Lemma in the general case, we will use the following Lemma.

Lemma 1.2.25. [GS1, Lemma 2.11] Fix u ∈ R. Let (E,ϕ, u) be a tensor. Assume

that there exists a family (Et, ϕt, u)t∈C parametrized by a smooth curve C such that

(E0, ϕ0, u) = (E,ϕ, u) and Et is torsion free for t 6= 0. Then there exists a tensor

(F, ψ, u), a homomorphism

(E,ϕ, u) −→ (F, ψ, u)

such that F is torsion free with PE = PF , and an exact sequence

0 −→ T (E) −→ E
β−→ F ,

where T (E) is the torsion subsheaf of E.
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Proof. The family is given by a tuple (EC , ϕC , uC , N) as in (1.2.8), where uC is the

constant map from C to R with constant value u. Shrinking C if necessary, assume

that N is trivial. Let U = (X × C) − Supp(T (E0)). Let FC = j∗(EC |U). Since FC

has no elements of torsion supported on a fiber of the projection X × C → C, then

FC is flat over C (c.f. [Ha, Proposition 9.7]). The natural map β̃ : EC → FC is an

isomorphism on U , hence we have a homomorphism ψU := ϕC |U on U which extends to a

homomorphism φC on X×C because uC
∗D is locally free, where uC = idX ×uC . Finally

define (F, ψ) = (F0, ψ0), and let β be the homomorphism induced by β̃.

1.2.3 Gieseker’s embedding

In this subsection we are going to change the embedding used in [GS1] by the one given

by Gieseker for the construction of the moduli space of sheaves over algebraic surfaces.

By Serre Vanishing Theorem, choose N ≥ N0 (c.f. proof of Theorem 1.2.19) to be

large enough so that for all m ≥ N , all i > 0, all line bundles L of degree d and all locally

free sheaves {Du}u∈R, we have

hi(L⊗b ⊗Du(sm)) = 0 ,

and L⊗b ⊗Du(sm) is generated by global sections.

Fix m ≥ N and let V be a vector space of dimension p := P (m). The choice of m

implies that if (E,ϕ, u) is δ-semistable then, by Theorem 1.2.19, E(m) is m-regular and

hence, hi(E(m)) = 0 ,∀i > 0, and it is generated by global sections. Consider a tuple

(g, E, ϕ, u), where (E,ϕ, u) is a δ-semistable tensor and

g : V −→ H0(E(m))

is an isomorphism. This induces a quotient, as morphism of sheaves, by the evaluation

map

q : V ⊗ OX(−m) � E

s|U ⊗ a|U 7→ s · a|U
(1.2.22)

where s a section of E, given as the image by g of an element of V . LetH be Quot-scheme

of Grothendieck which is the scheme of such quotients with Hilbert polynomial P ,

H := QuotF ,X,P = {q : F � E,PE = P} ,
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where F = V ⊗OX(−m). Each quotient q induces the following homomorphisms

q(m) : V ⊗OX(−m)⊗OX(m) −→ E ⊗OX(m)

q(m) : V ⊗OX −→ E(m)

(1.2.23)

H0(q(m)) : V ⊗H0(OX) −→ H0(E(m))

H0(q(m)) : V ⊗ C −→ H0(E(m))

H0(q(m)) : V −→ H0(E(m))

(1.2.24)

∧rH0(q(m)) : ∧rV −→ ∧rH0(E(m)) −→ H0(∧rE(m)) ' H0(det(E)(rm)) (1.2.25)

where note that we have to choose an isomorphism between ∧rE and detE. We call

Q := ∧rH0(q(m)) and A := H0(det(E)(rm)), then we have

Q ∈ Hom(∧rV,A) .

Given that two of these points Q differing by a scalar correspond to the same morphism

(because the isomorphism ∧rE ' detE is well defined up to a scalar) we get a well

defined point in a projective space

Q ∈ P(Hom(∧rV,A)) .

Therefore we get a Grothendieck’s embedding

H −→ P(Hom(∧rV,A))

and, hence, a very ample line bundle OH(1) on H (depending on m).

The tuple (g, E, ϕ, u), where recall

ϕ : (E⊗s)⊕c −→ (detE)⊗b ⊗Du ,

also induces this linear map

Φ : (V ⊗s)⊕c −→ H0(E(m)⊗s)⊕c −→ H0((detE)⊗b ⊗Du(sm)) , (1.2.26)

by tensoring each E with OX(m) and taking global sections.
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A Poincare bundle on J ×X, where J = Picd(X), is a universal family such that

detE ' P|{detE}×X //

��

P

��
{detE} ×X � � // J ×X

(1.2.27)

Then, we fix an isomorphism

β : detE −→ P|{detE}×X

and hence, Φ induces a quotient

(V ⊗s)⊕c ⊗H0(P|⊗b{detE}×X ⊗Du(sm))∨ −→ C .

Note that, if we choose a different isomorphism β′, this quotient will only change by a

scalar, so we get a well defined point [Φ] in W , where W is the projective bundle over

J ×R defined as

W = P
(
((V ⊗s)⊕c)∨ ⊗ πJ×R,∗(π∗X×JP⊗b ⊗ π∗X×RD(sm))

)
−→ J ×R ,

where πX×J (resp. πJ×R,...) denotes the natural projection from X × J × R to X × J
(resp. J ×R,...) and we denote D(m) := D ⊗ π∗XOX(m). Note that πJ×R,∗ (π∗X×JP⊗b ⊗
π∗X×RD(sm)) is locally free because of the choice ofm. Replacing P with another Poincare

bundle defined by tensoring with the pullback of a sufficiently positive line bundle on J ,

we can assume that OW(1) is very ample (this line bundle will also depend on m).

A point (Q, [Φ]) ∈ H ×W associated to a tuple (g, E, ϕ, u) verifies that the homo-

morphism Φ in (1.2.26), composed with evaluation, factors as in the diagram

(V ⊗s)⊕c ⊗OX
(q⊗s)⊕c(m) // //

Φ
��

(E(m)⊗s)⊕c

ϕww

H0((detE)⊗b ⊗Du(sm))⊗OX
ev

��
(detE)⊗b ⊗Du(sm)

(1.2.28)

Consider the relative version of the homomorphisms in (1.2.28), i.e. the commutative
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diagram on X ×H×W ,

0 // K //

f

**UUUUUUUUUUUUUUUUUUUUU (V ⊗s)⊕c ⊗OX×H×W
ΦH×W

��

// (π∗X×HEH(m)⊗s)⊕c // 0

A := π∗X×JP⊗b ⊗ π∗X×RD ⊗ π∗XOX(sm)

(1.2.29)

where again πX×J (resp. πX ,...) denotes the natural projection from X × H × W to

X × J (resp. X,...). We denote by EH the tautological sheaf on X × H, and ΦH×W is

the relative version of the composition ev ◦ Φ in diagram (1.2.28).

The points (Q, [Φ]) where the restriction ΦH×W |X×(Q,[Φ]) factors through (E(m)⊗s)⊕c

as in diagram (1.2.28) are exactly the points where fX×(Q,[Φ]) is identically zero. Hence,

points (Q, [Φ]) corresponding to tuples (g, E, ϕ, u) have to verify fX×(Q,[Φ]) = 0 identically,

a closed condition, then we will look for them in a closed subscheme of H×W . We will

need the following technical Lemma.

Lemma 1.2.26. [GS1, Lemma 3.1] Let Y be a scheme, and let f : G −→ F be a

homomorphism of coherent sheaves on X×Y . Assume that F is flat over Y . Then there

exists a unique closed subscheme Z ′ ⊂ Y satisfying the following universal property: given

a Cartesian diagram

X × Z ′ i //

pZ′

��

X × Y
p

��
Z ′

i // Y

i
∗
f = 0 if and only if h factors through Z.

Proof. See [GS1, Lemma 3.1].

Let Z ′ be the scheme given by this lemma setting Y = H×W and the homomorphism

f : K → A. Let i : Z ′ ↪→ H×W and i = idX×i. Then i
∗
f = 0, and we get a commutative

diagram on X × Z ′,

i
∗K //

i
∗
f ''OOOOOOOOOOOOOO (V ⊗s)⊕c ⊗OX×Z′

i
∗
Φ̃

��

// (i
∗
π∗X×HEH(m)⊗s)⊕c

ϕ̃
ttjjjjjjjjjjjjjjjjjj

// 0

i
∗A

(1.2.30)

and, hence, there is a universal family of based tensors parametrized by Z ′,

ϕZ′ : E⊗sZ′ −→ (detEZ′)
⊗b ⊗ π∗Z′D . (1.2.31)
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Thanks to the tautological family (1.2.31), given a point (Q, [Φ]) in Z ′, we get a tuple

(g, E, ϕ, u) up to isomorphism. Moreover, if H0(q(m)) : V → H0(E(m)) is an isomor-

phism, then we recover exactly the original tuple (g = H0(q(m)), E, ϕ, u) up to isomor-

phism, i.e. if (g′, E ′, ϕ′, u′) is another tuple corresponding to the same point (Q, [Φ]),

then there exists an isomorphism (f, α) between (E,ϕ, u) and (E ′ϕ′u′) as in (1.2.1), and

H0(f(m)) ◦ q = q′.

Let Z ⊂ Z ′ be the Zariski closure of the points associated to δ-semistable tensors.

Let πH and πW be the projections of Z to H andW , and define a polarization on Z by

OZ(a1, a2) := π∗HOH(a1)⊗ π∗WOW(a2) (1.2.32)

where we choose integers a1 and a2 for their ratio to verify

a2

a1

=
rδ(m)

P (m)− sδ(m)
. (1.2.33)

The projective scheme Z is preserved by the natural SL(V ) action, and this action has

a natural linearization en OZ(a1, a2), using the linearizations on OH(1) and OW(1).

Recall that the points of Z for which H0(q(m)) is an isomorphism correspond (up to

isomorphism) to the tuples (g, E, ϕ, u), where g : V ' H0(E(m)). To get rid of the choice

of g, we have to take the quotient by GL(V ), but if λ ∈ C∗, (g, E, ϕ, u) and (λg,E, ϕ, u)

correspond to the same point, and hence it suffices to take the quotient by the action of

SL(V ). We construct this quotient by using Geometric Invariant Theory.

In the following, in Proposition 1.2.29 we identify the GIT semistable points in Z

using the Hilbert-Mumford criterion (c.f. Theorem 1.1.14). In Theorem 1.2.31 we relate

filtrations of sheaves with filtrations of the vector space V , to prove that GIT semistable

points of (Q, [Φ]) ∈ Z coincide with the points associated to δ-semistable tensors (E,ϕ, u)

plus an isomorphism g. Therefore, we will have Zss = Z.

The moduli space of δ-semistable tensors, Mδ, will be the GIT quotient of Zss = Z

by SL(V ),

Mδ = Z//SL(V ) ,

which is good quotient by Theorem 1.1.11.

1.2.4 Application of Geometric Invariant Theory

Recall that a 1-parameter subgroup of G is a non-trivial homomorphism Γ : C∗ −→ G. In

our case, the group is G = SL(V ) = SL(p,C). It follows from elementary representation
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theory that there exists a basis v1, ..., vp of Cp and Γi ∈ Z such that

Γ(t) =

t
Γ1 0

. . .

0 tΓp

 ,

so we will refer to Γ by giving the exponents of the diagonal, (Γ1, ...,Γp). Note that∑p
i=1 Γi = 0 because Γ(t) ∈ SL(V ).

The group SL(V ) acts on Z and this action is linearized by means of the line bundle

OZ(a1, a2). The point z0 is a fixed point for the C∗-action on X induced by Γ. Thus,

C∗ acts on the fiber of L = OZ(a1, a2) over z0 with weight γ and recall the definition of

the numerical function in Theorem 1.1.14, µ(Γ, x) := γ, the minimum relevant exponent

of the action of Γ on x ∈ Z, i.e. the minimum exponent of the diagonal of the one

parameter subgroup which acts on a non-zero coordinate of the point x.

A weighted filtration (V•, n•) of V is a filtration

0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vt ⊂ Vt+1 = V, (1.2.34)

and positive numbers n1, n2, . . . , nt > 0. If t = 1 (one-step filtration), then we will

take n1 = 1. To a weighted filtration we associate a vector of Cp defined as Γ =∑t
i=1 niΓ

(dimVi), where

Γ(k) :=
( k︷ ︸︸ ︷
k − p, . . . , k − p,

p−k︷ ︸︸ ︷
k, . . . , k

)
(1 ≤ k < p) . (1.2.35)

Hence, the vector is of the form

Γ = (

dimV 1︷ ︸︸ ︷
Γ1, . . . ,Γ1,

dimV 2︷ ︸︸ ︷
Γ2, . . . ,Γ2, . . . ,

dimV t+1︷ ︸︸ ︷
Γt+1, . . . ,Γt+1) .

Giving the numbers n1, . . . , nt is clearly equivalent to giving the numbers Γ1, . . . ,Γt+1,

because

ni =
Γi+1 − Γi

p
and

t+1∑
i=1

Γi dimV i = 0 . (1.2.36)

Given a 1-parameter subgroup Γ, we associate a weighted filtration as follows. There is a

basis {e1, . . . , ep} of V where it has a diagonal form. Let Γ1 < · · · < Γt+1 be the distinct

exponents, and let

0 ⊂ V1 ⊂ · · · ⊂ Vt+1 = V
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be the associated filtration, where each Vi is generated by the vectors ej associated to

exponents Γj ≤ Γi. Note that two 1-parameter subgroups define the same filtration if and

only if they are conjugate by an element of the parabolic subgroup P ⊂ SL(V ) defined

by the filtration.

Now, let I = {1, ..., t+ 1}×s be the set of all multi-indexes I = (i1, ..., is). Define

µ(Φ, V•, n•) = min
I∈I
{ΓdimVi1

+ · · ·+ ΓdimVis
: Φ|(Vi1⊗···⊗Vis )⊕c 6= 0}. (1.2.37)

If I0 = (i1, . . . , is) is the multi-index giving minimum in (1.2.37), we will denote by

εi(Φ, V•, n•) (or just εi(V•) if the rest of the data is clear from the context) the number

of elements k of the multi-index I0 such that dimVk ≤ dimVi.

Given a quotient q : V ⊗ OX(−m) � E, for each subspace V ′ ⊂ V , we define the

subsheaf EV ′ ⊂ E as the image of the restriction of q to V ′,

V ⊗OX(−m) // // E

V ′ ⊗OX(−m)
?�

OO

// // EV ′
?�

OO (1.2.38)

Note that, in particular, EV ′(m) is generated by global sections.

If the quotient q : V ⊗ OX(−m) � E induces an injection V ↪→ H0(E(m)), and if

E ′ ⊂ E is a subsheaf, we can define

VE′ = V ∩H0(E ′(m)) . (1.2.39)

We will show in Proposition 1.2.30 that all quotients coming from GIT semistable points

(Q, [Φ]) ∈ Z satisfy this injectivity property, then filtrations of subsheaves will define

filtrations of vector subspaces and viceversa. Here, there are two Lemmas relating both

processes.

Lemma 1.2.27. Given a point (Q, [Φ]) ∈ Z such that q induces an injection V ↪→
H0(E(m)), and a weighted filtration (E•, n•) of E, we have:

1. EVEi ⊂ Ei

2. If ϕ|(Ei1⊗···⊗Eis )⊕c = 0, then Φ|(VEi1⊗···⊗VEis )⊕c = 0

3.
∑t

i=1−niεi(ϕ,E•, n•) ≤
∑t

i=1−niεi(Φ, VE• , n•)
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Furthermore, if q induces an isomorphism V ' H0(E(m)), all Ei are m-regular and all

Ei1 ⊗ · · · ⊗ Eis are sm-regular, then 1 becomes an equality, 2 becomes ”if and only if”

and 3 becomes an equality.

Proof. By definition, EVEi = q|VEi = q(V ∩H0(Ei(m))⊗OX(−m)) ⊂ Ei because we are

evaluating sections that, in particular, are sections of Ei. And, if Ei is m-regular then

it will be generated by their global sections. Hence, every point in the total space of Ei

will be the image of any section in H0(Ei(m))⊗OX(−m) = V ∩H0(Ei(m))⊗OX(−m),

provided V ' H0(E(m)). This proves 1.

To prove 2, note that Φ, as a morphism of sections, is given at each point by the

morphism of sheaves ϕ. A section of VEij is, in particular, a section of H0(Eij(m)), so if

ϕ vanishes on a factor Eij , then it vanishes on Eij(m), and therefore Φ vanishes on VEij .

If V ' H0(E(m)) and Ei is m-regular, by 1 we have EVEi = Ei. If Ei1 ⊗ · · · ⊗ Eis is

sm-regular, then

Ei1 ⊗ · · · ⊗ Eis ⊗OX(sm) = Ei1(m)⊗ · · · ⊗ Eis(m)

is generated by global sections and every element of Ei1(m) ⊗ · · · ⊗ Eis(m) comes from

a section of

VEi1 ⊗ · · · ⊗ VEis = H0(Ei1(m))⊗ · · · ⊗H0(Eis(m) .

Therefore, if Φ vanishes, then ϕ does.

Recall that if I0 is the multi-index giving minimum in (1.2.37), εi(Φ, VE• , n•) is the

number of elements k of I0 such that dimVEik ≤ dimVEi , and similarly for εi(ϕ,E•, n•)

with rkEik ≤ rkEi (c.f. (1.2.4)). Then, if ϕ (resp. Φ) vanishes on a filter Vi (resp.

Ei), the index i cannot be taken into account in the calculation of εi(Φ, VE• , n•) (resp.

εi(ϕ,E•, n•)). Also note that, by 2, if ϕ vanishes on a filter Eik , then Φ vanishes on VEik .

Hence, all VEik are not counted in εi(Φ, VE• , n•) if they were not counted in εi(ϕ,E•, n•).

Therefore, εi(ϕ,E•, n•) ≥ εi(Φ, VE• , n•), and this proves 3.

Lemma 1.2.28. Given a point (Q, [Φ]) ∈ Z such that q induces an injection V ↪→
H0(E(m)), and a weighted filtration (V•, n•) of V , we have:

1. Vi ⊂ VEVi

2. ϕ|(EVi1⊗···⊗EVis )⊕c = 0 if and only if Φ|(Vi1⊗···⊗Vis )⊕c = 0

3.
∑t

i=1−niεi(ϕ,EV• , n•) =
∑t

i=1−niεi(Φ, V•, n•)
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Proof. Similarly to Lemma 1.2.27, EVi = q|Vi , then Vi ⊂ V ∩ H0(EVi(m)) = VEVi , by

definition, hence we prove 1.

To prove 2, as Φ is given at each point by the morphism of sheaves ϕ, and EVi is

generated by the global sections of Vi, if Φ vanishes on sections Vii ⊗ · · · ⊗ Vis , then ϕ

vanishes on the respective sheaves EVi1 ⊗ · · · ⊗ EVis and viceversa.

Statement 3 follows from 2 and the same argument that in the proof of 3 in Lemma

1.2.27.

Proposition 1.2.29. The point (Q, [Φ]) ∈ Z is GIT semistable with respect to OZ(a1, a2)

if and only if for every weighted filtration (V•, n•) of V

a1

t∑
i=1

ni(r dimVi − rkEVi dimV ) + a2

t∑
i=1

ni(s dimVi − εi(V•) dimV ) ≤ 0 (1.2.40)

The point (Q, [Φ]) is GIT stable if we get a strict inequality for every weighted filtration.

In any case, there exists an integer A2 (depending only on m, P , s, b, c, D) such that it

is enough to consider weighted filtrations with ni ≤ A2.

Proof. By the Hilbert-Mumford criterion, Theorem 1.1.14, a point is GIT semistable

(resp. GIT stable) if and only if for all 1-parameter subgroups Γ of SL(V ),

µ((Q, [Φ]),Γ) = a1µ(Q,Γ) + a2µ([Φ],Γ) ≤ 0

(resp. <). We have seen that, given a 1-parameter subgroup Γ of SL(V ), we associate

a weighted filtration (V•, n•) where each exponent Γi corresponds to the action of Γ on

V i = Vi/Vi−1. Denote I ′ = {1, ..., t + 1}×r. Then, the minimum weight of the action of

Γ on Q ∈ P(Hom(∧rV,A) is (c.f. [Si1] and [HL2]),

µ(Q,Γ) = min
I∈I′
{Γi1 + · · ·+ Γir : Q|Vi1∧···∧Vir 6= 0} .

Note that Γ acts trivially on A = H0(det(E)(rm)) and observe that the evaluation Q

does not vanish on a wedge of r sections, eii ∧ · · · ∧ eir , whenever ei1 , ..., eir span the fiber

of E over the generic point x ∈ X. Recall that Γ1 < . . . < Γt+1, then to achieve the

minimum we have to take the minimum exponent Γ1 as many times as possible, then

take Γ2 as many times as possible, and so on, while Q 6= 0. Therefore, this occurs when

we take Γ1 a number rkEV1 of times, then we take Γ2 a number (rkEV2−rkEV1) of times,

etc, and finally we take Γt+1 a number (rkEVt+1 − rkEVt) of times, hence

µ(Q,Γ) =
t+1∑
i=1

Γi(rkEVi − rkEVi−1
) .
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Making calculations

µ(Q,Γ) = rΓt+1 −
t∑
i=1

(Γi+1 − Γi) rkEVi = rΓt+1 −
t∑
i=1

ni dimV rkEVi

= r(
t∑
i=1

ni dimVi)−
t∑
i=1

ni dimV rkEVi =
t∑
i=1

ni(r dimVi − rkEVi dimV ) .

Now we calculate the minimum weight of the action of Γ on

[Φ] ∈ W = P
(
((V ⊗s)⊕c)∨ ⊗ πJ×R,∗(π∗X×JP⊗b ⊗ π∗X×RD(sm))

)
,

where note that Γ only acts non trivially on V . Then,

µ([Φ],Γ) = min
I∈I
{Γi1 + · · ·+ Γis : Φ|(Vi1⊗···⊗Vis )⊕c 6= 0} .

Similarly, to achieve the minimum, we have to take Γ1 as many times as V1 can appear in

the multi-index I while the restriction of Φ does not vanish, then take Γ2 as many times

as V2 can appear minus the number of times V1 appears, and so on. This can be written

in terms of the symbols εi(V•), the number of times that each index i appears on I:

µ([Φ],Γ) =
t∑
i=1

Γiε
i(V•) =

t∑
i=1

Γi(εi+1(V•)− εi(V•))

= sΓt+1 −
t∑
i=1

(Γi+1 − Γi)εi(V•) = sΓt+1 −
t∑
i=1

ni dimV εi(V•)

= s(
t∑
i=1

ni dimVi)−
t∑
i=1

ni dimV εi(V•) =
t∑
i=1

ni(s dimVi − εi(V•) dimV ) .

The last statement follows from an argument similar to the proof of Lemma 1.2.7,

with Zr replaced by Zp.

Proposition 1.2.30. The point (Q, [Φ]) ∈ Z is GIT semistable if and only if for every

weighted filtration (E•, n•) of E, it is

t∑
i=1

ni
(
(r dimVEi − rkEi dimV ) + δ(m)(s rkEi − εi(E•)r)

)
≤ 0 . (1.2.41)

If (Q, [Φ]) is GIT stable we get a strict inequality for every weighted filtration. Moreover,

if (Q, [Φ]) is GIT semistable, then the induced map fq = H0(q(m)), fq : V → H0(E(m))

is injective.
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Proof. Let us show first that if (Q, [Φ]) is GIT semistable, then the induced map fq

is injective. Let V ′ be its kernel and consider the one-step filtration V ′ ⊂ V . We have

EV ′ = 0 by definition and, if we calculate µ([Φ],Γ) for the 1-parameter subgroup Γ

associated to the one-step filtration V ′ ⊂ V , it is

µ([Φ],Γ) = s dimV ′ ,

because ε1 = 0 (V ′ does not appear in the multi-index giving minimum in (1.2.37) because

EV ′ = 0). Therefore, applying Proposition 1.2.29,

a1r dimV ′ + a2s dimV ′ ≤ 0 ,

and dimV ′ = 0, hence fq is injective.

Using (1.2.33), the inequality (1.2.40) becomes

t∑
i=1

ni
(
(r dimVi − rkEVi dimV )(P (m)− sδ(m)) + rδ(m)(s dimVi − εi(V•) dimV )

)
≤ 0

which, setting P (m) = dimV , is equivalent to

t∑
i=1

ni
(
(r dimVi − rkEVi dimV ) + δ(m)(s rkEVi − εi(V•)r)

)
≤ 0 . (1.2.42)

Now let (Q, [Φ]) be a GIT semistable point. Take a weighted filtration (E•, n•) of E.

Consider the induced weighted filtration (VE• , n•) of V . By Proposition 1.2.29 and using

(1.2.33) we have

t∑
i=1

ni
(
(r dimVEi−rkEVEi dimV )(P (m)−sδ(m))+rδ(m)(s dimVEi−εi(VE•) dimV )

)
≤ 0 ,

which is equivalent to

t∑
i=1

ni
(
(r dimVEi − rkEVEi dimV ) + δ(m)(s rkEVEi − εi(VE•)r)

)
≤ 0 .

Then, by Lemma 1.2.27, using statement 1 we have EVEi ⊂ Ei, then rkEVEi ≤ rkEi,

and statement 3 gives −εi(E•) ≤ −εi(VE•), therefore

t∑
i=1

ni
(
(r dimVEi − rkEi dimV ) + δ(m)(s rkEi − εi(E•)r)

)
≤
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t∑
i=1

ni
(
(r dimVEi − rkEVEi dimV ) + δ(m)(s rkEVEi − εi(VE•)r)

)
≤ 0 ,

hence (1.2.41) holds. Note that, if we start with a GIT stable point, we can substitute

the inequalities by strict inequalities.

On the other hand, suppose that (1.2.41) holds. Take a weighted filtration (V•, n•) of

V . Then we get an induced weighted filtration (EV• , n•) of E. For this filtration, (1.2.41)

becomes

t∑
i=1

ni
(
(r dimVEVi − rkEVi dimV ) + δ(m)(s rkEVi − εi(EV•)r)

)
≤ 0 .

By Lemma 1.2.28, using statement 1 we have Vi ⊂ VEVi , then dimVi ≤ dimVEVi , and

statement 2 gives −εi(EV•) = −εi(V•). Hence, applying (1.2.42) (which we have seen

that is equivalent to (1.2.40)) for the filtration (V•, n•) we get

t∑
i=1

ni
(
(r dimVi − rkEVi dimV ) + δ(m)(s rkEVi − εi(V•)r)

)
≤

t∑
i=1

ni
(
(r dimVEVi − rkEVi dimV ) + δ(m)(s rkEVi − εi(EV•)r)

)
≤ 0 ,

and therefore the point (Q, [Φ]) is GIT semistable by Proposition 1.2.29. If we start with

a strict inequality in (1.2.41), we get a GIT stable point.

Theorem 1.2.31. Assume m > N . A point (Q, [Φ]) ∈ Z is GIT semistable (resp. GIT

stable) if and only if the corresponding tensor (E,ϕ, u) is δ-semistable (resp. δ-stable)

and the linear map fq : V ' H0(E(m)) induced by q is an isomorphism.

Proof. ⇒) Suppose (Q, [Φ]) ∈ Z is GIT semistable and let (E•, n•) be a weighted

filtration of E. We will use Theorem 1.2.19 to prove that (E,ϕ, u) is δ-semistable, and

similarly for stable.

Recall that, as we have seen in (2.⇒ 3.) in the proof of Theorem 1.2.19, we have this

inequality for the dimensions of the vector spaces

h0(E(m)) ≤ h0(Ei(m)) + h0(Ei(m)) .

Then, by definition, VEi := V ∩H0(Ei(m)) and, by dimensions formula,

dimVEi = dimV + h0(Ei(m))− dim(V ∪H0(Ei(m))) ≥



70 CHAPTER 1. MODULI SPACES AND MAXIMAL UNSTABILITY

dimV + h0(Ei(m))− h0(E(m)) ≥ dimV − h0(Ei(m)) .

Recall that P (m) = dimV . Therefore we obtain the inequality of condition 3 in

Theorem 1.2.19,

( t∑
i=1

ni(rkE
iP (m)− rh0(Ei(m)))

)
+ δ(m)µ(ϕ,E•, n•) =

t∑
i=1

ni
(
(rkEiP (m)− rh0(Ei(m))) + δ(m)(s rkEi − εi(E•)r)

)
=

t∑
i=1

ni
(
(r(dimV − h0(Ei(m)))− rkEi dimV ) + δ(m)(s rkEi − εi(E•)r)

)
≤

t∑
i=1

ni
(
(r dimVEi − rkEi dimV ) + δ(m)(s rkEi − εi(E•)r)

)
≤ 0 ,

by Proposition 1.2.30. If we start with a GIT stable point we get a strict inequality.

To apply Theorem 1.2.19 we need to show that E is torsion free. By Lemma 1.2.25,

there exists a tensor (F, ψ, u) with F torsion free such that PE = PF and a exact sequence

0 −→ T (E) −→ E
β−→ F

where define E ′′ := β(E). Consider a weighted filtration (F•, n•) of F . Let F i = F/Fi,

and let Ei be the image of E in F i, Ei = E ′′/Fi. Let Ei be the kernel of E −→ Ei.

Then rk(Fi) = rk(Ei) = ri, because rkE = rkEi + rkEi and rkE = rkE ′′. Also, Ei =

E ′′/Fi ⊂ F/Fi = F i, then h0(Ei(m)) ≤ h0(F i(m)). Moreover, ε(ψ, F•, n•) = ε(ϕ,E•, n•),

because the difference between filters of F and E occurs in the 0-rank torsion subsheaf.

Using this and applying condition 3 in Theorem 1.2.19 to (F•, n•), we get

( t∑
i=1

ni
(
(rkF iP (m)− rh0(F i(m))

)
+ δ(m)µ(ψ, F•, n•) =

t∑
i=1

ni
(
(rkF iP (m)− rh0(F i(m))) + δ(m)(s rkFi − εi(ψ, F•, n•)r)

)
≤

t∑
i=1

ni
(
(rkEiP (m)− rh0(Ei(m))) + δ(m)(s rkEi − εi(ϕ,E•, n•)r)

)
≤ 0 ,

and hence Theorem 1.2.19 implies that (F, ψ, u) is δ-semistable.
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Apply condition 3 of Theorem 1.2.19 to the one-step filtration T (E) ⊂ E, then

E/T (E) ' E ′′, and

rk(E ′′)P (m)− rh0(E ′′)(m) + δ(m)(s rk(T (E))− ε1(T (E) ⊂ E)r) ≤ 0

⇔ P (m)− h0(E ′′)(m) ≤ 0 ,

where note that rkT (E) = 0 and ε1(T (E) ⊂ E) = 0. Hence,

P (m) ≤ h0(E ′′(m)) ≤ h0(F (m)) = P (m) ,

where the second inequality follows from E ′′ ⊂ F and the third equality does from the

conclusion of Theorem 1.2.19 about m-regularity of δ-semistable tensors. Hence, equality

holds at all places and h0(F (m)) = h0(E ′′(m)). Since F is globally generated, F = E ′′

and, therefore, T (E) = 0 and E is torsion free. Then, by Theorem 1.2.19, (E,ϕ, u) is

δ-semistable.

Finally, we have seen that if (Q, [Φ]) ∈ Z is GIT semistable, then the linear map fq :

V −→ H0(E(m)) is injective by Proposition 1.2.29, and since (E,ϕ, u) is δ-semistable,

then E is m-regular by Proposition 1.2.19. Given that dimV = P (m) = h0(E(m)),

therefore fq is an isomorphism.

⇐) Suppose (E,ϕ, u) is δ-semistable, and q induces an isomorphism in the linear map

fq : V −→ H0(E(m)). Then we have VE′ = H0(E ′(m)) for any subsheaf E ′ ⊂ E and

Theorem 1.2.19 condition 2 says that for all weighted filtrations (E•, n•) of E,

( t∑
i=1

ni(rh
0(Ei)− rkEiP (m))

)
+ δ(m)µ(ϕ,E•, n•) =

t∑
i=1

ni
(
(r dimVEi − rkEiP (m)) + δ(m)(s rkEi − εi(E•)r)

)
≤ 0 ,

which is exactly (1.2.41) in Proposition 1.2.30, therefore (Q, [Φ]) is GIT semistable. Sim-

ilarly, if (E,ϕ, u) is δ-stable we obtain a strict inequality and, hence, (Q, [Φ]) is GIT

stable.

Corollary 1.2.32. Let (E,ϕ, u) be a δ-semistable tensor and let (E•, n•) be a weighted

filtration of E. Then the induced morphism fq : V → H0(E(m)) is an isomorphism and,

therefore, V = H0(E(m)) and VEi = H0(Ei(m)), for all i.
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Proof. It follows from the proof of Theorem 1.2.31

Now, recall that given V , a vector space of dimension P (m), and a 1-parameter

subgroup Γ of SL(V ) given in its diagonal form

Γ = (

dimV 1︷ ︸︸ ︷
Γ1, . . . ,Γ1,

dimV 2︷ ︸︸ ︷
Γ2, . . . ,Γ2, . . . ,

dimV t+1︷ ︸︸ ︷
Γt+1, . . . ,Γt+1) ,

we get a weighted filtration (V•, n•) of V and a splitting V = ⊕iV i of this filtration.

Defining EVi = q(Vi ⊗OX(−m)) we obtain a weighted filtration (E•, n•) of E.

Conversely, let (E•, n•) be a weighted filtration of E and V = ⊕iV i a splitting of the

filtration Vi = H0(Ei(m)). This gives a 1-parameter subgroup Γ of SL(V ) defined as

vi 7→ tλivi, for vi ∈ V i, with relations (1.2.36).

We will use the following proposition to prove the criterion for S-equivalence.

Proposition 1.2.33. Suppose that m > N . Let (E,ϕ, u) be a δ-semistable tensor,

f : V ' H0(E(m)) an isomorphism, and let (Q, [Φ]) ∈ Z be the corresponding GIT

semistable point (c.f. Theorem 1.2.31). The above construction gives a bijection between

1-parameter subgroups of SL(V ) with µ((Q, [Φ]),Γ) = 0 on the one hand, and weighted

filtrations (E•, n•) of E with

t∑
i=1

ni
(
(rPEi − rkEiP )

)
+ δµ(ϕ,E•, n•) = 0 (1.2.43)

together with a splitting of the filtration H0(E•(m)) of V ' H0(E(m)) on the other hand.

Proof. Let Γ be a 1-parameter subgroup of SL(V ) with µ((Q, [Φ]),Γ) = 0. Then we

get a weighted filtration (V•, n•) of V and, by evaluating, a weighted filtration (EV• , n•)

of E. By hypothesis, the proof of Proposition 1.2.29 gives equality in (1.2.40) applied to

(V•, n•), and in the proof of Proposition 1.2.30 we have seen that (1.2.40) is equivalent

to (1.2.42). Therefore, using Lemma 1.2.28, statement 3, we get

t∑
i=1

ni
(
(r dimVi − rkEViP (m)) + δ(m)(s rkEVi − εi(EV•)r)

)
=

t∑
i=1

ni
(
(r dimVi − rkEViP (m))

)
+ δ(m)µ(ϕ,EV• , n•) = 0 ,
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where we also use that dimV = P (m) and (1.2.7). Statement 1 of Lemma 1.2.28 gives

Vi ⊂ VEVi = H0(EVi(m)), hence

t∑
i=1

ni
(
(rh0(EVi(m))− rkEViP (m))

)
+ δ(m)µ(ϕ,EV• , n•) ≥ 0

but, by Theorem 1.2.19, condition 2, this must be non-positive, hence Vi = H0(EVi(m)) =

VEVi , and last inequality is an equality. By Corollary 1.2.24, EVi ∈ S0, and hence

h0(EVi(m)) = PEVi (m) for all i. Therefore, as equality holds for m, Lemma 1.2.23 gives

the equality of polynomials
t∑
i=1

ni
(
(rPEVi − rkEViP )

)
+ δµ(ϕ,EV• , n•) = 0 .

Conversely, let (E•, n•) be a weighted filtration of E such that (1.2.43) holds, together

with a splitting of the filtration H0(E•(m)) of V ' H0(E(m)), and let Γ be the associ-

ated 1-parameter subgroup of SL(V ). Evaluating the expression (1.2.43) in m gives, in

particular,
t∑
i=1

ni
(
(rPEi(m)− rkEiP (m))

)
+ δ(m)µ(ϕ,E•, n•) =

t∑
i=1

ni
(
(rPEi(m)− rkEiP (m)) + δ(m)(s rkEi − εi(E•)r)

)
= 0 ,

using (1.2.7). By the proof of implication (3. ⇒ 1.) in Theorem 1.2.19, since we get an

equality, it is Ei ∈ S0 for all i, hence dimVEi = h0(Ei(m)) = PEi(m) for all i, and the

previous equality becomes
t∑
i=1

ni
(
(r dimVEi − rkEiP (m)) + δ(m)(s rkEi − εi(E•)r)

)
= 0 .

