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Abstract. We study some model-theoretic notions in NIP by means of spec-
tral topology. In the o-minimal setting we relate the o-minimal spectrum with
other topological spaces such as the real spectrum and the space of infinites-
imal types of Peterzil and Starchenko. In particular, we prove for definably
compact groups that the space of closed points is homeomorphic to the space
of infinitesimal types. We also prove that with the spectral topology the set
of invariant types concentrated in a definably compact set is a normal spectral
space whose closed points are the finitely satisfiable types.

On the other hand, for arbitrary NIP structures we equip the set of invariant
types with a new topology, called the honest topology. With this topology the
set of invariant types is a normal spectral space whose closed points are the
finitely satisfiable ones, and the natural retraction from invariant types onto
finitely satisfiable types coincides with Simon’s FM retraction.

1. Introduction

Spectral spaces (see Definition 2.2) constitute a topological framework related
with several areas of mathematics, specially with algebraic geometry via the Zariski
spectrum of a ring (and afterwards, following the abstract development of Grothen-
dieck). In the late 1970s, the real spectra of a ring was introduced by Coste and
Roy in their foundational paper [5] as a substitute in real algebraic geometry for
the Zariski spectra of a ring in ordinary algebraic geometry. Recall that if R is
a real closed field, V ⊂ Rn is a real algebraic set and R(V ) denotes the ring of
regular functions on V , then the real spectra Sper(R(V )) is a spectral space that
reflects the semialgebraic properties of V . For example, there is a natural injection
of V into Sper(R(V )), which is continuous with respect to the Euclidean topology
of V . Moreover, we can identify canonically every semialgebraic subset S of V with
a constructible subset S̃ of Sper(R(V )) such that S̃ ∩ V = S (see [3, Prop 7.2.2]).
The space Sper(R(V )) is an object whose (standard) topological properties yield
information about (semialgebraic) topological properties of V . For example, a semi-
algebraic subset S of V is semialgebraically connected if and only if S̃ is connected.
Or more notably, it is possible to construct a (standard) sheaf theory of rings on
Sper(R(V )) whose sections are the semialgebraic continuous functions. In general,
the space Sper(R(V )) is quasi-compact but it is not Hausdorff. Nonetheless, since
it is normal, the subset of its closed points constitutes a quasi-compact Hausdorff
subspace (see Fact 2.6).
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Spectral spaces within model theory were first considered by Pillay [22], who
introduced the so-called o-minimal spectra of definable sets. Before proceeding,
we first recall some basic model-theoretic concepts and fix some notation. Given
a first order structure M in a language L and an L-formula φ(x), possibly with
parameters, we denote by φ(M) = {a ∈ Mn : φ(a) holds} the definable subset
of Mn given by φ(x), where x is an n-tuple of variables. We shall not distinguish
between a definable set and a formula defining it. Notice that the family of definable
subsets of Mn constitutes a Boolean algebra and thus it has an associated set
of ultrafilters. This set is called the set of complete n-types over M and it is
denoted by Sn(M). One can turn Sn(M) into a topological space by considering
the Stone topology, where a base of open sets is given by the sets of the form
[Z] := {p ∈ Sn(M) : Z ∈ p} for Z ⊂Mn definable. Given a definable set X ⊂Mn,
we denote the set of n-types concentrated in X by SX(M) := [X ], which with
the induced Stone topology is a quasi-compact Hausdorff and totally disconnected
space that contains a copy of X . This compactification is the natural one from a
model-theoretic point of view. However, in o-minimal expansions of real closed fields
Pillay [22] consider a thicker topology. Recall that an L-structure M expanding a
linear order is o-minimal if every definable subset of M is a finite union of points
and intervals with end points in M ∪ {±∞}.

