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Abstract

For almost 15 years, the experimental correlation between protein folding rates and the contact order parameter has been
under scrutiny. Here, we use a simple simulation model combined with a native-centric interaction potential to investigate
the physical roots of this empirical observation. We simulate a large set of circular permutants, thus eliminating
dependencies of the folding rate on other protein properties (e.g. stability). We show that the rate-contact order correlation
is a consequence of the fact that, in high contact order structures, the contact order of the transition state ensemble closely
mirrors the contact order of the native state. This happens because, in these structures, the native topology is represented
in the transition state through the formation of a network of tertiary interactions that are distinctively long-ranged.
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Introduction

The notion that form and function are intimately related is an

old one in biology. In his seminal work ‘‘On Growth and Form’’,

D’Arcy Thomson explored the relation between natural geome-

tries, the dynamics of growth and physical processes in living

systems. The motto ‘function follows form’ is a basic principle of

biology operating at any hierarchical level of living matter. In

particular, at the microscopic level of macromolecules, it

specifically means that the function of a protein is determined

by its three-dimensional native structure, which is acquired

through the process of protein folding.

In the late 1990’s, Plaxco and co-workers made the serendip-

itous observation that a parameter named contact order (CO),

measuring the average sequence separation between all pairs of

residues within physical contact in the native structure, is highly

correlated with the logarithmic folding rates of small, single

domain proteins that fold in a two-state manner [1]. This led to

the idea that the native structure is not only a determinant of the

biological function for the molecule, but it is also largely

responsible for the protein folding rates. Thus a natural question

arises which is that of understanding why the CO is able to predict

protein folding rates. Actually, the empirical result is somehow

puzzling. If one considers that the protein folding process follows

the transition state (TS) theory, then the folding rate should be

related to the free energy barrier separating the denatured

ensemble from the transition state ensemble (TSE) at a given

folding temperature, and therefore it should not be directly linked

to the native structure. Thus, the influence of the native structure

on the folding rate should be related to the fact that the

conformations belonging to the TSE must be somehow similar to

the native conformation, at least at the level of similarity captured

by the CO. In other words, assuming that the CO can be

interpreted as a gross metric of the native topology, then the

observed correlation suggests that the rate-limiting step in folding

is the acquisition of the native topology by the TSE (or at least that

a close approximation to the native topology must be realized in

the TSE [2]).

This idea prompted the proposal of the ‘‘topomer sampling

model’’ (TSM) [3,4], a theoretical construct that ignores the

energetic stabilization of the TSE [3,4]. Indeed, according to the

TSM the dominant contributor to the folding barrier is a diffusive

(non-biased) search for a conformational state with the gross

overall topology of the native structure. A critical assessment of the

TSM by Chan and Wallin showed that an unbiased search for the

native topomer amounts to a Levinthal-like process, which is not

compatible with the biological timescale of protein folding [5]. In

other words, the rate-limiting step in protein folding has an

energetic component that cannot be neglected. On the other hand,

an analysis based on simple lattice models reported that the slope

of the rate-CO dependence is sensitive to the particular spatial

orientation of the protein backbone [6].

The analysis by Fersht of the extended nucleation-condensation

mechanism [7–9] accommodates the observed dependence of

folding rates both on the stability and on the topology of the TSE,

by showing that tertiary interactions and interactions within

elements of secondary structure are equally important in the

folding nucleus [7] because of the entropy loss associated with the

former. Along a complementary line of research focused on
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exploring the microscopic origins of protein energetics underlying

folding cooperativity, Chan and co-workers [10] showed that the

rate-CO dependence was enhanced by the inclusion of effective

multi-body interactions.

Despite these and other conceptually attractive theoretical

proposals [11,12], an in-depth analysis of the rate-CO dependence

is still missing. This stems in part from difficulties in isolating the

effect of CO in folding kinetics experiments. Fulfilling this

condition is critical to ensure a correct assessment of rate-CO

correlations, because it is known that the folding rate is influenced

by other protein properties (e.g. number of native contacts [13],

stability [8,9,14,15] and, to a lesser extent, chain length [15,16]).