Using the strong version of Lemma 1.2.27, EVEi = Ei and εi(E•) = εi(VE•), then

t∑
i=1

ni
(
(r dimVEi − rkEVEi dimV ) + δ(m)(s rkEVEi − εi(VE•)r)

)
= 0

which is (1.2.42) applied to the weighted filtration (VE• , n•) of V and, by the proof of

Proposition 1.2.30, equivalent to equality in (1.2.40), therefore µ((Q, [Φ]),Γ) = 0.

We have that Vi generates EVi(m), then take H0(EVi(m)) = V ∩ H0(EVi(m)) =

VEVi , which we have seen that is equal to Vi. Conversely, take Ei, then we have that

H0(Ei(m)) = V ∩H0(Ei(m)) = VEi and, evaluating, we obtain EVEi , which we have seen

that is equal to Ei. Therefore, this gives the bijection.
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1.2.5 Proof of Theorem 1.2.9

Proof of the Theorem 1.2.9. We follow [GS1, Proof of Theorem 1.8] which also

follows closely [HL2, Proof of Main Theorem 0.1].

Recall notation from section 1.2.3 and Theorem 1.1.11. We will use Theorem 1.2.31,

where we show that GIT semistable points correspond to δ-semistable tensors. Let Mδ

(respectively Ms
δ) be the GIT quotient of Z (respectively Zs) by SL(V ). Since Z is

projective, Mδ is also projective and, by Theorem 1.1.11, Ms
δ is an open subset of the

projective scheme Mδ. The restriction Zs −→ Ms
δ to the stable points is a geometric

quotient where the fibers are SL(V )-orbits, and hence the points of Ms
δ correspond to

isomorphism classes of δ-stable tensors. We have to show that Mδ corepresents the

functor Mδ (c.f. Definition 1.1.3).

Let (ET , ϕT , uT , N) be a family of δ-semistable tensors parametrized by a scheme T ,

as in (1.2.8). Then, V := πT,∗(ET ⊗ π∗XOX(m)) is locally free on T . The family ET

induces a map ∆ : T −→ Picd(X), sending t ∈ T to detEt. We can cover T with small

open sets Ti such that for each i we can find an isomorphism

βTi : detETi −→ ∆i
∗P ,

where P is the Poincare bundle defined in (1.2.27), and a trivialization

gTi : V ⊗OTi −→ V|Ti ,

where note that V|t∈Ti ' Et∈Ti(m) and H0(V|t∈Ti) ' H0(E|t∈Ti(m)) ' V . Using this

trivialization we obtain a family of quotients parametrized by Ti,

qTi : V ⊗ π∗XOX(−m)� ETi ,

giving a map Ti −→ H. And, using the quotient qTi and the isomorphism βTi , we have

another family of quotients parametrized by Ti,

(V ⊗s)⊕c ⊗
(
πTi,∗(∆i

∗P⊗b ⊗ uTi∗D ⊗ π∗XOX(sm))
)∨
� NTi ,

giving an element of W for each t ∈ Ti. Then, using the representability properties of H
and W , we obtain a morphism Ti −→ H×W . By Lemma 1.2.26, this morphism factors

through Z ′ and its image is in Zss, because a δ-semistable tensor gives a GIT-semistable

point (c.f. Theorem 1.2.31). Compose with the geometric quotient to Mδ to obtain maps

f̂i : Ti
fi−→ Zss −→Mδ .
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Note that the morphism fi is independent of the choice of isomorphism βTi , because of

the universal property of the Poincare bundle P . A different choice of isomorphism gTi
will change fi to hi · fi, where hi : Ti −→ GL(V ), then f̂i is independent of the choice of

gTi . Glue the morphisms f̂i to give a morphism

f̂ : T −→Mδ ,

and hence we have a natural transformation from the moduli functor to the functor of

points of Mδ,

Mδ −→Mδ .

Recall that there is a tautological family (1.2.31) of tensors parametrized by Z ′. By

restriction to Zss, we obtain a tautological family of δ-semistable tensors parametrized

by Zss. If Y is another scheme with a natural transformation Mδ −→ Y , then the

tautological family defines a SL(V )-invariant morphism Zss −→ Y , hence this factors

through the quotient Mδ. Then, the natural transformation Mδ −→ Y factors through

Mδ and this proves that Mδ corepresents the functor Mδ.

Remark 1.2.34. Note that this is not a fine moduli space because the analog of the

uniqueness result of [HL2, Lemma 1.6] does not hold in general for tensors.

Now let us give a criterion for S-equivalence. If (E,ϕ, u) and (F, ψ, u) are two δ-stable

tensors then we have seen that they correspond to the same point in the moduli space if

and only if they are isomorphic. But if they are strictly δ-semistable (i.e. δ-semistable

but not δ-stable), they can be S-equivalent (i.e. they correspond to the same point in

the moduli space), but not isomorphic. Hence, given a tensor (E,ϕ, u), we will show that

there exists a canonical representative of its S-equivalence class (ES, ϕS, u), such that two

tensors (E,ϕ, u) and (F, ψ, u) will be S-equivalent if and only if (ES, ϕS, u) (F S, ψS, u)

are isomorphic.

Let (E,ϕ, u) be a strictly δ-semistable. Then, by Proposition 1.2.31, the correspond-

ing point (Q, [Φ]) is strictly GIT semistable, by Theorem 1.2.29 there exists at least one

1-parameter subgroup Γ of SL(V ) with µ((Q, [Φ]),Γ) = 0 and, by Proposition 1.2.33, Γ

corresponds to a weighted filtration (E•, n•) with

t∑
i=1

ni
(
(rPEi − rkEiP )

)
+ δµ(ϕ,E•, n•) = 0 ,

which we will call an admissible weighted filtration for a strictly δ-semistable tensor.
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Let I0 be the set of pairs (k, I) where k is an integer with 1 ≤ k ≤ c, and I = (i1, ..., is)

is a multi-index with 1 ≤ ij ≤ t+ 1, such that the restriction of ϕ

ϕk,I :

k−1︷ ︸︸ ︷
0⊕ · · · ⊕ 0⊕(Ei1 ⊗ · · · ⊗ Eis)⊕

c−k︷ ︸︸ ︷
0⊕ · · · ⊕ 0 −→ (detE)⊗b ⊗Du

is nonzero and

γri1 + · · ·+ γris = µ(ϕ,E•, n•) .

Note that, if (k, I) ∈ I0 and I ′ = (i′1, ..., i
′
s) is a multi-index with I ′ 6= I and i′j ≤ ij

for all j, then ϕk,I′ = 0, by definition of µ(ϕ,E•, n•). Hence, if (k, I) ∈ I0, the restriction

ϕk,I defines a homomorphism in the quotient

ϕ′k,I :

k−1︷ ︸︸ ︷
0⊕ · · · ⊕ 0⊕(E ′i1 ⊗ · · · ⊗ E

′
is)⊕

c−k︷ ︸︸ ︷
0⊕ · · · ⊕ 0 −→ (detE)⊗b ⊗Du ,

where E ′i = Ei/Ei+1. If (k, I) is not in I0, then define ϕ′k,I := 0. Therefore, we can define(
E ′ = E ′1 ⊕ . . .⊕ E ′t+1 , ϕ′ =

⊕
(k,I)

ϕ′k,I
)

in which we are using that detE ' detE ′, hence (E ′, ϕ′, u) is well-defined up to isomor-

phism and we call it the admissible deformation associated to the admissible filtration

(E•, n•) of E. Observe that this notion depends on the weighted filtration chosen.

Proposition 1.2.35. [GS1, Proposition 4.1] The tensor (E ′, ϕ′, u) is strictly δ-semistable

and it is S-equivalent to (E,ϕ, u). If we repeat this process, after a finite number of

iterations, the process will stop, i.e. we will obtain tensors isomorphic to each other. We

call this tensor (ES, ϕS, u) and it verifies

1. The isomorphism class of (ES, ϕS, u) is independent of the choices made, i.e. the

weighted filtrations chosen.

2. Two tensors (E,ϕ, u) and (F, ψ, u) are S-equivalent if and only if (ES, ϕS, u) is

isomorphic to (F S, ψS, u).

Proof. First, we recall some observations about GIT quotients. Let Z be a projective

variety with an action of a group G linearized on an ample line bundle OZ(1). Two points

in the open subset Zss of semistable points are GIT equivalent, or they give the same

point in the moduli space, if the closures (in Zss) of their orbits do intersect (c.f. Remark
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1.1.16). Let z ∈ Zss and let B(z) be the unique closed orbit in the closure G · z in Zss

of its orbit G · z. If z is not in B(z), there exists a 1-parameter subgroup Γ such that

the limit z0 = limt→0 Γ(t) · z is in G · z\G · z (for instance, we can take the 1-parameter

subgroup given by [Si1, Lemma 1.25]). Note that it is µ(z,Γ) = 0 (by semistability of z,

µ(z,Γ) ≤ 0, and if it were negative, then we would have G · z = B(z)). Conversely, if Γ

is a 1-parameter subgroup with µ(z,Γ) = 0, then the limit, z0, is GIT semistable ([GS0,

Proposition 2.14]). Observe that G · z0 ⊂ G · z\G · z, therefore, dimG · z0 < dimG · z.

Repeating the process with z0 instead of z, we get a sequence of points which stops after

a finite number of steps, and gives z̃ ∈ B(z). Two points z1 and z2 in Zss are S-equivalent

if and only if B(z1) = B(z2).

Let (E,ϕ, u) be a δ-semistable tensor with an isomorphism f : V ' H0(E(m)), and

let z = (Q, [Φ]) ∈ Z be the corresponding GIT semistable point. Recall from Proposition

1.2.33 the bijection between 1-parameter subgroups Γ of SL(V ) with µ(z,Γ) = 0 on the

one hand, and weighted filtrations (E•, n•) of E with

( t∑
i=1

ni(rPEi − rkEiP )
)

+ δµ(ϕ,E•, n•)
)

= 0

together with a splitting of the filtration H0(E•(m)) of V = H0(E(m)) on the other

hand. A 1-parameter subgroup Γ acting on z defines a morphism C∗ → Z which extends

to

h : C −→ Z ,

with h(t) = Γ(t) · z for t 6= 0 and whose limit is h(0) = limt→0 Γ(t) · z = z0.

If we pull back by h the universal family parametrized by Z, we obtain another family

(qT , ET , ϕT , u), where

ET =
t+1⊕
i=1

Ei ⊗ tγri ⊂ E ⊗C t
−NC[t] ⊂ E ⊗C C[t, t−1] ,

where recall that tΓri acts on each Ei. We get the morphisms,

qT : V ⊗OX(−m)⊗ C[t]
ξ // ⊕iV i ⊗OX(−m)⊗ tΓri // ET

vi ⊗ 1
� // vi ⊗ tΓri � // q(vi)⊗ tΓri
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and

ϕT : (E⊗sT )⊕c // (detET )⊗b ⊗ uT ∗D ⊗ π∗TN

(0, . . . , 0︸ ︷︷ ︸
k−1

, wi1t
Γri1 · . . . · wistΓris , 0, . . . , 0︸ ︷︷ ︸

c−k

) � // ϕ(0, . . . , 0︸ ︷︷ ︸
k−1

, wi1 · . . . · wis , 0, . . . , 0︸ ︷︷ ︸
c−k

)⊗ tΓri1 +···+Γris

Then, (qt, Et, ϕt, u) corresponds to h(t) (in particular, if t 6= 0, then (Et, ϕt, u) is

canonically isomorphic to (E,ϕ, u)), and (E0, ϕ0, u) is the admissible deformation asso-

ciated to (E•, n•). Note that 1 follows from the universality of the construction and 2

follows from the previous discussion.

1.3 The Harder-Narasimhan filtration

In section 1.2 we have constructed a moduli space for tensors, by restricting the class

of objects that we classify, the δ-semistable tensors. This is the usual situation when

constructing a moduli space, to restrict the original moduli problem by introducing a

stability condition.

In some sense, the construction of a moduli space answers the classification problem

for the class of the semistable objects. For the rest, the unstable objects, there is a main

tool in algebraic geometry, called the Harder-Narasimhan filtration, to study them.

We will recall the original Harder-Narasimhan filtration for vector bundles and torsion

free sheaves in this section. At the end, we will discuss the abstract generalization of this

notion for an abelian category.

1.3.1 Harder-Narasimhan filtration for sheaves

We consider, first, the case of vector bundles over curves. Let E be a holomorphic vector

bundle over a smooth projective complex curve X. Let

µ(E) :=
degE

rkE

be its slope.

Definition 1.3.1. E is semistable if for every proper holomorphic subbundle F ⊂ E,

it is µ(F ) ≤ µ(E). If the inequality is strict for every proper subbundle we say that E is
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stable. A holomorphic vector bundle is unstable if it exists a proper subbundle verifying

µ(F ) > µ(E).

The holomorphic vector bundles of fixed rank r and degree d over an algebraic curve

X of genus g were studied by Grothendieck for g = 0 and Atiyah for g = 1. With

the previous definition of stability, Narasimhan and Seshadri constructed a moduli space

for holomorphic bundles over algebraic curves of genus g. They did it, first for bundles

of degree 0 (c.f. [NS1]) and later in general (c.f. [NS2]), through representations of

the fundamental group, and putting in correspondence the semistable bundles with the

semistable points, in the sense of GIT, defined by Mumford. Then, Gieseker (c.f. [Gi1])

gave an algebraic construction for a moduli space of torsion free sheaves over an algebraic

surface and Maruyama (c.f. [Ma1]) extended the construction to higher dimensional

varieties.

As we announced in Section 1.1, we impose a condition on the objects we are trying

to classify, the notion of stability, and restrict our classification problem to the semistable

objects. What we have to do then is, in all the moduli problems which arise as GIT quo-

tients of a space by the action of a group, to show that the semistable objects, with respect

to the definition of stability we give from the beginning, correspond to the semistable or-

bits in the sense of Geometric Invariant Theory. Therefore, we obtain a moduli space for

the class of semistable objects which is a good quotient (c.f. Definition 1.1.7) where each

point corresponds to an S-equivalence class of semistable objects (c.f. Remark 1.1.16).

If we restrict the moduli problem to the stable objects, we get a geometrical quotient

(c.f. Definition 1.1.8) which is an orbit space where, indeed, each point corresponds to a

stable orbit and represents an isomorphism class of stable objects.

Harder and Narasimhan prove the existence of a canonical filtration for a holomorphic

vector bundle over a smooth algebraic curve (c.f. [HN]). The construction of the filtration

is based on the existence of a unique subbundle which maximally contradicts the stability

in Definition 1.3.1 (in [HN, Proposition 1.3.4] this subbundle is called SCSS, a subbundle

which “strongly contradicts the semistability”), taking the quotient by this subbundle

and repeating the process by recursion (c.f. [HN, Lemma 1.3.7]). In that article, Harder

and Narasimhan use the filtration to decompose an unstable vector bundle in blocks and

calculate some numbers in relation with the cohomology groups of the moduli space.

Within the years, the so-called Harder-Narasimhan filtration has been proved to be

extremely useful in the study of properties of moduli spaces in algebraic geometry.

Let us show how to construct the Harder-Narasimhan filtration in an easy case, where
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E is a holomorphic vector bundle of rank r and degree d over a smooth projective complex

curve X of genus g.

Suppose that E is unstable and let µ(E) = d
r

be its slope. By definition of stability

there are subbundles E ′ of rank r′ < r and degree d, 0 $ E ′ $ E such that µ(E ′) =
d′

r′
> µ(E) = d

r
. We choose E1 with µ(E1) > µ(E) to be maximal and of maximal rank

among those of maximal slope (i.e. if ∃E ′1 with µ(E ′1) = µ(E1), then E ′1 ⊆ E1). We will

call E1 the maximal destabilizing subbundle of E. Now we consider the subbundle

F = E/E1. If it is semistable we are done, and the Harder-Narasimhan filtration is

0 $ E1 $ E. If not, in analogy with the previous case, there exists 0 $ F1 $ F , of

maximal slope and of maximal rank among those of maximal slope, hence we have

0 $ E1 $ E2 $ E

↓ ↓ ↓
0 $ E2/E1 = F1 $ E/E1 = F

Call r1, r2, d1, d2 the ranks and degrees of E1 and E2 respectively. These two properties

hold:

• The quotient E2/E1 is semistable. Indeed, if E2/E1 = F1 were not semistable,

there would exists 0 $ F2 $ F1 with µ(F2) > µ(F1), contradicting the choice of F1.

• It is µ(E1/0) = µ(E1) > µ(E2/E1), because if we had µ(E1) ≤ µ(E2/E1)⇐⇒ d1

r1
≤

d2−d1

r2−r1 ⇐⇒ d1r2− d1r1 ≤ d2r1− d1r1 ⇐⇒ d1

r1
≤ d2

r2
⇐⇒ µ(E1) ≤ µ(E2), and we have

chosen E1 of maximal slope among the subbundles of E and E1 $ E2.

Repeating the process, if the quotient G = E/E2 is not semistable, we can choose

0 $ G1 $ G with maximal slope and rank, and we obtain

0 $ E1 $ E2 $ E3 $ E

↓ ↓ ↓ ↓
0 $ E2/E1 = F1 $ E3/E1 = F2 $ E/E1 = F

↓ ↓ ↓
0 = F1/E2 $ E3/E2 = G1 $ E/E2 = G

.

By analogy, we get that F2/F1 = E3/E1

E2/E1
' E3/E2 is semistable and

µ(F1) > µ(G1)⇐⇒ µ(E2/E1) > µ(E3/E2) .
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By iterating until we get a semistable quotientE/Et, we obtain the Harder-Narasimhan

filtration:

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E

which verifies

• µ(E1) > µ(E2) > µ(E3) > ... > µ(Et) > µ(Et+1) = µ, where µ(Ei) = degEi

rkEi

• Ei := Ei/Ei−1 is semistable, ∀i ∈ {1, ..., t+ 1} where E0 = 0

And the process has to stop by finiteness of the rank of E.

Therefore, note that we can exhibit unstable vector bundles as extensions of semistable

ones in this way. Given an unstable vector bundle we have its Harder-Narasimhan filtra-

tion

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E .

This breaks into short exact sequences

0 → E1
semistable

→ E2 → E2/E1
semistable

→ 0

0 → E2 → E3 → E3/E2
semistable

→ 0

. . .

0 → Et → E → E/Et
semistable

→ 0

,

where vector bundles on the right are semistable. Using the Harder-Narasimhan filtration

we can think of semistable bundles as building blocks for holomorphic vector bundles.

Now we give the definition and the proof of the existence and uniqueness of the

Harder-Narasimhan filtration for torsion free sheaves over smooth projective varieties.

Let X be a smooth projective variety and fix an ample line bundle OX(1). For

every coherent sheaf over X, E, let PE its Hilbert polynomial with respect to OX(1), i.e

PE(m) = χ(E ⊗OX(m)). If P and Q are polynomials, we write P ≤ Q if P (m) ≤ Q(m)

for m� 0.

Definition 1.3.2. [Gi1, Definition 0.1] Let E be a torsion free sheaf over X. We say

that E is semistable if for all proper subsheaves F ⊂ E, it is

PF
rkF

≤ PE
rkE

.

If the inequality is strict for every proper subsheaf we say that E is stable.
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Note that, if E is a holomorphic vector bundle of rank r and degree d over an alge-

braic curve X of genus g, the Hilbert polynomial of E is PE(m) = rm + d + r(1 − g)

and Definition 1.3.2 is equivalent to Definition 1.3.1. We often refer to Definition 1.3.2

as Gieseker or Maruyama stability, whereas Definition 1.3.1 is usually called Mum-

ford, Takemoto or slope stability, both definitions coinciding for curves.

Definition 1.3.3. Let E be a torsion free sheaf of rank r over a smooth projective alge-

braic variety X. A Harder-Narasimhan filtration for E is a sequence

0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Et ⊂ Et+1 = E

verifying

• The Hilbert polynomials verify

PE1

rkE1
>

PE2

rkE2
> . . . >

PEt+1

rkEt+1

• Every Ei is semistable

where Ei := Ei/Ei−1.

Remark 1.3.4. Note that the Harder-Narasimhan filtration with Gieseker stability is a

refinement of the one with Mumford stability, with the inequalities holding between the

Hilbert polynomials in one case, or their leading coefficients in the other.

A sheaf E is pure of dimension n if its support has dimension n and it has no

subsheaves supported on a locus of lower dimension.

Theorem 1.3.5. [HN, Proposition 1.3.9], [HL3, Theorem 1.3.4] Every pure sheaf E

of dimension n over a smooth projective variety X has a unique Harder-Narasimhan

filtration.

Lemma 1.3.6. Let E be a torsion free sheaf. Then, there exists a subsheaf F ⊂ E such

that for all subsheaves G ⊂ E, one has PF
rkF
≥ PG

rkG
and, in case of equality G ⊂ F . More-

over, F is uniquely determined and F is semistable, called the maximal destabilizing

subsheaf of E.

Proof. Note that F to be semistable and uniquely determined follows from the first

property.
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Define an order relation on the set of subsheaves of E by F1 ≤ F2 if and only if F1 ⊂ F2

and
PF1

rkF1
≤ PF2

rkF2
. Every ascending chain is bounded by E, then by Zorn’s Lemma, for

every subsheaf F there exists F ⊂ F ′ ⊂ E such that F ′ is maximal with respect to ≤.

Let F be ≤-maximal with F of minimal rank among all maximal subsheaves of E. Let

us show that F has the required properties.

Suppose there exists G ⊂ E with PG
rkG
≥ PF

rkF
. First, note that we can assume G ⊂ F

by replacing G by F ∩ G. Suppose that G * F , then F is a proper subsheaf of F + G

and hence PF
rkF

> PF+G

rkF+G
, by definition of F . From the sequence

0→ F ∩G→ F ⊕G→ F +G→ 0

we get

PF + PG = PF⊕G = PF∩G + PF+G

and

rkF + rkG = rk(F ⊕G) = rk(F ∩G) + rk(F +G) .

Calculating we have

rk(F ∩G)(
PG

rkG
− PF∩G

rk(F ∩G)
) =

rk(F +G)(
PF+G

rk(F +G)
− PF

rkF
) + (rkG− rk(F ∩G))(

PF
rkF

− PG
rkG

) .

Then, together with the two inequalities PF
rkF
≤ PG

rkG
and PF

rkF
> PF+G

rk(F+G)
we obtain

PG
rkG

− PF∩G
rk(F ∩G)

< 0

and hence
PF

rkF
<

PF∩G
rk(F ∩G)

,

which proves the assert that we can suppose G ⊂ F .

Now, let G ⊂ F with PG
rkG

> PF
rkF

such that G is ≤-maximal in F . Then let G′ ≥ G, ≤-

maximal in E. We obtain the inequalities PF
rkF

< PG
rkG
≤ PG′

rkG′
. Because of the maximality

of G′ and F it is G′ * F , because otherwise rk(G′) < rk(F ) but rk(F ) is minimal by

hypothesis. Therefore, F is a proper subsheaf of F+G′ and PF
rkF

>
PF+G′

rk(F+G′)
. The previous

inequalities PF
rkF

<
PG′
rkG′

and PF
rkF

>
PF+G′

rk(F+G′)
give

PF∩G′

rk(F ∩G′)
>

PG′

rkG′
≥ PG

rkG
.
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Given that G ⊂ F ∩G′ ⊂ F , we get a contradiction with the hypothesis on G.

Proof of the Theorem. Lemma 1.3.6 shows the existence of a Harder-Narasimhan

filtration for E. Let E1 the maximal destabilizing subsheaf and suppose that the corre-

sponding quotient E/E1 has a Harder-Narasimhan filtration,

0 ⊂ G0 ⊂ G1 ⊂ . . . ⊂ Gt−1 = E/E1 ,

by induction hypothesis. We define Ei+1 as the pre-image of Gi and it is
PE1

rkE1
>

PE2/E1

rkE2/E1

because, if not, we get
PE1

rkE1
≤ PE2

rkE2
, which contradicts the maximality of E1.

Next we prove the uniqueness. Let E• and E ′• be two Harder-Narasimhan filtrations

of the same sheaf E. We consider, without loss of generality,
PE′1
rkE′1

≥ PE1

rkE1
. Let j be the

minimal index verifying E ′1 ⊂ Ej. The composition

E ′1 → Ej → Ej/Ej−1

is a non-trivial homomorphism of semistable sheaves which implies

PEj/Ej−1

rkEj/Ej−1

≥
PE′1

rkE ′1
≥ PE1

rkE1

≥
PEj/Ej−1

rkEj/Ej−1

where first inequality comes from the fact that, if there exists a non-trivial homomorphism

between semistable sheaves, then the Hilbert polynomial of the target is greater or equal

than the one of the first sheaf. Therefore, equality holds everywhere, and this implies

that the index j is equal to 1, so that E ′1 ⊂ E1. Then, by semistability of E1, it is
PE′1
rkE′1

≤ PE1

rkE1
, and we can repeat the argument interchanging the roles of E1 and E ′1 to

show that E1 = E ′1. By induction we can assume that uniqueness holds for the Harder-

Narasimhan filtration of E/E1 to show that E ′i/E1 = Ei/E1, which completes the proof.

Remark 1.3.7. If a torsion free sheaf E is already semistable, we can still talk about its

Harder-Narasimhan filtration which is the trivial filtration 0 ⊂ E.

Next we show how the Harder-Narasimhan filtration looks like in the easiest case, for

an unstable vector bundle over X = P1
C.

Example 1.3.8. Let X = P1
C. We know, by a theorem of Grothendieck, that a vector

bundle E over P1
C splits on line bundles

E = OP1
C
(a1)⊕OP1

C
(a1)⊕· · ·⊕OP1

C
(a1)⊕OP1

C
(a2)⊕· · ·⊕OP1

C
(a2)⊕OP1

C
(a3)⊕· · ·⊕OP1

C
(as)
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with a1 > a2 > ... > as, and we call bi the number of times each line bundle OP1
C
(ai)

appears (c.f. [HL3, Theorem 1.3.1]). Thus, the slope of E is the average of the degrees

ai of the line bundles appearing in the decomposition of E,

µ(E) =
degE

rk E
=
a1b1 + · · ·+ asbs
b1 + · · ·+ bs

.

With the notation of Theorem 1.3.5, it is clear that

E1 = OP1
C
(a1)⊕OP1

C
(a1)⊕ · · · ⊕ OP1

C
(a1)

with

µ(E1) =

b1 times︷ ︸︸ ︷
a1 + · · ·+ a1

b1

= a1 > µ(E)

and

F = E/E1 = OP1
C
(a2)⊕ · · · ⊕ OP1

C
(a2)⊕OP1

C
(a3)⊕ · · · ⊕ OP1

C
(as) .

Then it is also

E2 = OP1
C
(a2)⊕ · · · ⊕ OP1

C
(a2)

which lifts to

E2 = OP1
C
(a1)⊕ · · · ⊕ OP1

C
(a1)⊕OP1

C
(a2)⊕ · · · ⊕ OP1

C
(a2) .

Repeating the process we obtain a filtration

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Es−1 ⊂ Es = E

where

Ei = OP1
C
(a1)⊕ . . .⊕OP1

C
(a1)⊕ . . .⊕OP1

C
(ai)⊕ · · · ⊕ OP1

C
(ai)

which is the Harder-Narasimhan filtration. It is clear that each Ei = Ei/Ei−1 is semistable

and µ(E1) > µ(E2) > µ(E3) > ... > µ(Es−1) > µ(Es).

1.3.2 Harder-Narasimhan filtration in an abelian category

Finally, we would like to close this section with some comments about stability notions

and the concept of the Harder-Narasimhan filtration in a more general context. Rudakov

defines in [Ru] a notion of stability for objects in an abelian category.

Let C be an abelian category. We define a preorder on the objects making possible

to compare two nonzero objects, i.e. if A 6= 0, B 6= 0 are objects of C it is one of the

following A ≺ B, A � B or A � B, being possible to have A � B although A 6= B.
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Definition 1.3.9. [Ru, Definition 1.1] A stability structure on C is a preorder on C
such that for every short exact sequence 0 → A → B → C → 0 it happens one of the

following

• A ≺ B ⇔ A ≺ C ⇔ B ≺ C

• A � B ⇔ A � C ⇔ B � C

• A � B ⇔ A � C ⇔ B � C

Note that this property is satisfied by the category of holomorphic vector bundles

over curves, if we associate to each object E the numerical function given by its slope

µ(E) =
degE

rkE

and define the preorder as

E ≺ F ⇔ µ(E) < µ(F ) E � F ⇔ µ(E) = µ(F ) .

Also, for torsion free sheaves over projective varieties, if we associate to each sheaf E

the polynomial function given by PE
rkE

, where PE is the Hilbert polynomial of E, we have

a stability structure in the corresponding category by defining the preorder with the

obvious relations between the polynomial functions.

Definition 1.3.10. An object A ∈ C is semistable if it is nonzero and for every non-

trivial subobject B ⊂ A, we have B 4 A. We say that A is stable if we have a strict

inequality for every nontrivial subobject.

Let us mention three properties for an abelian category C to have, in order to assure

that a Harder-Narasimhan filtration exists for an unstable object in C (these properties

appear in [Ru]).

Definition 1.3.11. An object A ∈ C is quasi-noetherian if a chain verifying

A1 ⊂ A2 ⊂ . . . ⊂ A

and

A1 4 A2 4 . . . 4 A

stabilizes. We say that C is quasi-noetherian if every A ∈ C is.
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Definition 1.3.12. An object A ∈ C is weakly-noetherian if it is quasi-noetherian

and a chain verifying

A1 ⊃ A2 ⊃ . . . ⊃ A

and

A1 < A2 < . . . < A

stabilizes. We say that C is weakly-noetherian if every A ∈ C is.

Definition 1.3.13. An object A ∈ C is weakly-artinian if a chain verifying

A1 ⊃ A2 ⊃ . . . ⊃ A

and

A1 4 A2 4 . . . 4 A

stabilizes. We say that C is weakly-artinian if every A ∈ C is.

Theorem 1.3.14. [Ru, Theorem 2] Let C be an abelian category with a given stability

structure, which is weakly-noetherian and weakly-artinian. For every object A ∈ C there

exists a filtration

0 ⊂ A1 ⊂ A2 ⊂ . . . ⊂ At ⊂ At+1 = A

such that

• A1 � A2 � . . . � At � At+1

• Every Ai is semistable

where Ai := Ai/Ai−1.

For an object to be quasi-noetherian it is needed to prove the existence and unique-

ness of a maximally destabilizing subobject (c.f. Lemma 1.3.6) and the stronger weakly-

noetherian is used when lifting the filtration of the quotient A/A1, which exists by hypoth-

esis in the recursion (c.f. Proof of Theorem 1.3.5). The condition of being weakly-artinian

assures that the recursive process when constructing the Harder-Narasimhan filtration

of an object finishes in a finite number of steps, i.e. the Harder-Narasimhan filtration is

finite.

An object is called noetherian if every ascending chain on it stabilizes. Clearly,

being noetherian implies being weakly-noetherian.
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Note that the category of coherent sheaves over a projective variety is abelian and

noetherian, as well as the category of finite dimensional representations of quivers (which

we will see in Chapter 3), hence the existence of a Harder-Narasimhan filtration in these

cases can be seen as a particular case of Theorem 1.3.14.

1.4 Kempf theorem

In the previous sections we have studied moduli problems for which we have to impose a

stability condition in order to have a moduli space with good properties. By rigidifying

the data, we add extra data to the objects we are classifying, and this leads us to an

action of a group in a space which changes the extra data, for a given object in the

moduli problem. Then, we use Geometric Invariant Theory to take the quotient by the

group and obtain a moduli space with the desired properties.

In the example of the construction of a moduli space for tensors (c.f. section 1.2), the

extra data we add to a tensor is the isomorphism between a vector space and a space of

global sections of the (twisted) sheaf of the tensor. Different isomorphisms differ by an

element of a general linear group, and this is the group we take the quotient by, using

GIT (c.f. subsection 1.2.3).

In this kind of constructions, one of the main points appears to be the correspondence

between semistable objects and semistable orbits or GIT semistable points (c.f. Theorem

1.2.31). Recall that GIT stability can be checked by 1-parameter subgroups (c.f. Hilbert-

Mumford criterion, Theorem 1.1.14): a point x is unstable if there exists any 1-parameter

subgroup Γ which makes some numerical function, the so-called minimal relevant weight

µ(x,Γ), positive.

The GIT stability criterion exposed in Theorem 1.1.13 asserts that a point x is GIT

unstable if there exists a 1-parameter subgroup Γ such that

lim Γ(t) · x̃
t→0

= 0 ,

where x̃ is a point in the affine cone, lying over x. This is, the Hilbert-Mumford criterion

says that the fact of 0 appearing as the limit point in the orbit of the linearized action

of the group G can be checked through 1-parameter subgroups. Then, Theorem 1.1.13,

the numerical criterion, expresses that fact with the positivity of the numerical function

µ(x,Γ).
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The function µ(x,Γ) can be thought as a measure of how rapidly we can reach 0 from

a point x̃ in the affine cone, lying over x, through different 1-parameter subgroups. Let

us see this with an easy example.

Example 1.4.1. Consider the group G = SL(3,C) and let Γ : C∗ → SL(3,C) be a

1-parameter subgroup. There exists a basis of C3 where Γ takes the diagonal formtΓ1 0 0

0 tΓ1 0

0 0 tΓ3

 ,

where we order the exponents as Γ1 < Γ2 < Γ3 and they verify Γ1 + Γ2 + Γ3 = 0.

Now consider that it acts on P3
C and let x = [0 : x2 : x3] be a point in homogeneous

coordinates, x2 6= 0, x3 6= 0. Let x̃ = (0, x2, x3) be a point in the affine cone lying over x.

Then, limt→0 Γ(t) · x̃ = limt→0(0, tΓ2 · x2, t
Γ3 · x3) and we say that Γ acts on the limit with

weight Γ2, the minimal relevant exponent of the action of Γ over x, i.e. µ(x,Γ) = Γ2.

A point is GIT unstable if 0 can be reached in the closure of the orbit of the linearized

action through 1-parameter subgroups. And limt→0 Γ(t) · x̃ = 0 if and only if Γ2 > 0.

Hence, x is GIT unstable if there exists any Γ with Γ2 > 0.

Observe that the specific value Γ2 can be thought as a measure of how rapidly we can

move from x̃ = (0, x2, 0) to 0. The greater Γ2 is, the faster limt→0 Γ(t) · x̃ takes x̃ to 0.

Hence, µ(x,Γ) encodes, in this sense, the speed of unstability.

A first question which arises is, could we possibly find a 1-parameter subgroup giving

the greatest speed of unstability as in Example 1.4.1?

The answer would be: not yet. Note that if we multiply the exponents appearing in

the diagonal of Γ by the same integer, we still obtain a 1-parameter subgroup of SL(3,C)

giving a positive value for µ(x,Γ), hence it also destabilizes the point x. But the value

µ(x,Γ) is multiplied by this integer, hence we cannot yet well define a unique 1-parameter

subgroup Γ giving maximum for µ(x,Γ). We have to introduce a notion of length in the

set of 1-parameter subgroups, to be able to calibrate this kind of features.

Let G be a connected reductive algebraic group over k and let T be a maximal torus.

Let N be the normalizer of T and let N/T be the Weyl group. Let Γ(G) be the set of

1-parameter subgroups of G. For a k-point g ∈ G and Γ ∈ Γ(G), define g ∗ Γ as the

1-parameter subgroup g ∗Γ(t) = g ·Γ(t) ·g−1. We define a notion of length for Γ ∈ Γ(G)

(c.f. [Ke, p. 305]).
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Definition 1.4.2. A length is a non-negative real function on Γ(G) verifying

• If g ∈ G is k-rational, ‖g ∗ Γ‖ = ‖Γ‖ for any Γ ∈ Γ(G).

• For any maximal torus T of G, there is a positive definite integral-valued bilinear

form ( , ) on Γ(T ) such that (Γ,Γ) = ‖Γ‖2, for any Γ ∈ Γ(T ).

As it is pointed out in [Ke], the first property is the invariance of the length by

the action of the Weyl group of G with respect to T . And, given a positive definite

integral-valued bilinear form ( , ) on Γ(T ) invariant by the Weyl group, where T is a

maximal torus, it corresponds to a unique length ‖ · ‖ on Γ(G), verifying the property

(Γ,Γ) = ‖Γ‖2, for any Γ ∈ Γ(G).

Remark 1.4.3. If G is simple in characteristic zero all choices of length will be multiples

of the Killing form in the Lie algebra g (note that in this case Γ(G) ⊂ g) and, in general,

for an almost simple group in arbitrary characteristic, all lengths differ also by a scalar

(c.f. [Ke, p. 305]).

However, if G has different simple factors, there are more choices of lengths. We

can obtain different lengths by choosing a linear combination of the Killing forms in each

simple factor with positive coefficients.

Given a choice of length in G, we can define the function appearing on [Ke, Theorem

2.2].