The versatility of o-minimality has recently led to spectacular applications in
several areas ranging from diophantine geometry, non-archimedean geometry, num-
ber theory and additive combinatorics. Real algebraic geometry has (partially)
served as a guide in the development of o-minimal geometry. Influenced by the real
spectra, in [22] the set SX(M) is equipped with a spectral topology whose basic
open sets are the sets [U ] with U ⊂ X open. If the o-minimal structure under
consideration is an expansion R of a real closed field then SX(R) equipped with
the spectral topology is a normal spectral space that we denote by St

X(R) and
called it o-minimal spectrum. In particular, the set of closed points βX(R) is a
quasi-compact and Hausdorff space and there is a natural continuous retraction

r : St
X(R) → βX(R).

The space St
X(R) has been considered by several authors mainly as a tool to de-

velop sheaf theories in the o-minimal setting [22, 10, 2, 11]. In [28], Tressl also
considers St

X(R) and relate it with the real spectra of the ring of continuous defin-
able functions. On the other hand, the main theme of the unpublished paper [15]
is the relationship between the specialization order and the Rudin-Keisler order.

The purpose of this paper is two-fold. First, we relate the o-minimal spectrum
with some relevant model-theoretic notions. The main results concerning this part
are the following. Let R be an o-minimal structure expanding a real closed field,
and let G be a definable group. In [19], to study types modulo infinitesimals,
Peterzil and Starchenko introduce a compactification of G called Sµ

G(R) which is
related with the Samuel compactification of a topological group. Their motivation
to consider this compactification is to obtain definable subgroups of G as stabilizers
of certains elements of Sµ

G(R). In the paper we show:

Theorem (Corollary 3.14). Let G be a definably compact group. Then βG(R) and
Sµ
G(R) are canonically homeomorphic.

On the other hand, the set of invariant types has played a fundamental role in
the development of model theory. Invariant types have been intensively studied in
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o-minimality [9, 25], in the dp-minimal context [26] and also in the more general
framework of NIP [17, 23]. If R is an o-minimal expansion of a real closed field
and R̄ is a sufficiently saturated elementary extension of R, we say that a type
p ∈ SX(R̄) is R-invariant if for every automorphism σ of R̄ fixing R pointwise we
have that p = σ(p), where σ(p) := {σ(X) : X ∈ p}. We will denote the set of
R-invariant types as SX(R̄)invR . An important subset of R-invariant types is the
one of finitely satisfiable ones, which we will denote by SX(R̄)fsR (see 4.1). Recall
that a type p ∈ SX(R̄) is finitely satisfiable in R if for every X ∈ p we have that
X∩Rn 6= ∅. Both SX(R̄)invR and SX(R̄)fsR are closed subsets of SX(R) with respect
to the Stone topology. In particular, both are spectral spaces with the topology
inherited from St

X(X). In Corollary 4.4 and 4.5 we show that SX(R̄)fsR is closed in
St
X(X) and the inherited topology is in fact the Stone topology. Additionally, we

define SX(R̄)bdd as the set of types that contains a set {x ∈ R̄ : ‖x‖ < r} for some
positive r ∈ R̄. In this framework we have:

Theorem (Theorem 4.8 and Corollary 4.10). Let X ⊂ R̄n be a closed definable
set. Then

SX(R̄)invR ∩ βX(R̄) ∩ SX(R̄)bdd = SX(R̄)fsR.

In particular, if X is definably compact then SX(R̄)invR ∩βX(R̄) = SX(R̄)fsR and we
have a canonical continuous retraction r|St

X
(R̄)inv

R
: St

X(R̄)invR → SX(R̄)fsR.

Thus, the spectral topology identifies finitely satisfiable types inside the invariant
types. It is worth noticing that the above results are based on the following result
that is interesting by itself: given a definable subset Z ⊂ R̄n such that Z ∩Rn 6= ∅,
there is an open definable subset U ⊂ R̄n such that Z ⊂ U and Z∩Rn = U∩Rn (i.e.
external definable subsets of Rn can be defined via open subsets of R̄n). Another
key ingredient in the proof of the above result is the characterization of forking in
o-minimal structures provided by Dolich [9].

