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Abstract

We represent QCD at the hadronic scale by means of an effective Hamiltonian,

H, formulated in the Coulomb gauge. As in the Nambu-Jona-Lasinio model,

chiral symmetry is explicity broken, however our approach is renormalizable

and also includes confinement through a linear potential with slope specified

by lattice gauge theory. This interaction generates an infrared integrable sin-

gularity and we detail the computationally intensive procedure necessary for

numerical solution. We focus upon applications for the u, d, s and c quark

flavors and compute the mass spectrum for the pseudoscalar, scalar and vec-

tor mesons. We also perform a comparative study of alternative many-body

techniques for approximately diagonalizing H: BCS for the vacuum ground

state; TDA and RPA for the excited hadron states. The Dirac structure of

the field theoretical Hamiltonian naturally generates spin-dependent interac-

tions, including tensor, spin-orbit and hyperfine, and we clarify the degree of

level splitting due to both spin and chiral symmetry effects. Significantly, we

find that roughly two-thirds of the π-ρ mass difference is due to chiral sym-

metry and that only the RPA preserves chiral symmetry. We also document

how hadronic mass scales are generated by chiral symmetry breaking in the

model vacuum. In addition to the vacuum condensates, we compute meson

decay constants and detail the Nambu-Goldstone realization of chiral sym-

metry by numerically verifying the Gell-Mann-Oaks-Renner relation. Finally,

by including D waves in our charmonium calculation we have resolved the

anomalous overpopulation of J/Ψ states relative to observation.

PAC number(s): 12.39.Pn, 12.40.Yx
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I. INTRODUCTION

In a series of publications [1–4] an ambitious QCD program has been initiated to compre-

hensively investigate hadron structure. The theoretical formulation entails renormalization

and utilizes established many-body techniques to approximately diagonalize an effective con-

fining Hamiltonian. This paper, a detailed continuation of our recent letter [3], focuses upon

the quark sector and reports numerical results for mesons complementing our previous gluon

study [1].

Over the years there have been many meson investigations, from the early, simple non-

relativistic constituent quark model calculations to more involved relativistic, field theoreti-

cal approaches implementing current quarks and spontaneous chiral symmetry breaking. A

common shortcoming of these analyses is an inability to consistently reproduce the physical

mass spectrum of the scalar and pseudoscalar mesons. Our paper addresses this issue and

significantly extends the pioneering work of the Orsay group [5], Adler and Davis [6], and

the Lisbon investigators [7]. In our approach the exact QCD Hamiltonian in the Coulomb

gauge is modeled by an effective, confining Hamiltonian, H , that is fully relativistic with

quark field operators and current quark masses. However, before approximately diagonal-

izing H , a similarity transformation is implemented to a new quasiparticle basis having a

dressed, but unknown constituent mass. As described in Sec. II, this transformation entails

a rotation which mixes the bare quark creation and annihilation operators. By then per-

forming a variational calculation to minimize the ground state (vacuum) energy, a specific

angle and corresponding quasiparticle mass is selected. In this fashion chiral symmetry is

dynamically broken and a non-trivial vacuum with quark condensates emerges. This treat-

ment is precisely analogous to the Bardeen, Cooper, and Schrieffer (BCS) description of

a superconducting metal as a coherent vacuum state of interacting quasiparticles combin-

ing to form condensates (Cooper pairs). Excited states (mesons) can then be represented

as quasiparticle excitations using standard many-body techniques which in this work will

be the Tamm-Dancoff (TDA) and random phase approximation (RPA) methods. The two
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treatments are truncated at the one quasiparticle, one quasihole level and then numerically

compared. Our RPA analysis confirms and extends the early work of Ref. [8] which utilized

an extended Nambu-Jona-Lasinio mean field approach.

Two other comments are in order before proceeding. First, there are several reasons for

choosing the Coulomb gauge framework. As discussed by Zwanziger [9], the Hamiltonian

is renormalizable in this gauge and, equally as important, the Gribov problem (∇ · A = 0

does not uniquely specify the gauge) can be resolved (see Refs. [2,9] for further discussion).

Related, there are no spurious gluon degrees of freedom since only transverse gluons enter.

This ensures all Hilbert vectors have positive normalizations which is essential for using

variational techniques that have been widely successful in atomic, molecular and condensed

matter physics. Second, due to Fock space truncations our analysis is not Lorentz invariant.

However, we only plan to use one frame and do not compute hadron form factors with this

method. Interestingly, violating Lorentz non-invariance implies a prefered reference frame,

which, as selected by chiral symmetry breaking, is the condensate rest frame.

This paper consists of six sections and two appendices. The next section introduces our

effective, QCD inspired Hamiltionian and developes the BCS vacuum treatment leading to

the quasiparticle mass gap equation. We also compare our approach to the classic Nambu-

Jona-Lasinio model. In Sec. III we detail our numerical, supercomputer solution of the

gap equation along with the quark condensate and constituent mass values. Sections IV A

and IV B describe the TDA and RPA, respectively, while Sec. IV C addresses weak decays

and Sec IV D presents a derivation of the Gell-Mann-Oakes-Renner relation. The TDA

and RPA meson spectra are compared and discussed in Sec. V. This section also includes

results from a simple SUf (3) flavor mixing analysis for the η-η′ system and our predictions

for the charmed mesons. Conclusions and future work are summarized in Sec. VI. Finally,

Appendix A provides further details regarding the BCS transformation and vacuum state

while Appendix B presents the most general TDA equation for arbitrary angular momentum.

3



II. HAMILTONIAN AND MASS GAP EQUATION

A. Effective Hamiltonian

By introducing a phenomenological confining potential, VL, the QCD Coulomb gauge

Hamiltonian [2] for the quark sector can be replaced by an effective Hamiltonian

H =
∫

d~xΨ†(~x)(−i~α · ~∇ + βm)Ψ(~x) − 1

2

∫

d~xd~yρa(~x)VL(|~x− ~y|)ρa(~y) (2.1)

where Ψ, m and ρa(~x) = Ψ†(~x)T aΨ(~x) are the current (bare) quark field, mass and color

density, respectively (for a more complete discussion, especially for the heavy quark sector,

consult Refs. [9,10]). For notational ease the flavor subscript is omitted (same H for each

flavor) and the color index runs a = 1...8. Motivated by lattice gauge studies we adopt

a linear confining interaction, VL = σ|~x − ~y|, with slope σ = .18 GeV 2 also specified by

lattice and Regge phenomenology. In our analysis we have also performed calculations

with and without the leading QCD canonical or Coulomb (one-gluon exchange) interaction,

VC = − αs

|~x−~y|
, with αs = g2

4π
∼= .4. For most observables, especially the meson mass spectrum,

the Coulomb interaction is not important and can be omitted. This can be understood by

noting that in momentum space, where we perform all calculations, the two interactions

have the same sign, i.e. V (r = |~x− ~y|) = VC + VL

V̂ (k) =
∫

d~r V (r)e−i
~k·~r

= −4π
αs
k2

− 8π
σ

k4
. (2.2)

Because the meson wavefunctions have a finite momentum distribution, most static me-

son properties are predominantly governed by the infrared (IR), or low, momentum region

where the confining potential dominates. Including the Coulomb interaction is then roughly

equivalent to using a slightly larger string tension, σ. There are certain observables, and in

particular the gap equation detailed below, for which the Coulomb interaction is ultra-violet

(UV) divergent. In such cases we regularize with a cut-off parameter and then could renor-

malize to remove cut-off sensitivity using one of our renormalization procedures detailed in
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Refs. [2,4] for the gluon sector. In this paper we only present unrenormalized results since

this program is still in progress [11,12] and has not yet been completed for the quark sector.

This is an additional reason for omitting the Coulomb interaction. Hence, with the exception

of the current quark masses (we use mu = md = 5 MeV , ms = 150 MeV , mc = 1200 MeV ),

our approach entails only one pre-determined parameter which also sets the hadronic scale,

√
σ = 424 MeV .

We further note that even though the confining potential is IR divergent, this singularity

is cancelled (see Ref. [6]) in both the mass gap equation and all calculations for associated

observables. Hence, the problem is the delicate numerical evaluation of this integrable

singularity which we discuss in Sec. III.

Finally, we stress that in constituent quark models free quarks can exist which requires

imposing color confinement. However, as demonstrated in Refs. [5–7] the Lorentz structure

of our Coulomb gauge density-density confining interaction only permits stable solutions for

color singlet states. Therefore, confinement naturally emerges in our approach.