Definition 1.4.4. Let G be a reductive algebraic group over an algebraically closed field

of arbitrary characteristic. Let G×X → X be an action of G on a k-scheme X. Consider

a length in Γ(G), as in Definition 1.4.2. For a point x ∈ X and a 1-parameter subgroup

Γ ∈ Γ(G), let µ(x,Γ) be the numerical function of the Hilbert-Mumford criterion as in

Theorem 1.1.14. We define the following function

K(x,Γ) =
µ(x,Γ)

‖Γ‖
.

We call this function the Kempf function.

Remark 1.4.5. The numerator of the Kempf function is precisely the speed of unstability

we discussed about in Example 1.4.1, and the denominator serves for normalizing that

quantity with respect to scalar multiples of Γ. Then, we will refer to the 1-parameter

subgroup which maximally contradicts the stability condition in the sense of GIT by talking

of that Γ which gives maximum for the Kempf function K(x,Γ).
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Geometric Invariant Theory contains a study of the dependence of µ(x,Γ) with the

1-parameter subgroup Γ (c.f. [Mu, Section 2.2]). It is based on the previous study of

a metric space called the flag complex, by Tits, which is the space of 1-parameter

subgroups modulo certain equivalence relation for which, the values of µ(x,Γ) that we

obtain are multiples. Then, a new function can be defined on this flag complex, whose

positivity or negativity coincides with the one of µ(x,Γ), encoding GIT stability but

forgetting about rescaling the minimal relevant weight µ(x,Γ) with multiples of the 1-

parameter subgroups.

The conjecture of Mumford-Tits (as it is stated in the introduction of [Ke], or Tits’

center conjecture in [MFK, Appendix 2B], see [Mu, p. 64]) says that, if a k-rational point

x is unstable with respect to the action of G, we can find a special 1-parameter subgroup

giving maximum for the Kempf function K(x,Γ). Kempf explores this idea in [Ke] and

solves positively the Mumford-Tits conjecture, finding that there exists an special class

of 1-parameter subgroups which moves most rapidly toward the origin. Kempf shows it

in more generality, using a closed G-invariant set S, instead of just the one point set {0},
to define a point to be S-unstable if the closure of its orbit intersects S. Kempf uses this

to prove that the Hilbert-Mumford criterion (i.e. the checking of the GIT stability of a

point by 1-parameter subgroups) holds for actions of algebraic groups over algebraically

closed fields of arbitrary characteristic first, and then, the analogous result for perfect

fields. For a correspondence between Kempf and Mumford’s GIT language, see [MFK,

Appendix 2B].

The precise statement of the Kempf’s result is the following:

Theorem 1.4.6. [Ke, Theorem 2.2] Let G be a reductive algebraic group over an alge-

braically closed field of arbitrary characteristic. Let G × X → X be an action of G on

a k-scheme X. Let x ∈ X be a k-point and suppose that x is GIT unstable, i.e. there

exists a 1-parameter subgroup Γ such that µ(x,Γ) > 0. Define a length in Γ(G) as in

Definition 1.4.2 and consider the Kempf function K(x,Γ) = µ(x,Γ)
‖Γ‖ . Then, the function

K(x,Γ) achieves a maximum B, taken over all Γ ∈ Γ(G) and there exists a parabolic

subgroup P ⊂ G such that in each maximal torus T conjugated by P , there exists a unique

1-parameter subgroup Γ ∈ Γ(T ) achieving the maximal value K(x,Γ) = B.

We can say that the Harder-Narasimhan filtration (c.f. section 1.3) is the best filtra-

tion which destabilizes an unstable object, with respect to the given definition of stability,

among all possible filtrations by subobjects. Its construction (c.f. Theorem 1.3.5) is based

on the existence of a maximally destabilizing subobject (c.f. Lemma 1.3.6 in the case of



92 CHAPTER 1. MODULI SPACES AND MAXIMAL UNSTABILITY

sheaves), which tells us that there is no better choice for the first element of the filtration.

Then, the recursive process of the construction implies that, at every step, we do the best

possible, finding maximally destabilizing subobjects for the quotients which successively

appear. Given an unstable object, we can obtain a maximally destabilizing subobject,

and follow the construction to complete it until the Harder-Narasimhan filtration.

On the other hand, Theorem 1.4.6 implies that, whenever we have a GIT unstable

point, we can find a special 1-parameter subgroup giving maximal unstability in the

sense of Geometric Invariant Theory, with respect to maximizing the Kempf function in

Definition 1.4.4.

Then, consider a notion of stability for a category such that there exists a construction

of a moduli space of semistable (or stable) objects. Consider that the construction of the

moduli space is given through Geometric Invariant Theory, by means of rigidifying the

data and taking the quotient of a space by a group, to get rid of the extra data. In that

case, we have a correspondence between unstable objects and GIT unstable objects (as

in Theorem 1.2.31 in the construction of the moduli of tensors). In some cases, to give

a notion of maximal unstability for an unstable object we have the Harder-Narasimhan

filtration. And, to give a notion of GIT maximal unstability we have the 1-parameter

subgroup given by Kempf in Theorem 1.4.6.

Therefore, the natural question which arises is,

Is the Harder-Narasimhan filtration related to the 1-parameter subgroup

given by Kempf?

The main purpose of this thesis will be to explore this idea by establishing a corre-

spondence between both notions which answers positively the question in different cases.



Chapter 2

Correspondence between Kempf and

Harder-Narsimhan filtrations

2.1 Torsion free sheaves over projective varieties

In this first section of the chapter, we describe the main case of the correspondence

between the 1-parameter subgroup giving the GIT maximal unstability in the sense of

Kempf (c.f. Theorem 1.4.6) and the Harder-Narasimhan filtration (c.f. Theorem 1.3.5).

The machinery and the ideas described here will serve, in the remaining sections of the

chapter, to prove the analogous result for other other moduli problems.

Let X be a smooth complex projective variety, and let OX(1) be an ample line bundle

on X. If E is a coherent sheaf on X, let PE be its Hilbert polynomial with respect to

OX(1), i.e., PE(m) = χ(E ⊗OX(m)).

We will briefly describe the construction of the moduli space for these objects. This

is originally due to Gieseker for surfaces (c.f. [Gi1]), and it was generalized to higher

dimension by Maruyama (c.f. [Ma1, Ma2]). First, we give Giesekers’s definition of

stability for torsion free sheaves. Recall that, if P and Q are polynomials, we write

P ≤ Q if P (m) ≤ Q(m) for m� 0.

Definition 2.1.1. [Gi1, Definition 0.1] A torsion free sheaf E on X is called semistable

93
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if for all proper subsheaves F ⊂ E, the following inequality between polynomials hold,

PF
rkF

≤ PE
rkE

.

If strict inequality holds for every proper subsheaf, we say that E is stable.

To construct the moduli space of torsion free sheaves with fixed Hilbert polynomial

P , we choose a suitably large integer m and consider the Quot scheme parametrizing

quotients

V ⊗OX(−m) −→ E (2.1.1)

where V is a fixed vector space of dimension P (m) and E is a sheaf with PE = P . The

Quot scheme has a canonical action by SL(V ). Gieseker (c.f. [Gi1]) gives a linearization

of this action on a certain ample line bundle, in order to use Geometric Invariant Theory

to take the quotient by the action. The moduli space of semistable sheaves is obtained

as the GIT quotient.

As we said, at the beginning of section 1.3, the construction of a moduli space for

semistable torsion free sheaves solves the classification problem partially. If a sheaf E is

not semistable, it is called unstable, and it has a canonical filtration:

Theorem 2.1.2. [HN, Proposition 1.3.9] Given a torsion free sheaf E, there exists a

unique filtration

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E ,

which satisfies the following properties, where Ei := Ei/Ei−1:

1. The Hilbert polynomials verify

PE1

rkE1
>

PE2

rkE2
> . . . >

PEt+1

rkEt+1

2. Every Ei is semistable

This filtration is called the Harder-Narasimhan filtration of E

Proof. C.f. Theorem 1.3.5.

In this section we will develop a series of arguments to establish a correspondence

between the 1-parameter subgroup given by Kempf in Theorem 1.4.6 and the Harder-

Narasimhan filtration in Theorem 2.1.2 to show that both notions do coincide.



2.1. TORSION FREE SHEAVES OVER PROJECTIVE VARIETIES 95

2.1.1 Moduli space and Kempf theorem

We will recall Gieseker’s construction (c.f. [Gi1]) of the moduli space of semistable torsion

free sheaves with fixed Hilbert polynomial P and fixed determinant det(E) ∼= ∆.

Recall that a coherent sheaf is called m-regular if hi(E(m− i)) = 0 for all i > 0 (c.f.

Definition 1.2.12 and Lemma 1.2.13). Let m be a suitable large integer, so that E is

m-regular for all semistable E (c.f. [Ma1, Corollary 3.3.1 and Proposition 3.6]). Let V

be a vector space of dimension p := P (m). Given an isomorphism V ∼= H0(E(m)) we

obtain a quotient

q : V ⊗OX(−m)� E ,

hence a homomorphism

Q : ∧rV ∼= ∧rH0(E(m)) −→ H0(∧r(E(m))) ∼= H0(∆(rm)) =: A

and points

Q ∈ Hom(∧rV,A) Q ∈ P(Hom(∧rV,A)) ,

where Q is well defined up to a scalar because the isomorphism det(E) ∼= ∆ is well

defined up to a scalar, and hence Q is a well defined point the the projective space. Two

different isomorphisms between V and H0(E(m)) differ by the action of an element of

GL(V ), but, since an homothecy does not change the point Q, to get rid of the choice of

isomorphism it is enough to take the quotient by the action of SL(V ).

We recall from section 1.2 the correspondence between weighted filtrations and 1-

parameter subgroups. A weighted filtration (V•, n•) of V is a filtration

0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vt ⊂ Vt+1 = V, (2.1.2)

and rational numbers n1, n2, . . . , nt > 0. To a weighted filtration we associate a vector

of Cp defined as Γ =
∑t

i=1 niΓ
(dimVi) where

Γ(k) :=
( k︷ ︸︸ ︷
k − p, . . . , k − p,

p−k︷ ︸︸ ︷
k, . . . , k

)
(1 ≤ k < p) . (2.1.3)

Hence, the vector is of the form

Γ = (

dimV 1︷ ︸︸ ︷
Γ1, . . . ,Γ1,

dimV 2︷ ︸︸ ︷
Γ2, . . . ,Γ2, . . . ,

dimV t+1︷ ︸︸ ︷
Γt+1, . . . ,Γt+1) ,
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where V i = Vi/Vi−1. Giving the numbers n1, . . . , nt is equivalent to giving the numbers

Γ1, . . . ,Γt+1 by setting

ni =
Γi+1 − Γi

p
and

t+1∑
i=1

Γi dimV i = 0 .

A 1-parameter subgroup of SL(V ) is a non-trivial homomorphism

Γ : C∗ → SL(V ) .

To a 1-parameter subgroup we associate a weighted filtration as follows. There is a basis

{e1, . . . , ep} of V where it has a diagonal form

t 7→ diag
(
tΓ1 , . . . , tΓ1 , tΓ2 , . . . , tΓ2 , . . . , tΓt+1 , . . . , tΓt+1

)
with Γ1 < · · · < Γt+1. Let

0 ⊂ V1 ⊂ · · · ⊂ Vt+1 = V

be the associated filtration. Finally recall that two 1-parameter subgroups give the same

filtration if and only if they are conjugate by an element of the parabolic subgroup of

SL(V ) defined by the filtration.

The basis {e1, . . . , ep}, together with a basis {wj} of A, induces a basis of Hom(∧rV,A)

indexed in a natural way by tuples (i1, . . . , ir, j) with i1 < · · · < ir, and the coordinate

corresponding to such an index is acted by the 1-parameter subgroup as

Qi1,··· ,ir,j 7→ tΓi1+···+ΓirQi1,··· ,ir,j .

The coordinate (i1, . . . , ir, j) of the point corresponding to E is non-zero if and only if

the evaluations of the sections e1, . . . , er are linearly independent for generic x ∈ X.

Therefore, the numerical function (i.e. the minimal relevant weight) which has to be

calculated to apply Hilbert-Mumford criterion for GIT stability (c.f. Theorem 1.1.14) is

µ(Q, V•, n•) = min{Γi1 + · · ·+ Γir : Qi1,...,ir,j 6= 0}
= min{Γi1 + · · ·+ Γir : Q(ei1 ∧ · · · ∧ eir) 6= 0}
= min{Γi1 + · · ·+ Γir : ei1(x), . . . , eir(x) (2.1.4)

linearly independent for generic x ∈ X}

After a short calculation (originally due to Gieseker) we obtain

µ(Q, V•, n•) =
t∑
i=1

ni(r dimVi − ri dimV ) =
t+1∑
i=1

Γi
dimV

(ri dimV − r dimV i) (2.1.5)
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(recall ni = Γi+1−Γi
p

), where ri = rkEi, Ei is the sheaf generated by evaluation of the

sections of Vi and ri = rkEi, being Ei = Ei/Ei−1.

By the Hilbert-Mumford criterion in Theorem 1.1.14, a point

Q ∈ P(Hom(∧rV,A))

is GIT semistable if and only if for all weighted filtrations, it is

µ(Q, V•, n•) ≤ 0 .

A point Q is GIT stable if we get a strict inequality for all weighted filtrations. Using

the previous calculation, this can be stated as follows:

Lemma 2.1.3. A point Q is GIT semistable (resp. GIT stable) if for all weighted

filtrations (V•, n•)
t∑
i=1

ni(r dimVi − ri dimV ) ≤ 0

(resp. <).

A weighted filtration (E•, n•) of a sheaf E of rank r is a filtration

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E, (2.1.6)

and rational numbers n1, n2, . . . , nt > 0. To a weighted filtration we associate a vector

of Cr defined as γ =
∑t

i=1 niγ
(rkEi) where

γ(k) :=
( k︷ ︸︸ ︷
k − r, . . . , k − r,

r−k︷ ︸︸ ︷
k, . . . , k

)
(1 ≤ k < r) .

Hence, the vector is of the form

γ = (
rkE1︷ ︸︸ ︷

γ1, . . . , γ1,

rkE2︷ ︸︸ ︷
γ2, . . . , γ2, . . . ,

rkEt+1︷ ︸︸ ︷
γt+1, . . . , γt+1) ,

where ni =
γi+1 − γi

r
, and Ei = Ei/Ei−1.

The following theorem follows from [Gi1, Ma1, Ma2].

Theorem 2.1.4. Let E be a sheaf. There exists an integer m0(E) such that, for m >

m0(E), the associated point Q is GIT semistable if and only if the sheaf is semistable.
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From this property, Gieseker, in the case of algebraic surfaces and, later, Maruyama,

for higher dimensional varieties, constructs a moduli space of semistable torsion free

sheaves as the GIT quotient, which is a projective scheme (c.f. [Gi1, Theorem 0.3], [Ma2,

Theorem 4.11]).

Let E be an unstable torsion free sheaf over X of Hilbert polynomial P . We choose

an integer m0 larger than m0(E) (c.f. Theorem 2.1.4), also larger than the integer used

in Gieseker’s construction of the moduli space, and such that E is m-regular. Let V be

a vector space of dimension P (m) = h0(E(m)) and fix an isomorphism V ' H0(E(m)).

Recall that, through Geometric Invariant Theory, stability of a point in the parameter

space can be checked by 1-parameter subgroups (c.f. Hilbert-Mumford criterion, Theorem

1.1.14). In other words, a point is unstable if there exists any 1-parameter subgroup which

makes the quantity (2.1.5) positive. It is a natural question to ask if there exists a best

way of destabilizing a GIT unstable point in this sense, i.e. a 1-parameter subgroup

which gives maximum for (2.1.5).

As we showed in Section 1.4, Kempf explores this idea in [Ke] and answers yes to the

question, finding that there exists an special class of 1-parameter subgroups which moves

most rapidly toward the origin.

We have seen that giving a weighted filtration, i.e. a filtration of vector subspaces

V1 ⊂ · · · ⊂ Vt ⊂ V and rational numbers n1, · · · , nt > 0, is equivalent to giving a

parabolic subgroup with weights, which determines uniquely the vector Γ of a 1-parameter

subgroup and two of these 1-parameter subgroup are conjugated by the parabolic and

come from the same weighted filtration. Hence, the data of Γ is equivalent to the data

of (V•, n•).

Define the function in Definition 1.4.4,

K(x,Γ) =
µ(x,Γ)

‖Γ‖
.

as the following function

K(x,Γ) =

∑t
i=1 ni(r dimVi − ri dimV )√∑t+1

i=1 dimV iΓ2
i

= µ(V•, n•) , (2.1.7)

which we call Kempf function. The numerator of the function coincides with the

calculation of the minimal relevant weight by Hilbert-Mumford criterion for GIT stability

(c.f. (2.1.5)), and the denominator is a function || · || in the set Γ(SL(V )) of 1-parameter



2.1. TORSION FREE SHEAVES OVER PROJECTIVE VARIETIES 99

subgroups of SL(V ), which is precisely the norm of the vector

Γ = (

dimV 1︷ ︸︸ ︷
Γ1, . . . ,Γ1,

dimV 2︷ ︸︸ ︷
Γ2, . . . ,Γ2, . . . ,

dimV t+1︷ ︸︸ ︷
Γt+1, . . . ,Γt+1)

associated to each 1-parameter subgroup Γ.

To define the Kempf function we need to choose a length in Γ(SL(V )) (c.f. Definition

1.4.2). Recall that for a simple group G (as it is the case of G = SL(V )) every bilinear

symmetric invariant form is a multiple of the Killing form (c.f. Remark 1.4.3), and this

norm ||Γ|| we choose verifies these properties. Hence, the function we defined in (2.1.7)

is a Kempf function as in Definition 1.4.4.

We take the GIT quotient by the group G = SL(V ), for which, Theorem 1.4.6 (c.f.

[Ke, Theorem 2.2]) states that whenever there exists any Γ giving a positive value for

the numerator of the function (i.e. whenever there exists a 1-parameter subgroup whose

numerical function (2.1.5) is positive, which is equivalent to the sheaf E to be unstable),

there exists a unique parabolic subgroup containing a unique 1-parameter subgroup in

each maximal torus, giving maximum for the Kempf function i.e., there exists a unique

weighted filtration for which the Kempf function achieves a maximum.

Note that µ(V•, n•) = µ(V•, αn•), for every α > 0, hence by multiplying each ni by the

same scalar α, which we call rescaling the weights, we get another 1-parameter subgroup

but the same value for the Kempf function. Hence, we divide by the norm in the Kempf

function to get a well defined maximal weighted filtration, i.e. defined up to rescaling.

Therefore, Theorem 1.4.6 rewritten in our case asserts the following:

Theorem 2.1.5. There exists a unique weighted filtration

0 ⊂ V1 ⊂ · · · ⊂ Vt+1 = V

and rational numbers n1, · · · , nt > 0, up to multiplication by a scalar, called the Kempf

filtration of V, such that the Kempf function µ(V•, n•) achieves the maximum among

all filtrations and positive weights ni > 0.

We construct a filtration by subsheaves of E out of the Kempf filtration of V in Theo-

rem 2.1.5. Recall that E is an unstable torsion free sheaf over X of Hilbert polynomial P .

Let m be an integer, m ≥ m0 and let V be a vector space of dimension P (m) = h0(E(m))

(recall that m0 was defined before). We fix an isomorphism V ' H0(E(m)) and let

V1 ⊂ · · · ⊂ Vt+1 = V be the filtration of vector spaces given by Theorem 2.1.5, called the
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Kempf filtration of V. For each index i, let Em
i ⊂ E be the subsheaf generated by Vi

under the evaluation map. We call this filtration

0 ⊆ Em
1 ⊆ Em

2 ⊆ · · · ⊆ Em
t ⊆ Em

t+1 = E ,

the m-Kempf filtration of E. Note that it depends on the integer m we choose in the

process.

The question we finished Section 1.4 with was

Is the Harder-Narasimhan filtration related to the 1-parameter subgroup

given by Kempf?

The maximal unstability with respect to Definition 2.1.1 is given by the Harder-

Narasimhan filtration (c.f. Theorem 2.1.2) and the GIT maximal unstability is encoded

in the Kempf filtration of V , by Theorem 2.1.5. This filtration of vector subspaces can

be evaluated to get a filtration of subsheaves, the m-Kempf filtration of E, depending on

an integer m. Therefore, the previous question turns out to be more concrete:

Does the m-Kempf filtration coincide with the Harder-Narasimhan filtra-

tion?

The answer will be yes. In the following pages we will develop a technique to prove

the following two theorems:

Theorem 2.1.6. There exists an integer m′ � 0 such that the m-Kempf filtration of E

is independent of m, for m′ ≥ m.

This filtration we obtain, independent of the integer m, will be called the Kempf

filtration of E.

Theorem 2.1.7. The Kempf filtration of an unstable torsion free coherent sheaf E co-

incides with the Harder-Narasimhan filtration of E.

The method we use to prove Theorem 2.1.6 and Theorem 2.1.7 will be translated to

other moduli problems to prove an analogous result in the subsequent sections of this

chapter.
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2.1.2 Results on convexity

In this subsection we define the machinery which will serve us in the following. We study

a function on a convex set, and how to maximize it. It will turn out to be that this

function will be in correspondence with the Kempf function and we will use the results

of this subsection to figure out properties about the Kempf filtration.

Endow Rt+1 with an inner product (·, ·) defined by a diagonal matrix b1 0
. . .

0 bt+1


where bi are positive integers. Let

C =
{
x ∈ Rt+1 : x1 < x2 < · · · < xt+1

}
,

C =
{
x ∈ Rt+1 : x1 ≤ x2 ≤ · · · ≤ xt+1

}
,

and let v = (v1, · · · , vt+1) ∈ Rt+1 − {0} verifying
∑t+1

i=0 vib
i = 0. Define the function

µv : C − {0} → R

Γ 7→ µv(Γ) =
(Γ, v)

||Γ||

and note that µv(Γ) = ||v|| · cos β(Γ, v), where β(Γ, v) is the angle between Γ and v.

Then, the function µv(Γ) does not depend on the norm of Γ and takes the same value on

every point of the ray spanned by each Γ.

Assume that there exists Γ ∈ C with µv(Γ) > 0. In that case, we want to find a vector

Γ ∈ C which maximizes the function defined before.

Let wi = −bivi, w0 = 0, wi = w1 + · · · + wi, b0 = 0, and bi = b1 + · · · + bi. Note

that wt+1 = 0, by construction. We draw a graph joining the points with coordinates

(bi, wi). Note that this graph has t+ 1 segments, each segment has slope −vi and width

bi. This is the graph drawn with a thin line in the figure. Now draw the convex envelope

of this graph (thick line in Figure 2.1), whose coordinates we denote by (bi, w̃i), and

let us define Γi = − w̃i−w̃i−1

bi
. In other words, the quantities −Γi are the slopes of the

convex envelope graph. We call the vector defined in this way Γv. Note that the vector

Γv = (Γ1, · · · ,Γt+1) belongs to C by construction and Γv 6= 0.
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(b1, w̃1)
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(b2, w̃2)

(b3, w̃3 = w3)
(b4, w̃4)

(b4, w4)

(b5, w̃5 = w5)

Figure 2.1: Convex envelope Γv of v

Remark 2.1.8. Observe that w̃i > wi, then Γi = Γi+1. Indeed, if w̃i > wi, there will be

a segment in the convex envelope joining two vertices such that wj = w̃j and wk = w̃k,

with j < i and i < k. Then, it is clear that all segments joining the intermediate heights

w̃l, j < l < k, will have the same slope, in particular Γi = Γi+1.

Theorem 2.1.9. The vector Γv defined in this way (c.f. Figure 2.1) gives a maximum

for the function µv on its domain.

Before proving the theorem we need some lemmas.

Lemma 2.1.10. Let v = (v1, · · · , vt+1) ∈ Rt+1 − {0} verifying
∑t+1

i=0 vib
i = 0. Let Γ be

the point in C which is closest to v. Then Γ achieves the maximum of µv.

Proof. For any α ∈ R>0, the vector αΓ is also in C, so in particular Γ is the closest

point to v in the line αΓ. This point is the orthogonal projection of v into the line αΓ,

and the distance is

||v|| sin β(v,Γ) , (2.1.8)

where β(Γ, v) is the angle between Γ and v. But, a vector Γ ∈ C minimizes (2.1.8) if and

only if it maximizes

||v|| cos β(Γ, v) =
(Γ, v)

||Γ||
,
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so the lemma is proved.

We say that an affine hyperplane in Rt+1 separates a point v from C if v is on one

side of the hyperplane and all the points of C are on the other side of the hyperplane.

Lemma 2.1.11. Let v /∈ C. A point Γ ∈ C − {0} gives minimum distance to v if and

only if the hyperplane Γ + (v − Γ)⊥ separates v from C.

Proof. ⇒) Let Γ ∈ C and assume that there is a point w ∈ C on the same side of the

hyperplane as v. The segment going from Γ to w is in C (by convexity of C), but there

are points in this segment (near Γ), which are closer to v than Γ.

⇐) Let Γ be a point in C such that Γ + (v − Γ)⊥ separates v from C. Let w ∈ C
be another point. Let w′ be the intersection of the hyperplane and the segment which

goes from w to v. Since the hyperplane separates C from v, either w′ = w or w′ is in the

interior of the segment. Therefore

d(w, v) ≥ d(w′, v) ≥ d(Γ, v) ,

where the last inequality follows from the fact that Γ is the orthogonal projection of v

to the hyperplane.

Proof of the Theorem 2.1.9. Let Γv = (Γ1, ...,Γt+1) be the vector in the hypothesis

of the theorem. If v ∈ C, then Γv = v, and use Lemma 2.1.10 to conclude. If v /∈ C,
by Lemmas 2.1.10 and 2.1.11, it is enough to check that the hyperplane Γv + (v − Γv)

⊥

separates v from C.
Let Γv + ε ∈ C, ε ∈ Rt+1. The condition that Γv + ε belongs to C means that

εi − εi+1 < Γi+1 − Γi (2.1.9)

The hyperplane separates v from C if and only if (v− Γv, ε) < 0 for all such ε. Therefore

we calculate (using the convention w̃0 = 0, w0 = 0, and w̃t+1 = wt+1 = 0)

(v − Γv, ε) =
t+1∑
i=1

bi(vi − Γi)εi =
t+1∑
i=1

(−wi + (w̃i − w̃i−1))εi =

=
t+1∑
i=1

(
(w̃i − w̃i−1)− (wi − wi−1)

)
εi =

t+1∑
i=1

(w̃i − wi)(εi − εi+1) .

If w̃i = wi, then the corresponding summand is zero. On the other hand, if w̃i > wi,

then Γi+1 = Γi (c.f. Remark 2.1.8), and (2.1.9) implies εi − εi+1 < 0. In any case, the
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summands are always non-positive, and there is at least one which is negative (because

v /∈ C and then v 6= Γv and w̃i > wi for at least one i). Hence

(v − Γv, ε) < 0 .

Therefore, the function µv(Γ) achieves its maximum for the value Γv ∈ C − {0} (or

any other point on the ray αΓv) defined as the convex envelope of the graph associated

to v.

2.1.3 Graph and identification

In the last section we studied a geometrical function, µv(Γ), very similar to the Kempf

function. This new function depends on two arguments, one is a vector Γ ∈ C − {0},
where

C =
{
x ∈ Rt+1 : x1 ≤ x2 ≤ · · · ≤ xt+1

}
,

and the other is v = (v1, · · · , vt+1) ∈ Rt+1 − {0} verifying
∑t+1

i=0 vib
i = 0, for certain

coefficients bi of an inner product in an Euclidean space. We will relate both functions

where the first argument Γ will be associated to a 1-parameter subgroup (or to a weighted

filtration (V•, n•) which we recall that is equivalent), and the second one will be associated

to the numerical invariants of the Kempf filtration of V ,

0 ⊂ V1 ⊂ · · · ⊂ Vt+1 = V

(c.f. Theorem 2.1.5) and the m-Kempf filtration of E

0 ⊆ Em
1 ⊆ Em

2 ⊆ · · · ⊆ Em
t ⊆ Em

t+1 = E

obtained by evaluating. With this, we will be able to prove properties of the filters

appearing on the different m-Kempf filtrations for each m, out from convexity properties

of the function µv (c.f. Theorem 2.1.9). Both functions have to be maximized by the

convex envelope of the graph defined by v, or the Kempf filtration of V , therefore both

notions have to correspond to the same filtrations. And to make precise that relation,

we have to encode the m-Kempf filtration as a graph.

Definition 2.1.12. Let m ≥ m0. Given 0 ⊂ V1 ⊂ · · · ⊂ Vt+1 = V , a filtration of vector

spaces of V , define

vm,i = mn+1 · 1

dimV i dimV

[
ri dimV − r dimV i

]
,
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bim =
1

mn
dimV i > 0 ,

wim = −bim · vm,i = m · 1

dimV

[
r dimV i − ri dimV

]
.

Also let

bm,i = b1
m + . . .+ bim =

1

mn
dimVi ,

wm,i = w1
m + . . .+ wim = m · 1

dimV

[
r dimVi − ri dimV

]
.

We call the graph defined by points (bm,i, wm,i) the graph associated to the filtration

V• ⊂ V .

Now we can identify the Kempf function (2.1.7) in Theorem 2.1.5

µ(V•, n•) =

∑t
i=1 ni(r dimVi − ri dimV )√∑t+1

i=1 dimV iΓ2
i

,

with the function in Theorem 2.1.9 up to a factor which is a power of m, by defining

vm,i, the coordinates of vector vm, and bim, the eigenvalues of the inner product, as in

Definition 2.1.12. Note that −vm,i are the slopes of the graph associated to the filtration

V• ⊂ V . To give the weights ni is the same that to give the coordinates Γi (recall

the discussion about the correspondence between 1-parameter subgroups of SL(V ) and

weighted filtrations). Also note that
∑t+1

i=1 vm,ib
i
m = 0. Then, an easy calculation shows

that

Proposition 2.1.13. For every integer m, the following equality holds

µ(V•, n•) = m(−n
2
−1) · µvm(Γ)

between the Kempf function (2.1.7) in Theorem 2.1.5 and the function in Theorem 2.1.9.

In the following, we will omit the subindex m for the numbers vm,i, bm,i, wm,i in the

definition of the graph associated to a filtration of vector spaces, where it is clear from

the context. Hence, given V ' H0(E(m)) we will refer to a filtration V• ⊂ V and a

vector v = (v1, . . . , vt+1) as the vector of the graph associated to the filtration.

Remark 2.1.14. We introduce the factor mn+1 in Definition 2.1.12 for convenience,

so that vm,i and bim have order zero on m, because dimV = P (m) appears in their

expressions. Then, the size of the graph does not change when m grows.
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Now, let us prove two lemmas encoding the convexity properties of the graph as-

sociated to the Kempf filtration. They will be strongly used in the following, to show

properties shared by the possible filters Em
i appearing in the different m-Kempf filtrations

and, finally, to prove Theorems 2.1.6 and Theorem 2.1.7.

Lemma 2.1.15. Let 0 ⊂ V1 ⊂ · · · ⊂ Vt+1 = V be the Kempf filtration of V (cf. Theorem

2.1.5). Let v = (v1, ..., vt+1) be the vector of the graph associated to this filtration by

Definition 2.1.12. Then

v1 < v2 < . . . < vt < vt+1 ,

i.e., the graph is convex.

Proof. By Theorem 2.1.5 the maximum of µ(V•, n•) among all filtrations V• ⊂ V and

weights ni > 0,∀i is achieved by a unique weighted filtration (V•, n•), ni > 0,∀i, up to

rescaling. Let V• ⊂ V be this filtration, and allow ni to vary. By Proposition 2.1.13

µ(V•, n•) is equal to µv up to a constant factor. By Theorem 2.1.9, µv achieves the

maximum on Γv. The vector Γv corresponds to the weights ni given by Theorem 2.1.5.

Summing up, if V• ⊂ V is Kempf filtration of V , then the vector Γv = (Γ1, . . . ,Γt+1)

verifies Γi < Γi+1,∀i.
Assume that, for the Kempf filtration of V , there exists some i such that vi ≥ vi+1.

Then v /∈ C and, by Lemma 2.1.10, Γv ∈ C\C, which means that there exists some j with

Γj = Γj+1, but we have just seen that this is impossible.

Lemma 2.1.16. Let 0 ⊂ V1 ⊂ · · · ⊂ Vt+1 = V be the Kempf filtration of V (cf. Theorem

2.1.5). Let W be a vector space with Vi ⊂ W ⊂ Vi+1 and consider the new filtration

V ′• ⊂ V

0 ⊂ V ′1 ⊂ · · · ⊂ V ′i ⊂ V ′i+1 ⊂ V ′i+2 ⊂ · · · ⊂ V ′t+2 = V

|| || || || || ||
0 ⊂ V1 ⊂ Vi ⊂ W ⊂ Vi+1 ⊂ · · · ⊂ Vt+1 = V

(2.1.10)

Then, v′i+1 ≥ vi+1. We say that the Kempf filtration is the convex envelope of

every refinement.

Proof. The graph associated to V ′• ⊂ V has one more point than the graph associated

to V• ⊂ V , hence it is a refinement of the graph associated to Kempf filtration of V .

Therefore the convex envelope of the graph associated to v′ has to be equal to the graph

associated to v, and this happens only when the extra point associated to W is not above
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the graph associated to v, which means that the slope −v′i+1 has to be less or equal than

−vi+1.

Remark 2.1.17. Note that Lemmas 2.1.15 and 2.1.16 assert two properties similar to

the ones of the Harder-Narasimhan filtration (c.f. Theorem 2.1.2). This will be the key

point in the proof of Theorem 2.1.7.

Hence, we will prove that, for m large enough, the m-Kempf filtration stabilizes in

the sense Em
i = Em+l

i ,∀i, ∀l > 0, in Theorem 2.1.6. The m-Kempf filtration for m � 0

will be called the Kempf filtration of E, and the goal is to show that it coincides with

the Harder-Narasimhan filtration of E in Theorem 2.1.7.

2.1.4 Properties of the m-Kempf filtration

We will show that the filters appearing in the different m-Kempf filtrations form a

bounded family.

First recall Lemma 1.2.15 in subsection 1.2.2. Also recall the definition of the Hilbert

polynomials of OX in (1.2.10) and E in (1.2.11). Then, let us define

C = max{r|µmax(E)|+ d

r
+ r|B|+ |A|+ 1 , 1}, (2.1.11)

a positive constant.

Proposition 2.1.18. Given an integer m and a vector space V ' H0(E(m)), we have

the Kempf filtration V• ⊂ V ' H0(E(m)) (c.f. Theorem 2.1.5) and, by evaluation, the

m-Kempf filtration Em
• ⊂ E. There exists an integer m2 such that for m ≥ m2, each

filter in the m-Kempf filtration of E has slope µ(Em
i ) ≥ d

r
− C.

Proof. Choose an m1 ≥ m0 such that for m ≥ m1

[µmax(E) + gm+B]+ = µmax(E) + gm+B

and

[
d

r
− C + gm+B]+ =

d

r
− C + gm+B .

Now, let m ≥ m1 and let

0 ⊆ Em
1 ⊆ Em

2 ⊆ · · · ⊆ Em
t ⊆ Em

t+1 = E
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be the m-Kempf filtration of E.

Suppose we have a filter Em
i ⊆ E, of rank ri and degree di, such that µ(Em

i ) < d
r
−C.

The subsheaf Em
i (m) ⊂ E(m) satisfies the estimate in Lemma 1.2.15,

h0(Em
i (m)) ≤ 1

gn−1n!

(
(ri − 1)([µmax(E

m
i ) + gm+B]+)n + ([µmin(Em

i ) + gm+B]+)n
)
,

where µmax(E
m
i (m)) = µmax(E

m
i ) + gm and similarly for µmin.

Note that µmax(E
m
i ) ≤ µmax(E) and µmin(Em

i ) ≤ µ(Em
i ) < d

r
− C, so

h0(Em
i (m)) ≤ 1

gn−1n!

(
(ri − 1)([µmax(E) + gm+B]+)n + ([

d

r
− C + gm+B]+)n

)
,

and, by choice of m,

h0(Em
i (m)) ≤ 1

gn−1n!

(
(ri − 1)(µmax(E) + gm+B)n + (

d

r
− C + gm+B)n

)
= G(m) ,

where

G(m) =
1

gn−1n!

[
rig

nmn + ngn−1
(
(ri − 1)µmax(E) +

d

r
− C + riB

)
mn−1 + · · ·

]
.

Recall that, by Definition 2.1.12, to such filtration we associate a graph with heights,

for each j,

wj = w1 + . . .+ wj = m · 1

dimV

[
r dimVj − rj dimV

]
.

To reach a contradiction, it is enough to show that wi < 0. In that case, the graph has

to be convex by Lemma 2.1.15. If wi < 0 there is a j < i such that −vj < 0, because

the graph starts at the origin. Hence, the rest of the slopes of the graph are negative,

−vk < 0, k ≥ i, because the slopes have to be decreasing. Then wi > wi+1 > . . . wt+1,

and wt+1 < 0. But it is

wt+1 = m · 1

dimV

[
r dimVt+1 − rt+1 dimV

]
= 0 ,

because rt+1 = r and Vt+1 = V , then the contradiction.