Computer simulation of simple protein models, where all these

effects can be minimized or actually fully avoided, can contribute

to elucidate this problem. Here, we succeed in accomplishing this

goal by comparing the folding rates of an extensive number of

simple lattice proteins with fixed chain length that are related to

one another by circular permutation. A circular permutant (CP) is

an engineered protein that results from linking the C- and N-

terminus of the polypeptide chain after disrupting the protein

backbone at some selected peptide bond. All the CPs resulting

from a given ‘parent’ structure form a family whose members have

virtually the same overall native structure, but display different

backbone connectivity and, as a consequence, different CO values.

Furthermore, and despite its simplicity, the adopted lattice

framework (i.e. a three-dimensional cubic lattice, where the

distance between neighboring residues along the sequence is set

equal to the lattice spacing) ensures that for a fixed chain length all

the circular permutants will have exactly the same number of

native contacts, a condition that is not as easily guaranteed in more

detailed, off-lattice protein representations. In addition, simple

lattice models have a long tradition in the study of the fundamental

aspects of protein stability and folding [17–26], allowing

statistically accurate computations of thermodynamic and kinetic

quantities. Even though the model is a crude representation of the

protein topology, it captures the very basic polymeric traits (chain

connectivity, excluded volume, etc.) that should underline the CO-

rate correlation at a very fundamental level (after all, the CO is

essentially a property of the protein backbone).

To be sure that the results we obtain are not dependent on the

choice of a particular ‘parent’ structure we investigate two

different families of lattice CPs, which are generated (as outlined

above) from the lattice proteins represented in Figure 1. These

‘parent’ structures have been obtained through Monte Carlo

simulations of homopolymer collapse [27]. By selecting different

maximally compact conformations displaying their termini in

neighboring lattice positions, one can create as many families of

CPs as needed. For any family, the number of CPs is equal to the

number of beads (or chain length N), which is 48 in this work.

One of the studied families, which we term family H, is generated

from the ‘parent’ high-CO native structure shown in the left part of

the figure. The other, generated from the low-CO native structure at

the right side, is termed family L. The native structures in the two

families cover different ranges of the CO parameter. In family H (L)

the CO range is 14.1,CO,21.7 (11.7,CO,18.2). It is important

to mention that since all our structures have the same chain length N

it is not relevant to use the absolute CO or the relative CO (obtained

from the former dividing it by N). This is yet another advantage of the

lattice model employed here.

Methods

In this work, we take advantage of the simplicity of the model to

study the folding process of a very large number of different native

structures (a total of 2|48~96 structures). Moreover, we will use

the same model to obtain accurate thermodynamic and kinetic

information about the folding process; such a goal is not

straightforward to accomplish when using more sophisticated

(and therefore more realistic) protein models.

To model protein energetics we use a native-centric, or G�oo-type

potential. Accordingly, the energy of a conformation is given by

E f~rrigð Þ~
XN

iwj

D(~rri{~rrj),

where f~rrig represents the set of bead coordinates defining a given

conformation, N~48 is the chain length, e is the (uniform)

interaction energy parameter, and D(~rri{~rrj) is unity only if beads i

and j form a non-bonded native contact and is zero otherwise. As

seen in Figure 1, a non-bonded native contact appears when two

non contiguous beads along the protein backbone occupy

neighboring lattice positions in the native structure. For the

particular lattice model and chain length used in this work, all the

native structures are maximally compact 3|4|4 cuboids, as

those shown in Figure 1, and have exactly the same number of

non-bonded native contacts (which is equal to 57). By using a

native-centric model we exclude from the folding process any

(putative) effects associated with chemical composition (i.e. protein

sequence), and focus our analysis solely on the effects of native

structure on the folding process.