B. BCS transformation and gap equation

We now wish to solve HΨ = EΨ as accurately as possible. In this subsection we focus on

the ground state and introduce the Bogoliubov-Valatin, or BCS, transformation. We begin

by recalling the plane wave, spinor expansion for the quark field operator

Ψ(~x) =
∑

cλ

∫

d~k

(2π)3

[

ucλ(~k)bcλ(~k) + vcλ(−~k)d†cλ(−~k)
]

ei
~k·~x (2.3)

with free particle, anti-particle spinors ucλ, vcλ and bare creation, annihilation operators

bcλ, dcλ for current quarks, respectively. Here the spin state (helicity) is denoted by λ and

color index by c = 1, 2, 3 (which is hereafter suppressed). Because we can expand Ψ in terms

of any complete basis we may equally well use a new quasiparticle basis

Ψ(~x) =
∑

λ

∫

d~k

(2π)3

[

Uλ(~k)Bλ(~k) + Vλ(−~k)D†
λ(−~k)

]

ei
~k·~x (2.4)
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entailing quasiparticle spinors Uλ, Vλ and operators Bλ, Dλ. The Hamiltonian is equiva-

lent in either basis and the two are related by a similarity (Bogoliubov-Valatin or BCS)

transformation. The transformation between operators is given by the rotation

Bλ(~k ) = cos
θk
2
bλ(~k ) − λ sin

θk
2
d†λ(−~k ) (2.5)

Dλ(−~k ) = cos
θk
2
dλ(−~k ) + λ sin

θk
2
b†λ(
~k )

involving the BCS angle θk = θ(k). Similarly the rotated quasiparticle spinors are

Uλ(~k) = cos
θk
2
uλ(~k) − λ sin

θk
2
vλ(−~k) =

1√
2









√

1 + sinφ(k) χλ
√

1 − sin φ(k) ~σ · k̂ χλ









(2.6)

Vλ(−~k) = cos
θk
2
vλ(−~k) + λ sin

θk
2
uλ(~k) =

1√
2









−
√

1 − sin φ(k) ~σ · k̂ χλ
√

1 + sin φ(k) χλ









where χλ is the standard two-dimensional Pauli spinor. We have also introduced the gap

angle, φk = φ(k), which is related to the BCS angle, θ/2, by φ = θ + α where α is the

current, or perturbative, mass angle satisfying sinα = m/Ek with Ek =
√
m2 + k2. Hence

sin φk =
m

Ek
cos θk +

k

Ek
sin θk

cos φk =
k

Ek
cos θk −

m

Ek
sin θk .

Similarly, the perturbative, trivial vacuum, defined by bλ|0〉 = dλ|0〉 = 0, is related to

the quasiparticle vacuum, Bλ|Ω〉 = Dλ|Ω〉 = 0, by the transformation

|Ω〉 = exp



−
∑

λ

∫

d~k

(2π)3
λ tan

θk
2
b†λ(
~k)d†λ(−~k)



 |0〉 . (2.7)

In this paper we will denote the BCS vacuum by |Ω〉 (in Sec. IV we introduce the RPA

vacuum labeled |ΩRPA〉). Expanding the exponential and noting that the form of the op-

erator b†d† is designed to create a current quark/antiquark pair with the vacuum quantum

numbers, clearly exhibits the BCS vacuum as a coherent state of quark/antiquark excita-

tions (Cooper pairs) representing 2S+1LJ =3P0 condensates. One can regard tan θk

2
as the

momentum wavefunction of the pair in the center of momentum system.

6



We now seek an approximate ground state for our effective Hamiltonian by minimizing

the BCS vacuum expectation, 〈Ω|H|Ω〉. We do this variationally using the gap angle, φk,

(not the BCS angle) which leads to the gap equation, δ〈Ω|H|Ω〉 = 0. After considerable

mathematical reduction, the nonlinear integral gap equation follows

k sin φk −m cosφk =
2

3

∫

d~q

(2π)3
V̂ (|~k − ~q|)[sinφk cos φqk̂ · q̂ − sinφq cosφk] . (2.8)

The angular integrals can be analytically evaluated (see Appendix B) to give

k sinφk −m cos φk =
2

3

1

(2π)2

∫ ∞

0
q2dq[cosφq sin φkV̂1(k, q) − cosφk sinφqV̂0(k, q)] (2.9)

where

V̂0 =
−16πσ

(k2 − q2)2

V̂1 =
2πσ

k2q2



ln

(

k + q

k − q

)2

+ (k2 + q2)

(

−4qk

(k2 − q2)2

)





corresponding to the linear potential above. Similar expressions for the Coulomb potential

are given in Appendix B.

There are several alternative ways to derive this same gap equation. One is through the

Ward identites. Another is by requiring cancellation of the anomalous Bogoliubov terms in

the 2-body part of the newly normal ordered Hamiltonian. The latter is necessary to stabilize

the vacuum and is also equivalent to minimizing the 0-body constant energy splitting the

BCS and trivial vacua (see Ref. [7]).

Numerically we actually solve a different form of the gap equation, originally obtained

by Adler and Davis [6], that is more familiar to the solid state community. They use the

function ψk = ψ(k) related to our gap angle by

sinφk =
2ψk

1 + ψ2
k

cosφk =
1 − ψ2

k

1 + ψ2
k

with corresponding gap equation
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kψk −
m

2
(1 − ψ2

k) =
2

3(2π)2

∫ ∞

0
q2dq

V̂1ψk(1 − ψ2
q ) − V̂0ψq(1 − ψ2

k)

1 + ψ2
q

. (2.10)

Examination of Eqs. (2.9,2.10) reveals that the divergence at k = q is an integrable

singularity for the linear potential since for all k the integrands vanish at k = q. This is not

the case for the Coulomb potential UV singularity. However, since it naturally emerges from

the canonical QCD Hamiltonian (one gluon exchange), we retain the option of including

this potential for selected calculations and use a cut-off to regulate its ultraviolet (UV)

divergence.

The solution of the gap equation (see Sec. III) leads to a vacuum quark-antiquark

condensate given by

〈qq〉 ≡ 〈Ω|Ψ(0)Ψ(0)|Ω〉 = − 3

π2

∫

k2 sinφk dk (2.11)

which is quadratically divergent for non-zero current quark mass m 6= 0. We regulate this

by subtracting the trivial condensate contribution giving

〈qq〉reg = − 3

π2

∫

k2
(

sin φk −
m

Ek

)

dk . (2.12)

Our model is color confining and does not permit free solitary particles since the self-

energy or dispersion relation

ǫk = m sinφk + k cosφk −
2

3

∫

d~q

(2π)3
V̂ (|~k − ~q|)(sinφk sinφq + k̂ · q̂ cosφk cos φq) (2.13)

obtained from the 1-body part of H , Eq. (2.1), is divergent (now there is no cancellation

at the singular point ~k = ~q). Further, this divergence is also cancelled in the bound state

equation but only for color singlet states (see below). Even though the self-energy diverges

it is still useful to introduce the concept of an effective quasiparticle (constituent) mass, mq,

which can be extracted from the low momentum behavior of the gap angle. We introduce a

running, dynamical mass, m(k), by an effective Dirac spinor in canonical form

Ueff
λ (~k) = N









χλ

~σ·~k
E+m(k)

χλ









(2.14)
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with normalization N and E =
√

m
2(k) + k2. Then using this equation and Eq. (2.6) we

equate the two relative normalizations between upper and lower spinor components yielding

a relation between the running dynamical mass and gap angle

√

1 + sinφ(k)
√

1 − sin φ(k)
=
E + m(k)

k
, (2.15)

or

sin φ(k) =
m(k)

E
= 1 − k2

2m2(k)
+ ϑ(k4). (2.16)

We identify the dressed quark or quasiparticle mass as mq = maximam(k) and extract it

from the low momentum behavior of the gap angle (essentially inverse of the slope near zero

momentum). The value of mq characterizes the degree of chiral symmetry breaking and can

be loosely regarded as the constituent quark mass associated with phenomenological quark

models.

Note that our expression for the running mass is functionally identical to the perturbative

expression tanα = m
k
. Related, since the rotated quasiparticle spinors have a running

momentum dependence, they no longer rigorously provide a representation of the Lorentz

group. Our form of dynamical chiral symmetry breaking violates Lorentz invariance which

implies a preferred reference frame, namely the condensate rest frame. For most static

observables such as masses, condensates and decay constants, Lorentz symmetry is not

important. However, for some observables, such as electromagnetic form factors, care is

necessary and boost corrections may be important. This issue is under investigation and

will be reported in a future communication.

C. Comparison to the Nambu-Jona-Lasinio model

The classical effective model of Nambu-Jona-Lasinio (NJL) (see Ref. [13] for review)

entails various Lagrangian formulations, a common one being

L = iΨ̄ 6∂Ψ +G[(Ψ̄Ψ)(Ψ̄Ψ) − (Ψ̄γ5Ψ)(Ψ̄γ5Ψ)] (2.17)
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where G is a constant. It is customary to introduce the approximations Ψ̄γ5Ψ ≈ 0 and

Ψ̄Ψ ≈ 〈Ψ̄Ψ〉vacuum to linearize the equations of motion and then extract a constituent quark

mass from the NJL mass gap equation. In this fashion chiral symmetry breaking is achieved.

Our formulation extends beyond the NJL model in several important ways.