Let us show that wi < 0. Since Em
i (m) is generated by Vi under the evaluation map,

it is dimVi ≤ h0(Em
i (m)), hence

wi =
m

dimV

[
r dimVi − ri dimV

]
≤

≤ m

P (m)

[
rh0(Em

i (m))− riP (m)
]
≤ m

P (m)

[
rG(m)− riP (m)

]
.
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Hence, wi < 0 is equivalent to

Ψ(m) = rG(m)− riPE(m) < 0 ,

where Ψ(m) = ξnm
n + ξn−1m

n−1 + · · · + ξ1m + ξ0 is an nth-order polynomial. Let us

calculate the nth-coefficient:

ξn = (rG(m)− riP (m))n = r
rig

n!
− ri

rg

n!
= 0 .

Then, Ψ(m) has no coefficient in order nth. Let us calculate the (n− 1)th-coefficient:

ξn−1 = (rG(m)− riP (m))n−1 = (rGn−1 − ri
A

(n− 1)!
) ,

where Gn−1 is the (n− 1)th-coefficient of the polynomial G(m),

Gn−1 =
1

gn−1n!
ngn−1((ri − 1)µmax(E) +

d

r
− C + riB) =

1

(n− 1)!
((ri − 1)µmax(E) +

d

r
− C + riB) ≤

1

(n− 1)!
((ri − 1)|µmax(E)|+ d

r
− C + ri|B|) ≤

1

(n− 1)!
(r|µmax(E)|+ d

r
− C + r|B|) < −|A|

(n− 1)!
,

last inequality coming from the definition of C in (2.1.11). Then

ξn−1 < r
( −|A|

(n− 1)!

)
− ri

A

(n− 1)!
=
−r|A| − riA

(n− 1)!
< 0

because −r|A| − riA < 0.

Therefore Ψ(m) = ξn−1m
n−1 + · · ·+ ξ1m+ ξ0 with ξn−1 < 0, so there exists m2 ≥ m1

such that for m ≥ m2 we will have Ψ(m) < 0 and wi < 0, then the contradiction.

Proposition 2.1.19. There exists an integer m3 such that for m ≥ m3 the sheaves Em
i

and Em,i = Em
i /E

m
i−1 are m3-regular. In particular their higher cohomology groups, after

twisting with OX(m3), vanish and they are generated by global sections.

Proof. Note that µ(Em
i ) ≤ µmax(E). Then, although Em

i depends on m, its slope is

bounded above and below by numbers which do not depend on m, (cf. Proposition

2.1.18) and furthermore it is a subsheaf of E. Hence, the set of possible isomorphism

classes for Em
i is bounded. Apply Serre Vanishing Theorem choosing m3 ≥ m2.
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Proposition 2.1.20. Let m ≥ m3. For each filter Em
i in the m-Kempf filtration, we

have dimVi = h0(Em
i (m)), therefore Vi ∼= H0(Em

i (m)).

Proof. Let V• ⊆ V be the Kempf filtration of V (cf. Theorem 2.1.5) and let Em
• ⊆ E

be the m-Kempf filtration of E. We know that each Vi generates the subsheaf Em
i , by

definition, then we have the following diagram:

0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vt+1 = V

∩ ∩ ||
H0(Em

1 (m)) ⊂ H0(Em
2 (m)) ⊂ · · · ⊂ H0(Em

t+1(m)) = H0(E(m))

Suppose that there exists an index i such that Vi 6= H0(Em
i (m)). Let i be the index

such that Vi 6= H0(Em
i (m)) and ∀j > i it is Vj = H0(Em

j (m)). Then we have the diagram:

Vi ⊂ Vi+1

∩ ||
H0(Em

i (m)) ⊆ H0(Em
i+1(m))

(2.1.12)

Therefore Vi ( H0(Em
i (m)) ⊆ Vi+1 and we can consider a new filtration by adding

the filter H0(Em
i (m)):

Vi ⊂ H0(Em
i (m)) ⊂ Vi+1

|| || ||
V ′i ⊂ V ′i+1 ⊂ V ′i+2

(2.1.13)

Note that we are in situation of Lemma 2.1.16, where W = H0(Em
i (m)), filtration V•

is (2.1.12) and filtration V ′• is (2.1.13).

The graph associated to filtration V•, by Definition 2.1.12, is given by the points

(bi, wi) =
(dimVi
mn

,
m

dimV
(r dimVi − ri dimV )

)
,

where the slopes of the graph are given by

−vi =
wi

bi
=
wi − wi−1

bi − bi−1

=

mn+1

dimV

(
r − ri dimV

dimV i

)
≤ mn+1

dimV
· r := R

and equality holds if and only if ri = 0.
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Now, the new point which appears in the graph of the filtration V ′• is

Q =
(h0(Em

i (m))

mn
,

m

dimV
(rh0(Em

i (m))− ri dimV )
)
.

Point Q joins two new segments appearing in this new graph. The slope of the

segment between (bi, wi) and Q is, by a similar calculation,

−v′i+1 =
mn+1

dimV
· r = R .

By Lemma 2.1.15, the graph is convex, so v1 < v2 < . . . < vt+1. As Em
1 is a non-zero

torsion free sheaf, it has positive rank r1 = r1 and so it follows v1 > −R. On the other

hand, by Lemma 2.1.16, v′i+1 ≥ vi+1. Hence

−R < v1 < v2 < . . . < vi+1 ≤ v′i+1 = −R ,

which is a contradiction.

Therefore, dimVi = h0(Em
i (m)), for every filter in the m-Kempf filtration.

Corollary 2.1.21. For every filter Em
i in the m-Kempf filtration, it is ri = rkEm

i /E
m
i−1 >

0.

Proof. In the proof of Proposition 2.1.20 we have seen that ri = 0 is equivalent to

−vi = R. Then, the result follows from that because it is r1 = r1 > 0 and −R < v1 <

v2 < . . . < vt+1.

2.1.5 Proof of Theorem 2.1.6: the m-Kempf filtration stabilizes

In Proposition 2.1.19 we have seen that, for any m ≥ m3, all the filters Em
i of the

m-Kempf filtration of E are m3-regular. Hence, Em
i (m3) is generated by the subspace

H0(Em
i (m3)) of H0(E(m3)), and the filtration of sheaves

0 ⊂ Em
1 ⊂ Em

2 ⊂ · · · ⊂ Em
tm ⊂ Em

tm+1 = E

is the filtration associated to the filtration of vector spaces

0 ⊂ H0(Em
1 (m3)) ⊂ H0(Em

2 (m3)) ⊂ · · · ⊂ H0(Em
tm(m3)) ⊂ H0(Em

tm+1(m3)) = H0(E(m3))

by the evaluation map (c.f. Lemma 1.2.13). Note that the dimension of the vector space

H0(E(m3)) does not depend on m and, by Corollary 2.1.21, the length tm + 1 of the

m-Kempf filtration of E is, at most, equal to r, the rank of E, a bound which does not

also depend on m. Note that, also because of Corollary 2.1.21, each subsheaf in the

m-Kempf filtration of E is strictly contained in the following one, for m ≥ m3.
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Definition 2.1.22. We call m-type to the tuple of different Hilbert polynomials appear-

ing in the m-Kempf filtration of E

(Pm
1 , . . . , P

m
tm+1) ,

where Pm
i := PEmi .

Note that P i,m := PEmi /Emi−1
= PEmi − PEmi−1

, so they are defined in terms of elements

of each m-type.

Proposition 2.1.23. For all integers m ≥ m3, the set of possible m-types

P =
{

(Pm
1 , . . . , P

m
tm+1)

}
is finite.

Proof. Once we fix V ∼= H0(E(m3)) of dimension h0(E(m3)) (which does not depend

on m), all possible filtrations by vector subspaces of V are parametrized by a finite-type

scheme. Therefore the set of all possible m-Kempf filtrations of E, for m ≥ m3, is

bounded and P is finite.

Recall that the vector v can be recovered from the filtration V• ⊂ V and the vector

Γ from the weights ni. Then, given m, the m-Kempf filtration achieves the maximum

for the Kempf function µ(V•, n•) (c.f. (2.1.7)), which is the same, by Proposition 2.1.13,

that achieving the maximum for the function

µv(Γ) =
(Γ, v)

||Γ||
,

among all vectors v coming from filtrations V• ⊂ V and vectors Γ ∈ C − {0}, where

C =
{
x ∈ Rt+1 : x1 < x2 < · · · < xt+1

}
.

By Definition 2.1.12 we associate a graph to the m-Kempf filtration, given by vm.

Recall that, by Lemma 2.1.15 the graph is convex, meaning vm ∈ C, which implies

Γvm = vm by Lemma 2.1.10. Then, given vm associated to the m-Kempf filtration

max
Γ∈C

µvm(Γ) = µvm(Γvm) =
(Γvm , vm)

||Γvm||
=

(vm, vm)

||vm||
= ||vm|| , (2.1.14)

where recall that we defined in Definition 2.1.12

vm,i = mn+1 · 1

dimV i dimV

[
ri dimV − r dimV i

]
,
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bim =
1

mn
· dimV i ,

and, thanks to Propositions 2.1.19 and 2.1.20, we can rewrite

vm,i = mn+1 · 1

P i,m(m)P (m)

[
riP (m)− rP i,m(m)

]
,

bim =
1

mn
· P i,m(m) .

Let

vm,i(l) = mn+1 · 1

P i,m(l)P (l)

[
riP (l)− rP i,m(l)

]
be the coordinates of the graph associated to the m-Kempf filtration but where the

polynomials are evaluated at another variable l. Let us define

Θm(l) = (µvm(l)(Γvm(l)))
2 = ||vm(l)||2 ,

where the second equality follows by an argument similar to (2.1.14). Note that Θm(l)

is a rational function on l. Let

A = {Θm : m ≥ m3}

which is a finite set by Proposition 2.1.23. We say that f1 ≺ f2 for two rational functions,

if the inequality f1(l) < f2(l) holds for l � 0, and let K be the maximal function in the

finite set A, with respect to the defined ordering.

Note that the value Θm(m) is the square of the maximum of the Kempf function

µvm(Γ), by (2.1.14), achieved for the maximal filtration V• ⊂ V ' H0(E(m)) of vector

spaces which gives the vector vm. This weighted filtration is the only one which gives the

value
√

Θm(m) for the Kempf function.

Lemma 2.1.24. There exists an integer m4 ≥ m3 such that ∀m ≥ m4, Θm = K.

Proof. Choose m4 such that K(l) ≥ Θm(l), ∀l ≥ m4 and every Θm ∈ A with equality

only when Θm = K. Let m ≥ m4. Given that the Kempf function achieves the maximum

over all possible filtrations and weights (c.f. Theorem 2.1.5), we have Θm(m) ≥ K(m),

because K is another rational function built with other m′-type, i.e., other values for the

polynomials appearing on the rational function (c.f. Definition 2.1.22). Combining both

inequalities we obtain Θm(m) = K(m) for all m ≥ m4.

Proposition 2.1.25. Let l1 and l2 be integers with l1 ≥ l2 ≥ m4. Then the l1-Kempf

filtration of E is equal to the l2-Kempf filtration of E.
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Proof. By construction, the filtration

H0(El1
1 (l1)) ⊂ H0(El1

2 (l1)) ⊂ · · · ⊂ H0(El1
t1(l1)) ⊂ H0(El1

t1+1(l1)) = H0(E(l1)) (2.1.15)

is the l1-Kempf filtration of V ' H0(E(l1)). Now consider the filtration V ′• ⊂ V '
H0(E(l1)) defined as follows

H0(El2
1 (l1)) ⊂ H0(El2

2 (l1)) ⊂ · · · ⊂ H0(El2
t2(l1)) ⊂ H0(El2

t2+1(l1)) = H0(E(l1)) . (2.1.16)

We have to prove that (2.1.16) is in fact the l1-Kempf filtration of V ' H0(E(l1)).

Since l1, l2 ≥ m4, by Lemma 2.1.24 we have Θl1 = Θl2 = K. Then, Θl1(l1) = Θl2(l1)

and, by uniqueness of the Kempf filtration (c.f. Theorem 2.1.5), the filtrations (2.1.15)

and (2.1.16) coincide. Since, in particular l1, l2 ≥ m3, El1
i and El2

i are l1-regular by

Proposition 2.1.19. Hence, El1
i (l1) and El2

i (l1) are generated by their global sections (c.f.

Lemma 1.2.13) H0(El1
i (l1)) and H0(El2

i (l1)), respectively. By the previous argument,

H0(El1
i (l1)) = H0(El2

i (l1)), therefore El1
i (l1) = El2

i (l1). By tensoring with OX(−l1), this

implies that the filtrations El1
• ⊂ E and El2

• ⊂ E coincide.

Therefore, Theorem 2.1.6 follows from Proposition 2.1.25 and it is proved that, even-

tually, the Kempf filtration does not depend on the integer m.

Definition 2.1.26. If m ≥ m4, the m-Kempf filtration of E is called the Kempf

filtration of E,

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E .

2.1.6 Proof of Theorem 2.1.7: Kempf filtration is Harder-Narasimhan

filtration

Recall that the Kempf theorem (c.f. Theorem 2.1.5) asserts that given an integer m and

V ' H0(E(m)), there exists a unique weighted filtration of vector spaces V• ⊆ V which

gives maximum for the Kempf function

µ(V•, n•) =

∑t+1
i=1

Γi
dimV

(ri dimV − r dimV i)√∑t+1
i=1 dimV iΓ2

i

.

This filtration induces a filtration of sheaves, called the Kempf filtration of E,

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E
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which is independent of m, for m ≥ m4, by Proposition 2.1.25, hence it only depends on

E. From now on, we assume m ≥ m4.

Based on the fact we can rewrite the Kempf function as a certain scalar product

divided by a norm (c.f. Proposition 2.1.13), we shave seen that the Kempf filtration

is encoded by a graph with two convexity properties (c.f. Lemmas 2.1.15 and 2.1.16).

We can express the data related to the filtration of vector spaces with the data of the

filtration of sheaves. Since m ≥ m3, the sheaves Ei and Ei are m-regular ∀i, and

dimVi = h0(Ei(m)) = PEi(m) =: Pi(m)

dimV i = h0(Ei(m)) = PEi(m) =: P i(m)
(2.1.17)

(c.f. Proposition 2.1.19 and Proposition 2.1.20). Recall that the Kempf function is a

function on m, with order m−
n
2
−1 at zero (c.f. Proposition 2.1.13) then we consider the

function K, where

K(m) = m
n
2

+1 · µ(V•,m•) = µvm(Γ) .

Making the substitutions (2.1.17), and using the relation γi = r
P

Γi (c.f. (2.1.2) and

(2.1.6)),

K(m) = m
n
2

+1 ·
∑t+1

i=1
γi
r

[(riP − rP i)]√∑t+1
i=1 P

i P 2

r2 γ2
i

,

which is a function on m whose square is a rational function (since P and P i are poly-

nomials on m). Therefore we get

K(m) = m
n
2

+1 · 1

P

∑t+1
i=1 γi[r

iP − rP i]√∑t+1
i=1 P

iγ2
i

.

Proposition 2.1.27. Given a sheaf E, there exists a unique filtration

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E

with positive weights n1, . . . , nt, ni = γi+1−γi
r

, which gives maximum for the function

K(m) = m
n
2

+1 ·
∑t+1

i=1 P
iγi[

ri

P i
− r

P
]√∑t+1

i=1 P
iγ2
i

.

Similarly, we have defined the coordinates vi (slopes of segments of the graph), as

vi = mn+1 ·
[ ri
P i
− r

P

]
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(c.f. Definition 2.1.12). Therefore we can express the function K as

K(m) = m−
n
2 ·
∑t+1

i=1 P
iγivi√∑t+1

i=1 P
iγ2
i

= m−
n
2 · (γ, v)

||γ||
,

where the scalar product is given by the diagonal matrix
P 1 0

P 2

. . .

0 P t+1


Finally, we use Lemmas 2.1.15 and 2.1.16 to show that the Kempf filtration verifies

the two properties of the Harder-Narasimhan filtration for sheaves (c.f. Theorem 1.3.5)

hence, by uniqueness, both filtrations have to coincide.

Proposition 2.1.28. Given the Kempf filtration of a sheaf E,

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E

it verifies
P 1

r1
>
P 2

r2
> . . . >

P t+1

rt+1

Proof. The coordinates of the vector v associated to the filtration are, for m large

enough, vi = mn+1 · ( ri
P i
− r

P
). Now apply Lemma 2.1.15 which says that v is convex, i.e.

v1 < . . . < vt+1.

Proposition 2.1.29. Given the Kempf filtration of a sheaf E,

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E ,

each one of the blocks Ei = Ei/Ei−1 is semistable.

Proof. Consider the graph associated to the Kempf filtration of E. Suppose that any

of the blocks has a destabilizing subsheaf. Then, it corresponds to a point above of the

graph of the filtration. The graph obtained by adding this new point is a refinement of

the graph of the Kempf filtration, whose convex envelope is not the original graph, which

contradicts Lemma 2.1.16.
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Corollary 2.1.30 (c.f. Theorem 2.1.7). The Kempf filtration of a sheaf E coincides with

the Harder-Narasimhan filtration.

Proof. By Propositions 2.1.28 and 2.1.29 the Kempf filtration verifies the two properties

of the Harder-Narasimhan filtration. By uniqueness of the Harder-Narasimhan filtration

(c.f. Theorem 1.3.5) both filtrations do coincide.

2.2 Holomorphic pairs

In this section we prove the correspondence between the Kempf filtration and the Harder-

Narasimhan filtration for holomorphic pairs. It follows the scheme of the proof given for

torsion free coherent sheaves in section 2.1. First, we give some definitions and the

notion of stability for the construction of the moduli space of holomorphic pairs. It can

be deduced from the construction of the moduli space of tensors in section 1.2.

Let X be a smooth complex projective variety. Let us consider holomorphic pairs

(E,ϕ : E → OX)

given by a coherent torsion free sheaf of rank r with fixed determinant det(E) ∼= ∆ and

a morphism to a the structure sheaf OX . Note that the definition of holomorphic pair

coincides with the definition of tensor in Definition 1.2.1, with s = 1, c = 1, b = 0,

R = SpecC and D = OX is the structure sheaf over X ×R ' X.

A weighted filtration (E•, n•) of a sheaf E of rank r is a filtration

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E, (2.2.1)

and rational numbers n1, n2, . . . , nt > 0.

Let δ be a polynomial of degree at most dimX − 1 and positive leading coefficient.

We rephrase Definition 1.2.5 for the case of holomorphic pairs. See also the calculation

made in (1.2.7).

Definition 2.2.1. A holomorphic pair (E,ϕ) is δ-semistable if for all weighted filtra-

tions (E•, n•) (c.f. (2.2.1)),

t∑
i=1

ni(rPEi − riPE) + δ

t∑
i=1

ni
(
ri − ε(Ei)r

)
≤ 0 ,
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where ε(Ei) = 1 if ϕ|Ei 6= 0 and ε(Ei) = 0 otherwise. If the strict inequality holds for

every weighted filtration, we say that (E,ϕ) is δ-stable. If (E,ϕ) is not δ-semistable, we

say that it is δ-unstable.

Definition 2.2.2. Given a holomorphic pair (E,ϕ : E → OX), let (E ′, ϕ|E′) be a

subpair where E ′ ⊂ E is a subsheaf and ϕ|E′ is the restriction of the morphism ϕ.

Let E ′′ = E/E ′ and define the holomorphic pair (E ′′, ϕ|E′′) where, if ϕ|E′ 6= 0, define

ϕ|E′′ := 0, and if ϕ|E′ = 0, ϕ|E′′ is the induced morphism in the quotient sheaf. We

call (E ′′, ϕ|E′′) a quotient pair of (E,ϕ). For every pair (E,ϕ : E → OX), define

ε(E) = 1 if ϕ|E 6= 0 and ε(E) = 0 otherwise. Recall that we define a morphism of pairs

(E,ϕ)→ (F, ψ) as a morphism of sheaves α : E → F such that ψ◦α = ϕ (c.f. Definition

1.2.1).

Definition 2.2.3. Let (E,ϕ : E → OX) be a holomorphic pair. We define the corrected

Hilbert polynomial of (E,ϕ) as

PE := PE − δε(E)

Note that the exact sequence of sheaves

0→ E ′ → E → E ′′ → 0

verify

PE = PE′ + PE′′

for the corrected polynomials.

Remark 2.2.4. Note that the definition of quotient pair in Definition 2.2.2 does not

imply that

0→ (E ′, ϕ|E′)→ (E,ϕ)→ (E ′′, ϕ|E′′)→ 0

is an exact sequence in the category of tensors, where E ′ ⊂ E and E ′′ := E/E ′. Nonethe-

less, we keep that definition for the additivity of the corrected Hilbert polynomials to hold

on exact sequences of sheaves.

From Definition 2.2.1 it can be directly deduced the following equivalent definition,

which appears on [HL2, Definition 1.1].

Proposition 2.2.5. A pair (E,ϕ) is δ-unstable if and only if there exists a subpair

(F, ϕ|F ) with PF
rkF

> PE
rkE

.
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Proof. If (E,ϕ) is δ-unstable, there exists a filtration

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E

and weights ni > 0 such that

t∑
i=1

ni(rPEi − riPE) + δ
t∑
i=1

ni
(
ri − ε(Ei)r

)
=

t∑
i=1

ni
(
r(PEi − δε(Ei))− ri(PE − δ)

)
=

t∑
i=1

ni(rPEi − riPE) > 0 .

As the weights ni are positive, there exists any i such that

rPEi − riPE > 0⇔

PEi

rkEi
>

PE

rkE
.

On the other hand, if there exists (F, ϕ|F ) with PF
rkF

> PE
rkE

, the one-step filtration

0 ⊂ F ⊂ E

gives a positive quantity in the expression of Definition 2.2.1. Therefore (E,ϕ) is δ-

unstable.

2.2.1 Moduli space of holomorphic pairs

We recall the construction of the moduli space of δ-semistable pairs with fixed polynomial

P and fixed determinant det(E) ' ∆. This was done in [HL1] following Gieseker’s ideas,

and in [HL2] following Simpson’s ideas. Here, we use Gieseker’s method (although [HL1]

assumes that X is a curve or a surface, thanks to Simpson’s bound [Si1, Corollary 1.7],

we can follow Gieseker’s method for any dimension). As we said at the beginning of

the section, the construction can be derived from the construction of a moduli space for

tensors in section 1.2, where s = 1, c = 1, b = 0, R = SpecC and D = OX is the

structure sheaf over X ×R ' X, (c.f. Definition 1.2.1).

Let m be an integer, so that E is m-regular for all semistable E (c.f. [Ma1, Corollary

3.3.1 and Proposition 3.6]). Let V be a vector space of dimension p := P (m). Given an

isomorphism V ∼= H0(E(m)), we obtain a quotient

q : V ⊗OX(−m)� E ,



120 CHAPTER 2. CORRESP. KEMPF AND HARDER-NARASIMHAN

hence a homomorphism

Q : ∧rV ∼= ∧rH0(E(m)) −→ H0(∧r(E(m))) ∼= H0(∆(rm)) =: A

and points

Q ∈ Hom(∧rV,A) Q ∈ P(Hom(∧rV,A)) .

The morphism ϕ : E −→ OX induces a homomorphism

Φ : V = H0(E(m)) −→ H0(OX(m)) =: B

and hence points

Φ ∈ Hom(V,B) Φ ∈ P(Hom(V,B)) .

If we change the isomorphism V ∼= H0(E(m)) by a homothecy, we obtain another point

in the line defined by Q, but the point Q does not change, and similarly for Φ.

Two different isomorphisms V ∼= H0(E(m)) differ by an element of SL(V ), hence

this group acts on the two projective spaces we have defined. We choose a polarization

O(a1, a2) (c.f. (1.2.32)) to give a linearization of the action of SL(V ). By the Hilbert-

Mumford criterion (c.f. Theorem 1.1.14), a point

(Q,Φ) ∈ P(Hom(∧rV,A))× P(Hom(V,B))

is GIT semistable with respect to the natural linearization on O(a1, a2) if and only if

for all weighted filtrations it is

µ(Q, V•, n•) +
a2

a1

µ(Φ, V•, n•) ≤ 0 ,

where each numerical function µ is the calculation of the minimal relevant weight of the

action of a 1-parameter subgroup Γ on each projective space. Recall from section 1.2 the

correspondence between 1-parameter subgroups and weighted filtrations (V•, n•).

Proposition 2.2.6. A point (Q,Φ) is GIT a2/a1-semistable if for all weighted filtra-

tions (V•, n•) we have

t∑
i=1

ni(r dimVi − ri dimV ) +
a2

a1

t∑
i=1

ni
(

dimVi − εi(Φ) dimV
)
≤ 0 .
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Proof. C.f. Proposition 1.2.29.

Recall that ri is the rank of the subsheaf Ei ⊂ E generated by Vi by the evaluation

map. Also recall that, if j is the index giving minimum in (1.2.37), we will define

εi(Φ, V•) = 1 if i ≥ j and εi(Φ, V•) = 0 otherwise. We will denote εi(Φ, V•) by just εi(Φ)

if the filtration V• is clear from the context. Let us call εi(Φ) = εi(Φ)− εi−1(Φ) and note

that εi(Φ, V•) = ε(EVi), in Definition 2.2.2.

Remark 2.2.7. Note that the definition of εi(Φ) is independent of the weights n• or the

vector Γ associated to them. Indeed, εi(Φ, V•) = ε(EVi) only depends on the vanishing of

the morphism ϕ on the subsheaves EVi (c.f. Definition 2.2.2).

Theorem 2.2.8. Let (E,ϕ) be a holomorphic pair. There exists an integer m0 such that,

for m ≥ m0, the associated point (Q,Φ) is GIT a2/a1-semistable if and only if the pair

is δ-semistable, where
a2

a1

=
rδ(m)

PE(m)− δ(m)

Proof. C.f. Theorem 1.2.31.

Let (E,ϕ) be a δ-unstable holomorphic pair. Let m0 be the integer in Theorem 2.2.8

(i.e. such that the δ-stability of the tensor coincides with the GIT stability). If necessary,

choose another m0 such that the sheaf E is m0-regular.

Let m ≥ m0 be an integer and let V be a vector space of dimension P (m) = h0(E(m)).

Fix an isomorphism V ' H0(E(m)). Given a filtration of vector subspaces 0 ⊂ V1 ⊂
· · · ⊂ Vt+1 = V and positive numbers n1, · · · , nt > 0, i.e., given a weighted filtration, we

define now the function

µ(V•, n•) =

∑t
i=1 ni(r dimVi − ri dimV ) + a2

a1

∑t
i=1 ni

(
dimVi − εi(Φ) dimV

)
(≤)0√∑t+1

i=1 dimV iΓ2
i

,

which is a Kempf function for this problem, as in the case of sheaves (c.f. Definition

1.4.4).

We can apply Theorem 2.1.5 to obtain

0 ⊂ V1 ⊂ · · · ⊂ Vt+1 = V , (2.2.2)

the Kempf filtration of V . Let

0 ⊆ (Em
1 , ϕ|Em1 ) ⊆ (Em

2 , ϕ|Em2 ) ⊆ · · · (Em
t , ϕ|Emt ) ⊆ (Em

t+1, ϕ|Emt+1
) ⊆ (E,ϕ) (2.2.3)
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be the m-Kempf filtration of the pair (E,ϕ), where Em
i ⊂ E is the subsheaf generated

by Vi under the evaluation map.

We will apply the same techniques as in section 2.1 to prove the following theorem:

Theorem 2.2.9. There exists an integer m′ � 0 such that the m-Kempf filtration of the

holomorphic pair (E,ϕ) is independent of m, for m ≥ m′.

2.2.2 The m-Kempf filtration stabilizes with m

In this subsection we give a proof of Theorem 2.2.9, based on the same arguments as

in the case of sheaves. As we did in section 2.1, we associate a graph to the m-Kempf

filtration of a δ-unstable pair (E,ϕ), to relate the Kempf function with the function µv(Γ)

in Theorem 2.1.9.

Definition 2.2.10. Let m ≥ m0. Given 0 ⊂ V1 ⊂ · · · ⊂ Vt+1 = V a filtration of vector

spaces of V , let

vm,i = mn+1 · 1

dimV i dimV

[
ri dimV − r dimV i +

a2

a1

(εi(Φ) dimV − dimV i)
]
,

bim =
1

mn
dimV i > 0

wim = −bim · vm,i = m · 1

dimV

[
r dimV i − ri dimV +

a2

a1

(dimV i − εi(Φ) dimV )
]
.

Also let

bm,i = b1
m + . . .+ bim =

1

mn
dimVi ,

wm,i = w1
m + . . .+ wim = m · 1

dimV

[
r dimVi − ri dimV +

a2

a1

(dimVi − εi(Φ) dimV )
]
.

We call the graph defined by points (bm,i, wm,i) the graph associated to the filtration

V• ⊂ V .

Now, applying Proposition 2.1.13, we can identify as well the new Kempf function in

Theorem 2.1.5,

µ(V•, n•) =

∑t
i=1 ni(r dimVi − ri dimV ) + a2

a1

∑t
i=1 ni

(
dimVi − εi(Φ) dimV

)√∑t+1
i=1 dimV iΓ2

i

,

with the function in Theorem 2.1.9, where the coordinates of the graph are now given as

in Definition 2.2.10.
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We will use Lemmas 2.1.15 and 2.1.16, to give the analogous to Propositions 2.1.18

and 2.1.20 for the case of holomorphic pairs.

Let

C = max{r|µmax(E)|+ d

r
+ r|B|+ |A|+ δn−1(n− 1)! + 1 , 1} (2.2.4)

be positive constant, where δn−1 is the (n−1)th-degree coefficient of the polynomial δ(m)

(if deg(δ) < n− 1, then set δn−1 = 0).

Proposition 2.2.11. Given a sufficiently large m, each filter Em
i in the m-Kempf filtra-

tion of (E,ϕ) (cf. (2.2.3)) has slope µ(Em
i ) ≥ d

r
− C.

Proof. Choose an integer m1 such that for m ≥ m1

[µmax(E) + gm+B]+ = µmax(E) + gm+B

and

[
d

r
− C + gm+B]+ =

d

r
− C + gm+B .

Let m2 be such that PE(m)−δ(m) > 0 for m ≥ m2. Now consider m ≥ max{m0,m1,m2}
and let

0 ⊆ (Em
1 , ϕ|Em1 ) ⊆ (Em

2 , ϕ|Em2 ) ⊆ · · · (Em
t , ϕ|Emt ) ⊆ (Em

t+1, ϕ|Emt+1
) ⊆ (E,ϕ)

be the m-Kempf filtration of (E,ϕ).

Suppose we have a filter Em
i ⊆ E, of rank ri and degree di, such that µ(Em

i ) < d
r
−C.

The subsheaf Em
i (m) ⊂ E(m) satisfies the estimate in Lemma 1.2.15,

h0(Em
i (m)) ≤ 1

gn−1n!

(
(ri − 1)([µmax(E

m
i ) + gm+B]+)n + ([µmin(Em

i ) + gm+B]+)n
)
,

where µmax(E
m
i (m)) = µmax(E

m
i ) + gm and similarly for µmin.

Note that µmax(E
m
i ) ≤ µmax(E) and µmin(Em

i ) ≤ µ(Em
i ) < d

r
− C, so

h0(Em
i (m)) ≤ 1

gn−1n!

(
(ri − 1)([µmax(E) + gm+B]+)n + ([

d

r
− C + gm+B]+)n

)
,

and, by choice of m,

h0(Em
i (m)) ≤ 1

gn−1n!

(
(ri − 1)(µmax(E) + gm+B)n + (

d

r
− C + gm+B)n

)
= G(m) ,
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where

G(m) =
1

gn−1n!

[
rig

nmn + ngn−1
(
(ri − 1)µmax(E) +

d

r
− C + riB

)
mn−1 + · · ·

]
.

Recall that, by Definition 2.1.12, to the filtration (2.2.2) we associate a graph with

heights, for each j

wj = w1 + . . .+ wj = m · 1

dimV

[
r dimVj − rj dimV +

a2

a1

(dimVj − εj(Φ) dimV )
]
.

We will show that wi < 0 and will get a contradiction as in Proposition 2.1.18. Since

Em
i (m) is generated by Vi under the evaluation map, it is dimVi ≤ h0(Em

i (m)), hence

wi =
m

dimV

[
r dimVi − ri dimV +

a2

a1

(dimVi − εi(Φ) dimV )
]
≤

m

PE(m)

[
rh0(Em

i (m))− riPE(m) +
rδ(m)

PE(m)− δ(m)
(h0(Em

i (m))− εi(Φ)PE(m))
]
≤

m

PE(m)

[
rG(m)− riPE(m) +

rδ(m)

PE(m)− δ(m)
(G(m)− εi(Φ)PE(m))

]
=

m ·
[
(PE(m)− δ(m))(rG(m)− riPE(m)) + (rδ(m))(G(m)− εi(Φ)PE(m))

]
PE(m)(PE(m)− δ(m))

.

Hence, wi < 0 is equivalent to

Ψ(m) = (PE(m)− δ(m))(rG(m)− riPE(m)) + (rδ(m))(G(m)− εi(Φ)PE(m)) < 0

and Ψ(m) = ξ2nm
2n + ξ2n−1m

2n−1 + · · · + ξ1m + ξ0 is a (2n)th-order polynomial. Let us

calculate the higher order coefficient:

ξ2n = (PE(m)− δ(m))n(rG(m)− riPE(m))n + (rδ(m))n(G(m)− εi(Φ)PE(m))n =

(PE(m)− δ(m))n(r
rig

n!
− ri

rg

n!
) + 0 = 0 .

Then, Ψ(m) has no coefficient in order (2n)th. Let us calculate the (2n− 1)th-coefficient:

ξ2n−1 = (PE(m)− δ(m))n(rG(m)− riPE(m))n−1 + (rδ(m))n−1(G(m)− εi(Φ)PE(m))n =

rg

n!
(rGn−1 − ri

A

(n− 1)!
) + rδn−1(

rig

n!
− εi(Φ)

rg

n!
)

where Gn−1 is the (n− 1)th-coefficient of the polynomial G(m),

Gn−1 =
1

gn−1n!
ngn−1((ri − 1)µmax(E) +

d

r
− C + riB) =
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1

(n− 1)!
((ri − 1)µmax(E) +

d

r
− C + riB) ≤

1

(n− 1)!
((ri − 1)|µmax(E)|+ d

r
− C + ri|B|) ≤

1

(n− 1)!
(r|µmax(E)|+ d

r
− C + r|B|) < −|A|

(n− 1)!
− δn−1 ,

last inequality coming from the definition of C in (2.2.4). Then

ξ2n−1 <
rg

n!

(
r(
−|A|

(n− 1)!
− δn−1)− ri

A

(n− 1)!

)
+ rδn−1

(rig
n!
− εi(Φ)

rg

n!

)
=

rg

n!

[(−r|A| − riA
(n− 1)!

)
− rδn−1 + δn−1(ri − εi(Φ)r)

]
=

rg

n!

[(−r|A| − riA
(n− 1)!

)
+ δn−1(ri − (1 + εi(Φ))r)

]
< 0

because −r|A| − riA < 0, ri − (1 + εi(Φ))r < 0 and δn−1 ≥ 0. Note that if ri = r, then

εi(Φ) = εt+1(Φ) = 1.

Therefore Ψ(m) = ξ2n−1m
2n−1 + · · · + ξ1m + ξ0 with ξ2n−1 < 0, so there exists m3

such that for m ≥ m3 we will have Ψ(m) < 0 and wi < 0, then the contradiction.

Now we can prove the following proposition in a similar way as we proved Proposition

2.1.19.

Proposition 2.2.12. There exists an integer m4 such that for m ≥ m4 the sheaves Em
i

and Em,i = Em
i /E

m
i−1 are m4-regular. In particular their higher cohomology groups, after

twisting with OX(m4), vanish and they are generated by global sections.

Proposition 2.2.13. Let m ≥ m4. For each filter Em
i in the m-Kempf filtration of

(E,ϕ) (c.f. (2.2.3)) we have dimVi = h0(Em
i (m)), therefore Vi ∼= H0(Em

i (m)).

Proof. Let V• ⊆ V be the Kempf filtration of V (cf. Theorem 2.1.5) and let (Em
• , ϕ|Em• ) ⊆

(E,ϕ) be the m-Kempf filtration of (E,ϕ) (cf. (2.2.2) and (2.2.3)). We know that each

Vi generates the subsheaf Em
i , by definition, then we have the following diagram:

0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vt+1 = V

∩ ∩ ||
H0(Em

1 (m)) ⊂ H0(Em
2 (m)) ⊂ · · · ⊂ H0(Em

t+1(m)) = H0(E(m))
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Suppose there exists an index i such that Vi 6= H0(Em
i (m)). Let i be the index such

that Vi 6= H0(Em
i (m)) and ∀j > i it is Vj = H0(Em

j (m)). Then we have the diagram:

Vi ⊂ Vi+1

∩ ||
H0(Em

i (m)) ⊂ H0(Em
i+1(m))

(2.2.5)

Therefore Vi ( H0(Em
i (m)) ( Vi+1 and we can consider a new filtration by adding

the filter H0(Em
i (m)):

Vi ⊂ H0(Em
i (m)) ⊂ Vi+1

|| || ||
V ′i V ′i+1 V ′i+2

(2.2.6)

Note that Vi and H0(Em
i ) generate the same sheaf Em

i , hence we are in situation of

Lemma 2.1.16, where W = H0(Em
i ), filtration V• is (2.2.5) and filtration V ′• is (2.2.6).