The second objective of the paper is to use the intuition gained from the above
theorem to analyse certain objects in abstract NIP contexts. Recall that a com-
plete first order L-theory has the non independence property (NIP) if there is no
L-formula φ(x, y) and there is no model M of the theory for which there are se-
quences (ai)i∈N and (bI)I⊂N such that φ(ai, bI) holds if and only if i ∈ I. NIP
theories include stable theories (as the theory of algebraically closed fields), o-
minimal theories (as the theory of real closed fields) or C-minimal theories (as the
theory of the p-adic field).

Let T be a complete NIP L-theory, let M̄ be a saturated elementary extension
of a model M of T and let X ⊂ Mn be an M-definable subset. In [23], Simon
constructs a retraction

FM : SX(M̄)invM → SX(M̄)fsM ,

which is continuous with respect to the Stone topology. As the author claims:

This map remains rather puzzling. It would be nice to have a better
understanding of it, for instance a different construction leading to
it.

Despite of the theorem above, the retractions r|St
X
(R̄)inv

R
and FM are completely

unrelated (see Example 5.2). Nevertheless, since a canonical retraction exist under
the presence of a normal spectral topology, it seems natural to ask:
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Can one endow SX(M̄)invM with a topology so that it becomes a normal spectral
space such that the closed points of this topology are the finitely satisfiable types
and the natural retraction from SX(M̄)invM to the closed points SX(M̄)fsM is exactly
FM?

We give a positive answer to this question by considering a new topology on
SX(M̄)invM , that we call the honest topology. Recall that an M̄-definable subset
Z ⊂ M̄n is honest if for every M-definable subset X ⊂ Mn with Z ∩Mn ⊂ X we
have Z ⊂ X(M̄), where X(M̄) denotes the set defined in M̄ by the formula that
defines X . Honest sets were introduced in [6], where it is proven assuming NIP
that for every M̄-definable subset Y ⊂ M̄n, there is an M̄-definable honest subset
Z ⊂ M̄n such that Z ∩Mn = Y ∩Mn.

The set of invariant types with honest topology is denoted by Sh
X(M̄)invM and a

base of closed sets is given by the sets [Z] for Z an honest set. We show that:

Theorem (Theorem 5.13). Let T be a complete NIP theory. The set Sh
X(M̄)invM

is a normal spectral topological space whose closed points are exactly the finitely
satisfiable types, and the natural retraction onto the closed points

rhM : Sh
X(M̄)invM → SX(M̄)fsM

coincides with FM .

We finish this introduction with the organization of the paper. Section 2 serves
mainly as a preliminary section. In Subsection 2.1 we summarize all the basic defi-
nitions and results concerning spectral spaces regarding St

X(M). As far as possible,
we work in a topological first order structure M, which includes for example the
theory of the p-adic field (and not only the o-minimal setting). All results are
well-known (as well as the results of Subsection 2.3), but in some cases we provide
alternative proofs with a model-theoretic flavor instead of using the language of
spectral spaces. In Subsection 2.2 we give a model-theoretic characterization of the
closed points βX(M) of the spectral space St

X(M) via a universal property. In
Subsection 2.3 we compute a bound of the cardinal of the closure clt(p) of a type
p ∈ St

X(M) in terms of dim(p).
In Section 3 we relate the o-minimal spectrum with two natural objects. Even

though we already know that SX(R) is not homeomorphic to the real spectrum of
the ring of continuos functions, in Subsection 3.1 we show that their closed points
are naturally homeomorphic. In Subsection 3.2 we show the already explained
relation between St

G(R) and Sµ
G(R) (the first theorem of this introduction).

In Section 4 we handle the study of invariant and coheir types. In Subsection
4.1 we show that SX(R̄)fsR is closed in SX(R̄)invR and that the induced spectral
topology in SX(R̄)fsR coincides with the Stone one. In Subsection 4.2 we prove that
if X is closed then the invariant bounded types that are closed with respect to the
spectral topology are exactly the finitely satisfiable types (the second theorem of
this introduction).