1. Our approach is more general and permits explicit gluonic degrees of freedom (see Refs.

[1,2,4]). The unification of the quark and glue sectors is crucial for a comprehensive

treatment of hadron structure, especially for glueball and hybrid meson systems.

2. Our formulation includes confinement and is renormalizable while the NJL model has

neither. The NJL pointlike interaction would be recovered in the limit V (~x − ~y) −→

Gδ(~x− ~y) which removes all important nonlocalities.

3. Our model has a density-density interaction kernel with a different Lorentz structure,

γ0γ0, which is the product of four-vector time components. As discussed in Ref.

[11], a density-density (vector-vector) interaction is superior to the scalar-pseudoscalar

displayed by the NJL model.

4. The chiral symmetry breaking mode of the NJL is extremely restrictive yielding a

constant quasiparticle mass, mdyn, and simple dispersion E =
√

m2
dyn + k2. Related,

the NJL limit of our model also yields a more restricted gap angle since sin φ =

mdyn√
m2

dyn
+k2

. Our method has a running mass and different quasiparticle dispersion

which yields more realistic TDA and RPA hadron masses.

III. NUMERICAL SOLUTION OF THE GAP EQUATION

The gap equation (2.9) has been previously solved for the harmonic oscillator potential,

where it takes its simplest form as a differential equation (see Ref. [5,7]), and also for the

linear potential (see Ref. [6,7]). Here we summarize our analysis which confirms and extends

the latter results.
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To numerically treat the integrable IR singularity a regularization must still be imple-

mented even though the final results are independent of this procedure. We considered

several different regularizations. We first tried an analytical regulator (equivalent to a de-

confining correction to the potential). This was an unstable algorithm and and conver-

gence could not be achieved. We next examined the method of Ref. [6] which off-sets the

q-discretization by half a step in the kernel with respect to the k-discretization. This proce-

dure was also rejected as it was less amenable for documenting the regulator sensitivity. We

finally adopted the simplest method of omitting the singular point k = q. This also facili-

tated a controlled senstivity study by just increasing the number of mesh points. Related,

we adopted a variable mesh size to integrate more efficiently and mapped the integration

variable q to v

q =
v2qmax

1 + qmax(1 − v)

for N points uniformly distributed in the interval v ∈ (0, 1).

Following Ref. [6] we elected to solve the gap equation in form specified by Eq. (2.10) and

also utilized the Gauss algorithm as described there. The Gauss method assures convergence

but is rather inefficient for extensive sensivity studies in parameter space. We therefore

modified our numerical approach by first finding a good approximate solution, ψ0
k, to the

non-linear gap equation and then obtained a linear equation for the desired correction, δk,

giving the final solution

ψk = ψ0
k + δk (3.1)

to arbitrary accuracy. Substituting Eq. (3.1) in the gap equation, Eq. (2.10), and dropping

higher powers of δk yields the approximate linear equation

δk

[

(k +m)ψ0
k − 2

3(2π)2

∫∞
0

q2dq

1+ψ02

q

[

V̂1(1 − ψ02

q ) + 2V̂0ψ
0
qψ

0
k

]

]

+ 2
3(2π)2

∫∞
0

q2dq

1+ψ02

q

[

V̂0

(

1 − 2ψ0
2

q

1+ψ02

q

)

(1 − ψ02

k ) + 4V̂1
ψ0

k
ψ0

q

1+ψ02

q

]

δq =

= −kψ0
k + m

2
(1 − ψ02

k ) − 2
3(2π)2

∫∞
0

q2dq

1+ψ02

q

[

V̂0ψ
0
q (1 − ψ02

k ) − V̂1ψ
0
k(1 − ψ02

q )
]

.

This equation is of the form
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∫

dqA(k, q)δ(q) = B(k) (3.2)

which can be solved for δk by matrix inversion. We found the Gauss algorithm sufficient for

obtaining the initial approximate solution ψ0
k. To achieve full convergence required up to

12,000 mesh points, a factor of 60 more than the early calculations of Ref. [6].

We checked our computer codes by calculating two different toy kernels V̂0 = k
q2(1+q2)

,

V̂1 = 0 and V̂0 = 0, V̂1 = k
q2(1+q2)

, each designed to yield a known constant value for ψk. We

then performed a series of cut-off sensitivity runs and mapped out the convergence rate as

a function of mesh point number N which ranged from 100 to 12,000. We used the quark

condensate as a test observable and also performed calculations for zero and non-zero current

quark mass, m, with and without the Coulomb potential using αs = .4. For m = 0, αs = 0,

we determined the sensitivity to N (the effective cut-off parameter) was slightly higher than

previously reported [6,11] and given by

〈ΨΨ〉 ≃ −
[(

113 − 1400

N

)

MeV
]3

. (3.3)

Note that this number is somewhat smaller than the commonly accepted lattice value of

about −(250 MeV )3. Including the Coulomb potential only increases the condensate to

−(119 MeV )3. We therefore conclude an improved model ground state is needed which

can be provided by including additional terms in the Hamiltonian, such as the quark-gluon

minimal coupling (hyperfine) interaction. This point is also affirmed below in our RPA

treatment which does yield a more realistic condensate value.

Our other key result, which will be of interest in connection with chiral perturbation

theory [14,15], is for the constituent quark mass and the BCS condensate as a function of

the u, d quark mass. Now it is necessary to use Eq. (2.12) and also impose an additional

integration cut-off limit (qmax around 10 GeV ). This yields

−〈ΨΨ〉 1

3 = 2.03 m+ 113.1

mq = 1.6 m+ 77.9
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where the units are MeV . A precision calculation for mq with m = 0 yields the slightly

higher value mq = 80.5 MeV (all values for the linear potential only).

Finally, we note that our Hamiltonian is SUf (3) flavor symmetric, broken only by the

small current flavored quark mass term. However, and quite significant, the vacuum proper-

ties and gap angle exhibit substantial SUf (3) violations as evidenced by our strange quark

calculations using a current mass of 150 MeV . Important violations occur even for a strange

quark mass as low as 50 MeV . While this result may be model dependent it does suggest

that certain chiral symmetry arguments in the literature regarding the strange quark sector

should be taken with care.

IV. MANY-BODY TECHNIQUES

We now formulate mesons as excited states consisting of quasiparticles and seek approx-

imate eigensolutions of our Hamiltonian. We first develop the TDA and then treat the RPA

in the next subsection. Of the two, only the RPA preserves chiral symmetry, as we detail

below. It is therefore more closely related to the Bethe-Salpeter formalism [16] incorporating

the Schwinger-Dyson quark propagator using an instantaneous interaction in the rainbow

approximation (equivalent to our gap equation). We will document this connection more

formally in a future publication.

A. TDA equation of motion

The principle advantage of the TDA is that it is a controllable approximation which

truncates the Fock-space expansion for a chosen level of calculational effort and resources.

In terms of the quasiparticle operators introduced in Sec. II, we introduce the TDA meson

creation operator

Q†
nJP (TDA) =

∑

γδ

∫

d~k

(2π)3
ΨnJP
γδ (~k)B†

γ(
~k )D†

δ(−~k ) . (4.1)

13



A meson with quantum numbers nJP (radial-node number, n, total angular momentum, J ,

and parity, P ) is then represented by the Fock space expansion

|ΨnJP
TDA〉 = Q†

nJP (TDA)|Ω〉 (4.2)

containing a quasiparticle and quasihole excited from the BCS vacuum. The Hamiltonian

equation is then projected onto this 1p-1h truncated Fock sector giving the TDA equation

〈ΨnJP
TDA|[H,B†

αD
†
β]|Ω〉 = (EnJP −E0)Ψ

nJP
αβ . (4.3)

In evaluating the commutator we note

[H0, B
†
αD

†
β ] = 0

〈ΨnJP
TDA|[H2, B

†
αD

†
β]|Ω〉 = (ǫk + ǫk)Ψ

nJP
αβ

and for the two body potential

〈ΨnJP
TDA|[H4, B

†
αD

†
β ]|Ω〉 =

4

3

∑

γδ

ΨnJP
δγ V̂ (~kδ − ~kγ)U

†
αUδV

†
γ Vβ

where ǫk is the BCS gap energy given by (2.13) and HN is the Hamiltonian component

containing N field operators (after normal ordering with respect to the BCS vacuum).

We can exploit the rotational invariance of our Hamiltonian and reduce the linear TDA

equation to a one dimensional, nonlocal equation by an angular momentum decomposition.

Introducing the orbital and spin angular momenta ~L and ~S, respectively, the meson state

vector can be expanded in partial-waves involving a one-dimensional (radial) wavefunction

ΨnJP
LS

ΨnJP
δγ (~k ) =

∑

LSmLmS

〈LmLSmS|JmJ〉(−1)
1

2
+γ〈1

2
δ
1

2
− γ|SmS〉Y mL

L (k̂)ΨnJP
LS (k) (4.4)

where again the color index is omitted. Note the phase factor and negative magnetic substate

sign in the Clebsch-Gordan coefficient due to the transformation properties of antiparticles

under the SU(2) rotation group. A thorough discussion is given in Ref. [17].