The graph associated to filtration V•, by Definition 2.1.12, is given by the points

(bi, wi) = (
dimVi
mn

,
m

dimV

(
r dimVi − ri dimV +

a2

a1

(dimVi − εi(Φ, V•) dimV ))
)
,

where the slopes of the graph are given by

−vi =
wi

bi
=
wi − wi−1

bi − bi−1

=

mn+1

dimV

(
r − ri dimV

dimV i
+
a2

a1

(1− εi(Φ, V•)
dimV

dimV i
)
)
≤

mn+1

dimV

(
r +

a2

a1

)
:= R

and equality holds if and only if ri = 0. Here note that ri = 0 implies εi(Φ, V•) = 0.

Now, the new point which appears in the graph of the filtration V ′• is

Q =
(h0(Em

i (m))

mn
,

m

dimV
(rh0(Em

i (m))− ri dimV +
a2

a1

(h0(Em
i (m))− εi(Φ, V•) dimV ))

)
,

where we write εi(Φ, V•) instead of εi(Φ, V
′
•), because they are equal given that Vi = V ′i .

Point Q joins two new segments appearing in this new graph. The slope of the

segment between (bi, wi) and Q is, by a similar calculation,

−v′i+1 =
mn+1

dimV
(r +

a2

a1

) = R .
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By Lemma 2.1.15, the graph is convex, so v1 < v2 < . . . < vt+1. As Em
1 is a non-zero

torsion free sheaf, it has positive rank r1 = r1 and hence it follows v1 > −R.

Recall that, by definition, εi(Φ, V•) is equal to 1 if Φ|Vi 6= 0 and 0 otherwise. Then, it

is clear that
εj(Φ, V

′
•) = εj(Φ, V•) , j ≤ i

εj(Φ, V
′
•) = εj−1(Φ, V•) , j > i,

(2.2.7)

and note that εi(Φ, V•) = εi+1(Φ, V ′•). Then, the graph associated to V ′• ⊂ V is a

refinement of the graph associated to Kempf filtration V• ⊂ V , therefore by Lemma

2.1.16, v′i+1 ≥ vi+1. Hence,

−R < v1 < v2 < . . . < vi+1 ≤ v′i+1 = −R ,

which is a contradiction.

Therefore, dimVi = h0(Em
i (m)), for every filter in the m-Kempf filtration.

Corollary 2.2.14. For every filter Em
i in the m-Kempf filtration of (E,ϕ) (c.f. (2.2.3)),

it is ri > 0.

Proof. C.f. Corollary 2.1.21.

Now let us recall the results on subsection 2.1.5. By Proposition 2.2.12, for any

m ≥ m4, all the filters Em
i of the m-Kempf filtration of the pair (E,ϕ) are m4-regular

and hence, the sheaves of the m-Kempf filtration

0 ⊂ (Em
1 , ϕ|Em1 ) ⊂ (Em

2 , ϕ|Em2 ) ⊂ · · · (Em
t , ϕ|Emt ) ⊂ (Em

t+1, ϕ|Emt+1
) ⊂ (E,ϕ)

are obtained by evaluating the filtration of vector subspaces

0 ⊂ H0(Em
1 (m4)) ⊂ H0(Em

2 (m4)) ⊂ · · · ⊂ H0(Em
tm(m4)) ⊂ H0(Em

tm+1(m4)) = H0(E(m4))

(c.f. Lemma 1.2.13), of a unique vector space H0(E(m4)), whose dimension is indepen-

dent of m. Note that, because of Corollary 2.2.14, each subpair in the m-Kempf filtration

of (E,ϕ) is strictly contained in the following one, for m ≥ m3. Let

(Pm
1 , . . . , P

m
tm+1)

be the m-type of the m-Kempf filtration of (E,ϕ) (c.f. Definition 2.1.22) and let

P =
{

(Pm
1 , . . . , P

m
tm+1)

}
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be the set of possible m-types, which is a finite set by the same argument as in Proposition

2.1.23.

By Definition 2.2.10 we associate a graph to the m-Kempf filtration, given by vm,

which, thanks to Propositions 2.2.12 and 2.2.13, can be rewritten as

vm,i = mn+1 · 1

P i
m(m)P (m)

[
riP (m)− rP i

m(m) +
rδ(m)

P (m)− δ(m)
(εi(Φ)P (m)− P i

m(m))
]
,

bim =
1

mn
· P i

m(m) .

Define

vm,i(l) = ln+1 · 1

P i
m(l)P (l)

[
riP (l)− rP i

m(l) +
rδ(l)

P (l)− δ(l)
(εi(Φ)P (l)− P i

m(l))
]
,

the coordinates of the graph where the polynomials are evaluated on l and let

Θm(l) = (µvm(l)(Γvm(l)))
2 = ||vm(l)||2 ,

as in (2.1.14). Let A be the finite set (c.f. Proposition 2.1.23)

A = {Θm : m ≥ m4} .

Let K be a rational function which is maximal in A and, by a similar argument as in

Lemma 2.1.24, there exists an integer m5 with Θm = K, ∀m ≥ m5. Finally, we can prove

the following

Proposition 2.2.15. Let l1 and l2 be integers with l1 ≥ l2 ≥ m5. Then the l1-Kempf

filtration of E is equal to the l2-Kempf filtration of the holomorphic pair (E,ϕ).

Proof. C.f. Proposition 2.1.25.

Therefore, Theorem 2.2.9 follows from Proposition 2.2.15.

Definition 2.2.16. If m ≥ m5, the m-Kempf filtration of (E,ϕ) is called the Kempf

filtration of (E,ϕ),

0 ⊂ (E1, ϕ|E1) ⊂ (E2, ϕ|E2) ⊂ · · · (Et, ϕ|Et) ⊂ (Et+1, ϕ|Et+1) ⊂ (E,ϕ) .
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2.2.3 Harder-Narasimhan filtration for holomorphic pairs

Let m ≥ m5. Kempf’s theorem (c.f. Theorem 2.1.5) asserts that given V ' H0(E(m)),

there exists a unique weighted filtration of vector spaces (V•, n•) which gives maximum

for the Kempf function

µ(V•, n•) =

∑t+1
i=1

Γi
dimV

(ri dimV − r dimV i) + a2

a1

∑t+1
i=1

Γi
dimV

(
εi(Φ) dimV − dimV i

)√∑t+1
i=1 dimV iΓ2

i

.

This filtration induces a filtration of holomorphic subpairs, called the Kempf filtration of

(E,ϕ),

0 ⊂ (E1, ϕ|E1) ⊂ (E2, ϕ|E2) ⊂ · · · (Et, ϕ|Et) ⊂ (Et+1, ϕ|Et+1) ⊂ (E,ϕ) ,

which is independent of m, for m ≥ m5, by Theorem 2.2.9, hence it is unique.

We proceed in a similar way to Section 2.1 (c.f. Proof of Theorem 2.1.7), to rewrite

the Kempf function for holomorphic pairs in terms of Hilbert polynomials of sheaves. Let

εi := εi(Φ) = εi(ϕ) and note that εi = 1 for the unique index i in the Kempf filtration

such that ϕ|Ei 6= 0 and ϕ|Ei−1
= 0, and εi = 0 otherwise. Let us call this index j in the

following.

Proposition 2.2.17. Given a holomorphic pair (E,ϕ : E → OX), there exists a unique

filtration

0 ⊂ (E1, ϕ|E1) ⊂ (E2, ϕ|E2) ⊂ · · · (Et, ϕ|Et) ⊂ (Et+1, ϕ|Et+1) ⊂ (E,ϕ)

with positive weights n1, . . . , nt, which gives maximum for the function

K(m) =
m

n
2

+1

P
·
∑t+1

i=1 γi[(r
iP − rP i) + rδ

P−δ (ε
iP − P i)]√∑t+1

i=1 P
iγ2
i

.

Similarly, we can express the function K in Proposition 2.2.17 as

K(m) = m−
n
2 ·
∑t+1

i=1 P
iγivi√∑t+1

i=1 P
iγ2
i

= m−
n
2 · (γ, v)

||γ||
,

where the coordinates vi,m (slopes of segments of the graph), now are

vi = mn+1 · 1

P iP

[
riP − rP i +

rδ

P − δ
(εiP − P i)

]
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and the scalar product is, again,
P 1

P 2

. . .

P t+1


With Definition 2.2.3, the coordinates of the graph are

vi = mn+1 · rir

P i(P − δ)
(PE

r
− PEi

ri
)
,

where PEi = P i − δεi is the corrected Hilbert polynomial of the quotient pair (Ei, ϕ|Ei)
(c.f. Definitions 2.2.2 and 2.2.3).

Now, we define a Harder-Narasimhan filtration for a holomorphic pair, analogously to

the notion for torsion free sheaves, substituting the Hilbert polynomials by the corrected

Hilbert polynomials.

Definition 2.2.18. Given a holomorphic pair (E,ϕ : E → OX), a filtration

0 ⊂ (E1, ϕ|E1) ⊂ (E2, ϕ|E2) ⊂ · · · (Et, ϕ|Et) ⊂ (Et+1, ϕ|Et+1) ⊂ (E,ϕ)

is called a Harder-Narasimhan filtration of (E,ϕ) if it satisfies these two properties,

where Ei := (Ei/Ei−1, ϕ|Ei/Ei−1
),

1. The corrected Hilbert polynomials verify

PE1

rkEi
>

PE2

rkE2
> . . . >

PEt+1

rkEt+1

2. Every quotient pair (Ei, ϕ|Ei) is δ-semistable as a holomorphic pair.

Next, we prove the existence and uniqueness for the Harder-Narasimhan filtration of

a holomorphic pair. The proof follows similarly to Theorem 1.3.5.

Theorem 2.2.19. Every pair (E,ϕ) has a unique Harder-Narasimhan filtration.

Lemma 2.2.20. Let (E,ϕ) be a pair. Then, there exists a subsheaf F ⊆ E such that for

all subsheaves G ⊂ E, one has PF
rkF
≥ PG

rkG
, and in case of equality G ⊆ F . Moreover, F

is uniquely determined and (F, ϕ|F ) is δ-semistable, called the maximal destabilizing

subpair of (E,ϕ).
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Proof. The last two assertions follow from the first, where note that being δ-semistable

can be checked by subpairs, by Lemma 2.2.5.

Define an order relation on the set of subpairs of (E,ϕ) by (F1, ϕ|F1) ≤ (F2, ϕ|F2) if

and only if F1 ⊂ F2 and
PF1

rkF1
≤ PF2

rkF2
. Every ascending chain is bounded by (E,ϕ), then by

Zorn’s Lemma, for every subpair (F, ϕ|F ) there exists a F ⊂ F ′ ⊂ E such that (F ′, ϕ|F ′)
is maximal with respect to ≤. Let (F, ϕ|F ) be ≤-maximal with F of minimal rank among

all maximal subpairs and let us show that (F, ϕ|F ) is the maximal destabilizing subpair.

Suppose that ∃ G ⊂ E with PG
rkG
≥ PF

rkF
. First, we show that we can assume G ⊂ F

by replacing G by G ∩ F . Indeed, if G * F , then F is a proper subsheaf of F + G and

hence PF
rkF

> PF+G

rkF+G
, by definition of F . Let the exact sequence

0→ F ∩G→ F ⊕G→ F +G→ 0

out of which we get

PF + PG = PF⊕G = PF∩G + PF+G

and

rk(F ) + rk(G) = rk(F ⊕G) = rk(F ∩G) + rk(F +G) .

Calculating we have

rk(F ∩G)(
PG

rkG
− PF∩G

rk(F ∩G)
=

rk(F +G)(
PF+G

rk(F +G)
− PF

rkF
) + (rk(G)− rk(F ∩G))(

PF
rkF

− PG
rkG

) .

Using

ε(F ∩G) + ε(F +G) ≤ ε(F ) + ε(G)

we get

(PF − δε(F )) + (PG)− δε(G)) = (PF∩G − δε(F ∩G)) + (PF+G − δε(F +G))

and, similarly,

rk(F ∩G)
( PG

rkG
− P F∩G

rk(F ∩G)

)
≤

rk(F +G)
( P F+G

rk(F +G)
− P F

rkF

)
+ (rk(G)− rk(F ∩G))

( P F

rkF
− PG

rkG

)
.

Then, using the inequalities PF
rkF
≤ PG

rkG
and PF

rkF
> PF+G

rk(F+G)
, we obtain

PG

rkG
− P F∩G

rk(F ∩G)
< 0
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and hence
P F

rkF
<

P F∩G

rk(F ∩G)
,

hence we can suppose that G ⊂ F .

Let G ⊂ F with PG
rkG

> PF
rkF

such that (G,ϕ|G) is ≤-maximal in (F, ϕ|F ). Then let

(G′, ϕ|G′) ≥ (G,ϕ|G) to be ≤-maximal in (E,ϕ). We obtain, PF
rkF

< PG
rkG
≤ PG′

rkG′
and, by

maximality of (G′, ϕ|G′) and (F, ϕ|F ) it is G′ * F , since otherwise it would be rkG < rkF

which contradicts the minimality of rkF , therefore F is a proper subsheaf of F + G′.

Then we obtain PF
rkF

>
PF+G′

rk(F+G′)
and the inequalities PF

rkF
<

PG′
rkG′

and PF
rkF

>
PF+G′

rk(F+G′)
give

P F∩G′

rk(F ∩G′)
>

PG′

rkG′
≥ PG

rkG
.

Therefore, as G ⊂ F ∩G′ ⊂ F , we get a contradiction.

Proof of the Theorem 2.2.19. With the previous Lemma we are able to show

the existence of a Harder-Narasimhan filtration for (E,ϕ). Let (E1, ϕ|E1) the maximal

destabilizing subpair and suppose that the corresponding quotient (E/E1, ϕ|E/E1) has a

Harder-Narasimhan filtration,

0 ⊂ G0 ⊂ G1 ⊂ . . . ⊂ Gt−1 = E/E1 ,

by induction. We define Ei+1 to be the pre-image of G1 and it is
PE1

rkE1
>

PE2/E1

rkE2/E1
because,

if not, we would have
PE1

rkE1
≤ PE2

rkE2
, contradicting the maximality of (E1, ϕ|E1).

To show the uniqueness, suppose that E• and E ′• are two Harder-Narasimhan filtra-

tions of (E,ϕ) and consider, without loss of generality, that
PE′1
rkE′1

≥ PE1

rkE1
. Call j an index

which is minimal such that E ′1 ⊂ Ej. The composition

E ′1 → Ej → Ej/Ej−1

is a non-trivial homomorphism of semistable sheaves which implies

PEj/Ej−1

rkEj/Ej−1

≥
PE′1

rkE ′1
≥ PE1

rkE1

≥
PEj/Ej−1

rkEj/Ej−1

,

where first inequality comes from the fact that if there exists a non-trivial homomorphism

between semistable pairs, then the corrected Hilbert polynomial of the target is greater

or equal than the one of the first pair. Hence, equality holds everywhere, implying j = 1

so that E ′1 ⊂ E1. Then, by semistability of the pair (E1, ϕ|E1), it is
PE′1
rkE′1

≤ PE1

rkE1
, and we
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can repeat the argument interchanging the roles of E1 and E ′1 to show that E1 = E ′1. By

induction we can assume that uniqueness holds for the Harder-Narasimhan filtration of

(E/E1, ϕ|E/E1). This implies that E ′i/E1 = Ei/E1 and completes the proof.

Now we will give the analogous to Propositions 2.1.28 and 2.1.29.

Proposition 2.2.21. Given the Kempf filtration of a holomorphic pair (E,ϕ),

0 ⊂ (E1, ϕ|E1) ⊂ (E2, ϕ|E2) ⊂ · · · (Et, ϕ|Et) ⊂ (Et+1, ϕ|Et+1) ⊂ (E,ϕ)

it verifies

PE1

rkEi
>

PE2

rkE2
> . . . >

PEt+1

rkEt+1
.

Proof. Let j be the unique index such that εj = 1. By Lemma 2.1.15 it is

v1 < v2 < . . . vj−1 < vj < vj+1 < . . . < vt+1 .

Note that for i 6= j it is P
i

= P i − δεi = P i, hence vi−1 < vi implies
PEi−1

rkEi−1 >
PEi
rkEi

for all

i 6= j, j + 1.

Now the inequality vj−1 < vj is

rj−1r

P j−1(P − δ)
(
P − δ
r
− P j−1

rj−1
) <

rjr

P j(P − δ)
(
P − δ
r
− P j − δ

rj
)

or, equivalently,

−δ rP
j−1

P − δ
< P j−1rj − P jrj−1 .

The function rP j−1

P−δ is a homogeneous rational function whose limit at infinity is rj−1,

hence for large values of the variable we obtain this inequality between the polynomials

−δrj−1 < P j−1rj − P jrj−1 ,

which is equivalent to
P
Ej−1

rkEj−1 >
P
Ej

rkEj
. A similar argument proves that

P
Ej

rkEj
>

P
Ej+1

rkEj+1 .

Proposition 2.2.22. Given the Kempf filtration of a holomorphic pair (E,ϕ),

0 ⊂ (E1, ϕ|E1) ⊂ (E2, ϕ|E2) ⊂ · · · (Et, ϕ|Et) ⊂ (Et+1, ϕ|Et+1) ⊂ (E,ϕ)

each one of the quotient pairs (Ei, ϕ|Ei) is semistable as a holomorphic pair.
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Proof. Suppose that any of the blocks has a destabilizing subpair and apply a similar

argument to the one in Proposition 2.1.29.

Hence, having seen the convexity properties of the Kempf filtration in Propositions

2.2.21 and 2.2.22, we get that the Kempf filtration of a holomorphic pair (E,ϕ) is a

Harder-Narasimhan filtration. Given that every holomorphic pair has a unique Harder-

Narasimhan filtration by Theorem 2.2.19, therefore it will be the same that the Kempf

filtration.

Corollary 2.2.23. Let (E,ϕ) be a δ-unstable holomorphic pair. The Kempf filtration is

the same that the Harder-Narasimhan filtration.

Proof. By Propositions 2.2.21 and 2.2.22 the Kempf filtration is a Harder-Narasimhan

filtration, which is unique by Theorem 2.2.19, hence both filtrations are the same.

2.3 Higgs sheaves

Here we consider the moduli space of Higgs sheaves constructed by Simpson in [Si1, Si2]

and use the techniques of the previous sections to prove the analogous result in this case,

the correspondence between Kempf and Harder-Narasimhan filtrations.

Let X be a smooth complex projective variety of dimension n. A Higgs sheaf is a

pair (E,ϕ) where E is a coherent sheaf over X and ϕ : E → E⊗Ω1
X verifying ϕ∧ϕ = 0,

a morphism called the Higgs field. We call (E,ϕ) a Higgs bundle if E is a locally free

sheaf. Recall that Ω1
X = T ∗X, the cotangent bundle.

We say that a Higgs sheaf (E,ϕ) is semistable (in the sense of Gieseker) if for all

proper subsheaves F ⊂ E, preserved by ϕ (i.e. ϕ
∣∣
F

: F → F ⊗ Ω1
X) we have

PF
rkF

≤ PE
rkE

,

where PE and PF are the respective Hilbert polynomials of E and F . We say that (E,ϕ)

is stable if we have a strict inequality for every subsheaf preserved by ϕ.

A Higgs field can be thought as a coherent sheaf E on the cotangent bundle T ∗X,

supported on the spectral curve (the eigenvalues of the Higgs field). Note that, to define

a sheaf of OT ∗X-modules on the total space of T ∗X we have to determine how to multiply
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a section by a function on the vertical variables, which is given by the Higgs field, by

definition.

Let Z be a projective completion of T ∗X, Z = P(T ∗X ⊕O), and D = Z − T ∗X, the

divisor at infinity.

Lemma 2.3.1. [Si2, Lemma 6.8] A Higgs sheaf (E,ϕ) on X is the same thing that a

coherent sheaf E on Z such that Supp(E) ∩D = ∅, where E = π∗E and π : T ∗X → X.

This identification is compatible with morphisms, giving an equivalence of categories. The

condition that E is torsion free is the same that E is of pure dimension n = dim(X).

Choose k so that

OZ(1)
def
= π∗OX(k)⊗OZ OZ(D)

is ample on Z (c.f. [Ha, Appendix A, Theorem 5.1]). In particular, OT ∗X(1) = π∗OX(k).

Thus, for any coherent sheaf E on Z with support not meeting D, the Hilbert polynomials

of E and π∗E differ by rescaling on the variable m

PE(m) = Pπ∗E(km) .

Recall that, the condition for E to be torsion free is equivalent to E being pure of

dimension n. To relate the stability of a Higgs sheaf (E,ϕ) with the stability of the

associated sheaf E , we have to modify Definition 2.1.1 as in [Si1, Si2], which was stated

only for torsion free sheaves. Recall the expression of the Hilbert polynomial of a sheaf

E , in (1.2.11),

PE(m) =
rg

n!
mn +

d+ rαn−1

(n− 1)!
mn−1 + ...

We define r = rk E , the rank of E , such that the coefficient of the leading term of the

Hilbert polynomial is rg
n!

. We also define d = deg E , the degree of E , as the corresponding

coefficient appearing in the expression. A coherent sheaf E is of pure dimension n if it

has no subsheaves supported on a lower dimensional locus.

Definition 2.3.2. A coherent sheaf E on X is called semistable if it is pure of dimension

n, and for all proper subsheaves F ⊂ E, it is

PF
rkF

≤ PE
rk E

.

If strict inequality holds for every proper subsheaf, we say that E is stable. If (E,ϕ) is

not semistable, we say that it is unstable.
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Given that the Higgs subsheaves of (E,ϕ) correspond to the coherent subsheaves of

E , and since a subsheaf of E is the same that a subsheaf of π∗E preserved by the action

of the symmetric algebra Sym∗(T ∗X), we have the following

Corollary 2.3.3. (E,ϕ) is a semistable Higgs sheaf if and only if the corresponding sheaf

E, by Lemma 2.3.1, is semistable as a coherent sheaf (c.f. Definition 2.3.2).

2.3.1 Moduli space of Higgs sheaves

Given a polynomial P , we denote by k∗P the polynomial such that k∗P (m) = P (km).

Denote by M(OT ∗X , k∗P ) be the moduli space of coherent sheaves E over OT ∗X with

Hilbert polynomial k∗P . By [Si1, §1], Lemma 2.3.1 and Corollary 2.3.3, the scheme

M(OT ∗X , k∗P ) corepresents the functor MHiggs(X,P ) which associates a scheme S to

the set of isomorphism classes of semistable Higgs sheaves (E,ϕ) on X, over S, with

Hilbert polynomial P . Therefore, we put

MHiggs(X,P ) = M(OT ∗X , k∗P )

and let us construct the scheme M(OT ∗X , k∗P ) following Simpson’s method (c.f. [Si1,

§1]).

Let P be a polynomial of degree n = dimX. There exists an integer N , sufficiently

large, such that for m ≥ N , E(m) is generated by global sections and hi(E(m)) = 0 for

i > 0. Then, choose m ≥ N and fix an isomorphism

α : V ' Ck∗P (m) = CP (km)

to obtain a quotient

q : V ⊗W � E ,

where W = OZ(−m). Let H be the Hilbert scheme of quotients

H = Hilb(V ⊗W , k∗P ) = {V ⊗W → E → 0} ,

with PE(m) = P (km) = k∗P (m). We define an embedding of this Hilbert scheme to a

projective space. Let l� m be an integer such that H1(Ker(V ⊗W � E)(l)) = 0. Then,

q induces the following homomorphisms

q : V ⊗W(l)� E(l)
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q′ : V ⊗H0(W(l))� H0(E(l))

q′′ :

P (kl)∧
(V ⊗H0(W(l))�

P (kl)∧
H0(E(l)) ' C

Hence, it defines a Grothendieck’s embedding on the Grassmannian manifold

H = Hilb(V ⊗W , k∗P (m))
Ll,m
↪→ P(

P (kl)∧
(V ∨ ⊗H0(W(l))∨)) ,

where Ll,m is the very ample line bundle (depending on l and m) given by the pullback

of the canonical line bundle on the Grassmannian by the embedding. Note that, given a

point q ∈ H, if H0(q(m)) : V → H0(E(m)) is an isomorphism, we can recover the sheaf

E together with the isomorphism α : V ' CP (km).

The group GL(V ) of changes of isomorphism V ' CP (km), acts on H and the line

bundle Ll,m. Note that, if we change the isomorphism by a homothecy we obtain a

different point in the line bundle defined by q, hence the point q in the projective space is

the same. Hence, as in the case of the Gieseker embedding (c.f. subsection 2.1.1), we can

get rid of the choice of isomorphism by dividing by the action of SL(V ). Let Q ⊂ H the

SL(V )-invariant open subset of quotients where E is a semistable sheaf of pure dimension

n = dimX and the induced morphism α : V ' CP (km) is an isomorphism. There exists

a good quotient (c.f. Definition 1.1.7)

M(OZ , k∗P ) = Q/SL(V ) ,

(c.f. [Si1, Theorem 1.19] and [Mu]). Let Q′ ⊂ Q be the subset of those quotient sheaves E
whose support does not meet D (which is also SL(V )-invariant and is, set-theoretically,

the inverse image of a subset of M(OZ , k∗P )). Therefore, a good quotient Q′/SL(V )

exists and it is equal to an open subset which we denote M(OT ∗X , k∗P ) ⊂M(OZ , k∗P ).

As we said before, M(OT ∗X , k∗P ) corepresents the functor MHiggs(X,P ), hence,

MHiggs(X,P ) = M(OT ∗X , k∗P ) .

Therefore, to construct a moduli space for Higgs sheaves (E,ϕ), where P is the fixed

Hilbert polynomial of E, we construct a particular moduli space of sheaves. From now

on, let us consider semistable coherent sheaves E over Z = P(T ∗X⊕O) of pure dimension

n = dimX and fixed Hilbert polynomial P . We consider the construction of the moduli

space of sheaves following Simpson’s method. Giving a sheaf E and an isomorphism

V ∼= H0(E(m)), we obtain a point q in the GIT space of parameters. We have to prove
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that a point q is GIT semistable if and only if it corresponds to a semistable sheaf E , to

conclude that a moduli space for semistable sheaves can be obtained as the good quotient

of the space of GIT semistable points, by the group SL(V ).

Remark 2.3.4. Note that the sheaves E are torsion sheaves supported on a subscheme of

Z = P(T ∗X ⊕O). In this case we cannot use Gieseker’s embedding in the construction

of the moduli space, because if we take ∧rE we get the zero sheaf (c.f. subsection 2.1.1).

Simpson develops his method based on Grothendieck’s ideas which gives a solution to the

problem in this case (c.f. [Si1, p. 53]).

Let us calculate the numerical function on the set of 1-parameter subgroups, to apply

the Hilbert-Mumford criterion (c.f. Theorem 1.1.14).

Let l,m be integers as before, and let V be a complex vector space of dimension

P (m). Recall that a weighted filtration (V•, n•) of V is a filtration

0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vt ⊂ Vt+1 = V, (2.3.1)

and positive rational numbers n1, n2, . . . , nt > 0. Let Γ be the 1-parameter subgroup

associated to the weighted filtration (c.f. subsection 2.1.1) given by

Γ = (

dimV 1︷ ︸︸ ︷
Γ1, . . . ,Γ1,

dimV 2︷ ︸︸ ︷
Γ2, . . . ,Γ2, . . . ,

dimV t+1︷ ︸︸ ︷
Γt+1, . . . ,Γt+1) ,

where V i = Vi/Vi−1.

Let W = H0(O(l − m)) be a vector space where SL(V ) acts trivially. The basis

{e1, . . . , ep}, together with a basis {wj} of W , induces a basis of
∧P (l)(V ∨⊗W∨) indexed

in a natural way by tuples (i1, . . . , iP (l), j) (the indexes ij being skewsymmetric), and the

coordinate corresponding to such an index is acted by Γ with exponent

Γi1 + · · ·+ ΓiP (l)
.

The coordinate (i1, . . . , iP (l), j) of the point corresponding to the sheaf E is non-zero if

and only if the evaluations of the sections e1, . . . , eP (l) are linearly independent for generic

x ∈ X. Therefore, the numerical function in Theorem 1.1.14 is

µ(q, V•, n•) = min{Γi1 + · · ·+ ΓiP (l)
: q′′(ei1 ∧ · · · ∧ eiP (l)

) 6= 0}
= min{Γi1 + · · ·+ ΓiP (l)

: ei1(x), . . . , eiP (l)
(x) (2.3.2)

linearly independent for generic x ∈ X}
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Let EVi be the subsheaf generated by Vi and let EV i be the subsheaf generated by

V i = Vi/Vi−1. Let PEVi and PEV i be the corresponding Hilbert polynomials. Note that

PEVi − PEVi−1
= PEV i . Given a 1-parameter subgroup Γ, we get

µ(q, V•, n•) =
t∑
i=1

ni(P (l) dimVi − PEVi (l) dimV ) =

t+1∑
i=1

Γi
dimV

(PEV i (l) dimV − P (l) dimV i) ,

where recall that ni = Γi+1−Γi
p

.

By the Hilbert-Mumford criterion, Theorem 1.1.14, a point

q ∈ P(

P (l)∧
(V ∨ ⊗W∨))

is GIT semistable if and only if for all weighted filtrations it is

µ(q, V•, n•) ≤ 0 .

Using the previous calculations, this can be stated as follows:

Proposition 2.3.5. A point q is GIT semistable if for all weighted filtrations (V•, n•)

t∑
i=1

ni(P (l) dimVi − PEVi (l) dimV ) ≤ 0 .

A point q is GIT stable if we get a strict inequality for every weighted filtration.

Then, the next result completes the sketch of the construction of a moduli space for

Higgs sheaves.

Theorem 2.3.6. [Si1, Theorem 1.19] Fix a polynomial P of degree n = dimX. There

exist integers m0 and l0 (l0 depending on m0) such that for m ≥ m0 and l ≥ l0, a point q

in Hilb(V ⊗OZ(−m), P ) is GIT semistable (for the action of SL(V ) with respect to the

embedding into a projective space), if and only if the quotient E is a semistable coherent

sheaf of pure dimension n and the map V → H0(E(m)) is an isomorphism.

Let (E,ϕ) be an unstable Higgs sheaf and E its associated coherent sheaf by Lemma

2.3.1. Let m0, l0 be integers as in Theorem 2.3.6. Choose m1 ≥ m0, l1 ≥ l0 such that E
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is also m1-regular. Now choose m ≥ m1 and fix an isomorphism V ' H0(E(m)). Given

a weighted filtration (V•, n•), define for each l ≥ l1 the function

µ(V•, n•) =

∑t
i=1 ni(P (l) dimVi − PEVi (l) dimV )√∑t+1

i=1 dimV iΓ2
i

,

which is a Kempf function for this problem (c.f. Definition 1.4.4). Note that, for each

integer m, this is a polynomial function on l, whose coefficients depend on m.

Let

0 ⊂ V1 ⊂ · · · ⊂ Vt+1 = V (2.3.3)

be the Kempf filtration of vector spaces given by By Theorem 2.1.5, and let

0 ⊆ Em1 ⊆ Em2 ⊆ · · · ⊆ Emt ⊆ Emt+1 = E , (2.3.4)

be the m-Kempf filtration of E , where Emi ⊂ E is the subsheaf generated by Vi under

the evaluation map. Making the correspondence of Lemma 2.3.1, we call the m-Kempf

filtration of the Higgs sheaf (E,ϕ) to

0 ⊆ (Em
1 , ϕ|Em1 ) ⊆ (Em

2 , ϕ|Em2 ) ⊆ · · · ⊆ (Em
t , ϕ|Emt ) ⊆ (Em

t+1, ϕ|Emt+1
) = (E,ϕ) , (2.3.5)

where Em
i = π∗Emi .

Remark 2.3.7. Recall that for two rational (in particular polynomial) functions, we

define an ordering by saying that f1 ≺ f2 if f1(l) < f2(l), for l � 0. Then, although

in the construction of the moduli space and in the definition of the Kempf function we

use the integer l, we view the Kempf function as a polynomial function on l, having fixed

previously m. We define the m-Kempf filtration of E as the one which maximizes the

Kempf function having fixed m, seen as a polynomial function on l, by Theorem 2.1.5.

Note that we also talk about the m-Kempf filtration of E, without mentioning l.

We will proceed as in the previous sections of the chapter to prove the following

theorem:

Theorem 2.3.8. There exists an integer m′ � 0 such that the m-Kempf filtration of E
is independent of m, for m ≥ m′.
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2.3.2 The m-Kempf filtration stabilizes with m

We will prove Theorem 2.3.8 in an analogous way to the cases of torsion free sheaves and

holomorphic pairs in sections 2.1 and 2.2. First, we associate a graph to the m-Kempf

filtration of E .

Definition 2.3.9. Let m ≥ m1 and l ≥ l1. Given 0 ⊂ V1 ⊂ · · · ⊂ Vt+1 = V , a filtration

of vector spaces of V , define

vm,i(l) = mn+1 · 1

dimV i dimV

[
PEV i (l) dimV − P (l) dimV i

]
,

bim =
1

mn
dimV i > 0 ,

wim(l) = −bim · vm,i(l) = m · 1

dimV

[
P (l) dimV i − PEV i (l) dimV

]
.

Also let

bm,i = b1
m + . . .+ bim =

1

mn
dimVi ,

wm,i(l) = w1
m(l) + . . .+ wim(l) = m · 1

dimV

[
P (l) dimVi − PEVi (l) dimV

]
.

We call the graph defined by points (bm,i, wm,i(l)) the graph associated to the filtra-

tion V• ⊂ V . Note that, having fixed m, the coordinates of the graph are polynomials on

l.

We use a similar argument that in Proposition 2.1.13 to identify the Kempf function

in Theorem 2.1.5,

µ(V•, n•) =
1

ln

∑t
i=1 ni(P (l) dimVi − PEVi (l) dimV )√∑t+1

i=1 dimV iΓ2
i

,

where ni = Γi−Γi−1

dimV
, with the function in Theorem 2.1.9, where the coordinates of the

graph are as in Definition 2.3.9.

Proposition 2.3.10. For every integer m, the following equality holds

µ(V•, n•) =
1

m(n
2

+1)
· µvm(l)(Γ) =

1

m(n
2

+1)
· (Γ, vm(l))

‖Γ‖
,

between the Kempf function on Theorem 2.1.5 and the function in Theorem 2.1.9.
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Remark 2.3.11. Again, we introduce factors mn+1 in Definition 2.3.9 for vm,i(l) and bim
to have order zero on m (c.f. Remark 2.1.14). As a result, the graph keeps its dimensions

when m grows, the coordinates being polynomials on the variable l.

In the following, we will omit the integers m and l for the quantities vm,i(l), bm,i,

wm,i(l) in the definition of the graph associated to a filtration of vector spaces, where it

is clear from the context.

We give the analogous to Propositions 2.1.18 and 2.1.20 for the case of Higgs sheaves,

using Lemmas 2.1.15 and 2.1.16.

Define

C = max{r|µmax(E)|+ d

r
+ r|B|+ |A|+ 1 , 1}, (2.3.6)

a positive constant, where recall that r = rk E = rkE and d = deg E = degE, E =

π∗E , are the rank and the degree of E as the corresponding coefficients of the Hilbert

polynomial for a pure sheaf.

Proposition 2.3.12. Given sufficiently large integers m and l, each filter in the m-

Kempf filtration of E has slope µ(Emi ) ≥ d

r
− C.

Proof. Choose an integer m2 ≥ m1 such that for m ≥ m2

[µmax(E) + gm+B]+ = µmax(E) + gm+B ,

and

[
d

r
− C + gm+B]+ =

d

r
− C + gm+B .

Now let m ≥ m2. Let

0 ⊆ Em1 ⊆ Em2 ⊆ · · · ⊆ Emt ⊆ Emt+1 = E

be the m-Kempf filtration of E .

Let Emi ⊆ E a subsheaf of rank ri and degree di, such that µ(Emi ) < d
r
−C, and suppose

that Emi (m) ⊂ E(m) satisfies the estimate in Lemma 1.2.15. Analogously to Proposition

2.1.18,

h0(Emi (m)) ≤ 1

gn−1n!

(
(ri − 1)(µmax(E) + gm+B)n + (

d

r
− C + gm+B)n

)
= G(m) ,

where

G(m) =
1

gn−1n!