To sample conformational space we have used a standard

Metropolis Monte Carlo (MC) algorithm combined with a local

move set that includes corner-flips and end-moves (i.e. displace-

ments of one single bead) and the crankshaft move (which involves

the displacement of two beads at the same time). Details of the

adopted algorithm can be found elsewhere [28]. For every

considered native structure (or CP) we use two different simulation

strategies. Firstly, a parallel tempering algorithm is used to obtain

a representative equilibrium sampling of protein conformations as

a function of temperature; the method simulates several replicas

(about 50 in every case) at different temperatures, covering the

whole spectrum of protein conformations (ranging from the native

state up to the thermally denatured state). On the other hand, to

obtain kinetic properties for every CP, we have carried out single

(or fixed) temperature MC simulations. To get statistically

High CO Low CO

Figure 1. Three-dimensional representation of the lattice
proteins that were used to generate the two families of circular
permutants with chain length N~48. Amino acids are represented
by beads of uniform size that occupy the lattice vertices; the peptide
bond, which covalently connects amino acids along the polypeptide
chain, is represented by sticks with uniform (unit) length corresponding
to the lattice spacing. The terminal beads are highlighted.
doi:10.1371/journal.pone.0035599.g001
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significant kinetic measurements, we have computed 500 inde-

pendent folding trajectories; each simulation starts from a different

random conformation and stops when the native structure is

reached. The individual ‘‘folding times’’ of these folding events, or

‘‘first passage times’’ in more general terms, allow to study the

evolution of the population of conformations representative of the

unfolded state as a function of MC time (i.e. number of MC steps).

One example of this distribution can be observed in Figure 2(a).

The histogram can be partially integrated to get the population of

unfolded conformations which remains at the considered simula-

tion temperature up to the selected ‘‘time’’. This is shown in

Figure 2(b). We have checked that for all the considered CPs our

data can be fitted to a single exponential decay (similar to the solid

line shown in Figure 2(b)), which is consistent with two-state

folding behavior. The folding rate constant is given by the slope of

the linear fitting. The folding rates (in logarithmic scale) are

reported in the Results section. The statistical error resulting from

the fitting procedure is always smaller than the size of the symbols

used in the graphs and therefore is not shown.

The equilibrium simulations resulting from the parallel

tempering procedure provide the energy fluctuations which allow

to compute the heat capacity curves by using the equation

Cv~(vE2
w{vEw

2)=T2: The equilibrium (or melting) tem-

perature Tm for the folding process corresponds to the peak of the

heat capacity curve. The values of Tm (in reduced units) for all the

studied CPs are very close to one another (within a 4% variation).

Since the circular permutation procedure may induce changes

in the folding mechanism (see, e.g., [29]), we have also computed

the folding free energy profiles at Tm by using the WHAM method

[30]. It is worthwhile to mention that we have employed the

energy of the system (which, in the lattice G�oo model, is directly

related to the fraction of native contacts) as the reaction coordinate

to compute the free energy profiles. Despite not being perfect, this

choice has proven to be adequate for simple native-centric lattice

models as the one considered in this work [31], as well as in off-

lattice simulations based on more sophisticated models [32].

For the majority of CPs belonging to family H and for all the

CPs from family L, we get a free energy profile typical of a two-

state transition, as illustrated by the solid curve in Figure 3. It

shows a narrow minimum located at an energy equal to -57 (in

reduced units, corresponding to the 57 native contacts formed),

and a wider minimum at energies close to zero (corresponding to

the denatured state). For 12 members of family H, however, we

have obtained a free energy profile similar to the dotted curve

shown in Figure 3. This type of profile indicates the existence of a

post-TS intermediate (located at an energy close to -43) in these

cases. Although the barriers characterizing the intermediates are

small, we have excluded these 12 CPs from the subsequent analysis

to keep our study framed to strict two-state folders.