Inserting Eq. (4.4) into Eq. (4.3) yields the TDA partial-wave equation of motion
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(EnJP − E0 − 2ǫk)Ψ
nJP
LS (k)(2J + 1) =

∑

ΛΣmΛmΣmJmLmS
〈JmJ |LmLSmS〉〈ΛmΛΣmΣ|JmJ〉

∫

dΩkdΩqY
∗mL

L (k̂)Y mΛ

Λ (q̂)4
3

∫∞
0

q2dq

(2π)3
ΨnJP

ΛΣ (q)V̂ (|~k − ~q|)
∑

αβγδ(−1)1+β+γhαβγδ (k, q)〈SmS|12α 1
2
− β〉〈1

2
δ 1

2
− γ|ΣmΣ〉

where the function hαβγδ (k, q) contains the gap angle from contractions involving rotated

spinors

hαβγδ (k, q) = 1
4
[ckcq(δαδgγβ + δγβgαδ) + (1 + sk)(1 + sq)δαδδβγ + (1 − sq)(1 − sk)gαδgγβ]

with

gαβ = χ†
α ~σ · q̂ ~σ · k̂ χβ .

Denoting the meson mass for state nJP by MnJP = EnJP −E0 and using the multipole ex-

pansion formulas for the interaction yields the final TDA equation appropriate for numerical

calculation

(MnJP − 2ǫk)Ψ
nJP
LS (k) =

∑

ΛΣ

∫ ∞

0
KJP
LΛSΣ(k, q)ΨnJP

ΛΣ (q)
q2dq

12π2
. (4.5)

Note the Hamiltonian spin dependence generates a kernel that couples different orbital and

spin states.

We now apply these equations to the low lying meson spectrum with quantum states

specified by IG(JPC) having C parity, C = (−1)L+S, and G parity, G = (−1)L+S+I . In our

model we neglect the small electromagnetic (isospin violating) effects as well as coupling to

the gluon sector so that I = 0 and 1 states are degenerate for the same JPC . For pseudoscalar

states, JPC = 0−+, S = L = J = 0 giving only one wavefunction component (no coupling).

This is also the case for scalar mesons (L = 1, S = 1) having JPC = 0++. However for

the vector meson sector JPC = 1−− both (L = 0, S = 1) and (L = 2, S = 1) waves are

allowed and, in general, will be coupled. Similarly for low lying pseudovector mesons having

(L = 1, S = 0 or S = 1) and tensor mesons, with (L = 1, S = 2) and (L = 3, S = 2),

there will be coupled equations. Although these equations are not difficult to solve, we

only include the lowest orbital partial-wave component and neglect all coupling since it has
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been computed small for the harmonic oscillator potential [7]. There is then only one kernel

K(k, q) for each meson state with structure:

• pseudoscalar, L = S = J = 0,

K(k, q) = 2(ckcqV̂1 + (1 + sksq)V̂0)

• scalar, L = S = 1, J = 0,

K(k, q) = 2(ckcqV̂0 + (1 + sksq)V̂1)

• vector, L = 0, S = J = 1 (neglecting the tensor L = 2, S = J = 1 coupling),

K(k, q) = 2ckcqV̂1 + (1 + sk)(1 + sq)V̂0 + (1 − sq)(1 − sk)(
4V̂2 − V̂0

3
)

• pseudovector, L = J = 1, S = 0 (degenerate with L = S = J = 1),

K(k, q) = ckcq(V̂0 + V̂2) + 2(1 + sksq)V̂1

• tensor, L = S = 1, J = 2 (neglecting L = 3, S = J = 2 coupling),

K(k, q) = ckcq(3V̂2 − V̂0) + (1 + sk)(1 + sq)V̂1 + (1 − sk)(1 − sq)
12V̂3 − 7V̂1

5
.

Note for the pseudovector mesons the kernels for S = 0 and S = 1 are identical which differs

from Ref. [5].

We have also applied our approach to other flavored (s and c) meson systems and have

obtained similar, but more complicated TDA equations. As a representative result, consider

the pseudoscalar D meson with a u (or d) and c quark. The gap equation for the c quark

remains the same, except for current mass, now 1.2 GeV , which gives a different gap energy,

ǫck, and angle, sck. The TDA equation, however, has a different form and generalizes to

(MD − ǫuk − ǫck)ΨD(k) =
1

3

∫

q2dq

(2π)2
ΨD(q)·

·
[(√

1 + suk
√

1 + suq
√

1 + sck
√

1 + scq +
√

1 − suq
√

1 − suk
√

1 − sck
√

1 − scq
)

V̂0(k, q)

(
√

1 − suq
√

1 − suk
√

1 + sck
√

1 + scq +
√

1 + suk
√

1 + suq
√

1 − sck
√

1 − scq
)

V̂1(k, q)
]
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with obvious form for other mixed flavors. All equations are finite for k = q as the IR

divergence terms from the confining potential again cancel. We have also derived and solved

the TDA equations for other spin parity states which is further detailed in Sec. V.

B. RPA and the quasiboson approximation

The TDA can be improved by utilizing a better vacuum with additional quasiparticle cor-

relations beyond the BCS. Consistent with many-body applications in other disciplines we

now formulate the RPA [18,19] and introduce a new vacuum, |ΩRPA〉, having both fermion

(two quasiparticles or Cooper pairs) and boson (four quasiparticles or meson pairs) correla-

tions. The RPA meson state

|ΨnJP
RPA〉 = Q†

nJP (RPA)|ΩRPA〉 (4.6)

involves a meson creation operator which is a generalization of Eq. (4.1)

Q†
nJP (RPA) =

∑

λµ

∫

d~k

(2π)3
[XnJP

λµ B†
λ(
~k )D†

µ(−~k ) − Y nJP
λµ Bλ(~k )Dµ(−~k )] . (4.7)

The RPA vacuum then satisfies

QnJP (RPA)|ΩRPA〉 = 0

which, because of additional correlations from admixtures of particle-hole excitation states,

is not true for the BCS vacuum.

To derive the RPA equations of motion we use Eq. (4.3) and replace the BCS vac-

uum with |ΩRPA〉 and also substitute ΨnJP
RPA for ΨnJP

TDA to generate one equation for the X

component. We then repeat, changing the commutator to [H,BαDβ] to obtain the Y equa-

tion. Following standard treatments in other fields of physics, we also invoke the quasiboson

approximation and treat the fermion pair operator BD as a pure boson operator. This sig-

nificantly reduces the commutator algebra complexity and generates one of the two coupled

equations for the RPA wavefunctions X and Y .

For the important pseudoscalar meson channel we obtain for the excited state n
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2ǫkX
n(k) +

1

3

∫ ∞

0

q2dq

(2π)2
[Xn(q)F (k, q) + Y n(q)G(k, q)] = MnX

n(k) (4.8)

2ǫkY
n(k) +

1

3

∫ ∞

0

q2dq

(2π)2
[Y n(q)F (k, q) +Xn(q)G(k, q)] = −MnY

n(k) (4.9)

where

F (k, q) = 2cqckV̂1 + 2(1 + sqsk)V̂0 (4.10)

G(k, q) = 2cqckV̂1 − 2(1 − sqsk)V̂0 . (4.11)

Similar expressions directly follow for the other spin-parity states.

We adopt the standard normalization for the RPA wavefunctions

〈ν ′|ν〉 = 〈ΩRPA|Qν′Q
†
ν |ΩRPA〉 = δνν′ (4.12)

yielding
∫ ∞

0
k2dk(Xν′(k)∗Xν(k) − Y ν′(k)∗Y ν(k)) = (2π)3δνν′ .

The RPA equations, which reduce to the TDA equations in the limit Y or G → 0, are

again an eigenvalue problem for MnJP which can be easily diagonalized. Related, the matrix

size can be reduced by a factor of 2 using the variables X + Y and X − Y . Finally, the

equations are also IR finite for the sigular point k = q.

C. Weak decay constants

A crucial test of any approach is the ability to describe hadronic decays. In this paper we

compute weak decays and defer our analysis of hadronic decays to a subsequent publication.

For a pseudoscalar meson P with momentum pµ, energy EP , mass MP , the weak decay

constant, fP , is defined for our normalization by

〈Ω |Aµ(0)|P (~p )〉 =
1√
EP

fPpµ . (4.13)

Here Aµ(~x) = Ψ(~x)γµγ5Ψ(~x) is the axial current which specifies the chiral charge operator

Q5 =
∫

d~xA0(~x) =
∫

d~xΨ†(~x)γ5Ψ(~x) . (4.14)
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Simplifying Eq. (4.13) for a meson at rest yields

fP =
1√
MP

〈Ω|Ψ†(0)γ5Ψ(0)|P (0)〉 . (4.15)

Applying this result for the TDA pion wavefunction gives the TDA pion decay constant

fTDAπ =
1

π
√

(2π)3Mπ

∫ ∞

0
Ψπ
TDA(q)sq q

2dq . (4.16)

Similarly, for the RPA pion wavefunction we obtain

fRPAπ =
1

π
√

(2π)3Mπ

∫ ∞

0
sq(X

π(q) + Y π(q)) q2dq . (4.17)

Our results easily generalize to the SUf(3) flavor nonet. Now there are nine axial charges

given by

Qa
5 =

∫

d~xAa0(~x) =
∫

d~xΨ†(~x)γ5
λa

2
Ψ(~x)

where the eight Gell-Mann λa matrices are supplemented by λ0 =
√

2
3
I to obtain both the

octet and the singlet under SUf (3) transformations. The appropriate generalizations of Eq.