[
rig

nmn + ngn−1
(
(ri − 1)µmax(E) +

d

r
− C + riB

)
mn−1 + · · ·

]
.
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By Definition 2.3.9, to such filtration we associate a graph with heights, for each j

wm,j(l) = wm(l)1 + . . .+ wm(l)j = m · 1

dimV

[
P (l) dimVj − PEmi (l) dimV

]
,

and we will show that wm,i(l) < 0 for m and l large enough, to get a contradiction as in

Proposition 2.1.18. Note that the coordinates wm,i(l) are polynomials on l, so wm,i(l) < 0

for l� 0, contradicts Lemma 2.1.15 for the Kempf function constructed with the integer

m.

Given that Emi (m) is generated by Vi under the evaluation map, it is dimVi ≤
h0(Emi (m)), hence

wm,i(l) =
m

dimV

[
P (l) dimVi − PEmi (l) dimV

]
≤

m

PE(m)

[
P (l)h0(Emi (m))− PEmi (l)PE(m)

]
≤ m

PE(m)

[
P (l)G(m)− PEmi (l)PE(m)

]
.

Hence, wm,i(l) < 0 is equivalent to

Φm(l) = P (l)G(m)− PEmi (l)P (m) < 0 ,

where Φm(l) can be seen as an nth-order polynomial on l,

Φm(l) = αn(m)ln + αn−1(m)ln−1 + · · ·+ α1(m)l + α0(m) .

Hence, it is sufficient to show that αn(m) < 0 for an integer m sufficiently large.

Note that

αn(m) = rG(m)− riP (m) < 0 ,

is the same polynomial as Ψ(m) in the proof of Proposition 2.1.18. Hence, by the same

argument

αn(m) = ξn−1m
n−1 + · · ·+ ξ1m+ ξ0

with ξn−1 < 0, so there exists m3 ≥ m2 such that for m ≥ m3 we will have αn(m) < 0.

Hence, there exists an integer l � 0, depending on m3, such that for m ≥ m3 we

have Φm(l) ≺ 0 as a polynomial (c.f. Remark 2.3.7), hence wm,i(l) < 0, which is a

contradiction.

Now we can assure the m-regularity of the family of the subsheaves appearing in the

different m-Kempf filtrations of E , similarly to Proposition 2.1.19.
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Proposition 2.3.13. There exists an integer m4 such that for m ≥ m4 the sheaves Emi
and Em,i = Emi /Emi−1 are m4-regular. In particular their higher cohomology groups, after

twisting with OX(m4), vanish and they are generated by global sections.

Proposition 2.3.14. Let m ≥ m4. For each filter Emi in the m-Kempf filtration, we

have dimVi = h0(Emi (m)), therefore Vi ∼= H0(Emi (m)).

Proof. The proof follows analogously to the proof of Proposition 2.1.20.

Let m ≥ m4. Let V• ⊆ V be the Kempf filtration of V (cf. (2.3.3)) and let Em• ⊆ E be

the m-Kempf filtration of E (c.f. (2.3.4)). We know that each Vi generates the subsheaf

Emi , by definition, then we have the diagram:

0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vt+1 = V

∩ ∩ ||
H0(Em1 (m)) ⊂ H0(Em2 (m)) ⊂ · · · ⊂ H0(Emt+1(m)) = H0(E(m))

Let i be the first index such that Vi 6= H0(Emi (m)), then we have the diagram:

Vi ⊂ Vi+1

∩ ||
H0(Emi (m)) ⊂ H0(Emi+1(m))

(2.3.7)

Therefore we consider a new filtration by adding the filter H0(Emi (m))

Vi ⊂ H0(Emi (m)) ⊂ Vi+1

|| || ||
V ′i V ′i+1 V ′i+2

(2.3.8)

Then, Vi and H0(Emi (m)) generate the same sheaf Emi , hence we are in situation of

Lemma 2.1.16, where W = H0(Emi (m)), filtration V• is (2.3.7) and filtration V ′• is (2.3.8).

Now the graph associated to filtration V• is, by Definition 2.3.9, given by the points

(bm,i, wm,i(l)) =
(dimVi
mn

,
m

dimV
(P (l) dimVi − PEmi (l) dimV )

)
,

and the slopes −vm,i(l) of the graph are given by

−vm,i(l) =
wim(l)

bim
=
wm,i(l)− wm,i−1(l)

bm,i − bm,i−1

=
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mn+1

dimV

(
P (l)− PEi,m(l)

dimV

dimV i

)
,

which is an nth-order polynomial on l whose leading coefficient is

αi(m) =
mn+1

dimV

(
r − ri dimV

dimV i

)
≤ mn+1

dimV
· r := R .

Equality holds if and only if ri = 0.

The new point which appears in graph of the filtration V ′• is

Q =
(h0(Emi (m))

mn
,

m

dimV
(P (l)h0(Emi (m))− PEmi (l) dimV )

)
,

joining two new segments appearing in this new graph. The slope of the segment between

(bm,i, wm,i(l)) and Q is, similarly,

−v′m,i(l) =
mn+1

dimV
· P (l) ,

again an nth-order polynomial on l whose leading coefficient is

α′i(m) =
mn+1

dimV
· r = R .

By Lemma 2.1.15, the graph is convex, so vm,1(l) < vm,2(l) < . . . < vm,t+1(l). On the

other hand, by Lemma 2.1.16, v′m,i(l) ≥ vm,i(l). Therefore for a sufficiently large l we

have the following inequalities between the leading coefficients of the −v′m,i(l),

α1(m) ≥ α2(m) ≥ . . . ≥ αt+1(m) ,

and

α′i(m) ≤ αi(m) .

Besides, r1 = r1 > 0, then R > α1(m). Indeed, E is pure, then it has no torsion elements

on its support, hence also the subsheaf Em
1 , and a rank 0 pure sheaf should be the zero

sheaf. Hence

R > α1(m) ≥ α2(m) ≥ . . . ≥ αi(m) ≥ α′i(m) = R ,

which is a contradiction.

Therefore, for m ≥ m4, every filter in the m-Kempf filtration of E verifies dimVi =

h0(Emi (m)).

Corollary 2.3.15. Given m ≥ m4, for every filter Emi in the m-Kempf filtration, it is

ri > 0.
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Proof. It follows from Proposition 2.3.14 the same way as in Corollary 2.1.21. Indeed,

given that ri = 0 is equivalent to αi(m) = R, note that it is r1 = r1 > 0 and R >

α1(m) ≥ α2(m) ≥ . . . ≥ αt+1(m).

Next, we again recall the results on subsection 2.1.5.

By Proposition 2.3.13, for any m ≥ m4, all the filters Emi of the m-Kempf filtration

of E are m4-regular and hence, the filtration of sheaves

0 ⊂ Em1 ⊂ Em2 ⊂ · · · ⊂ Emtm ⊂ E
m
tm+1 = E

is the filtration associated to the filtration of vector subspaces

0 ⊂ H0(Em1 (m4)) ⊂ H0(Em2 (m4)) ⊂ · · · ⊂ H0(Emtm(m4)) ⊂ H0(Emtm+1(m4)) = H0(E(m4))

by the evaluation map (c.f. Lemma 1.2.13), of a unique vector space H0(E(m4)), whose

dimension does not depend on m. Let Pm
i := PEmi and P i,m := PEi,m . Let

(Pm
1 , . . . , P

m
tm+1)

be the m-type of the m-Kempf filtration of E (c.f. Definition 2.1.22) and let

P =
{

(Pm
1 , . . . , P

m
tm+1)

}
be the set of possible m-types, which is a finite set (c.f. Proposition 2.1.23).

By Definition 2.3.9 we associate a graph to the m-Kempf filtration of E , given by

vm(l). By Propositions 2.3.13 and 2.3.14 it can be rewritten as

vm,i(l) = mn+1 · 1

P i,m(m)P (m)

[
P i,m(l)P (m)− P (l)P i,m(m)

]
,

bim =
1

mn
· P i,m(m) .

Note that, given the m-Kempf filtration, its m-type is fixed. Hence, the coordinates

of the graph, vm,i(l) are polynomials on l, whose coefficients are fixed (c.f. Definition

2.3.9). Then, fixing the m-type, vm(l) defines a different graph for each l.

We define a functional on P which assigns to each m-type (to each m-Kempf filtration)

the function

Θm(l) = (µvm(l)(Γvm(l)))
2 = ||vm(l)||2 ,

which is, given m, a polynomial function on l (c.f. (2.1.14)). By finiteness of P there is

a finite list of such possible functions

A = {Θm : m ≥ m4} ,
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so, analogously to Lemma 2.1.24, we can choose K to be a polynomial function such that

there exists an integer m5 with Θm = K, for all m ≥ m5, meaning that two polynomial

functions do coincide if they do for large values of the variable.

Proposition 2.3.16. Let a1 and a2 be integers with a1 ≥ a2 ≥ m5. The a1-Kempf

filtration of E is equal to the a2-Kempf filtration of E.

Proof. The proof follows analogously to the proof of Proposition 2.1.25.

Definition 2.3.17. If m ≥ m5, and for l ≥ l5, the m-Kempf filtration of E is called the

Kempf filtration of E,

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E .

By applying π∗ to the Kempf filtration we obtain the following definition.

Definition 2.3.18. The following filtration

0 ⊂ (E1, ϕ|E1) ⊂ (E2, ϕ|E2) ⊂ · · · ⊂ (Et, ϕ|Et) ⊂ (Et+1, ϕ|Et+1) = (E,ϕ) ,

where Ei = π∗Ei is called the Kempf filtration of the Higgs sheaf (E,ϕ).

2.3.3 Harder-Narasimhan filtration for Higgs sheaves

Recall that, by the Kempf theorem (c.f. Theorem 2.1.5), given an integer m and V '
H0(E(m)), there exists a unique weighted filtration of vector spaces V• ⊆ V which gives

maximum for the Kempf function, which in this case is

µ(V•, n•) =

∑t+1
i=1

Γi
dimV

(PEi(l) dimV − P (l) dimV i)√∑t+1
i=1 dimV iΓ2

i

.

This filtration induces the Kempf filtration of E ,

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E

which is independent of m, for m ≥ m5, by Proposition 2.3.16, hence it only depends on

E .

We proceed again as in Section 2.1 (c.f. Proof of Theorem 2.1.7), to rewrite the Kempf

function in terms of Hilbert polynomials of sheaves. We set P = PE , P
i = PEi , and recall

the relation

γi =
r

P (m)
Γi .
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Proposition 2.3.19. Given E, a pure sheaf of dimension n, there exists a unique filtra-

tion

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E

with positive weights n1, . . . , nt, which gives maximum for the function

Km(l) := m
n
2

+1 · 1

P (m)

∑t+1
i=1 γi[P

i(l)P (m)− P i(l)P (m)]√∑t+1
i=1 P

i(m)γ2
i

.

The coordinates of the graph vm,i(l) are given by

vm,i(l) = mn+1 · 1

P i(m)P (m)

[
P i(l)P (m)− P (l)P i(m)

]
.

hence, the function K is

Km(l) = m−
n
2 · ln ·

∑t+1
i=1 P

i(m)γivi√∑t+1
i=1 P

i(m)γ2
i

= m−
n
2 · ln · (γ, v)

||γ||
,

where the scalar product is given by
P 1(m)

P 2(m)
. . .

P t+1(m)


Proposition 2.3.20. Given the Kempf filtration of a sheaf E,

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E

it verifies
PE1

rk E1
>

PE2

rk E2
> . . . >

PEt+1

rk E t+1
.

Proof. By Lemma 2.1.15, the vector vm(l) is convex for m ≥ m4 and l � 0. Therefore,

seeing vm,i(l) as polynomials on l,

vm,i(l) < vm,i+1(l)⇔ PEi(l)

PEi(m)
− P (l)

P (m)
<

PEi+1(l)

PEi+1(m)
− P (l)

P (m)
⇔

rk(E i)
PEi(m)

<
rk(E i+1)

PEi+1(m)
⇔ PEi(m)

rk(E i)
>
PEi+1(m)

rk(E i+1)
,

where the second equivalence holds for l� 0.
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Proposition 2.3.21. Given the Kempf filtration of E,

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E

each one of the blocks E i = Ei/Ei−1 is semistable.

Proof. C.f. Proposition 2.1.29.

Theorem 1.3.5, which provides the construction of the Harder-Narasimhan filtration,

holds for pure sheaves (c.f. [HL3, Theorem 1.3.4]), as it is the present case of the sheaf

E supported on the cotangent bundle associated to a Higgs sheaf (E,ϕ).

Proposition 2.3.22. [HL3, Theorem 1.3.4] Given a pure sheaf E, there exists a unique

filtration

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E ,

which satisfies these two properties

1. The Hilbert polynomials verify

PE1

rk E1
>

PE2

rk E2
> . . . >

PEt+1

rk E t+1

2. Every block E i = E i/Ei is semistable.

This filtration is called the Harder-Narasimhan filtration of E.

Corollary 2.3.23. The Kempf filtration of a sheaf E is the Harder-Narasimhan filtration.

Proof. See Propositions 2.3.20 and 2.3.21 and use uniqueness of the Harder-Narasimhan

filtration of E in Theorem 2.3.22.

Making the correspondence between Higgs sheaves (E,ϕ) over X and sheaves E of

pure dimension n = dimX over T ∗X we can construct a filtration of Higgs subsheaves

0 ⊂ π∗E1 ⊂ π∗E2 ⊂ · · · ⊂ π∗Et ⊂ π∗Et+1 = E

i.e.

0 ⊂ (E1, ϕ|E1) ⊂ (E2, ϕ|E2) ⊂ · · · ⊂ (Et, ϕ|Et) ⊂ (Et+1, ϕ|Et+1) = (E,ϕ) ,

where Ei = π∗Ei, which coincides with the Harder-Narasimhan filtration of a Higgs sheaf

(E,ϕ), which appears in the literature (c.f. [AB]).



150 CHAPTER 2. CORRESP. KEMPF AND HARDER-NARASIMHAN

2.4 Rank 2 tensors

In this section we study the case of tensors where the sheaf has rank 2. The moduli space

of tensors has been studied in section 1.2. Here we prove the analogous correspondence

between Kempf and Harder-Narasimhan filtrations for rank 2 tensors, similarly to the

cases of torsion free sheaves, holomorphic pairs and Higgs sheaves.

Let X be a smooth complex projective variety of dimension n. Let E be a coherent

torsion free sheaf over X, of rank 2. We call a rank 2 tensor the pair consisting of

(E,ϕ :

s times︷ ︸︸ ︷
E ⊗ · · · ⊗ E −→ OX) .

These objects are particular cases of the ones studied in section 1.2 for arbitrary s, c = 1,

b = 0, R = SpecC and D = OX , meaning the structure sheaf over X × R ' X, in

Definition 1.2.1.

Let δ be a polynomial of degree at most dimX − 1 = n − 1 and positive leading

coefficient. Recall the definition of δ-stability for tensors. Recall Definition 1.2.3 and

calculation made in (1.2.7). Recall Remark 1.2.4 which says that, in Definition 1.2.3 it

suffices to check the condition on filtrations with rkEi < rkEi+1. Hence, as the rank of

E is 2, the only filtrations we have to check are one-step filtrations, i.e. subsheaves of

rank 1, and we can rewrite the stability condition as follows:

Definition 2.4.1. A rank 2 tensor (E,ϕ) is δ-semistable if for every rank 1 subsheaf

L ⊂ E

(2PL − PE) + δ(s− 2ε(L)) ≤ 0, (2.4.1)

where ε(L) is the number of times that L appears in the multi-index (i1, . . . , is) giving

the minimum in (1.2.4) and PE, PL are the Hilbert polynomials of E and L respectively.

If the inequality is strict for every L, we say that (E,ϕ) is δ-stable. If (E,ϕ) is not

δ-semistable, we say that it is δ-unstable.

2.4.1 Moduli space of rk 2 tensors

We recall the main points of the construction of the moduli space for tensors with fixed

determinant det(E) ∼= ∆ of degree d and rk(E) = 2. The general construction was

explained in section 1.2, following Gieseker’s method. The present case can be obtained
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by setting c = 1, b = 0, arbitrary s, R = SpecC and D = OX , the structure sheaf over

X ×R ' X, in Definition 1.2.1.

Let V be a vector space of dimension p := h0(E(m)), where m is a suitable large

integer (in particular, E(m) generated by global sections and hi(E(m)) = 0 for i > 0).

Given an isomorphism V ∼= H0(E(m)) we obtain a point

(Q,Φ) ∈ P(Hom(∧rV,A))× P(Hom(V ⊗s, B)) .

If we change the isomorphism det(E) ∼= ∆, we obtain a different point in the line defined

by Q. Likewise, if we change the isomorphism V ∼= H0(E(m)) by a homothecy, we obtain

a different point in the line defined by Q. In both cases, the point Q in the projective

space is the same. The same applies for Φ. If we fix once and for all a basis of V ,

then giving an isomorphism between V and H0(E(m)) is equivalent to giving a basis of

H0(E(m)). A change of basis is given by an element of GL(V ), but, since an homothecy

does not change the point (Q,Φ), when we want to get rid of this choice it is enough to

divide by the action of SL(V ).

A weighted filtration (V•, n•) of V is a filtration

0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vt ⊂ Vt+1 = V, (2.4.2)

and rational numbers n1, n2, . . . , nt > 0, and recall that this is equivalent to giving a

1-parameter subgroup Γ : C∗ → SL(V ) (c.f. subsection 2.1.1) represented by the vector

Γ = (

dimV 1︷ ︸︸ ︷
Γ1, . . . ,Γ1,

dimV 2︷ ︸︸ ︷
Γ2, . . . ,Γ2, . . . ,

dimV t+1︷ ︸︸ ︷
Γt+1, . . . ,Γt+1) .

By the Hilbert-Mumford criterion (c.f. Theorem 1.1.14), a point

(Q,Φ) ∈ P(Hom(∧rV,A))× P(Hom(V ⊗s, B))

is GIT semistable with respect to the natural linearization on O(a1, a2) if and only if

for all weighted filtrations

µ(Q, V•, n•) +
a2

a1

µ(Φ, V•, n•) ≤ 0 ,

and recall the numerical function which has to be calculated to apply Mumford criterion

for GIT stability (c.f. Proposition 1.2.29).
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Proposition 2.4.2. A point (Q,Φ) is GIT a2/a1-semistable if for all weighted filtra-

tions (V•, n•),

t∑
i=1

ni(r dimVi − ri dimV ) +
a2

a1

t∑
i=1

ni
(
s dimVi − εi(Φ) dimV

)
≤ 0 .

Here, EVi is the subsheaf of E generated by Vi and ri = rkEVi . If I = (i1, . . . , is) is the

multi-index giving minimum in (1.2.37) (c.f. Section 1.2), we will denote by εi(Φ, V•, n•)

(or just εi(Φ) if the rest of the data is clear from the context) the number of elements k

of the multi-index I such that dimVk ≤ dimVi. Let εi(Φ) = εi(Φ)− εi−1(Φ).

Then, recall Theorem 1.2.31:

Theorem 2.4.3. Let (E,ϕ) be a tensor. There exists an m0 such that, for m ≥ m0 the

associated point (Q,Φ) is GIT a2/a1-semistable if and only if the tensor is δ-semistable,

where
a2

a1

=
rδ(m)

PE(m)− sδ(m)
.

Let X be a smooth complex projective variety of dimension n. Let us consider rank

2 tensors

(E,ϕ :

s times︷ ︸︸ ︷
E ⊗ · · · ⊗ E −→ OX)

given by a coherent torsion free sheaf E of rank 2 over X with fixed determinant det(E) ∼=
∆ and a morphism ϕ from a tensor product of s copies of E to the trivial line bundle

OX . Let δ be a polynomial of degree at most dimX − 1 = n − 1 and positive leading

coefficient.

Let (E,ϕ) be a δ-unstable rank 2 tensor. Let m0 be an integer as in Theorem 2.4.3

(i.e. such that the δ-stability and the GIT stability coincide) and also such that E is m0

regular (choosing a larger integer, if necessary). Choose an integer m ≥ m0 and let V be

a vector space of dimension PE(m) = h0(E(m)).

Given a filtration of vector subspaces 0 ⊂ V1 ⊂ · · · ⊂ Vt+1 = V and positive numbers

n1, · · · , nt > 0, i.e., given a weighted filtration, we define the following function

µ(V•, n•) =

∑t
i=1 ni(r dimVi − ri dimV ) + a2

a1

∑t
i=1 ni

(
s dimVi − εi(Φ) dimV

)√∑t+1
i=1 dimV iΓ2

i

,

which is a Kempf function for this problem (c.f. Definition 1.4.4), where the numer-

ator of the function coincides with the numerical function in Proposition 2.4.2 and the

denominator is a length ||Γ|| in the space of 1-parameter subgroups (c.f. Definition 1.4.2).
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Let

0 ⊂ V1 ⊂ · · · ⊂ Vt+1 = V (2.4.3)

be the Kempf filtration of V (c.f. Theorem 2.1.5), and let

0 ⊆ (Em
1 , ϕ|Em1 ) ⊆ (Em

2 , ϕ|Em2 ) ⊆ · · · (Em
t , ϕ|Emt ) ⊆ (Em

t+1, ϕ|Emt+1
) ⊆ (E,ϕ) (2.4.4)

be the m-Kempf filtration of the rank 2 tensor (E,ϕ), where Em
i ⊂ E is the subsheaf

generated by Vi under the evaluation map.

We will prove the following

Theorem 2.4.4. There exists an integer m′ � 0 such that the m-Kempf filtration of the

rk 2 tensor (E,ϕ) is independent of m, for m ≥ m′.

2.4.2 The m-Kempf filtration stabilizes with m

Let us define the graph associated to the m-Kempf filtration of (E,ϕ).

Definition 2.4.5. Let m ≥ m0. Given 0 ⊂ V1 ⊂ · · · ⊂ Vt+1 = V a filtration of vector

spaces of V , let

vm,i = mn+1 · 1

dimV i dimV

[
ri dimV − r dimV i +

a2

a1

(εi(Φ) dimV − s dimV i)
]
,

bim =
1

mn
dimV i > 0 ,

wim = −bim · vm,i = m · 1

dimV

[
r dimV i − ri dimV +

a2

a1

(s dimV i − εi(Φ) dimV )
]
.

Also let

bm,i = b1
m + . . .+ bim =

1

m
dimVi ,

wm,i = w1
m + . . .+ wim = m · 1

dimV

[
r dimVi − ri dimV +

a2

a1

(s dimVi − εi(Φ) dimV )
]
.

We call the graph defined by points (bm,i, wm,i) the graph associated to the filtration

V• ⊂ V .

Now we prove a crucial Lemma which will let us prove Theorem 2.4.4 using the same

method than in previous sections.

Lemma 2.4.6. The symbols εi(Φ) = εi(Φ, V•, n•) do not depend on the weights n•. There-

fore, the graph associated to the filtration only depends on the data V• ⊂ V , not the weights

n•.
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Proof. Note that rkE1 ≥ 1 because it is generated by, at least, a non zero global section.

Suppose that rkEm
1 = rkEm

2 = . . . = rkEm
k = 1 and rkEm

k+1 = . . . = rkEm
t = rkE = 2.

Then, for example, Em
1 coincide with Em

2 on an open set and, generically, the behavior

with respect to ϕ is the same, i.e.

Φ|V1⊗···⊗V1 = 0⇔ ϕ|Em1 ⊗···⊗Em1 = 0⇔ ϕ|Em2 ⊗Em1 ···⊗Em1 = 0 .

Therefore, the values εi(Φ, V•, n•) only depend on the filters Em
i but not on the specific

values of the Γi. In fact, they will only depend on Γ1 and Γk+1, because they are the

minimal ones among the filters of the same rank (c.f. (1.2.4) and (1.2.37)). In this case

we will just write εi(Φ, V•), or εi(Φ), when the filtration is clear from the context.

Next, we can identify the Kempf function in Theorem 2.1.5

µ(V•, n•) =

∑t
i=1 ni(r dimVi − ri dimV ) + a2

a1

∑t
i=1 ni

(
s dimVi − εi(Φ) dimV

)√∑t+1
i=1 dimV iΓ2

i

=

=

∑t+1
i=1

Γi
dimV

(ri dimV − r dimV i) + a2

a1

∑t+1
i=1

Γi
dimV

(
εi(Φ) dimV − s dimV i

)√∑t+1
i=1 dimV iΓ2

i

,

where ni = Γi−Γi−1

dimV
, with the function in Theorem 2.1.9 (c.f. Proposition 2.1.13). Pre-

cisely, we use Lemma 2.4.6 to assure that the data of the filters V• ⊂ V , and the data of

the weights n• are independent, so we can maximize the Kempf function with respect to

each of them, independently, as in Theorem 2.1.9.

Proposition 2.4.7. For every integer m, the following equality holds

µ(V•, n•) = m(−n
2
−1) · µvm(Γ)

between the Kempf function on Theorem 2.1.5 and the function in Theorem 2.1.9.

Proof. By Lemma 2.4.6, we can fix a vector vm and look for the maximum of the function

µvm among the corresponding convex cone.

In the following, we will omit the subindex m for the numbers vm,i, bm,i, wm,i in the

definition of the graph associated to the filtration of vector spaces, where it is clear from

the context. Recall Remark 2.1.14 to understand the meaning of the factors in m in

Definition 2.4.5.

Now we use Lemmas 2.1.15 and 2.1.16 to give the analogous to Propositions 2.1.18

and 2.1.20 in this case.
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Let us define

C = max{r|µmax(E)|+ d

r
+ r|B|+ |A|+ sδn−1(n− 1)! + 1 , 1}, (2.4.5)

a positive constant, where δn−1 is the leading coefficient of the polynomial δ(m), of degree

≤ n− 1 (if deg δ < n− 1, set δn−1 = 0).

Proposition 2.4.8. Given a sufficiently large m, each filter in the m-Kempf filtration

of the rk 2 tensor (E,ϕ) has slope µ(Em
i ) ≥ d

r
− C.

Proof. Choose an m1 such that for m ≥ m1

[µmax(E) + gm+B]+ = µmax(E) + gm+B

and

[
d

r
− C + gm+B]+ =

d

r
− C + gm+B .

Letm2 be such that PE(m)−sδ(m) > 0 form ≥ m2. Now considerm ≥ max{m0,m1,m2}
and let

0 ⊆ (Em
1 , ϕ|Em1 ) ⊆ (Em

2 , ϕ|Em2 ) ⊆ · · · (Em
t , ϕ|Emt ) ⊆ (Em

t+1, ϕ|Emt+1
) ⊆ (E,ϕ)

be the m-Kempf filtration.

Suppose that we have a filter Em
i ⊆ E, of rank ri and degree di, such that µ(Em

i ) <
d
r
− C. Again, the subsheaf Em

i (m) ⊂ E(m) satisfies the estimate in Lemma 1.2.15,

h0(Em
i (m)) ≤ 1

gn−1n!

(
(ri − 1)([µmax(E

m
i ) + gm+B]+)n + ([µmin(Em

i ) + gm+B]+)n
)
.

Hence, analogously to Proposition 2.1.18,

h0(Em
i (m)) ≤ 1

gn−1n!

(
(ri − 1)(µmax(E) + gm+B)n + (

d

r
− C + gm+B)n

)
= G(m) ,

where

G(m) =
1

gn−1n!

[
rig

nmn + ngn−1
(
(ri − 1)µmax(E) +

d

r
− C + riB

)
mn−1 + · · ·

]
.

By Definition 2.4.5, to the m-Kempf filtration we associate a graph with heights, for

each j

wj = w1 + . . .+ wj = m · 1

dimV

[
r dimVj − rj dimV +

a2

a1

(s dimVj − εj(Φ) dimV )
]
.
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We will get a contradiction by showing that wi < 0 (c.f. Proposition 2.1.18).

Since Em
i (m) is generated by Vi under the evaluation map, it is dimVi ≤ H0(Em

i (m)),

hence

wi =
m

dimV

[
r dimVi − ri dimV +

a2

a1

(s dimVi − εi(Φ) dimV )
]
≤

m

PE(m)

[
rh0(Em

i (m))− riPE(m) +
rδ(m)

PE(m)− sδ(m)
(sh0(Em

i (m))− εi(Φ)PE(m))
]
≤

m

PE(m)

[
rG(m)− riPE(m) +

rδ(m)

PE(m)− sδ(m)
(sG(m)− εi(Φ)PE(m))

]
=

m ·
[
(PE(m)− sδ(m))(rG(m)− riPE(m)) + (rδ(m))(sG(m)− εi(Φ)PE(m))

]
PE(m)(PE(m)− sδ(m))

.

Then, wi < 0 is equivalent to

Ψ(m) = (PE(m)− sδ(m))(rG(m)− riPE(m)) + (rδ(m))(sG(m)− εi(Φ)PE(m)) < 0 ,

and Ψ(m) = ξ2nm
2n + ξ2n−1m

2n−1 + · · · + ξ1m + ξ0 is a (2n)th-order polynomial, whose

higher order coefficient is

ξ2n = (PE(m)− sδ(m))n(rG(m)− riPE(m))n + (rδ(m))n(sG(m)− εi(Φ)PE(m))n =

(PE(m)− sδ(m))n(r
rig

n!
− ri

rg

n!
) + 0 = 0 .

The (2n− 1)th-order coefficient is

ξ2n−1 = (PE(m)−sδ(m))n(rG(m)−riPE(m))n−1 +(rδ(m))n−1(sG(m)− εi(Φ)PE(m))n =

rg

n!
(rGn−1 − ri

A

(n− 1)!
) + rδn−1(s

rig

n!
− εi(Φ)

rg

n!
)

where Gn−1 is the (n− 1)th-coefficient of the polynomial G(m),

Gn−1 =
1

gn−1n!
ngn−1((ri − 1)µmax(E) +

d

r
− C + riB) =

1

(n− 1)!
((ri − 1)µmax(E) +

d

r
− C + riB) ≤

1

(n− 1)!
((ri − 1)|µmax(E)|+ d

r
− C + ri|B|) ≤

1

(n− 1)!
(r|µmax(E)|+ d

r
− C + r|B|) < −|A|

(n− 1)!
− sδn−1 ,
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last inequality coming from the definition of C in (2.4.5). Then

ξ2n−1 <
rg

n!

(
r(
−|A|

(n− 1)!
− sδn−1)− ri

A

(n− 1)!

)
+ rδn−1

(rig
n!
− εi(Φ)

rg

n!

)
=

rg

n!

[(−r|A| − riA
(n− 1)!

)
− rsδn−1 + δn−1(ri − εi(Φ)r)

]
=

rg

n!

[(−r|A| − riA
(n− 1)!

)
+ δn−1(−rs+ ris− εi(Φ)r)

]
<

rg

n!
δn−1(−rs+ ris− εi(Φ)r) ,

because −r|A| − riA < 0. Last expression is either zero if ri = rkE = 2 (because in that

case it is εi(Φ) = εt+1(Φ) = s), or negative if ri = 1. Hence, ξ2n−1 < 0.

Therefore Ψ(m) = ξ2n−1m
2n−1 + · · · + ξ1m + ξ0 with ξ2n−1 < 0, so there exists an

integer m3 such that for m ≥ {m0,m1,m2,m3} we have Ψ(m) < 0 and wi < 0, then the

contradiction.

Similarly to Proposition 2.1.19, we prove

Proposition 2.4.9. There exists an integer m4 such that for m ≥ m4 the sheaves Em
i

and Em,i = Em
i /E

m
i−1 are m4-regular. In particular their higher cohomology groups, after

twisting with OX(m4), vanish and they are generated by global sections.

Proposition 2.4.10. Let m ≥ m4. For each filter Em
i in the m-Kempf filtration of the

rk 2 tensor (E,ϕ), we have dimVi = h0(Em
i (m)), therefore Vi ∼= H0(Em

i (m)).

Proof. Let V• ⊆ V be the Kempf filtration of V (cf. Theorem 2.1.5) and let (Em
• , ϕ|Em• ) ⊆

(E,ϕ) be the m-Kempf filtration of (E,ϕ). Analogously to Proposition 2.1.20 we can

construct two filtrations

0 ⊂ · · · ⊂ Vi ⊂ Vi+1 ⊂ Vi+2 ⊂ · · · ⊂ V

∩ || ||
H0(Em

i (m)) ⊂ H0(Em
i+1(m)) ⊂ H0(Em

i+2(m))

(2.4.6)

and

0 ⊂ · · · ⊂ Vi ⊂ H0(Em
i (m)) ⊂ Vi+1 ⊂ · · · ⊂ V

|| || ||
V ′i V ′i+1 V ′i+2

(2.4.7)
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to be in situation of Lemma 2.1.16, where W = H0(Em
i (m)), filtration V• is (2.4.6) and

filtration V ′• is (2.4.7).

Now, the graph associated to filtration V• is given, by Definition 2.4.5, by the points

(bi, wi) = (
dimVi
mn

,
m

dimV

(
r dimVi − ri dimV +

a2

a1

(s dimVi − εi(Φ, V•) dimV ))
)
,

the slopes −vi of the graph given by

−vi =
wi

bi
=
wi − wi−1

bi − bi−1

=

mn+1

dimV

(
r − ri dimV

dimV i
+
a2

a1

(s− εi(Φ, V•)
dimV

dimV i
)
)
≤

mn+1

dimV

(
r + s

a2

a1

)
:= R

and equality holds if and only if ri = 0 (note that ri = 0 implies εi(Φ, V•) = 0).

The new point which appears in graph of the filtration V ′• is

Q =
(h0(Em

i (m))

mn
,

m

dimV
(rh0(Em

i (m))−ri dimV +
a2

a1

(sh0(Em
i (m))−εi(Φ, V•) dimV ))

)
,

where we write εi(Φ, V•) instead of εi(Φ, V
′
•), by the same argument used in proof of

Proposition 2.2.13 (c.f. (2.2.7)).

The slope of the segment between (bi, wi) and Q is, similarly,

−v′i =
mn+1

dimV
(r + s

a2

a1

) = R .

By Lemma 2.1.15, the graph is convex, so v1 < v2 < . . . < vt+1. Besides, r1 = r1 > 0,

then −R < v1, because E is torsion free, hence also the subsheaf Em
1 , and a rank 0 torsion

free sheaf is the zero sheaf. On the other hand, by Lemma 2.1.16, v′i ≥ vi. Hence,

−R < v1 < v2 < . . . < vi ≤ v′i = −R ,

which is a contradiction.

Therefore, dimVi = h0(Em
i (m)), for every filter in the m-Kempf filtration.

Corollary 2.4.11. Let m ≥ m4. For every filter Em
i in the m-Kempf filtration of the

rk 2 tensor (E,ϕ), it is ri > 0. Therefore, the m-Kempf filtration consists on a rank 1

subsheaf, 0 ⊂ (Lm, ϕ|Lm) ⊂ (E,ϕ).
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Proof. We have seen that ri = 0 is equivalent to −vi = R. Then the result follows from

Proposition 2.4.10 because it is r1 = r1 > 0 and −R < v1 < v2 < . . . < vt+1.

For any m ≥ m4, by Corollary 2.1.21 there is only one filter (Lm, ϕ|Lm) in the m-

Kempf filtration and, by Proposition 2.1.19, Lm is m4-regular. Hence, Lm(m4) is gen-

erated by the subspace H0(Lm(m4)) ⊂ H0(E(m4)) by the evaluation map (c.f. Lemma

1.2.13). Note that the dimension of the vector space H0(E(m4)) does not depend on m.

The m-type of the m-Kempf filtration 0 ⊂ (Lm, ϕ|Lm) ⊂ (E,ϕ) is the Hilbert poly-

nomial PLm (c.f. Definition 2.1.22). The set of possible m-types

P =
{
PLm

}
is finite, for all integers m ≥ m3 (c.f. Proposition 2.1.23).

Rewrite the graph associated to the m-Kempf filtration (c.f. Definition 2.4.5)

vm,i =
mn+1

dimV i dimV

[
ri dimV − r dimV i +

a2

a1

(εi(Φ) dimV − s dimV i)
]
,

bim =
1

mn
· dimV i ,

as

vm,i =
mn+1

P i
m(m)P (m)

[
riP (m)− rP i

m(m) +
rδ(m)

P (m)− sδ(m)
(εi(Φ)P (m)− sP i

m(m))
]
,

bim =
1

mn
· P i

m(m) ,

by Propositions 2.4.9 and 2.4.10.

Note that, by Corollary 2.1.21, the graph has only two slopes given by

vm,1 =
mn+1

PLm(m)P (m)

[
P (m)− 2PLm(m) +

2δ(m)

P (m)− sδ(m)
(εLmP (m)− sPLm(m))

]
,

vm,2 =
mn+1

PE/Lm(m)P (m)

[
P (m)−2PE/Lm(m)+

2δ(m)

P (m)− sδ(m)
((s−εLm)P (m)−sPE/Lm(m))

]
,

where ε(Lm) is the number of times that the subsheaf Lm appears on the minimal multi-

index (c.f. (1.2.37) in section 1.2).

The set

A = {Θm : m ≥ m4}

is finite (c.f. Proposition 2.1.23), where

Θm(l) = (µvm(l)(Γvm(l)))
2 = ||vm(l)||2
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(c.f. (2.1.14)). Let K be the maximal function in A as in Lemma 2.1.24) for which ∃ m5

such that for all m ≥ m5 it is Θm = K.