The free energy profiles also allow one to obtain (for different

selected temperatures) the free energy difference between the

folded and denatured states (i.e., the free energy of folding), and

also the free energy difference between the denatured state and the

transition state ensemble, TSE (i.e., the activation energy of

folding). It is important to mention that this type of analysis

provides numerically accurate free energy barriers between the

denatured state and the TSE especially at Tm, where this barrier

attains its maximum value. At lower temperatures, favoring the

population of the folded state, the free energy of the unfolded state

increases with respect to that of the folded state. This creates a

smaller barrier between the unfolded and the transition states,

which is more difficult to measure accurately (see, e.g., Fig. 2 in

[28]). The free energy barrier between the denatured state and the

TSE plays a crucial role in any joint discussion of thermodynamic

and kinetic properties. Therefore, all the results presented in this

work are computed at the folding equilibrium temperature Tm:

Figure 2. (a) Distribution of the first passage times of folding (FPT) for
the 500 independent trajectories of a given CP. (b) "Time" evolution of
the denatured state population, obtained by integration of the
histogram in the upper graph. The solid line corresponds to the fitting
to a single exponential decay.
doi:10.1371/journal.pone.0035599.g002

Figure 3. Examples of the free energy profiles F obtained for
two of the circular permutants in family H. See text for details.
doi:10.1371/journal.pone.0035599.g003
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This choice of temperature (which is evaluated independently

for each considered CP) creates a difference between the

simulation and experimental approaches. Indeed, in experiments

in vitro [1] the folding rates of different proteins are usually

measured at (constant) room temperature. However, and as

previously mentioned, the values of Tm show very little variation

across the different CPs investigated in this work. Thus, there is no

need to consider a possible temperature dependence of the

simulation results reported in the following sections.

Results and Discussion

Transition State Theory
A first important result in our combined thermodynamic/

kinetic analysis is the existing correlation between the logarithmic

folding rate and the activation energy of folding, i.e. the free

energy difference between the denatured state and the transition

state, DFU{TS: This is reported in Figure 4(a). As it can be

observed, the plot reveals very high correlation coefficients and

slopes close to -1 in both families H and L. This result should be

stressed for two major reasons. Firstly, in general, it is not

straightforward to gather accurate kinetic and thermodynamic

data in computer simulation studies of protein folding. This

limitation results from the exceedingly larger amount of computer

time that is required by the use of detailed protein models. The

modeling framework adopted here rendered these calculations

possible in a rather affordable computational time. Secondly, and

more importantly, the results in Figure 4(a) also validate our

simulation approach, in particular the use of MC to compute

folding rates. If the MC folding time would be depleted from any

real dynamic meaning, the protein folding times, which allow the

calculation of the corresponding folding rate constants (as shown

in Figure 2), would be meaningless. The high correlations shown

in Figure 4(a) provide, therefore, a validation of the methodology

adopted here.

Correlation between Lattice Folding Rates and Contact
Order

We are now ready to analyze the correlation between the

folding rates and the contact order. For our model, these results

are shown in Figure 4(b). As one can observe, while the correlation

between ln k and CO in family H is quite strong, and similar to

that reported for real-world two-state proteins (Table 1 of [33]),

there is no effective correlation between these two properties in

family L. Thus, we could say that in family L the CO does not

reflect the activation energy of folding. In order to understand

why, and given the high correlations shown in Figure 4(a), which

validate the application of transition state theory, one must analyze

the transition state ensemble (TSE).