(4.16) are then:

fTDAK =
1

2π
√

(2π)3MK

∫ ∞

0
q2dqΨK

TDA(q) · (
√

1 + ssq
√

1 + suq −
√

1 − ssq
√

1 − suq )

fTDAη8
=

1

3π
√

(2π)3Mη8

∫ ∞

0
Ψη8
TDA(suq + 2ssq)q

2dq

fTDAη0
=

1

3π
√

(2π)3Mη0

∫ ∞

0
Ψη0
TDA(2suq + ssq)q

2dq .

We will use the above results in the next subsection to derive a generalized Gell-Mann-

Oakes-Renner relation and also in Sec. V were we report numerical results.

D. Chiral symmetry and the Gell-Mann-Oakes-Renner relation

Chiral symmetry is a significant element of hadronic QCD and should be present in

all realistic models. Even though our vacuum properly exhibits dynamic chiral symmetry

breaking, our model Hamiltonian does indeed respect this symmetry since the commutator

[H,Q5] = m
∫

d~xΨ†(~x)Ψ(~x) ≃ 0
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essentially vanishes, consistent with the small u, d quark mass. Related, our RPA states

also preserve chiral symmetry as the RPA meson creation operator commutes with the chiral

charge in the chiral limit (m→ 0)

[Q†(RPA), Q5] = 0 .

However, the TDA operator, Eq. (4.1) above, does not commute with Q5 and violates chiral

symmetry since it is not fully symmetric in operator structure (only contains B†D† and not

BD). This can also be documented by chiral transforming the TDA meson state verifing

that B†D† rotates to combinations of B†B, DD† and DB. Hence, the TDA ansatz is not

closed under a chiral rotation and Goldstone bosons will not appear in the TDA spectrum.

We therefore expect significant, but unphysical, chiral symmetry violations in the TDA

calculations and anticipate the TDA pion mass to be much larger than in the RPA which is

confirmed in Sec. V as only the RPA calculations yield a Goldstone pion in the chiral limit.

On the other hand, the RPA ansatz, Eq. (4.7), is chirally invariant since it is closed

under this rotation in the chiral limit (|X| = |Y |). Hence the mechanism of spontaneous

symmetry breaking is present and the pion mass is zero according to its Goldstone boson

nature as we numerically verify in the next section.

With these results we now derive two different Gell-Mann-Oakes-Renner (GMOR) re-

lations, one based upon exact model eigenstates while the other relates RPA states and

the BCS vacuum. Assume we have the complete set of exact eigenstates, |n〉, to our QCD

model Hamiltonian, including the vacuum ground state |Ωexact〉. Evaluating the double

commutator

〈Ωexact| [Q5, [Q5, H ]] |Ωexact〉 = 4m〈qq〉exact (4.18)

then generates the exact quark condensate. Evaluating the double commutator again, but

now invoking twice the completeness relation, 1 =
∑

n |n〉〈n|, and identifying the decay

constant relation, Eq. (4.15), leads to the generalized GMOR relation

− 2m〈qq〉 =
∑

n

M2
nf

2
n (4.19)
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summed over all (ground and excited) pseudoscalar meson states with mass Mn and decay

constants fn.

This can be extended to flavor using two of the nine SUf (3) axial charge operators, Qa
5

and Qb
5, to derive the following GMOR relations:

• a= b = 1, 2, or 3

−2mu〈uu〉 =
∑

πn

M2
πnf 2

πn

• a = b = 4, 5, 6, or 7

−
(

mu +ms

2

)

〈uu+ ss〉 =
∑

Kn

M2
Knf 2

Kn

• a = b = 8,

−
(

2

3
mu〈uu〉 +

4

3
ms〈ss〉

)

=
∑

ηn
8

f 2
ηn
8

M2
ηn
8

• a = b = 0

−
(

4

3
mu〈uu〉 +

2

3
ms〈ss〉

)

=
∑

ηn
0

f 2
ηn
0

M2
ηn
0

.

Because the exact eigenstates will generally not be available, these equations are of lim-

ited value. However, they do provide testing criterion for approximation solutions. Further,

since decay constants are suppressed for excited states n we can drop higher terms to obtain

more useful relations involving ratios such as

(

MKfK
Mπfπ

)2

=
mu +ms

2mu

(

〈uu+ ss〉
2〈uu〉

)

which we will use in Sec. V in connection with our discussion of the kaon mass calculation.

Next we utilize Thouless’ theorem [20] applied to the chiral charge operator

〈Ω| [Q5, [Q5, H ]] |Ω〉 = 2
∑

n

|〈ΨnJP
RPA|Q5|ΩRPA〉|2(En −E0)RPA (4.20)

to immediately derive the RPA GMOR relation

− 2m〈qq〉BCS = (M2
πf

2
π)RPA (4.21)
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where we have again dropped the excited state decay constants. Note that the left hand side

entails the BCS vacuum while the right hand side involves the RPA states and energies. This

relation clearly predicts the RPA pion is a Golstone boson in the chiral limit (i.e Mπ → 0

for m→ 0) which we numerically confirm in the next section.

Finally, calculating the RPA meson mass spectrum does not require obtaining the RPA

vacuum (see Eq.(4.8)), but computing the RPA decay constants does. Determining |ΩRPA〉

is actually quite difficult, however, the leading correction can be approximately calculated

using another theorem by Thouless [18]

|ΩRPA〉 ≃ |Ω〉 + (F †)2|Ω〉 (4.22)

where F † is a TDA type operator given by

F † =
∑

αβ

∫

d~qfαβ(~q)
∗B†

α(~q)D
†
β(−~q)

with the fermion pair operator B†D† now obeying bosonic commutation relations. Here f ∗ is

an unknown amplitude assumed to be small (this is not true in the chiral limit as discussed in

the next section). The approximate RPA vacuum is thus described as a mixture of the BCS

vacuum having Cooper pairs (Eq. 2.7) and two quasibosons (mesons) coupled to vacuum

quantum numbers (0++). Since, as shown in the next section, the RPA is of importance

for mainly the low-lying pseudoscalar states, we assume that only these states contribute

to |ΩRPA〉 and neglect all others. Our result easily generalizes to scalar or other mesons

(appropriately coupled to JP = 0++). Within this approximation we obtain an improved

quark condensate to be compared with Eq. (2.11)

〈qq〉RPA ≃ 〈qq〉BCS +
8
∑

αβ

∫

d~qsq|fαβ(~q)|2
1 + 2

∑

αβ

∫

d~q|fαβ(~q)|2
.

To obtain fαβ, we impose Qπ(RPA)|ΩRPA〉 = 0 and use Eq. (4.22) neglecting higher

order terms corresponding to Fock states with more than two pions. We also only retain

ground state meson (pion) contributions from X and Y yielding
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fαβ(q) = N−1Y (q)(−1)
1

2
+α+β〈1

2
− α

1

2
β|00〉 (4.23)

with a normalization constant depending on both RPA wavefunction components

N2 = 2
∫

d~q

(2π)3
Y (q)X(q) .

The improved RPA quark condensate is

〈qq〉RPA ≃ 〈qq〉BCS + c
∫ ∞

0
sqY (q)2q2dq (4.24)

where the constant c is given by

c =
2
∫

Y (q)2q2dq

(
∫

Y (q)X(q)q2dq)2 + 1
2
(
∫

Y (q)2q2dq)2
.

Also the improved pion decay constant to this vacuum is

fπ ≃ 1

π
√

(2π)3Mπ

∫

sq(X(q) + cπ2N2Y (q))q2dq (4.25)

in contrast to Eq. (4.17). We have found that for meson masses above 800 MeV Y is very

small and there is no essential difference between RPA and TDA.

We now comprehensively apply the above formulas and conduct a comparative analysis

of the TDA and RPA approaches.

V. APPLICATIONS AND NUMERICAL RESULTS

In this section we first present and discuss our TDA spectra for the pseudoscalar and

vector mesons and then in subsection B we compare to our RPA results for both meson

masses and the decay constants. Subsection C treats mixing for the η and η′ mesons while

subsection D details applications to charmed mesons, especially J/Ψ states.

A. Tamm-Dancoff spectrum

Solving the TDA eigenvalue problem is straight forward. The diagonal part of the matrix

contains the IR singularity that is rigorously controlled by cancellation, again permitting
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numerical regulation by simply skipping the point q = k as in the gap equation solution.