In Section 5 we analyze Simon’s retraction FM . We introduce the honest topol-
ogy in the set of invariant types and we show that the space SX(M̄)invM is a normal
spectral space whose set of closed points is SX(M̄)fsM (the last theorem of this
introduction).
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2. The spectral topology

In this section we equip the space of types of an o-minimal expansion of a real
closed field with the so-called spectral topology as it is done in [22]. We isolate those
topological properties of expansions of real closed fields that are needed and work
with topological structures with rather general considerations. We recall the notion
of topological structure introduced in [20].

Definition 2.1. A first-order structure M in a language L is a topological structure
if there is a formula θ(x, ȳ) in L, with x a single variable, such that the collection
{θ(M, b̄)}b̄∈M |y| forms a basis of a T1 topology without isolated points.

Let M denote a topological first-order L-structure and note that if X is a defin-
able set, then so is the closure clX(V ) of V in X for every definable subset V of X .
Assume further that M satisfies the following two mild conditions. We will justify
in Subsection 2 our choice.

(A1) For every n, every definable subset of Mn is a Boolean combination of
closed subsets of Mn.

(A2) It is completely definably normal, that is, for any disjoint definable closed
subsets X1 and X2 of a definable set X , there are disjoint open definable
neighborhoods U1 and U2 in X of X1 and X2 respectively.

In [24, Cor. 4.2] the authors prove that certain structures of dp-minimal theories
which are topological structures satisfy (A1). These include for example dp-minimal
expansions of divisible ordered abelian groups and dp-minimal expansions of valued
fields. For example, o-minimal and weakly o-minimal theories expanding an ordered
group, or P-minimal theories expanding a (p-adically closed) field.

On the other hand, it is well-known that any o-minimal expansion M of a real
closed field satisfy (A2). Indeed, note that, given a definable set Z ⊂ Mn in an o-
minimal expansion M of a real closed field, the distance map dist(x, Z) is definable,
see [12, Lemma 6.3.5]. If M is a valued field, then we can use the valuation in a
similar way in order to prove (A2). Hence, if M is the p-adic field or it is an
o-minimal expansion of a real closed field, then M satisfies both (A1) and (A2).

Regarding weakly o-minimal expansions of ordered groups, to the best of our
knowledge it is not known if they satisfy (A2):

Question. Is every weakly o-minimal expansion of an ordered group definably nor-
mal?

We point out that if M is a weakly o-minimal structure expanding an ordered
group then two disjoint closed subsets of M1 can be easily separated by definable
open sets.

2.1. Spectral topology. Given a definable set X ⊂ Mn, we denote as usual
SX(M) = Sn(M)∩[X ] the set of n-types over M which concentrate on X . This set
of types is naturally equipped with the Stone topology, a quasi-compact Hausdorff
totally disconnected topology. However, observe that the topology on M does not
play any role in the definition of the Stone topology. Henceforth we will identify a
definable set with the formula that defines it and therefore an element of SX(M)
we will be written as an ultrafilter of sets, or as a maximal consistent collection of
formulas.

We now consider a topology on the set SX(M) coarser than the Stone topology,
which was introduced in [22]. A basic open subset in this new topology is a set [φ]



6 ELÍAS BARO, JOSÉ F. FERNANDO, AND DANIEL PALACÍN

where φ(M) is an open subset of X . The set SX(M) endowed with this topology
will be denoted by St

X(M) and the closure of a set C by clt(C). We point out that
St
X(M) is a spectral space, a notion that we recall next (see [8]).

Definition 2.2. A spectral space is a topological space S that satisfies the following
conditions:

(S1) It is quasi-compact and T0.
(S2) The set of all quasi-compact open subsets forms a basis of open sets.
(S3) The intersection of two quasi-compact open subsets of S is again quasi-

compact.
(S4) It is sober, that is, every nonempty closed and irreducible subset of S is the

closure of a unique point.
The topology on S is called the spectral topology.

We include a short proof for the sake of completeness of the following result.

Fact 2.3. [22, Lemma 1.1] The topological space St
X(M) is spectral.