The Transition State Ensemble
For each CP considered in this study we have prepared an

ensemble of (*150) conformations, representative of the TSE, by

combining kinetic and thermodynamic information. In particular,

the selected conformations have folding probability

0:4vPfoldv0:6 (with error smaller than 5%) [34,35], and a

fraction of native contacts that corresponds to the peak of the free

energy profile (i.e., whose value of F is between Fpeak and

Fpeak{0:25); consider the black solid curve in Figure 3 for

guidance. Therefore, for every CP we can evaluate two different

properties of its TSE: the average CO of the TSE, COTSE, and the

average root-mean-square deviation between the TSE structures

and the native structure, RMSDTSE. This latter property, reported

in Figure 5(a), indicates that in the ensembles of structures

representing the TSE of each family member, amino acids are on

average closer to their native positions in the case of family L than

in that of family H. Indeed, the values of the RMSD are

systematically larger in the TSEs of family H. However, the

fraction of native structure formed in the TSE of the CPs in family

L does not statistically reflect the CO of the native conformation

(Figure 5(b)). The value for the correlation coefficient r between

COTSE and CO for this family is smaller than that observed for

family H and the corresponding regression line clearly departs

from the blue dotted line (i.e. the identity line) plotted in

Figure 5(b). In family H, on the other hand, the CO of the native

state is better captured by the TSE, despite a lower overall

similarity with the native structure, with values of COTSE which, at

least for half of the members of the family, are very similar to the

native COs. The apparently counterintuitive observation that

native topology can be achieved in the TSE despite high structural

variability was also observed in real-world proteins and rational-

ized in [36], in the framework of the extended nucleation-

condensation mechanism [8,9]. In this view, the formation of a few

contacts in the TSE defines the overall native topology but the

zipping of the remaining native contacts that pulls the amino acids

into their native positions occurs during the last stage of the folding

reaction. Finally, in Figure 5(c) we show the correlation between

Figure 4. Dependence of the logarithm of the folding rate k on
(a) the activation energy of folding, and (b) the contact order
of the corresponding native structure, for the two families of
circular permutants considered in this work. We also report the
slopes (m) and the absolute values of the correlation coefficients (r) for
the corresponding linear fits.
doi:10.1371/journal.pone.0035599.g004
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the logarithmic folding rate (ln k) and the average contact order of

the TSE. For both families, the ln k – COTSE correlation is

substantially stronger than the ln k – CO correlation (shown in

Figure 4). As mentioned in the Introduction of this manuscript,

this observation should not be taken as surprising since the TSE

corresponds to the rate-limiting step in folding. However, it should

be noted that in the case of family L the ln k – COTSE correlation

is still significantly lower. Thus, so far, our analysis shows that the

CO correlates well with ln k when the CO and the average CO of

the TSE are closely related, as it happens in the CPs of family H.

The Transition State Network
In order to understand when and why the CO is captured by

the average CO of the TSE, we have restricted the analysis of the

relation between COTSE and CO to the set of native contacts n

that are present in the TSE with probability pw0:7; we shall call it

transition state network, TSN. The number of contacts forming this

network is shown in Figure 6(a) as a function of the native contact

order. This network should not be confused with the folding

nucleus (FN). The TSN represents a larger set of native contacts,

which includes the FN, and characterizes the portion or fraction of

native structure that is significantly present in the TSE. In general,

as it can be seen in Figure 6(a), the size of the TSN is distinctively

larger in family L than in family H. We have also computed the

average contact order corresponding to the set of contacts forming

the TSN. This quantity, which we have named COTSN, is plotted

as a function of the native CO in Figure 6(b). In family L the TSNs

are characterized by having a large number predominantly local

native contacts, as indicated by the relative low values of their

COTSN. This observation suggests that the stabilization of the TSE

in the case of family L is overwhelmingly energetic, an observation

that can explain the modest ln k – COTSE correlation observed in

this family. By contrast, in family H, the TSNs are much more

heterogeneous, with a wider distribution of COTSN and n for the

different CPs in this family (see Figure 6). By identifying exactly

which contacts form the TSNs, we have checked that the TSEs in

family H are formed by conformations that share a relatively small

number of native contacts, of variable range, which is indicative of

tertiary structure formation playing a differentiated role in the

stabilization of the TSEs of this family. The COTSE of family H

Figure 5. Structural variability in the TSE measured by (a) the
RMSD to the native structure (in lattice units) and (b) the
relation between the contact order of the TSE and the native
contact order. In both families, COTSE is typically smaller than the CO,
a trend that is also observed in real-world proteins [42]. In family H
there is a strong correlation between the COTSE and the CO, despite the
considerably large structural variability. In family L, on the other hand,
the COTSE is significantly less correlated with that of the native structure,
and in this case the RMSDTSE is significantly lower. (c) Dependence of ln
k on the average contact order of the transition state ensemble.
doi:10.1371/journal.pone.0035599.g005