Due to the linear nature of this system, results are convergent for a mesh as sparce as 700

points.

Tables I and II summarize the resulting TDA meson spectrum corresponding to the five

JLS kernels specified in Sec. IV A. The energy difference between pseudoscalar and vector

states is about 200 MeV for the u/d quark mesons, 80 MeV for the open flavored (K,

K∗) and only 50 MeV for the pure strange composites (φ). Our one parameter model can

not accurately describe the entire observed splitting indicating additional dynamics beyond

simple spin interactions from a Dirac spinor field is needed. In general, the masses are in

good agreement with the PDG [21] accepted values for the vector mesons, but the TDA low-

lying pseudoscalar sector is deficient. This is expected since in this channel vacuum (chiral

symmetry) effects are most prominent. In the scalar channel the situation is more confusing,

since other hadron states, some with explicit gluonic structure, can more easily mix. Since

our unified model allows us to treat glueballs, mesons and hybrids comprehensively, future

work will further address understanding this channel. Interestingly, our lightest f0 mass,

which has a P wave oribital excitation, is below 1 GeV . We also find that the computed

TDA masses are not very sensitive to details of the vacuum that enters via the gap function

characterizing the BCS ground state.

As described above, we may also use a simplified TDA equation to extract a constituent

quark mass. In the chiral limit, the mass obtained is 51 MeV and this dressing is roughly

constant, consistent with SUf(3) symmetry, up to current masses of 150 MeV , where the

generated constituent mass is 203 MeV . We are therefore dealing with light dressed quarks,

even for strange quarks which may prove a deficiency when calculating electromagnetic form

factors. We shall also address this issue in the near future.

Another important feature of our relativistic effective Hamiltonian is that it naturally

includes the kinematical and spin dependent interactions (e.g. spin-spin, spin-orbit, tensor).

These effects are very important in the light quark sector even after chiral symmetry break-

ing, because the light quark constituent mass generated in our scheme, around 80 MeV , is
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still small as compared to our interaction scale (424 MeV ). In particular, notice in Table II

the spin splitting between the 0++, 1++ and 2++ mesons, all having the same L and S quan-

tum numbers (also observe the large radial excitation in each channel). The level spacing is

consistent with Ref. [5] but very different from the naive expectations from the constituent

quark model. The is due to the confining (nonperturbative) ~L · ~S coupling, which is only

of order αs in the constituent quark model. The spin spacing is governed by the matrix

element

〈LSJ |~L · ~S|LSJ〉 =
1

2
[J(J + 1) − L(L+ 1) − S(S + 1)]

which, for L = S = 1, reduces to −2 + J(J+1)
2

. The −2 in this expression describes the light

scalar meson, whereas the J(J + 1) contribution explains the splittings in Table II. The

calculated 2++ mass is much heavier than the lightest observed f2 at 1270 MeV . Clearly,

including coupling to the L = 3, S = 1 channel as well as multi-quark Fock states will alter,

but improve, our prediction. Further, and as mentioned previously, additional quark-gluon

interaction terms should also be included in our Hamiltonian which have a different Lorentz

spin structure. In our model this would generate a weaker hyperfine interaction of order αs.

This would also provide additional splitting between S = 0 and S = 1 levels that would

improve our TDA, and especially RPA, π-ρ mass underprediction. Such an analysis would

fully clarify the relative importance of chiral symmetry versus spin interactions as the latter

is generally attributed the dominant effect in conventional constituent quark models having

color magnetic, effective one gluon exchange potentials (see Ref. [22]). We are currently

examining this issue and will report results in a future paper.

Finally and also related is the spin-orbit splitting for other flavors which is summarized

in Tables I and IV. In Table IV we illustrate the familiar J(J +1) dependence by fitting the

TDA spectrum for different flavors.
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B. RPA spectrum and decay constants

We now present our RPA results and compare with both TDA and observation. Table

III and Figs. 2 through 7 highlight our key results. In general the RPA and TDA masses

agree except for the light pseudoscalar mesons where the RPA provides a better description.

This is because, as discussed above, only the RPA correctly implements chiral symmetry

as illustrated in Fig. 3 where the lightest scalar and pseudoscalar masses are plotted as

a continuous function of the current quark mass. Note that only the pseudoscalar mass

approaches zero in the chiral limit consistent with Goldstone’s theorem (the observed pion

mass is reproduced for a u quark mass of about 2 MeV ).

The kaon system reveals the largest model deficiency (see Table I). Even the RPA in

the chiral limit produces a too massive kaon, about 850 MeV . As indicated by Fig. 4, to

reproduce the observed kaon requires a strange quark mass of about 50 MeV . A detailed

analysis reveals that the explicit contribution of the current quark mass to the RPA equation

-through its appearance in ǫ(k)- is only additive. It is the gap angle, introducing an implicit

flavor dependence, which inhibits a lighter kaon mass. We could fit both pion and kaon

masses by adjusting the current quark masses, but we prefer awaiting improvements from

renormalizing the quark gap equation (work in progress and will be subsequently publish).

The gap angle for a non-zero current quark mass is very sensitive at high momentum to the

dominanting Coulomb potential and sizeable corrections are expected. Also for higher lying

excited meson states there is also the issue of two particle, two hole Fock state contributions.

In Fig. 5 we compare our scalar, pseudovector and tensor meson TDA and RPA predic-

tions to data. In general there is qualitative agreement. Note that for the higher excited

states above 1 GeV the TDA and RPA results are identical and it is clear that these systems

are not governed by chiral symmetry.

We also illustrate the behavior of various wavefunctions. In Fig. 6 we detail the difference

between TDA wavefunctions for the f0 and π mesons. Figure 7 compares the TDA and RPA

wavefunctions for the pion.
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Finally we discuss decay constants. Both the TDA and RPA pion decay constants are too

small, about 17 MeV , in contrast to the observed value of 93 MeV . This is consistent with

the Orsay [5] results. We again attribute this to the model Hamiltonian and vacuum as the

BCS angle does not have sufficiently high momentum components. However, if we use the

approximate RPA vacuum in the quasiboson approximation (see Eq. (4.25)) the improved

RPA decay constant increases to 57 MeV . Appropriately, the condensate also significantly

increases to −(320MeV )3, in much better agreement with lattice results ≈ −(250MeV )3.

The latter result is consistent with applications in nuclear physics where the RPA tends to

overcorrelate the ground state.

Since we have only approximately evaluated the RPA vacuum by truncating at the two

pion level it is not surprising that fπ does not agree with measurement (or chiral perturbation

theory results) and therefore needs further refining. We expect the truncation to the two pion

level, Eq. (4.22), to be reasonable provided we are not in the chiral limit, since then Y ≪ X.

However, we would like to be able to calculate in that regime. Further, the calculation in Ref.

[23] points to a necessary decrease of the BCS condensate when including coupled channels.

They argue that for a pure chiral pion, coupling additional channels would decrease its mass

which might even become negative, destabilizing the vacuum. This argument seems sound

and since we are above the chiral quark mass limit, at a model value m = 5 MeV where our

pion is too massive (277 MeV ), this decrease is a welcome improvement. We defer further

discussion until publication by our collaborative effort with the Lisbon group which will also

clarify pionic correlations in the ground state of our approach.

Recalling that our computed condensates require renormalization except in the chiral

limit, we can only test the GMOR relation for m = 0 which is trivially satisfied in the

RPA. However, we note that the decay constants for excited pion states are much smaller

and rapidly approach zero in the chiral limit. Hence the GMOR relation is satisfied with

predominatly the first state. This is not true for heavier quarks and to numerically satisfy

the GMOR requires including several eigenstates.
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C. η − η′ mixing

An extremely challenging but still not understood problem is the η, η′ system and at-

tending flavor mixing of the light quarks. Although our effective Hamiltonian has an explicit

flavor dependence through the current quark masses, it still conserves flavor. However, if

the gluon sector is included, such as through the hyperfine, minimal coupling interaction, an

effective flavor dependence naturally emerges though higher order quark-glue-quark effects

and dynamic mixing of flavor states is possible. We are currently deriving such a term which

is similar, but more rigorous than the t’Hooft interaction based upon instantons (classical

glue). This will be reported in a future communication, however, it is still of interest to

perform a simple η, η′ mixing analysis by introducing a flavor off-diagonal interaction as we

now detail.