Proposition 2.4.12. Let l1 and l2 be integers with l1 ≥ l2 ≥ m5. Then the l1-Kempf

filtration of E is equal to the l2-Kempf filtration of E.

Proof. C.f. Proposition 2.1.25.

Therefore, Theorem 2.4.4 follows from Proposition 2.4.12. Hence, eventually, the

Kempf filtration of the rk 2 tensor (E,ϕ) does not depend on the integer m.

Definition 2.4.13. If m ≥ m5, the m-Kempf filtration of the rk 2 tensor (E,ϕ)

0 ⊂ (L, ϕ|L) ⊂ (E,ϕ)

is called the Kempf filtration or the Kempf subsheaf of (E,ϕ).

2.4.3 Harder-Narasimhan filtration for rk 2 tensors

Kempf theorem (c.f. Theorem 2.1.5) says that, given an integer m and V ' H0(E(m)),

there exists a unique weighted filtration of vector spaces V• ⊆ V which gives maximum

for the Kempf function

µ(V•, n•) =

∑t+1
i=1

Γi
dimV

(ri dimV − r dimV i) + a2

a1

∑t+1
i=1

Γi
dimV

(
εi(Φ) dimV − s dimV i

)√∑t+1
i=1 dimV iΓ2

i

.

This filtration induces a unique rank 1 subsheaf L ⊂ E called the Kempf subsheaf of

the rk 2 tensor (E,ϕ). By Proposition 2.4.12, the subsheaf L does not depend on m, for

m ≥ m5.

The Kempf function is a function on m (c.f. Proposition 2.4.7). Consider the function

K(m) = m
n
2

+1 · µ(V•,m•) = µvm(Γ)

and, making the substitutions for m sufficiently large

dimV1 = dimV 1 = h0(L(m)) = PL(m) ,

dimV 2 = dimV − dimV1 = h0(E/L(m)) = PE/L(m)

we get

K(m) = m
n
2

+1 ·
∑2

i=1
γi
r

[(riP − rP i) + rδ
P−sδ (ε

iP − sP i)]√∑2
i=1 P

i P 2

r2 γ2
i

,
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where we put P = PE(m), P 1 = PL(m), P 2 = PE/L(m), ε1 = ε(L), ε2 = s − ε(L). Note

that εi = εi(Φ) = εi(ϕ) and recall the relations

γi =
r

P
Γi ,

a2

a1

=
rδ

P − sδ
.

Also recall
γi+1 − γi

r
= ni ,∑

riγi = γ1 + γ2 = 0 ,

which gives in our case γ1 = −n1, γ2 = n1. Substituting we get

K(m) = m
n
2

+1 · 1

P − sδ
−n1[2(δε1 − P 1) + (P − δs)] + n1[2(δε2 − P 2) + (P − δs)]√

P 1n2
1 + P 2n2

1

=

m
n
2

+1 · r√
P (P − sδ)

[2PL − PE + δ(s− 2ε(L))] .

Note that the unique weight n1 does not appear in the function later from the substitu-

tions, as it was expected from a one-step filtration. Also note that the denominator of

the function K is positive (c.f. choice of m2 in proof of Proposition 2.4.8). Hence, we

can state the following theorem.

Theorem 2.4.14. Given a δ-unstable rk 2 tensor (E,ϕ :

s times︷ ︸︸ ︷
E ⊗ · · · ⊗ E −→ OX), there

exists a unique line subsheaf L ⊂ E which gives maximum for the polynomial function

K(m) = 2PL(m)− PE(m) + δ(m)(s− 2ε(L)) .

If X is a one dimensional complex projective variety, i.e. a smooth projective com-

plex curve, we can simplify the function µ. Recall that, by Riemann-Roch, the Hilbert

polynomial of a sheaf E of rank r and degree d over a curve of genus g is

PE(m) = rm+ d+ r(1− g) ,

and the polynomial δ(m) becomes a positive constant τ . In this case, a coherent torsion

free sheaf of rank 2 is a vector bundle of rank 2 over X, and the Kempf subsheaf will be

a line subbundle.
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Theorem 2.4.15. Given a τ -unstable rk 2 tensor (E,ϕ :

s times︷ ︸︸ ︷
E ⊗ · · · ⊗ E −→ OX) over

a smooth projective complex curve, there exists a unique line subbundle L ⊂ E which

maximizes the quantity

2 degL− degE + τ(s− 2ε(L)) .

Note that, if the tensor is unstable, such quantity will be positive, and the graph

corresponding to the filtration will be a cusp which is a convex graph.

If we define the corrected Hilbert polynomials of (E,ϕ) and (L, ϕ|L) (c.f. Defi-

nition 2.2.3) as

PE = PE − δs ,

PL = PL − δε(L) ,

we recover the notion of stability for rk 2 tensors (c.f. Definition 2.4.1). A rk 2 tensor

(E,ϕ) is δ-unstable if there exists a line subsheaf L ⊂ E such that

PL

rkL
>

PE

rkE
⇔ PL >

PE

2
.

Hence, this procedure allows us define a notion of a Harder-Narasimhan filtration for

δ-unstable rk 2 tensors.

Definition 2.4.16. If (E,ϕ) is a δ-unstable rk 2 tensor, there exists a unique line sub-

sheaf maximizing

2 · PL − PE > 0 .

We call

0 ⊂ (L, ϕ|L) ⊂ (E,ϕ)

the Harder-Narasimhan filtration of (E,ϕ), and we call L the Harder-Narasimhan

subsheaf of (E,ϕ).

Remark 2.4.17. We do not know, in principle, how to define a quotient tensor (E/L, ϕ|E/L),

because we do not know, a priori, how to define ϕ|E/L. This is why we cannot talk about

quotient tensors, as in Definition 2.2.2.

Given the exact sequence of sheaves, 0 → L → E → E/L → 0, we define the

corrected Hilbert polynomial of the quotient as PE/L = PE − PL, and we have, trivially,

the additivity of the corrected polynomials on exact sequences of sheaves. This way we can
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consider that Definition 2.4.16 contains the analogous to conditions of Definition 1.3.3

for rk 2 tensors. Indeed,

2 · PL − PE > 0⇔ PL > PE/L ,

and the semistability of (L, ϕ|L) and (E/L, ϕ|E/L) (whichever definition of ϕ|E/L we im-

pose), would follow trivially from the fact of they are rank 1 tensors.

Therefore, Definition 2.4.16 gives a notion of Harder-Narasimhan filtration for these

objects.

2.4.4 Stable coverings of a projective curve

In this section we use the previous notions for rk 2 tensors over curves where the morphism

is symmetric, and the Definition 2.4.16 of the Harder-Narasimhan subsheaf, to define

stable coverings of a projective curve and, for the unstable ones, a maximally destabilizing

object, in geometrical terms.

In the following, we shall consider rank 2 tensors (E,ϕ) where E is a rk 2 vector

bundle over a smooth projective complex curve X, and

ϕ :

s times︷ ︸︸ ︷
E ⊗ · · · ⊗ E −→ OX

is a symmetric non degenerate morphism. We call it a symmetric non degenerate

rank 2 tensor. Let τ be a positive real number. Let P(E) be the projective space

bundle of the vector bundle E, which is a ruled algebraic surface (c.f. [Ha, Section V.2]).

The morphism ϕ is, fiberwise, a symmetric multilinear map

ϕx :

s times︷ ︸︸ ︷
V ⊗ · · · ⊗ V −→ C ,

where V ' C2. Then, ϕx factors through Syms(V ), isomorphic to the (s+1)-dimensional

vector space of homogeneous polynomials of degree s in two variables. Hence, fiberwise,

ϕ can be represented by a polynomial

ϕx ≡
s∑
i=0

ai(x)X i
0X

s−i
1 (2.4.8)

which vanishes on s points in P(V ) ' P1
C. Therefore, as ϕ varies on X, it defines a degree

s covering

P(E) ⊃ X ′ → X .



164 CHAPTER 2. CORRESP. KEMPF AND HARDER-NARASIMHAN

Suppose that (E,ϕ) is a τ -unstable rk 2 tensor. Then, by Theorem 2.4.15, there exists

a line subbundle L ⊂ E, the Harder-Narasimhan subbundle, giving maximum for

the quantity

2 deg(L)− deg(E) + τ(s− 2ε(L)) . (2.4.9)

The subbundle L can be seen as a section of P(E), each fiber Lx corresponding to a

point P = {Lx} ∈ P1
C. Recall from Definition 2.4.1 that ε(L) = k if ϕ|L⊗(k+1)⊗E⊗(s−k−1) =

0 and ϕ|L⊗k⊗E⊗(s−k) 6= 0. Note that here we use the symmetry of the morphism ϕ.

Therefore, ε(L) = k means that, generically, P = {Lx} is a zero of multiplicity s−k and,

by definition of the covering X ′ → X, s− ε(L) is exactly the number of branches of X ′

which generically do coincide with the section defined by L, counted with multiplicity.

Recall Examples 1.1.5 and 1.1.15 in Section 1.1. There, a homogeneous polynomial of

degree N , P =
∑
i

aiX
i
0X

N−i
1 , was unstable if it contained a linear factor of degree greater

that N
2

. Now, observe that the restriction of a rank 2 tensor to a point x ∈ X in (2.4.8),

passing to the projectivization P(E) hence fibers are isomorphic to P1
C, is precisely one

of the homogeneous polynomials in Examples 1.1.5 and 1.1.15. Fiberwise, the morphism

ϕ defines a set of s points in P1
C. See that, from the point of view of Examples 1.1.5 and

1.1.15, letting s = N , the set of points is unstable if there exists a point with multiplicity

greater that s
2
.

Then, as s−ε(L) is the multiplicity of the point defined by the line Lx (the fiber of the

Harder-Narasimhan subbundle over x), in the set of s points defined by the morphism

ϕ, following the previous argument, this point {Lx} will destabilize the set if

s− ε(L) >
s

2
⇔ s− 2ε(L) > 0 ,

which is the second summand in (2.4.9). Hence, the positivity of s− 2ε(L) is equivalent

to find a line subbundle L defining a point in the fiber P1
C, which coincides with one of

the zeroes of ϕ in the fiber, and such that it has multiplicity greater that s
2
.

To conclude, we can say that the expression (2.4.9) consists of two summands weighted

by the parameter τ . First one, 2 deg(L)−deg(E), is measuring the stability of the vector

bundle E. Second one, s−2ε(L), is measuring the stability of the morphism or, with the

previous observations, the generic stability of the set of points defined in P1
C, fiberwise,

as in Examples 1.1.5 and 1.1.15, when varying along the covering. Therefore, an object

destabilizing a rank 2 tensor is an object which contradicts these two stabilities, weighted

by τ , and the Harder-Narasimhan subbundle is the unique one which maximally does,

for a τ -unstable tensor.
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The sets of points in each fiber defined by ϕ give a covering of degree s,

P(E) ⊃ X ′ → X .

In the following, we rewrite the stability of the sets of points, fiberwise, as stability for

the covering, using intersection theory for ruled surfaces.

Proposition 2.4.18. [Ha, Proposition V.2.8] Given a ruled surface P(E), there exists

E ′ ' E ⊗N , with N line bundle, such that H0(E ′) 6= 0 but for all line bundles N ′ with

negative degree we have H0(E ′ ⊗ N ′) = 0. Therefore, P(E) = P(E ′) and the integer

e = − degE ′ is an invariant of the ruled surface. Furthermore, in this case, there exists

a section σ0 : X → P(E ′) with image C0, such that L(C0) ' OX(1).

For a ruled surface P(E ′) we say that E ′ is normalized if it satisfies the conditions

of the Proposition 2.4.18.

Let P(E ′) be a ruled surface with E ′ normalized. Let σ : X → P(E) be a section, and

let D = imσ a divisor on P(E). It can be proved that deg(L) = −e−C0 ·D, with these

conventions (c.f. [Ha, Proposition V.2.9]). Let us define, by analogy, ε(σ) = ε(D) as the

number of branches of X ′ which generically do coincide with D, the section defined by

σ, counted with multiplicity.

Definition 2.4.19. Let (E,ϕ :

s times︷ ︸︸ ︷
E ⊗ · · · ⊗ E −→ OX)) be a symmetric non degenerate

rank 2 tensor over X. Let f : X ′ → X be the covering defined by (E,ϕ), X ′ ⊂ P(E). Let

τ be a positive number. We say that f is τ-unstable if there exists a section σ : X →
P(E) with image D, i.e. there exists a line subbundle L ⊂ E, such that the following

holds

−2C0 ·D − e+ τ(s− 2ε(D)) > 0

Proposition 2.4.20. Let τ be a positive number. A symmetric non degenerate rk 2 tensor

(E,ϕ) is τ -unstable if and only if the associated covering f : X ′ → X is τ -unstable.

Proof. It is only needed to check that we can assume X ′ ⊂ P(E ′) with E ′ normalized

(c.f. Proposition 2.4.18), in the definition of stability of f . Let N be a line bundle over

X. If we change E by E ′ = E ⊗ N , then we have the line subbundle L ⊗ N ⊂ E ′ (by

exactness of the tensor product with locally free sheaves), and

deg(E ′) = deg(E ⊗N) = deg(E) + 2 deg(N) ,
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deg(L⊗N) = deg(L) + deg(N) ,

so the quantity 2 deg(L)− deg(E) is invariant by tensoring E with a line bundle.

For the invariance of the rest of the formula, also note that we can trivially extend

the definition of the morphism ϕ,

ϕ′ : (E ′)⊗s = E⊗s ⊗N⊗s → OX

and, then, it is ε′(L⊗N) = ε(L).

Theorem 2.4.21. If f : X ′ → X is a degree s covering coming from a symmetric non

degenerate rank 2 tensor (E,ϕ) which is τ -unstable, then there exists a unique section

σ : X → P(E) with image D, giving maximum for

−2C0 ·D − e+ τ(s− 2ε(D)) > 0 .

We call σ the Harder-Narasimhan section of the covering.

2.5 Rank 3 tensors and beyond

This final section of chapter 2 contains some observations about the rank 3 tensors

case, which is the first one we cannot apply directly the techniques used in the previous

sections. The crucial point will be the impossibility of rewriting the Kempf function (c.f.

Definition 1.4.4) in this case as a geometrical function as in Proposition 2.1.13 because, as

we will see, the argument Γ in that geometrical function (which represents the weights n•

in Definition 1.2.3) depends on the vector v (which represents the filters E• in Definition

1.2.3) which does not allow us to apply results of subsection 2.1.2.

2.5.1 Independence between multi-indexes and weights

In the previous sections we have been able to carry out the program designed for torsion

free coherent sheaves in different cases of tensors: holomorphic pairs in section 2.2 and

rk 2 tensors in section 2.4. The proof of the correspondence between the 1-parameter

subgroup of Kempf and the Harder-Narasimhan filtration in that case is based on proving

properties related with the convexity for an arbitrary filtration of subobjects, to show that

the candidates to be the Kempf filtration are very particular, so this filtration is unique.

For holomorphic pairs we previously know about the Harder-Narasimhan filtration so,
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by uniqueness, it coincides with the Kempf filtration. For rank 2 tensors, we define the

Harder-Narasimhan filtration as the unique Kempf filtration.

We know that the Kempf filtration gives maximum for some function, the Kempf

function, which depends on the data of the filters (ranks, Hilbert polynomials, etc.) and

the data of the weights or the exponents of the 1-parameter subgroup. And the key point

is to rewrite the Kempf function as a geometrical function in an Euclidean space (c.f.

definition of µv in (2.1.8)). There we prove that, if we think of the filtration (referring just

to the flag V• ⊂ V without the weights n•) as a graph, the weights giving the maximum

for the function are given by the convex envelope of the graph (c.f. Theorem 2.1.9).

Thanks to the independence between the vector v giving the graph of the m-Kempf

filtration Em
• ⊂ E and the weights Γi, we are able to rewrite the Kempf function as a

geometrical function, then it is possible to interpret this geometrical function as depend-

ing on two values, v and Γ, independently. For holomorphic pairs this is easily proved by

checking that εi(Φ, V•) = ε(Ei) is independent of Γ, because the symbol εi only depends

on the vanishing of the restriction of the morphism ϕ to Ei (c.f. Lemma 2.2.7). For rk 2

tensors, this is proven in Lemma 2.4.6. Nevertheless, for tensors in general, this is not

possible as we are going to show.

Recall Definition 1.2.1 and expression (1.2.4) in the stability condition for tensors,

µ(ϕ,E•, n•) = min
I∈I
{γri1 + · · ·+ γris : ϕ|(Ei1⊗···⊗Eis )⊕c 6= 0} , (2.5.1)

where I = {1, ..., t + 1}×s is the set of all multi-indexes I = (ii, ..., is) and (E•, n•) is a

weighted filtration of E. Recall that the previous quantity was expressed in another way

in (1.2.7),

µ(ϕ,E•, n•) =
t∑
i=1

ni(sri − εi(E•)r) .

Also recall that the data of the multi-index giving minimum in (2.5.1) is equivalent to

the data of the εi(E•) in the second expression.

For holomorphic pairs (i.e. s = 1 in Definition 1.2.1), Lemma 2.2.7 guarantees that

the multi-index does not depend on the weights γrij of the 1-parameter subgroup. The

multi-index is i if i = min{i : ϕEi 6= 0}, i.e., ϕEi−1
= 0 and ϕEi 6= 0. Lemma 2.4.6 does the

analogous for rk 2 tensors, being the multi-index (in the symmetric case) (i1, . . . , is) =

(1, . . . , 1, 2, . . . , 2) where the number of 1’s is ε(L) = k if ϕ|L⊗(k+1)⊗E⊗(s−k−1) = 0 and

ϕ|L⊗k⊗E⊗(s−k) 6= 0. However, beyond this cases, we cannot assure the independence of the

multi-index with the weights.
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Suppose the case s = 2, r = 3 in Definition 1.2.1, and suppose, for simplicity, that the

morphism ϕ is symmetric. The multi-index in this case will be (i1, i2), where 0 ≤ ij ≤ 3

because recall that, in (2.5.1), the vanishing of the morphism is checked generically. Then,

the multi-index is checking whether ϕ|Ei1⊗Ei2 = 0 or not, hence by the symmetry of ϕ,

the only multi-indexes which can appear are (1, 1), (1, 2), (1, 3), (2, 2), (2, 3). Therefore,

for a given filtration 0 ⊂ L ⊂ F ⊂ E with weights γ1, γ2, γ3, the following six situations

can occur:

1. ϕ|L⊗L 6= 0

2. ϕ|F⊗L 6= 0 and ϕ|L⊗L = 0

3. ϕ|E⊗L 6= 0 and ϕ|F⊗F = 0

4. ϕ|F⊗F 6= 0 and ϕ|E⊗L = 0

5. ϕ|E⊗F 6= 0 and ϕ|E⊗L = 0

6. ϕ|F⊗L = 0 , ϕ|F⊗F 6= 0 , ϕ|E⊗L 6= 0

Cases 1 − 5 give a fixed multi-index, (1, 1), (1, 2), (1, 3), (2, 2) and (2, 3) respectively.

However, in case number 6, the multi-index will be (1, 3) if γ1 + γ3 ≤ 2γ2 or (2, 2) if

γ1 + γ3 ≥ 2γ2. Hence, this is the simplest case where the multi-index actually depends

on the weights γi. Therefore, setting s = 2 and r = 3 in Definition 1.2.1 we get the first

case for which these features can occur.

If this happens, we are not able to rewrite the Kempf function as a geometrical

function (c.f. (2.1.8)) and prove an analogous to Proposition 2.1.13 to apply the argument

of the convex envelope to look for the vector γ giving maximum in Theorem 2.1.9. This

is the reason why the general method described in this thesis breaks down and does not

apply beyond rank 2 tensors.

2.5.2 Considerations for rk 3 tensors

Let us consider symmetric rank 3 tensors of two arguments over a smooth projective

curve, i.e. the morphism ϕ : E ⊗ E → OX being symmetric. This case is obtained from

section 1.2 by setting s = 2 c = 1, b = 0, R = SpecC and D = OX , the structure sheaf

over X ×R ' X, in Definition 1.2.1.
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Let τ be a positive constant and consider a tensor (E,ϕ) which is τ -unstable (c.f.

Definition 1.2.5). Let m0 be an integer as in Theorem 1.2.31 (such that δ-stability

and GIT stability coincide) and such that E is m0-regular (picking a larger integer, if

necessary). Let m ≥ m0 and let V ' H0(E(m)). In this case, the Kempf function (c.f.

Definition 1.4.4) is

µ(V•, n•) =

∑t
i=1 ni(r dimVi − ri dimV ) + a2

a1

∑t
i=1 ni

(
2 dimVi − εi(Φ) dimV

)√∑t+1
i=1 dimV iΓ2

i

,

where
a1

a2

=
rτ

PE(m)− sτ
=

3τ

PE(m)− 2τ
.

Let

0 ⊂ V1 ⊂ · · · ⊂ Vt+1 = V

be the Kempf filtration of V (c.f. Theorem 2.1.5) and let

0 ⊆ (Em
1 , ϕ|Em1 ) ⊆ (Em

2 , ϕ|Em2 ) ⊆ · · · (Em
t , ϕ|Emt ) ⊆ (Em

t+1, ϕ|Emt+1
) ⊆ (E,ϕ) .

be the m-Kempf filtration of (E,ϕ), by evaluating the Vi. Suppose that we are able

to prove properties satisfied by the filters of the m-Kempf filtration (i.e. analogous to

Propositions 2.1.18 and 2.1.20) to rewrite the Kempf function as

K =

∑t+1
i=1 Γi[(r

id− rdi) + rτ
P−2τ

(εiP − 2P i)]√∑t+1
i=1 P

iΓ2
i

=

∑t+1
i=1 Γi[(r

id− rdi) + τ(rεi − 2ri)]√∑t+1
i=1 r

iΓ2
i

=

∑t
i=1 ni[(rdi − rid) + τ(2ri − εir)]√∑t+1

i=1 r
iΓ2
i

(c.f. Proposition 2.2.17). Recall that we are considering the case s = 2 and dimX = 1

in Definition 1.2.1.

Observe that, in order to achieve a maximum of the function, it is enough to consider

saturated filtrations. Indeed, note that ni > 0, degEi ≤ degEi and rkEi = rkEi, hence

the value of the function is greater on saturated filtrations. Also, by similar reasons, it

is enough to consider filtrations with increasing ranks (c.f. Remark 1.2.4). Therefore, in

order to look for the Kempf filtration, i.e., the filtration which maximizes the previous

function, we can restrict our attention to filtrations of the form

0 ⊂ (L, ϕ|L) ⊂ (F, ϕ|F ) ⊂ (E,ϕ) , (2.5.2)
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for which the Kempf function is∑3
i=1 Γi[(r

id− rdi) + τ(rεi − ris)]√∑3
i=1 r

iΓ2
i

.

Let (i1, i2) be the multi-index in the definition of (2.5.1). Consider a filtration as in

(2.5.2) which is τ -destabilizing, i.e. contradicting Definition 1.2.3. We want to check if

this filtration is the Kempf filtration, and for that we would like to ask ourselves for the

best 1-parameter subgroup giving maximum for the Kempf function. Note that, in the

definition of stability for rk 3 tensors, it is not enough to consider one-step filtrations, i.e.

subobjects, hence asking for the weights of the filtration is a meaningful question.

The crucial fact is that the coefficients of the Kempf function (understood as the

function in Theorem 2.1.9, a function on the exponents Γ1, Γ2 and Γ3) vary with the

multi-index (i1, i2). The filtration (2.5.2) will give a multi-index in (2.5.1). If the multi-

index we obtain falls into one of the cases 1 − 5 in the list of the previous subsection,

then the multi-index does not depend on the weights. However, if

ϕ|F⊗L = 0 , ϕ|F⊗F 6= 0 , ϕ|E⊗L 6= 0 ,

we are in case 6, and the multi-index will be (1, 3) if Γ1 +Γ3 ≤ 2Γ2, or (2, 2) otherwise. In

this case, the vector v (the vector of the graph associated to the filtration) will depend on

the multi-index, so we can have two possible vectors associated to the filtration (2.5.2).

Call the vectors x = (x1, x2, x3) and y = (y1, y2, y3), then the coordinates of these two

vectors are

x1 = r1d− d1r + τ(rε
(1,3)
1 − 2r1) = v1 + τ

x2 = r2d− d2r + τ(rε
(1,3)
2 − 2r2) = v2 − 2τ

x3 = r3d− d3r + τ(rε
(1,3)
3 − 2r3) = v3 + τ ,

y1 = r1d− d1r + τ(rε
(2,2)
1 − 2r1) = v1 − 2τ

y2 = r2d− d2r + τ(rε
(2,2)
2 − 2r2) = v2 + 4τ

y3 = r3d− d3r + τ(rε
(2,2)
3 − 2r3) = v3 − 2τ .

Note that r1 = r2 = r3 = 1, r = 3, and note that we denote with the upper index the

different symbols εi for each multi-index. Also we call vi = rid− dir, for each i.
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Note that, in both cases, the following holds

3∑
i=1

xi =
3∑
i=1

yi =
3∑
i=1

vi = 0 .

Suppose that (Γ1,Γ2,Γ3) is the vector giving maximum in the Kempf function. And

suppose that it verifies Γ1 + Γ3 ≤ 2Γ2, hence the multi-index is (1, 3), and the vector of

the graph associated to the filtration is x. Taking into account that Γ1 + Γ2 + Γ3 = 0,

because Γ is a 1-parameter subgroup of SL(N), the Kempf function will be

K =
Γ1x1 + Γ2x2 + Γ3x3√

Γ2
1 + Γ2

2 + Γ2
3

=
Γ1v1 + Γ2v2 + Γ3v3 + τ(Γ1 + Γ3 − 2Γ2)√

Γ2
1 + Γ2

2 + Γ2
3

=

Γ1(v1 − v2 + 3τ) + Γ3(v3 − v2 + 3τ)√
2(Γ2

1 + Γ1Γ2 + Γ2
3)

,

which is a function on two arguments. To maximize the function with respect to Γ1 and

Γ3 we set the gradient of K equal to 0 which gives

Γ1 = Γ3(
v1 + τ

v3 + τ
) .

If we suppose that the vector giving maximum in the Kempf function verifies Γ1+Γ3 ≥
2Γ2, we obtain the Kempf function

K =
Γ1y1 + Γ2y2 + Γ3y3√

Γ2
1 + Γ2

2 + Γ2
3

,

which we maximize with respect to Γ1 and Γ3 as well, obtaining

Γ1 = Γ3(
v1 − 2τ

v3 − 2τ
) .

Observe that, in both cases, the vector Γ = (Γ1,Γ2,Γ3) which maximize the Kempf

function is exactly given by the vectors x and y, because the Γ1 and Γ3 obtained are

precisely multiples of their coordinates.

Note that, Γ1 + Γ3 ≤ 2Γ2 implies Γ1 ≤ −Γ3, so to be congruent, in the first case, it

has to be v1 + v3 + 2τ ≤ 0 (here we use that v3 > 0, which has to hold by convexity in

Lemma 2.1.15). Similarly, in the second case, it has to be v1 + v3 − 4τ ≥ 0 (whenever

v3 − 2τ ≥ 0). Observe that, as τ > 0, both conditions cannot hold at the same time,

then necessarily the multi-index is one of two, either (1, 3) or (2, 2).
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Finally, consider the following example. Let (E,ϕ) be a rank 3 tensor over X = P1
C,

where E = OP1
C
(2) ⊕ OP1

C
⊕ OP1

C
(−1). Consider the filtration 0 ⊂ (L, ϕ|L) ⊂ (F, ϕ|F ) ⊂

(E,ϕ) where L = OP1
C
(2), F = OP1

C
(2) ⊕ OP1

C
, and suppose that the matrix of the

morphism ϕ, adapted to the filtration 0 ⊂ L ⊂ F ⊂ E, is 0 0 X

0 X X

X X X


where X represents a non zero element. Let τ = 1

3
and observe that (E,ϕ) is τ -unstable,

because we can find weights Γ1, Γ2 and Γ3 such that the filtration 0 ⊂ L ⊂ F ⊂ E

contradicts Definition 1.2.3. We consider such filtration and look for the best weights in

order to maximize the Kempf function. Because of how ϕ looks like for this filtration, i.e.

not knowing if the multi-index is (1, 3) or (2, 2), we have to apply the previous analysis.

See that

v1 = rkL · degE − degL · rkE = −5

v2 = rkF/L · degE − degF/L · rkE = 1

v3 = rkE/F · degE − degE/F · rkE = 4 ,

hence we can only be in the first case, where the multi-index is given by (1, 3). Substi-

tuting, we get that the best 1-parameter subgroup is given by the vector,

Γ = (
−5 + τ

4 + τ
,
1− 2τ

4 + τ
, 1) = (

−14

13
,

1

13
, 1) .

Note that we set Γ3 = 1, and recall that the Kempf function is invariant by rescaling the

Γi (c.f. subsection 2.1.2).

To know if the filtration 0 ⊂ (L, ϕ|L) ⊂ (F, ϕ|F ) ⊂ (E,ϕ) is the Kempf filtration, i.e.

to know if it is the filtration giving maximum for the Kempf function, we would have to

check all possible destabilizing filtrations and the values the Kempf function achieves for

them, to choose the greatest value which has to correspond to the Kempf filtration, the

candidate to be defined as the Harder-Narasimhan filtration.

In view of this, we can define a class of tensors for which, the ambiguity of two or

more multi-indexes which can give the minimum in (1.2.4) or (1.2.37), cannot appear.

Definition 2.5.1. Let δ be a polynomial with positive leading coefficient of degree at most

n−1. Let (E,ϕ) be a δ-unstable tensor over an n-dimensional projective variety. Suppose
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that there does not exist a destabilizing weighted filtration (E•, n•) (i.e. contradicting the

expression of Definition 1.2.3) such that for it, the symbols εi(ϕ) do depend on the weights

Γi (because, for example, the expression of the morphism ϕ adapted to the filtration is

particularly easy). We call these tensors, determined multi-index tensors.

It is clear that we can develop the same techniques of this chapter to show that the

m-Kempf filtration stabilizes with the integer m, and to construct a Harder-Narasimhan

filtration for determined multi-index tensors as in Definition 2.5.1.
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Chapter 3

Correspondence for representations

of quivers

3.1 Representations of quivers on vector spaces

Let Q be a finite quiver, given by a finite set of vertices and arrows between them, and

a representation of Q on finite dimensional k-vector spaces, where k is an algebraically

closed field of arbitrary characteristic. There exists a notion of stability for such rep-

resentations given by King (c.f. [Ki]) and, more generally by Reineke (c.f. [Re]) (both

particular cases of the abstract notion of stability for an abelian category that we can

find in [Ru]), and a notion of the existence of a unique Harder-Narasimhan filtration with

respect to that stability condition.

We consider the construction of a moduli space for these objects by King (c.f. [Ki])

and associate to an unstable representation an unstable point, in the sense of Geometric

Invariant Theory, in a parameter space where a group acts. Then, the 1-parameter

subgroup given by Kempf (c.f. Theorem 1.4.6), which is maximally destabilizing in the

GIT sense, gives a filtration of subrepresentations and we prove that it coincides with

the Harder-Narasimhan filtration for that representation.

The proof follows the argument given in chapter 2 to establish the correspondence

between the 1-parameter subgroup of Kempf and the Harder-Narasimhan filtration for

the different cases studied there. However, for representations of quivers on the category

of vector spaces, the proof is much simpler, as there is no need of proving that there

exists an integer m, sufficiently large, such that the m-Kempf filtration does not depend

175



176 CHAPTER 3. CORRESP. FOR REP. OF QUIVERS

on m (c.f. subsection 2.1.6), because in this construction of the moduli space there is no

such integer m involved.

The definition of stability for a representation of a quiver (c.f. Definition 3.1.1)

contains two sets of parameters, the coefficients of the linear functions Θ and σ. In [Ke],

the 1-parameter subgroup is taken to maximize certain function which depends on the

choice of a linearization of the action of the group we are taking the quotient by, and a

length in the set of 1-parameter subgroups (c.f. Definition 1.4.2). In the case of sheaves

the group is SL(N), which is simple, so any such length is unique up to multiplication

by a scalar, whereas for finite dimensional representations of quivers we quotient by a

product of general linear groups, so we have to choose a scalar for each factor in the

choice of a length. Hence, we set the positive coefficients of σ precisely as these scalars

and consider a particular linearization depending on σ and Θ, in order to relate the

Harder-Narasimhan filtration of a representation with the 1-parameter subgroup given

by Kempf in [Ke] (c.f. Theorem 3.1.15).

3.1.1 Harder-Narasimhan filtration for representations of quiv-

ers

A finite quiver Q is given by a finite set of vertices Q0 and a finite set of arrows Q1.

The arrows will be denoted by (α : vi → vj) ∈ Q1. We denote by ZQ0 the free abelian

group generated by Q0.

The following figures show different examples of finite quivers:

• ee • // • • ((
66 •

•

��~~~~~~~

��@@@@@@@

• // •

• //

��@@@@@@@ •

��@@@@@@@ •

��
• //

OO

•

OO

Fix k, an algebraically closed field of arbitrary characteristic. Let mod kQ be the

category of finite dimensional representations of Q over k. Such category is an abelian

category and its objects are given by tuples

M = ((Mv)v∈Q0 , (Mα : Mvi →Mvj)α:vi→vj)
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of finite dimensional k-vector spaces and k-linear maps between them. The dimension

vector of a representation is given by dimM =
∑

v∈Q0
dimkMv · v ∈ NQ0.

For example, in the previous figures, a representation of the first quiver on the top

left on finite dimensional vector spaces is an endomorphism of a vector space, and a

representation of the one in the top center is a homomorphism between two vector spaces.

Let Θ be a set of numbers Θv for each v ∈ Q0 and define a linear function Θ : ZQ0 →
Z, by

Θ(M) := Θ(dimM) =
∑
v∈Q0

Θv dimkMv .

Let σ be a set of strictly positive numbers σv for each v ∈ Q0, and define a (strictly

positive) linear function σ : ZQ0 → Z, by

σ(M) := σ(dimM) =
∑
v∈Q0

σv dimkMv .

We call σ(M) the total dimension of M . we will refer to Θ and σ indistinctly meaning

the sets of numbers Θv and σv or the linear functions.

For a non-zero representation M of Q over k, define its slope by

µ(Θ,σ)(M) :=
Θ(M)

σ(M)
.

Definition 3.1.1. A representation M of Q over k is (Θ, σ)-semistable if for all non-

zero subrepresentations M ′ of M , we have

µ(Θ,σ)(M
′) ≤ µ(Θ,σ)(M) .

If the inequality is strict for every non-zero subrepresentation, we say that M is (Θ, σ)-

stable. If M is not (Θ, σ)-semistable we say that it is (Θ, σ)-unstable.

Lemma 3.1.2. If we multiply the linear function Θ by a non-negative integer, or if we

add an integer multiple of the strictly positive linear function σ to Θ, the semistable (resp.

stable) representations remain semistable (resp. stable).

Proof. Let Θ′ = a ·Θ + b · σ, a, b ∈ Z, a > 0, be another linear function and note that

Θ′(M ′)

σ(M ′)
≤ Θ′(M)

σ(M)
⇔ a ·Θ(M ′) + b · σ(M)

σ(M ′)
≤ a ·Θ(M) + b · σ(M)

σ(M)

⇔ Θ(M ′)

σ(M ′)
≤ Θ(M)

σ(M)
.
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Remark 3.1.3. In [Ki], the stability condition (c.f [Ki, Definition 1.1]) is formulated

by not considering representations with different dimension vectors. This leads to the

construction of a moduli space and S-filtrations (or Jordan-Hölder filtrations) but not

to define a Harder-Narasimhan filtration, for which is needed a slope condition as in

Definition 3.1.1.

This slope stability condition, the (Θ, σ)-stability (c.f. Definition 3.1.1), can be turned

out into a stability condition as in [Ki], by clearing denominators

θ(M ′) = Θ(M)σ(M ′)− σ(M)Θ(M ′) ,

where θ is the function in [Ki, Definition 1.1] (observe that θ(M) = 0), Θ and σ are as

in Definition 3.1.1, and M ′ ⊂M is a subrepresentation.

We will apply this in Proposition 3.1.8, to relate (Θ, σ)-stability with GIT stability.

Remark 3.1.4. The definition of stability which appears in [Re] considers σv = 1 for

each v ∈ Q0, although we consider a strictly positive linear function σ in general. The

notation of σ agrees with [AC], [ACGP], [Sch], while Θ agrees with [Re] but in the other

references it is substituted by different notations closer to classical moduli problems where

the stability notion depends on parameters (τ -stability or ρ-stability).

Lemma 3.1.5. [Ru, Definition 1], [Re, Lemma 4.1] Let 0 → X → Y → Z → 0 be a

short exact sequence of non-zero representations of Q over k. Then µ(Θ,σ)(X) < µ(Θ,σ)(Y )

if and only if µ(Θ,σ)(X) < µ(Θ,σ)(Z) if and only if µ(Θ,σ)(Y ) < µ(Θ,σ)(Z).