Figure 6. The number of native contacts forming the TSN as a
function of CO (top) and the dependence of the contact order
of the TSN on the CO (bottom) for families L and H.
doi:10.1371/journal.pone.0035599.g006
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measures the average range of these key native contacts, providing

a good metric for the TSE characteristic topology along the family.

Figure 6(b) also shows that the CO is a degenerate parameter

with regard to COTSN. This is especially evident in the case of

family L. Indeed, in the lower CO range, each CO value may be

associated with very different values of COTSN (e.g. in family L for

CO = 12.7, 5:3vCOTSNv10.6, and in family H for CO = 16,

5:5vCOTSNv12). This observation is supported by experimental

findings reported in [37], where it was shown that two proteins

with similar native topology and low CO (apoflavodoxin and

CheY) fold via topologically different TSEs. The CO – COTSN

dependence changes sharply when CO .18.5, as seen in

Figure 6(b). Indeed, in this high-CO regime, COTSN takes values

close to CO. A close inspection of the corresponding TSNs shows

that they are formed by a set of distinctively long-ranged tertiary

interactions (with up to 5 native contacts of range 27 and 7 native

contacts of range 31 to 49) that do not form in the TSN of the

other proteins studied here. This type of long-ranged TSN, whose

establishment ensures that the TSE acquires the native topology

(note that r for the CO – COTSE dependence drops from 0.91 to

0.73 when the high-CO proteins are removed), is the distinctive

feature of family H that makes the folding rate strongly dependent

on the CO. Indeed, removing from the analysis all the proteins in

family H with CO .18.5 leads to a decrease of the correlation

coefficient in the dependence between ln k and CO in Figure 4

from 0.75 to 0.48.

Summary and Final Conclusions
In this work we have used a simple lattice model to analyze the

thermodynamic and kinetic characteristics of the folding process

for two different families of native structures. The members of

each family are related to one another through circular

permutation. Our study, in which the effect of the native contact

order, CO, has been isolated from other protein properties that

are known to affect folding rates, shows that the rate–CO

correlation stems from a strong correlation between the CO and

the CO of the TSE. It also shows that folding through a TSE

exhibiting the native topology occurs when the latter is dominated

by a network of interactions which are distinctively long-ranged.

This type of TSE occurs mainly in high-CO proteins, because

these proteins have predominantly long-range interactions in their

native structure, implying the formation of tertiary structure in the

TSE. The particular type of TSE identified here, stabilized by a

network of long-ranged native interactions and exhibiting a large

structural variability, is not specific of lattice proteins. Previous

studies based on Molecular Dynamics simulations that used

experimental w-values as restraints to sample TSE conformations

showed that two-state proteins src-SH3, spc-SH3, fyn-SH3, AcP,

and TNfn3 [38–41] fold via a structurally heterogeneous TSE that

is also stabilized by an interaction network dominated by similarly

long-ranged interactions. Interestingly, these beta-proteins are

amongst the two-state proteins with highest CO (%), just like their

lattice counterparts identified here [33]. Furthermore, a consid-

erable decrease in the correlation coefficient (11%) is also observed

for the ln k – CO dependence when these 5 proteins are removed

form the dataset (Table 1 of [33]).

Finally, we have found that the correlation between folding rate

and the contact order of the TSE may itself be modest in sets of

proteins whose TSEs involve predominantly local contacts. In this

case the stabilization of the TS is mostly energetic.
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