With no dynamic flavor mixing, the η and η′ are (poorly) modeled as SUf (3) octet, η8,

and singlet, η0, states respectively given by (we adopt the convention used in Refs. [24,25])

η ≈ η8 =

√

1

3
nn−

√

2

3
ss = cos θSUf (3) nn− sin θSUf (3) ss (5.1)

η′ ≈ η0 =

√

2

3
nn +

√

1

3
ss = sin θSUf (3) nn + cos θSUf (3) ss (5.2)

involving the isoscalar nn = (uu + dd)/
√

2 and ss states and pure SUf (3) mixing angle

θSUf (3) = 54.74◦. We have computed the TDA masses of the pure nn and ss meson states to

be Mn = 612 MeV and Ms = 1002 MeV , respectively. Hence the predicted, pure SUf (3),

η, η′ masses are

Mη ≈Mη8 = cos2 θSUf (3) Mn + sin2 θSUf (3) Ms = 872MeV (5.3)

Mη′ ≈Mη0 = sin2 θSUf (3) Mn + cos2 θSUf (3) Ms = 742MeV. (5.4)

For the RPA, Mn = 290 MeV and Ms = 978 MeV , yielding Mη = 749 MeV and Mη′ = 519

MeV . Similarly the SUf (3) η, η′ decay constants are given in terms of the u/d isoscalar,

fn, and strange quark, fs, decay constants
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fη ≈ fη8 = cos2 θSUf (3) fn + sin2 θSUf (3) fs (5.5)

fη′ ≈ fη0 = sin2 θSUf (3) fn + cos2 θSUf (3) fs. (5.6)

Note the quadratic dependence on angles due to expressing both the axial current and meson

states in their SUf (3) representations. Using the TDA computed values of fn = 17 MeV

and fs = 75 MeV , yields fη8 = 56 MeV and fη0 = 40 MeV . The RPA values are fn = 57

MeV and fs = 75 MeV , giving fη8 = 68 MeV and fη0 = 63 MeV .

We can now improve these results by generalizing our Hamiltonian, which is diagonal

in flavor space, to have off-diagonal matrix elements. The simplest prescription is to just

add a constant, 〈qq|H ′|qq〉 = λ, to both diagonal, 〈nn|H ′|nn〉 = 2λ, 〈ss|H ′|ss〉 = λ, and

off-diagonal 〈nn|H ′|ss〉 =
√

2λ, terms giving

H =









Mn + 2λ
√

2λ
√

2λ Ms + λ









. (5.7)

Diagonalizing H leads to the new, mixed mass eigenvalues

Mη =
Mn +Ms + 3λ

2
− 1

2

√

M2
n +M2

s + 9λ2 + 2(λMn −MsMn −Msλ) (5.8)

Mη′ =
Mn +Ms + 3λ

2
+

1

2

√

M2
n +M2

s + 9λ2 + 2(λMn −MsMn −Msλ) (5.9)

and eigenstates

η = cos(θSUf (3) + θP ) nn− sin(θSUf (3) + θP ) ss = cos θP η8 − sin θP η0 (5.10)

η′ = sin(θSUf (3) + θP ) nn + cos(θSUf (3) + θP ) ss = cos θP η0 + sin θP η8 (5.11)

involving rotation by an additional angle θP that is a function of λ. The mixed, presumably

more physical, decay constants are then

fη = cos θP fη8 − sin θP fη0 (5.12)

fη′ = cos θP fη0 + sin θP fη8 . (5.13)

Performing a least squares fit to the observed masses (Mη = 547 MeV , Mη′ = 958 MeV ),

yields λ = −33MeV (θP = −61◦) for the TDA, which in turn produces Mη = 541 MeV ,
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Mη′ = 974 MeV , fη = 62 MeV and fη′ = -30 MeV . For the RPA, λ = 82 MeV (θP =

−44◦) generating Mη = 433 MeV , Mη′ = 1081 MeV , fη = 93 MeV and fη′ = -3 MeV .

It is interesting that while the simple mixing provides improvement, the TDA masses are

in better agreement than the RPA. We could also improve the decay constants utilizing a

two angle mixing formalism [26] but refrain since clearly a more sophisticated treatment is

necessary which will be provided by our quark-gluon coupling formulation in the near future.

D. Heavy mesons

The constituent quark models and non-relativistic expansions of QCD offer more reliable

results for heavy quark systems where physical intuition from Quantum Mechanical bound

states is more appropriate. Hence the charmed mesons afford a good limiting testing for

our relativistic approach. We again calculate the spectrum of the charmed mesons (see

Figures [8,9]) and of charmonium (Fig. [10]) using our many-body model. The TDA is now

sufficient since chiral symmetry, crucial for the light mesons, is not a constraint and the

RPA will produce the same results. Using a charmed quark mass of 1200 MeV , the general

features of the spectra are well reproduced and the radial excitations, Ψ(2S) and ηc, are

adequately described. We therefore expect our predictions for the remaining unconfirmed

states to be reasonable.

The angular momentum splittings of these systems are known to be dominated by the

one gluon exchange potential (OGE) which we have not included in this calculation. Hence

there will be improvement from future calculations based upon our renormalized project.

A general feature reflected by our charmed spectra is the near vanishing of the spin-spin

interaction, leading to degenerate 0−+ and 1−− states. Since the 100-150 MeV hyperfine

splittings in these systems will presumably be recovered when we include the perturbative

OGE, we do not comment further. As for the spin-orbit splittings, our results are too large

for the D mesons and too small for the χc mesons. These splittings are adequately explained

in non-relativistic quark models (see Ref. [27]) where the absence of a large spin-orbit effect
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for light quark masses is attributed to the cancellation between the Thomas precession in

the confining potential and the one gluon exchange effective potential, although it is a bit

concerning that the actual splitting between the χc0 and the χc1 is twice the size of the

χc1-χc2 splitting, when according to the spin-orbit J(J + 1) rule, it should be a half.

Finally, we note that by including D waves in the charmonium spectrum we are able to

resolve the long standing ”overpopulation” problem of J/Ψ states relative to observation.

This is clearly illustrated in Fig. 10. This (previous) deficiency in number of cc states has

been characterized as evidence for glueballs and/or hybrid mesons because the J/Ψ system

is believed to be gluon rich. Our result suggests, however, that simple level counting may

not be effective in identifying hadrons with explicit gluonic degrees of freedom.

VI. OUTLOOK AND SUMMARY

Before summarizing our results we comment on the strengths and weaknesses of our

many-body approach as well as some attending, open hadronic physics issues. Beginning

with our Hamiltonian, H , the current-current (density-density) color interaction forbids free,

isolated colored objects in the theory. For the vacuum this is realized in the BCS by an

infinite shift in the free quark self-energy due to the integral of V̂ (|~k − ~q|). Similarly for

hadrons in both TDA and RPA, colored composite objects (e.g. diquarks) are precluded by

the appearance of V̂ (0) which is divergent, whereas in the singlet channel this divergence

is removed by vanishing color factors. Next we note that H conserves chiral symmetry yet

our BCS vacuum properly exhibits dynamic chiral symmetry breaking. Further, our RPA

pion emerges as a Goldstone boson in the chiral limit. This is not true for the TDA pion

since only the RPA excitation operator commutes with the chiral charge. Another, signifi-

cant model feature is that Fock state truncation is a controlable approximation amendable

to systematic improvement. Thus our Hamiltonian many-body approach is an attractive,

promising method for comprehensively investigating hadronic structure as it embodies con-

finement, chiral symmetry breaking and orderly construction of multiparticle Fock states.
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It also provides an excellent vehicle for testing more fundamental effective Hamiltonians as

well as affording a powerful phenomenological framework for hadron structure. Considering

the form of H , with only a single predetermined dynamical parameter, it is encouraging

that the chiral limit is adequately reached in the RPA and that the meson spectrum is in

qualitative agreement with experiment. To achieve detailed, quantitative descriptions will

require further improvements in both the Hamiltonian and effects from including higher Fock

space components. In particular, both the high energy behavior (Coulomb potential) and

quark-gluon coupling effects (efectively instantons) will be incorporated and reported in a

future publication. Finally, our current study is similar, but more extensive than the Orsay

analysis [5] due to our application to multiflavor systems. Our results are also more realistic

(and numerically more difficult) then that work since we have utilized a linear confining

interaction, determined by lattice and Regge phenomenology, which generates complicated

nonlocal integral equations, rather than solving a simpler differential equation for a harmonic

oscillator potential.

Summarizing, we have performed approximate, but large-scale diagonalizations of an

effective Coulomb gauge Hamiltonian utilizing standard many-body techniques. Using the

BCS, a non-linear gap equation has been derived and accurately solved to provide vacuum

properties (quasiparticles and condensates). Incorporating only predetermined parameters

(string tension, σ, and reasonable current quark masses), we have qualitatively reproduced

the low energy u, d, s and c meson spectra. Most importantly, we have obtained a chiral

pion, detailed that chiral symmetry is responsible for the large π − ρ mass splitting and

resolved the problem of overpopulation of theoretical J/Ψ states.

Future work will address the full Hamiltonian in the combined quark and gluon sectors.