Proof. Note that σ(Y ) = σ(X) + σ(Z) and, therefore

µ(Θ,σ)(Y ) =
Θ(Y )

σ(Y )
=

Θ(X) + Θ(Z)

σ(X) + σ(Z)
,

from which the statement follows.

Theorem 3.1.6. [Ru, Theorem 2], [Re, Lemma 4.7] Given linear functions Θ and σ,

(being σ strictly positive), every representation M of Q over k has a unique filtration

0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mt ⊂Mt+1 = M

verifying the following properties, where M i := Mi/Mi−1,

1. µ(Θ,σ)(M
1) > µ(Θ,σ)(M

2) > . . . > µ(Θ,σ)(M
t) > µ(Θ,σ)(M

t+1)
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2. The quotients M i are (Θ, σ)-semistable

This filtration is called the Harder-Narasimhan filtration of M (with respect to Θ

and σ).

Proof. The proof follows the usual argument to show the existence and uniqueness of

the Harder-Narasimhan filtration.

Using Lemma 3.1.5 we can prove the existence of a unique subrepresentation M1,

whose slope is maximal among all the subrepresentations of M , and of maximal total

dimension σ(M1) among those of maximal slope (c.f. [Ru, Proposition 1.9], [Re, Lemma

4.4]). Then, proceed by recursion on the quotient M/M1.

3.1.2 Moduli space of representations of quivers

Fix k an algebraically closed field of arbitrary characteristic. Fix a dimension vector

d ∈ ZQ0 and fix k-vector spaces Mv of dimension dv for all v ∈ Q0. Fix linear functions

Θ, σ : ZQ0 → Z, being σ strictly positive. We recall the construction by King (c.f. [Ki])

of a moduli space for representations of Q over k with dimension vector d.

Consider the affine k-space

Rd(Q) =
⊕

α:vi→vj

Homk(Mvi ,Mvj) ,

whose points parametrize representations of Q on the k-vector spaces Mv. The reductive

linear algebraic group

Gd =
∏
v∈Q0

GL(Mv)

acts on Rd(Q) by

(gvi)vi · (Mα)α = (gvjMαg
−1
vi

)α:vi→vj ,

and the Gd-orbits of M inRd(Q) correspond bijectively to the isomorphism classes [M ] of

k-representations of Q with dimension vector d. We will use Geometric Invariant Theory

to take the quotient of Rd(Q) by Gd and construct a moduli space of representations of

the quiver Q on the k-vector spaces Mv.

The action of Gd on the affine space Rd(Q) can be lifted by a character χ to the

(necessarily trivial) line bundle L required by the Geometric Invariant Theory. Note

that the subgroup of the diagonal scalar matrices in Gd,

∆ = {(t1, . . . , t1) : t ∈ k∗} ,
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acts trivially on Rd(Q). Then, we have to choose χ in such a way that ∆ acts trivially

on the fiber, in other words, χ(∆) = 1.

Then, using the linear functions Θ and σ, consider the character

χ(Θ,σ)((gv)v∈Q0) :=
∏
v∈Q0

det(gv)
(Θ(d)σv−σ(d)Θv)

of Gd, and note that χ(Θ,σ)(∆) = 1, because
∑

v∈Q0
(Θ(d)σv − σ(d)Θv) · dv = 0.

Given a linearization of an action by a character χ, we say that f is a relative

invariant of weight χn if f(g · x) = χn(g) · f(x) ∀x.

Definition 3.1.7. [Ki, Definition 2.1] A point x ∈ Rd(Q) is χ(Θ,σ)-semistable if there

is a relative invariant of weight χn(Θ,σ), f ∈ k[Rd(Q)]Gd,χ
n
(Θ,σ) with n ≥ 1, such that

f(x) 6= 0.

The algebraic quotient will be given by

Rd(Q)//(Gd, χ(Θ,σ)) = Proj
(⊕
n≥0

k[Rd(Q)]Gd,χ
n
(Θ,σ)

)
.

Proposition 3.1.8. A point xM ∈ Rd(Q) corresponding to a representation M ∈
mod kQ is χ(Θ,σ)-semistable (resp. χ(Θ,σ)-stable) for the action of Gd if and only if

M is (Θ, σ)-semistable (resp. (Θ, σ)-stable).

Proof. It follows easily from [Ki, Proposition 3.1] and the observation in Remark 3.1.3.

In [Ki], given a linear function θ, a representation M is θ-semistable if θ(M) = 0 and, for

every subrepresentation M ′ ⊂ M , we have θ(M ′) ≥ 0 (c.f. [Ki, Definition 1.1]). Then,

[Ki, Proposition 3.1] relates the θ-stability with the χθ-stability, where the character is

χθ((gv)v) :=
∏
v∈Q0

det(gv)
θv .

Hence, the χ(Θ,σ)-stability with the character given by

χ(Θ,σ)((gv)v) :=
∏
v∈Q0

det(gv)
(Θ(d)σv−σ(d)Θv) ,

is equivalent to the (Θ, σ)-stability in Definition 3.1.1 because, given a subrepresentation

M ′ ⊂M , the expression∑
v∈Q0

(Θ(M)σv − σ(M)Θv) · dimM ′
v = Θ(M)σ(M ′)− σ(M)Θ(M ′) ≥ 0



3.1. REPRESENTATIONS OF QUIVERS ON VECTOR SPACES 181

is equivalent to
Θ(M ′)

σ(M ′)
≤ Θ(M)

σ(M)
.

Now denote by R(Θ,σ)−ss
d (Q) the set of χ(Θ,σ)-semistable points.

Theorem 3.1.9. [Ki, Proposition 4.3], [Re, Corollary 3.7] The moduli space M
(Θ,σ)
d (Q) =

R(Θ,σ)−ss
d (Q)//Gd is a projective variety which parametrizes S-equivalence classes of (Θ, σ)-

semistable representations of Q of dimension vector d.

By the Hilbert-Mumford criterion we can characterize χ(Θ,σ)-semistable points by

its behavior under the action of 1-parameter subgroups. A 1-parameter subgroup of

Gd =
∏

v∈Q0
GL(Mv) is a non-trivial homomorphism Γ : k∗ → Gd. There exist bases of

the vector spaces Mv such that Γ takes the diagonal form

 tΓv1,1

. . .

tΓv1,t1+1

× · · · ×
 tΓvs,1

. . .

tΓvs,ts+1


where v1, . . . , vs ∈ Q0 are the vertices of the quiver.

Let x ∈ Rd(Q) and suppose that limt→0 Γ · x exists and is equal to x0. Then x0 is a

fixed point for the action of Γ, and Γ acts on the fiber of the trivial line bundle over x0

as multiplication by ta. Define the following numerical function,

µχ(Θ,σ)
(x,Γ) = −a .

The next proposition establishes a variant of the Hilbert-Mumford criterion given in

Theorem 1.1.14.

Proposition 3.1.10. [Ki, Proposition 2.5] A point xM ∈ Rd(Q) corresponding to a

representation M is χ(Θ,σ)-semistable if and only if every 1-parameter subgroup Γ of Gd,

for which limt→0 Γ(t) · xM exists, satisfies µχ(Θ,σ)
(xM ,Γ) ≤ 0.

Remark 3.1.11. Note that in Proposition 3.1.10 we change the sign of the numerical

function µχ(Θ,σ)
(xM ,Γ) with respect to [Ki] (as we did when changing the character in

the proof of Proposition 3.1.8), in congruence with [Ke] and the numerical function in

Theorem 1.1.14.
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The action of a 1-parameter subgroup Γ of Gd provides a decomposition of each vector

space Mv, associated to each vertex v ∈ Q0, in weight spaces

Mv =
⊕
n∈Z

Mn
v ,

where Γ(t) acts on the weight space Mn
v as multiplication by tn. Every 1-parameter

subgroup, for which limt→0 Γ(t) · x exists, determines a weighted filtration M• ⊂ M of

subrepresentations (c.f. [Ki]),

0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mt ⊂Mt+1 = M ,

where Mi is the subrepresentation with vector spaces Mv,i :=
⊕

n≤iM
n
v for each vertex

v ∈ Q0, and the weight corresponding to each quotient M i = Mi/Mi−1 is Γi. Note that

two 1-parameter subgroups giving the same filtration are conjugated by an element of

the parabolic subgroup of Gd defined by the filtration. Therefore, the numerical function

µχ(Θ,σ)
(xM ,Γ), has a simple expression in terms of the filtration M• ⊂M (c.f. calculation

in [Ki]):

µχ(Θ,σ)
(xM ,Γ) =

∑
v∈Q0

[(
Θ(M)σv − σ(M)Θv

)
·
tv+1∑
i=1

Γv,i dimM i
v

]
. (3.1.1)

Let di, d
i be the dimension vectors of the subrepresentation Mi and the quotient M i =

Mi/Mi−1, respectively. The action of Γ on the point corresponding to a representation

M has different weights for each vertex v ∈ Q0, but collect all different weights Γi

corresponding to any vertex and form the vector

Γ = (Γ1,Γ2, . . . ,Γt,Γt+1)

verifying Γ1 < Γ2 < . . . < Γt < Γt+1. Hence, (3.1.1) turns out to be

µχ(Θ,σ)
(xM ,Γ) =

t+1∑
i=1

Γi · [Θ(M) · σ(M i)− σ(M) ·Θ(M i)] , (3.1.2)

and Proposition 3.1.10 can be rewritten in terms of filtrations of M .

Proposition 3.1.12. A point xM ∈ Rd(Q) corresponding to a representation M of Q

over k, is χ(Θ,σ)-semistable if and only if every 1-parameter subgroup Γ of Gd, defining a

filtration of subrepresentations of M

0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mt ⊂Mt+1 = M ,
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satisfies that

µχ(Θ,σ)
(xM ,Γ) =

t+1∑
i=1

Γi · [Θ(M) · σ(M i)− σ(M) ·Θ(M i)] ≤ 0 .

3.1.3 Kempf theorem

Given a weighted filtration of M ,

0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mt ⊂Mt+1 = M ,

and Γ1 < Γ2 < . . . < Γt < Γt+1, define the following function which is a Kempf function

(c.f. Definition 1.4.4) for this problem,

K(M•,Γ) =

∑t+1
i=1 Γi · [Θ(M) · σ(M i)− σ(M) ·Θ(M i)]√∑t+1

i=1 σ(M i) · Γ2
i

(3.1.3)

It is a function whose numerator is equal to the numerical function µχ(Θ,σ)
(xM ,Γ) and the

denominator is a length of the 1-parameter subgroup Γ. Given a reductive linear algebraic

group G, recall the notion of length in Γ(G), the set of all 1-parameter subgroups (c.f.

Definition 1.4.2).

If G is simple, in characteristic zero all choices of length will be multiples of the Killing

form in the Lie algebra g (note that in this case Γ(G) ⊂ g). For an almost simple group

in arbitrary characteristic (a group G whose center Z is finite and G/Z is simple, e.g.

SL(N) in positive characteristic), all lengths differ also by a scalar.

However, in this case, the group is a product of general linear groups, which is not

simple. Then, there are several simple factors in the group and we can take a different

multiple of the Killing form for each factor. Hence, observe that in the Kempf function

(3.1.3), the denominator of the expression is a function verifying the properties of the

definition of a length (c.f. Definition 1.4.2). The different multiples we take for each

factor appear to be related to the choice of the strictly positive linear function σ.

Therefore, we can rewrite Theorem 2.1.5 in our case as follows:

Theorem 3.1.13. Given a χ(Θ,σ)-unstable point xM ∈ Rd(Q) corresponding to a repre-

sentation M , there exists a unique weighted filtration, i.e. 0 ⊂ M1 ⊂ · · · ⊂ Mt+1 = M

and real numbers Γ1 < Γ2 < . . . < Γt < Γt+1, called the Kempf filtration of M,

such that the Kempf function K(M•,Γ) achieves the maximum among all filtrations and

weights verifying Γ1 < Γ2 < . . . < Γt < Γt+1.
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Note that the length we are considering depends on the choice of σ and the Kempf

function depends both on the length and the linearization of the group action, hence

depends both on Θ and σ. In order to relate the Kempf filtration of M with the Harder-

Narasimhan filtration, which also depends on Θ and σ, we have set the parameters

conveniently in the expression of the stability condition (c.f. Proposition 3.1.8).

3.1.4 Kempf filtration is Harder-Narasimhan filtration

Finally, we close the section by relating the Kempf filtration in Theorem 3.1.13 and the

Harder-Narasimhan filtration in Theorem 3.1.6. We study the geometrical properties

of the Kempf filtration by associating to it a graph which encodes the two properties

satisfied by the Harder-Narasimhan filtration. We will use the results of subsection 2.1.2.

Let Θ : ZQ0 → Z be a linear function and let σ : ZQ0 → Z be a strictly positive

linear function. Let M be a representation of Q over an algebraically closed field k

of arbitrary characteristic, which is (Θ, σ)-unstable. Consider the χ(Θ,σ)-unstable point

xM ∈ Rd(Q) associated to M , by Proposition 3.1.8. Let 0 ⊂M1 ⊂ · · · ⊂Mt+1 = M and

Γ1 < Γ2 < . . . < Γt < Γt+1 be the Kempf filtration of M , by Theorem 3.1.13.

Let M i = Mi/Mi−1 be the quotients of the filtration. Consider the inner product in

Rt+1 given by the matrix  σ(M1) 0
. . .

0 σ(M t+1)


where σ(M i) > 0.

Definition 3.1.14. Given a filtration 0 ⊂ M1 ⊂ · · · ⊂ Mt+1 = M of subrepresentations

of M , define v = (v1, ..., vt+1), where

vi = Θ(M)− σ(M)

σ(M i)
Θ(M i) ,

the graph or the vector associated to the filtration.

Now we can identify the Kempf function (c.f. (3.1.3)) with the function in Theorem

2.1.9,

K(M•,Γ) =

∑t+1
i=1 Γi · [Θ(M)σ(M i)− σ(M)Θ(M i)]√∑t+1

i=1 σ(M i) · Γ2
i

=
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=

∑t+1
i=1 σ(M i)Γi · [Θ(M)− σ(M)

σ(M i)
Θ(M i)]√∑t+1

i=1 σ(M i) · Γ2
i

=
(Γ, v)

‖Γ‖
= µv(Γ) .

Note that
∑t+1

i=1 b
ivi = 0.

Theorem 3.1.15. The Kempf filtration of M is the Harder-Narasimhan filtration of M .

Proof. The vector v associated to the Kempf filtration of M in Definition 3.1.14 verifies

properties in Lemmas 2.1.15 and 2.1.16, which are precisely properties 1 and 2 in Theorem

3.1.6, respectively. Lemma 2.1.15 implies that vi < vi+1, for each i, hence

Θ(M)− σ(M)

σ(M i)
Θ(M i) < Θ(M)− σ(M)

σ(M i+1)
Θ(M i+1)⇔ Θ(M i)

σ(M i)
>

Θ(M i+1)

σ(M i+1)
,

and Lemma 2.1.16 implies the (Θ, σ)-semistability of each quotient M i = Mi/Mi−1. By

uniqueness of the Harder-Narasimhan filtration of M , both filtrations do coincide.

3.2 Representations of quivers on coherent sheaves

In this final section we will show the correspondence between the 1-parameter subgroup

of Kempf in Theorem 1.4.6 and the filtration of Harder-Narasimhan in Theorem 1.3.5

through the language of representations of quivers. A coherent sheaf will be a repre-

sentation of a one vertex quiver on the category of coherent sheaves. It will have a

H-Kronecker associated, and we will associate to it a representation of another quiver

on vector spaces, to use the results of section 3.1.

We first present the Q-sheaves which are representations of a quiver on the category

of coherent sheaves, and its relation with the Kronecker modules.

3.2.1 Quiver sheaves and Kronecker modules

Let Q be a quiver and let X be a projective variety. A Q-sheaf over X is a representation

E of Q in the category of coherent sheaves over X, given by the data of a coherent sheaf

Ev for all v ∈ Q0 and a morphism of sheaves φα : Evi → Evj for all α ∈ Q1. Let E be

a Q-sheaf over X. Let P be a set of polynomials Pv ∈ Q[m], indexed by the vertices

v ∈ Q0. A Q-sheaf E has Hilbert polynomial vector P if Pv is the Hilbert polynomial of

each sheaf Ev.
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Let κ be a set of polynomials κv ∈ Q[m], for v ∈ Q0, such that κv(m) > 0 for m� 0

and deg κv = t for all v ∈ Q0, for a fixed integer t ≥ 0 independent of v. Let us call σ, τ

the sets of rational numbers σv > 0, τv, indexed by the vertices v ∈ Q0, such that

κv(m) = σvm
t + τvm

t−1 + . . . .

The κ-Hilbert polynomial of a Q-sheaf E is the polynomial Pκ(E) ∈ Q[m] given by

Pκ(E,m) :=
∑
v∈Q0

κv(m)PEv(m) ,

where each PEv(m) is the Hilbert polynomial of the coherent sheaf Ev.

A Q-sheaf E is called pure of dimension e, if the sheaf Ev is pure of dimension e

(independent of v), for all v ∈ Q0. A Q-subsheaf of a Q-sheaf E is given by a subsheaf

E ′v ⊂ Ev for each vertex such that the restrictions of the morphisms are compatible.

Definition 3.2.1. A Q-sheaf E over X is Gieseker κ-semistable if it is pure (of any

dimension e) and

Pκ(E
′,m)∑

v∈0
σv rkE ′v

≤ Pκ(E,m)∑
v∈0

σv rkEv
for m� 0 ,

for each non-zero Q-subsheaf E ′ ⊂ E, and Gieseker κ-stable if, furthermore, the

inequality is strict for all proper Q-subsheaves E ′ ⊂ E. If E is not Gieseker κ-semistable

we say that it is Gieseker κ-unstable.

By κ-semistable, κ-stable and κ-unstable we mean, in the following, Gieseker κ-

semistable, Gieseker κ-stable and Gieseker κ-unstable. We can rewrite Definition 3.2.1

as it appears in [AC].

Lemma 3.2.2. [AC, Lemma 7] A Q-sheaf E over X is κ-semistable if and only if for

all non-zero E ′ ⊂ E,

Pκ(E
′,m)

Pκ(E ′, l)
≤ Pκ(E,m)

Pκ(E, l)
for l� m� 0 ,

for each non-zero Q-subsheaf E ′ ⊂ E, and Gieseker κ-stable if, furthermore, the inequal-

ity is strict for all proper E ′ ⊂ E.

Álvarez-Cónsul and King in [ACK] give a functorial construction of the moduli space

of coherent sheaves over a projective variety by associating to a sheaf a Kronecker

module which is a representation of a particular quiver on vector spaces.
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Let l > m be integers and consider the sheaf T = O(−l) ⊕ O(−m) together with a

finite dimensional k-algebra (
k H

0 k

)
of operators on T , where A = L ⊕ H ⊂ EndX(T ), L = k · e0 ⊕ k · e1 is the semisimple

algebra generated by the two projection operators onto the summands of T , and H =

H0(O(l −m)) = Hom(OX(m),OX(l)), acting on T in the off-diagonal way.

We can give a right A-module structure on M by giving a right L-module structure

and a right L-module map M ⊗L H → V . The first one is equivalent to a direct sum

decomposition M = V ⊕W , being V = M · e0 and W = M · e1, and the second one given

by the map

α : V ⊗H → W .

This structure given on V is called a H-Kronecker module. We can also say that A

is the path algebra of the quiver with two vertices and, after choosing a basis for H,

a number of dimH arrows between them. A representation of this quiver is also a H-

Kronecker module, equivalent to the previous definition by the standard equivalence

between representations of quivers and modules for their path algebras.

Given a sheaf E, HomX(T,E) can be given a structure of H-Kronecker module. In-

deed, it has a natural right module structure over A ⊂ HomX(T, T ), given by composition

of maps, and we have the decomposition HomX(T,E) = H0(E(m))⊕H0(E(l)) together

with the multiplication map αE : H0(E(m))⊗H → H0(E(l)).

Given an A-module M = V ⊕ W , an A-submodule M ′ is given by V ′ ⊂ V and

W ′ ⊂ W such that α(V ′ ⊗H) ⊂ W ′.

Definition 3.2.3. [ACK, Definition 2.3] An A module M = V ⊕W is semistable if

dimV ′

dimW ′ ≤
dimV

dimW

for every submodule M ′ = V ′ ⊕W ′ ⊂ M . If the previous inequality is strict for every

submodule, we say that M is stable. If M is not semistable, we say that it is unstable.

We associate to a sheaf E a Kronecker module in this way. An observation in [ACK]

points out that the GIT semistability of the orbit of E is equivalent to the natural

semistability of the Kronecker module associated (c.f. [ACK, Remark 2.4]). In the
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following theorem we also relate the stability of the A-module M with the stability of a

representation of the quiver Q̃

• // •

on vector spaces, to use the results of section 3.1.

Theorem 3.2.4. Let E be a coherent sheaf over X, pure of dimension e, with Hilbert

polynomial P . There exists l� m� 0, such that the following are equivalent:

1. E is semistable as in Definition 2.1.1.

2. E is m-regular and the A-module M = H0(E(m)) ⊕ H0(E(l)) is semistable as in

Definition 3.2.3.

3. The representation M of the two vertex quiver Q̃ = {v0, v1} and one arrow between

them on k-vector spaces, where Mv0 = H0(E(m)), Mv1 = H0(E(l)), is (Θ, σ)-

semistable as in Definition 3.1.1, where the linear functions Θ and σ are defined as

Θ(M) = dimMv0, σ(M) = dimMv0 + dimMv1.

4. The point xM ∈ R(Θ,σ)
d (Q̃) is χ(Θ,σ)-semistable, where d is the dimension vector of

the representation M , dvi = dimMvi.

Proof. The equivalence between 1 and 2 follows from [ACK, Theorem 5.10]. For the

equivalence between 2 and 3 note that, defining the linear functions Θ and σ as in the

statement 3, it is
dimM ′

v0

dimM ′
v1

≤ dimMv0

dimMv1

⇔

dimM ′
v0

dimM ′
v0

+ dimM ′
v1

≤ dimMv0

dimMv0 + dimMv1

⇔ Θ(M ′)

σ(M ′)
≤ Θ(M)

σ(M)
.

The equivalence between 3 and 4 follows from Proposition 3.1.8.

3.2.2 Kempf filtration for Q-sheaves

Here we use Theorem 3.2.4 to show the correspondence between the Kempf Theorem

and the Harder-Narasimhan filtration for coherent sheaves (c.f. Theorem 3.2.11), pass-

ing through stability for Kronecker modules and stability for representations of quivers

on vector spaces. In this way, all ideas involved in this thesis, all different notions of
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stability, all correspondences of maximal unstability, appear together. Theorem 3.2.11

gives another proof of Theorem 2.1.7.

Let Q = {v} be a one vertex quiver without arrows. Then, a Q-sheaf E is a coherent

sheaf E and note that the stability condition in Definition 3.2.1 is independent of the

choice of a polynomial κ. Let E be an unstable Q-sheaf with Hilbert polynomial P , i.e.

an unstable coherent sheaf. Choose l� m� 0 such that Theorem 3.2.4 holds, and such

that E is m-regular. By Theorem 3.2.4, the representation M = H0(E(m))⊕H0(E(l))

of Q̃ = {v0, v1} in k-vector spaces is (Θ, σ)-unstable, and the corresponding point xM ∈
R(Θ,σ)
d (Q̃) is χ(Θ,σ)-unstable. By Theorem 3.1.13, let 0 ⊂ M1 ⊂ · · · ⊂ Mt+1 = M and

Γ1 < Γ2 < . . . < Γt < Γt+1 be the Kempf filtration of M (depending on m and l) which,

by Theorem 3.1.15, is the Harder-Narasimhan filtration of M , defined in Theorem 3.1.6.

Recall that we denote M i = Mi/Mi−1 for each i.

The Kempf function in this case is

K(M•,Γ) =

∑t+1
i=1 Γi[Θ(M)σ(M i)− σ(M)Θ(M i)]√∑t+1

i=1 Γ2
iσ(M i)

=
(Γ, v)

‖Γ‖
,

(c.f. Theorem 3.1.3) where the coordinates of the vector v = (v1, ..., vt+1) are given by

vi = Θ(M)− σ(M)
σ(M i)

Θ(M i), and the scalar product in Rt+1 is given by the diagonal matrix

with elements σ(M i) (c.f. Definition 3.1.14).

Definition 3.2.5. [ACK, Definition 5.3] Let M ′ = V ′0 ⊕ V ′1 and M ′′ = V ′′0 ⊕ V ′′1 be

submodules of an A-module M . We say that M ′ is subordinate to M ′′ if

V ′0 ⊂ V ′′0 and V ′′1 ⊂ V ′1 .

We say that M ′ is tight if it is subordinate to no submodule other than itself.

Proposition 3.2.6. The submodules Mi appearing on the Kempf filtration of M are tight

submodules of M .

Proof. Given m and l, the Kempf filtration of M is, by Theorem 3.1.15, the Harder-

Narasimhan filtration of M . Note that, whenever a module M ′ is subordinate to M ′′,

the slopes verify µ(Θ,σ)(M
′′) ≥ µ(Θ,σ)(M

′). In the construction of the Harder-Narasimhan

filtration in Theorem 3.1.6 we look for the unique representation M1 of maximal slope

and of maximal total dimension σ(M1) among those of maximal slope and, then, proceed

by recursion. Hence, by that construction, all the submodules have to be tight.
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Fix m, l and consider the Kempf filtration of M . Using Proposition 3.2.6 and [ACK,

Lemma 5.5], all submodules appearing in the Kempf filtration of M are of the form

Mi = HomX(T,Ei) = H0(Ei(m))⊕H0(Ei(l)) for some subsheaves Ei ⊂ E, where Ei(m)

is globally generated for each i. Then, define the filtration

0 ⊂ E1 ⊂ · · · ⊂ Et+1 = E , (3.2.1)

which depends on m and l. We call it the m-Kempf filtration of the Q-sheaf E.

Now we give the analogous to Proposition 2.1.18 for this case. Fix the positive

constant

C = max{r|µmax(E)|+ d

r
+ r|B|+ |A|+ 1 , 1}. (3.2.2)

Proposition 3.2.7. Given integers m, l, let E• ⊂ E be the m-Kempf filtration of the

Q-sheaf E as in (3.2.1). There exists integers m2, l2 such that for m ≥ m2, l ≥ l2, each

subsheaf Ei ⊂ E in the m-Kempf filtration has slope µ(Ei) ≥
d

r
− C.

Proof. The proof follows similarly to Proposition 2.1.18. Choose an integer m1 ≥ m0

such that for every m ≥ m1, if we have a filter Em
i ⊆ E verifying µ(Em

i ) < d
r
−C (hence

it satisfies the estimate in Lemma 1.2.15), it is

h0(Em
i (m)) ≤ 1

gn−1n!

(
(ri − 1)(µmax(E) + gm+B)n + (

d

r
− C + gm+B)n

)
= G(m) ,

where

G(m) =
1

gn−1n!

[
rig

nmn + ngn−1
(
(ri − 1)µmax(E) +

d

r
− C + riB

)
mn−1 + · · ·

]
.

Recall that, by Definition 3.1.14, to any such filtration we associate a graph where

wi = −bi · vi = −σ(M i) · (Θ(M)− σ(M)
σ(M i)

Θ(M i)). Then, the heights of the graph, for each

i, are

wi = w1 + . . .+ wi = Θ(Mi)σ(M)−Θ(M)σ(Mi) =

dimMv0,i(dimMv0 + dimMv1)− dimMv0(dimMv1,i + dimMv1,i) =

dimMv0,i dimMv1 − dimMv0 dimMv1,i .

Again, to reach a contradiction, it is enough to show that wi < 0 because, in that case,

we get wt+1 < 0. But it is

wt+1 = dimMv0,t+1 dimMv1 − dimMv0 dimMv1,t+1 = 0 ,
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because Mv0,t+1 = Mv0 and Mv1,t+1 = Mv1 , then the contradiction.

Using Proposition 3.2.5, [ACK, Lemma 5.5], and the m-regularity of E, we get

wi = h0(Ei(m))PE(l)− PE(m)h0(Ei(l)) .

Givenm and l, and using [ACK, Lemma 5.4 b)], the negativity of the numerical expression

given by wi for each l is equivalent to the negativity of the polynomial expression

h0(Ei(m))PE − PE(m)PEi .

Let us show that wi(m, l) < 0, for sufficiently larges m and l. By the previous

calculations

wi(m, l) = h0(Ei(m))PE(l)− PE(m)PEi(l) ≤

G(m)PE(l)− PE(m)PEi(l)) =: Ψ(m, l) .

where Ψ(m, l) can be seen as an nth-order polynomial on l, whose coefficients are poly-

nomials in m,

Ψ(m, l) = ψn(m)ln + ψn−1(m)ln−1 + · · ·+ ψ1(m)l + ψ0(m) .

Hence, it is sufficient to show that ψn(m) = rG(m) − riPE(m) < 0 for sufficiently large

m.

Note that ψn(m) = ξnm
n+ξn−1m

n−1 + · · ·+ξ1m+ξ0 is an nth-order polynomial. The

coefficient in order nth vanishes,

ξn = (rG(m)− riP (m))n = r
rig

n!
− ri

rg

n!
= 0 .

Let us calculate the (n− 1)th-coefficient:

ξn−1 = (rG(m)− riP (m))n−1 = (rGn−1 − ri
A

(n− 1)!
)

where Gn−1 is the (n− 1)th-coefficient of the polynomial G(m),

Gn−1 =
1

gn−1n!
ngn−1((ri − 1)µmax(E) +

d

r
− C + riB) =

1

(n− 1)!
((ri − 1)µmax(E) +

d

r
− C + riB) ≤

1

(n− 1)!
((ri − 1)|µmax(E)|+ d

r
− C + ri|B|) ≤
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1

(n− 1)!
(r|µmax(E)|+ d

r
− C + r|B|) < −|A|

(n− 1)!
,

last inequality coming from the definition of C in (3.2.2). Then

ξn−1 < r
( −|A|

(n− 1)!

)
− ri

A

(n− 1)!
=
−r|A| − riA

(n− 1)!
< 0 ,

because −r|A| − riA < 0.

Therefore ψn(m) = ξn−1m
n−1 + · · ·+ ξ1m+ ξ0 with ξn−1 < 0, so there exists m2 ≥ m1

such that for every m ≥ m2 we have ψn(m) < 0 and wi(m, l) < 0, for l � 0, hence the

contradiction.

Proposition 3.2.8. There exists an integer m3 such that for m ≥ m3 the sheaves Em
i

and Em,i = Em
i /E

m
i−1 are m3-regular. In particular their higher cohomology groups, after

twisting with OX(m3), vanish and they are generated by global sections.

Proof. The argument follows analogously to Proposition 2.1.19.

By Proposition 3.2.8, for any m ≥ m3, all the filters Ei of the m-Kempf filtration of

E are m3-regular and hence, the m-Kempf filtration of sheaves

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Etm ⊂ Et+1 = E ,

is obtained from the filtration of vector subspaces

0 ⊂ H0(E1(m3)) ⊂ H0(E2(m3)) ⊂ · · · ⊂ H0(Et(m3)) ⊂ H0(Et+1(m3)) = H0(E(m3))

by the evaluation map, of a unique vector space H0(E(m3)), whose dimension is inde-

pendent of m.

Let m ≥ m3 and let

(PE1 , . . . , PEt+1)

be the m-type of the m-Kempf filtration of E (c.f. Definition 2.1.22) and let

P =
{

(PE1 , . . . , PEt+1)
}

be the finite set of possible vectors for m ≥ m3 (c.f. Proposition 2.1.23).

By Definition 3.1.14 we associate a graph to the m-Kempf filtration, which can be

rewritten, by Proposition 3.2.8, as

vm,i(l) = Θ(M)− σ(M)

σ(M i)
·Θ(M i) = dimMv0 −

dimMv0 + dimMv1

dimM i
v0

+ dimM i
v1

· dimM i
v0

=
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PE(m)− PE(m) + PE(l)

PEi(m) + PEi(l)
· PEi(m) ,

and

bim(l) = dimM i
v0

+ dimM i
v1

= PEi(m) + PEi(l) .

We use notations vm,i(l) and bim(l) because, given the m-Kempf filtration, its m-type is

fixed, for m ≥ m3, hence the coordinates of the graph can be seen as rational functions

in l, whose coefficients are fixed functions in m.

Now we follow the argument in subsection 2.1.5 with the particularities of section 2.3.

Define the functional in P ,

Φm(l) = (µvm(Γvm(l)))
2 = ‖vm(l)‖2 ,

which is a rational function on l (c.f. (2.1.14)). By finiteness of P there is a finite list of

such possible functions

A = {Φm : m ≥ m3}

and we can choose K among them, such that there exist integers m4 and l4 with Φm(l) =

K(l), for all m ≥ m4 and l ≥ l4 (c.f. Lemma 2.1.24).

Proposition 3.2.9. Let a1, a2 be integers with a1 ≥ a2 ≥ m4. The a1-Kempf filtration

of E is equal to the a2-Kempf filtration of E.

Proof. C.f. proof of Proposition 2.1.25.

Definition 3.2.10. If m ≥ m4, the m-Kempf filtration of E is called the Kempf

filtration of E,

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Et ⊂ Et+1 = E .

Note that it does not depend on m by Proposition 3.2.9.

Theorem 3.2.11. Given a one vertex quiver Q, every Q-sheaf E over X pure of dimen-

sion e, (i.e. a coherent sheaf pure of dimension e) has a unique filtration

0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Et ⊂ Et+1 = E

verifying the following properties, where Ei := Ei/Ei−1,

• PE1 (m)

rkE1 >
PE2 (m)

rkE2 > . . . >
PEt (m)

rkEt
>

PEt+1 (m)

rkEt+1

• The quotients Ei are semistable
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This filtration is the Harder-Narasimhan filtration of E defined in Theorem 1.3.5.

Proof. Let Q̃ = {v0, v1}. By Theorem 3.2.4, choosing m ≥ m4, we associate to an

unstable Q-sheaf E a point in the parameter space, xM ∈ R(Θ,σ)
d (Q̃) which is χ(Θ,σ)-

unstable. By uniqueness of Theorem 3.1.13, there exists a unique filtration of M

0 ⊂M1 ⊂ · · · ⊂Mt+1 = M

verifying the two conditions of Theorem 3.1.6, this is µ(M1) > µ(M2) > . . . > µ(M t) >

µ(M t+1) and that the quotients M i are (Θ, σ)-semistable. Consider the Kempf filtration

0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Et ⊂ Et+1 = E ,

which does not depend on m, by Proposition 3.2.9.

To the Kempf filtration we associate a graph v, by Definition 3.1.14, and by Lemma

2.1.15, the coordinates vi are in increasing order, hence

vi < vi+1 ⇔ Θ(M)− σ(M)

σ(M i)
·Θ(M i) < Θ(M)− σ(M)

σ(M i+1)
·Θ(M i+1)

⇔ dimMv0−
dimMv0 + dimMv1

dimM i
v0

+ dimM i
v1

·dimM i
v0
< dimMv0−

dimMv0 + dimMv1

dimM i
v0

+ dimM i+1
v1

·dimM i+1
v0

⇔
dimM i

v0

dimM i
v1

>
dimM i+1

v0

dimM i+1
v1

.

Using Theorem 3.2.4, the last expression is equivalent to

PEi(m)

PEi(l)
>
PEi+1(m)

PEi+1(l)
⇔ PEi(m)

rkEi
>
PEi+1(m)

rkEi+1

where the last equivalence follows from Lemma 3.2.2. Using Lemma 2.1.16 as in Propo-

sition 2.1.29, we can see that the Kempf filtration of E verifies the second property of

the Harder-Narasimhan filtration as well.
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[BGP] S.B. Bradlow, O. Garćıa-Prada, Stable triples, equivariant bundles and dimen-

sional reduction, Math. Ann. 304 (1996), 225-252.

[Br] L. Bruasse, Optimal destabilizing vectors in some gauge theoretical moduli prob-

lems. Ann. Inst. Fourier (Grenoble) 56 (2006), no. 6, 1805-1826.

[BT] L. Bruasse and A. Teleman Harder-Narasimhan filtrations and optimal destabi-

lizing vectors in complex geometry. Ann. Inst. Fourier (Grenoble) 55 (2005), no.

3, 1017-1053.

[DM] P. Deligne and D. Mumford The irreducibility of the space of curves of given

genus, Publ. Math. I.H.E.S. 36 (1969), 75-109.

[Gi1] D. Gieseker, On the moduli of vector bundles on an algebraic surface, Ann.

Math., 106 (1977), 45–60.

[Gi2] D. Gieseker, Geometric invariant theory and the moduli of bundles, Lecture

Publication Series, IAS/Park City Mathematics Series v.00, (1994).

195



196 BIBLIOGRAPHY

[Gr] A. Grothendieck, Techniques de construction et théorèmes d’existence en
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