In particular, we will obtain improved spin (hyperfine) and flavor (t’Hooft) interactions from

quark-glue coupling. This should provide a better description of vacuum properties and the

scalar/pseudoscalar masses, especially the π,K, η and η′. We will also include more complex

2 quasiparticle-2 quasihole Fock states for heavier u/d mesons as well as 3 quasiparticles for

baryons and hybrids. Much of this work is in progress and will soon be reported.
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APPENDIX A: BCS VACUUM STATE

We further discuss the relation between the BCS rotated, |Ω〉, and the trivial or perturba-

tive, |0〉, vacua. We first note that the BCS vacuum state given by Eq. (2.7) is not a unitary

transformation and does not have a finite normalization. This is because the operator in the

exponential is not antihermitian. It is therefore necessary to normalize matrix elements by

dividing with 〈Ω|Ω〉 and this is implicit in our presentation. Alternatively, and equivalently,

|Ω〉 can be represented by a norm preserving unitary transformation of the form

|Ω〉 = eA
†−A| 0〉

where

A† =
∑

λ1λ2

∫

d~k tan θkMλ1λ2
b†λ1

(~k )d†λ2
(−~k )

and all flavor and color indices are suppressed. Here Mλ1λ2
are matrix elements of the Pauli

matrices M = ~σ · k̂

Mλ1λ2
=
∑

µ

(−1)µk̂µσ−µ
λ1λ2

=
√

8π(−1)
1

2
−λ2

∑

µν

〈1
2
λ1

1

2
− λ2|1ν〉〈1µ1ν|00〉Y µ

1 (k̂).

It is interesting to note that the BCS vacuum state is orthogonal to the trivial vacuum,

〈0|Ω〉 = 0, in the infinite volume limit. Further, the Hilbert space vectors constructed from

the two different vacua are also orthogonal provided the BCS angle is nonzero (vacuum

condensates are present). Because of this property the BCS rotation has been called a

pseudounitary transformation [7]. Consult this reference for further details (note they have

a different phase convention and use M = ~σ · k̂(iσ2)).

34



APPENDIX B: GENERAL TDA EQUATION

Using the phase convention of Ref. [28], the general TDA meson equation for arbitrary

angular momentum is

(MnJP − 2ǫk)Ψ
nJP
ΛΣ (k) =

∫ ∞

0

q2dq

π2

[

(1 + sk)(1 + sq)

12
V̂Λ(k, q)ΨnJP

ΛΣ (q)+

+
∑

lLSf

ckcq
2

ΨnJP
LS (q)V̂l(k, q)

∏

1

+
∑

lLSfghL1L2

3(1 − sq)(1 − sk)V̂l(k, q)Ψ
nJP
LS (q)

∏

2





where the angular momentum products are

∏

1

= 〈10L0|l0〉〈10Λ0|l0〉(2f + 1)
√

(2Σ + 1)(2S + 1)(2Λ + 1)(2L+ 1)

·W (Σ
1

2
S

1

2
;
1

2
f)W (

1

2
1
1

2
1;

1

2
f)W (L1Λ1; lf)W (LSΛΣ; Jf)(−1)J+L+1(1 + (−1)S+Σ)

and

∏

2

= (2f + 1)(2g + 1)(2h+ 1)
√

(2L1 + 1)(2L2 + 1)(2L+ 1)(2Λ + 1)(2Σ + 1)(2S + 1)

·(−1)(1+2(f−h)+L−Λ+l−J)〈1010|L10〉〈1010|L20〉〈L10Λ0|0〉〈L20L0|l0〉

·W (
1

2

1

2
1L1; 1f)W (f

1

2

1

2

1

2
; 1Σ)W (L21

1

2

1

2
; fg)W (

1

2

1

2
g
1

2
; 1S)

·W (L2LL1Λ; lh)W (SLΣΛ; Jh)W (fΣgS;
1

2
h)W (L2gL1f ;

1

2
h).

These formulas have been applied to several different meson spin, parity states as presented

in Sec. IV.

The moments of the angular integrations for the linear potential are obtained from

V̂ L
n = −8πσ

∫ 1

−1

1

|~k − ~q|4
xndx

where x = k̂ · q̂. These can be calculated using the recurrence relation

V̂ L
n =

k

q
V̂ L
n−1 −

4πσ

q

d

dk



− 1

2qk

∫ 1

−1

xn−1dx

x− k2+q2

2qk





or by explicit integration
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V̂ L
n =

k

q
V̂ L
n−1 −

4πσ

2q2

d

dk





1

k

(

xn−1

n− 1
+
ωxn−2

n− 2
+ · · ·+ xωn−2

)1

−1

+ ωn−1 log
(

ω − 1

ω + 1

)





where ω ≡ k2+q2

2qk
. Evaluating the first three moments yields

V̂0

L
=

−16πσ

(k2 − q2)2

V̂1
L

=
2πσ

k2q2



ln

(

k + q

k − q

)2

+ (k2 + q2)

(

−4qk

(k2 − q2)2

)





V̂2
L

= 3πσ
k2 + q2

k3q3
ln

(

k + q

k − q

)2

− 8πσ

k2q2

k4 + q4

(k2 − q2)2
.

For the Coulomb potential, VC = −αs

|~x−~y|
, V̂C = −4παs

|~k−~q|2
, and the angular integrals are

V̂0
C
(k, q) =

−2παs
qk

ln





(

k + q

k − q

)2




V̂1
C

=
4παs
qk

+
k2 + q2

2qk
V̂ C

0

V̂2
C

=
k2 + q2

2qk
V̂ C

1 .
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TABLES

TABLE I. TDA ground and first excited states in MeV . Linear potential only, σ = 0.18GeV 2.

0−+ 0++ 1−− 1+±

m1 m2 E1 E2 E1 E2 E1 E2 E1 E2

0 0 586 1473 817 1667 798 1602 1076 1818

5 5 612 1494 850 1675 800 1615 1093 1835

5 10 624 1503 861 1703 803 1619 1100 1843

5 150 877 1679 1086 1873 957 1743 1273 1988

150 150 1002 1808 1297 2044 1044 1849 1416 2116

TABLE II. TDA u/d mesons (L = S = 1, no L = 3) in the chiral limit.

JπC E1 E2 E3

0++ 817 1667 2301

1++ 1076 1818 2411

2++ 1767 2281 2749

TABLE III. Chiral symmetry breaking in the RPA: scalar vs. pseudoscalar spectrum.

m1 m2 E0++
1 E0++

2 E0−+
1 E0−+

2

0 0 729 1652 0 1435

5 5 775 1679 300 1463

5 10 794 1641 350 1475

14 14 838 1719 441 1502

150 150 1288 2042 978 1805
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TABLE IV. TDA fits to the spin-orbit splitting, EJ+1 − EJ = AJ(J + 1), for L = S = 1 as a

function of the current quark mass.

m1/m2 5/5 150/150 5/1200 150/1200 1200/1200

A (MeV ) 162 77 74 40 10
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FIG. 1. Quasiparticle energies for the u/d, s quarks and the gluon [1].
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42



0 50 100 150

Current quark mass (MeV)

200

400

600

800

1000

1200

M
es

on
M

as
s

(M
eV

)

f0

π

FIG. 3. Chiral symmetry in the RPA. For m → 0 the pseudoscalar (solid) but not scalar

(dotted) meson mass vanishes.

43



s-quark mass (MeV)

K
ao

n
M

as
s

(M
eV

)

0 50 100 150

250

500

750

1000

1250

1500

FIG. 4. Chiral behavior of the kaon and first radial excitation. Light quark mass is 0 MeV .

44



E(MeV)

2000

1600

1200

800

400

J 0 1 2
p +

K*
0

h (1380)
1

a b (1230)111

K (1270)1

f (1282)1

f0

f (1520)

1

a b f

1

1 1

K

1

f

1

a b f1 1

K2

1f

f (1270)

2

a (1320)

2

χ (1600)

2

’

f (2060)

0
f (2010)

2

f (2300)
2f (2340)

K*(1430)
2

+ +

PDG2000
TDA
RPA

1

f (400-
1200)0

K*
0

f a

f

0

0

0

f (980)

a (980)

0

0

f (1200-
1500)0

K(1430)0
*

a (1450)0

f (1500)0

f a0 0

K1

f a2 2

f a2 2

K2

f (1710)
0

f (2020)

0

f (2060)

0

h (1170)1

f (1426)
1

a (1640)1

K (1400)1

f (1525)
f (1565)

2

f a2 2

a (1750)2

2

f (1810)2

f (1950)2

f (2150)
2

FIG. 5. Scalar, pseudovector and tensor (L = 1) meson spectra. Above 1 GeV , the TDA (dots)

and RPA (dashes) are essentially identical.

45



0 200 400 600 800

Momentum (MeV)

0

25

50

75

100

125

150

T
D

A
w

av
ef

un
ct

io
ns

π

f0

FIG. 6. Ground state TDA wave functions for the pseudoscalar π and scalar f0.
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FIG. 8. D mesons (L = 0 and L = 1). Charmed quark mass is 1200 MeV , light quark is 5 MeV .
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FIG. 9. Ds mesons (L = 0 and L = 1). Charmed (strange) quark mass is 1200 (150) MeV .
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FIG. 10. Charmonium system (L = 0 and L = 1). Charmed quark mass is 1200 MeV .
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