Proof. It is clear that the map SX(M) → St
X(M) given by p 7→ p is continuous

and thus St
X(M) is quasi-compact. Also, it is T0 by (A1) because any two distinct

types differ in a closed set. Moreover, the continuity of the map above yields that
every basic open set is quasi-compact. Hence, the set of all quasi-compact open sets
is precisely the set of all basic open sets, by model theoretic compactness. Thus
(S2) and (S3) follow. Finally, to show that St

X(M) is sober, fix a nonempty closed
and irreducible subset C of St

X(M). The set

Σ(x) = {φ(x) ∈ LM | C ⊂ [φ], [φ] closed} ∪ {¬φ(x) ∈ LM | C 6⊂ [φ], [φ] closed}

is consistent and in fact it determines a unique complete type by (A1). If p denotes
this unique completion, we conclude that C = clt(p). Consequently (S4) also holds
because any type q satisfying C = clt(q) coincides with the completion p of Σ. �

Remark 2.4. 1) Condition (A1) is equivalent to the fact that St
X(M) is T0.

2) If a subset Ṽ of St
X(M) is open and quasi-compact, then Ṽ = [V ] for some open

definable subset V of X . In particular, if C̃ ⊂ St
X(M) satisfies that St

X(M) \ C̃ is
open and quasi-compact, then C̃ = [C] for a closed definable subset C ⊂ X . Thus,
the collection of sets of the form [U ] and [C] with U ⊂ X definable open and C ⊂ X
definable closed constitutes a subbasis of the constructible topology of St

X(M) (see
[8, Def 1.3.11]). So by (A1), the sets of the form [Y ] for Y a definable subset of X
is a basis of the constructible topology. Consequently, the constructible topology
of St

X(M) is the Stone topology of SX(M).

As we already noticed in the Introduction, spectral spaces have played an impor-
tant role in real algebraic geometry. In [5] the authors introduce the real spectra of a
ring and prove that it is a normal spectral space with good properties. Assumption
(A2) implies the same properties in our context:

Lemma 2.5. The space St
X(M) is normal. Moreover, for all p, p1, p2 ∈ St

X(M)

with p1, p2 ∈ clt(p), either p1 ∈ clt(p2) or p2 ∈ clt(p1).

Proof. Indeed, let C1 and C2 be two disjoint closed subsets of St
X(M). Then there

are families of closed definable subsets {Xi}i∈I and {Yj}j∈J such that C1 =
⋂

i[Xi]
and C2 =

⋂
j [Yj ]. By quasi-compactness there are two disjoint closed definable
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subsets Xi0 and Yj0 such that C1 ⊂ [Xi0 ] and C2 ⊂ [Yj0 ]. As M is definably
normal (condition (A2)), we conclude that there are disjoint definable open subsets
U and V with Xi0 ⊂ U and Yj0 ⊂ V , so C1 ⊂ [U ] and C2 ⊂ [V ] with [U ]∩ [V ] = ∅,
as required.

For the second part, let p1, p2 ∈ clt(p) and suppose that p1 /∈ clt(p2) and p2 /∈
clt(p1). Then there are two closed definable subsets C1 and C2 of X such that
C′

1 := C1 \ C2 ∈ p1 and C′
2 := C2 \ C1 ∈ p2. Consider the open definable set

U := X \ (C1 ∩ C2) of X . Since U is definably normal and both C′
1 and C′

2 are
closed in U , there are open definable sets V1 and V2 of U such that V1∩V2 = ∅ with
C′

1 ⊂ V1 and C′
2 ⊂ V2. In particular, since pi ∈ [Vi] for each i = 1, 2, we obtain

p ∈ [V1] ∩ [V2], so V1 ∩ V2 6= ∅, a contradiction. �

Another milestone in real algebraic geometry is the paper of Carral and Coste [4],
where they compare the cohomological and Krull dimensions of a normal spectral
space. In their analysis the set of closed points plays an important role, because
the cohomological dimension of a normal spectral space coincides with the coho-
mological dimension of its closed points. Recall that in a topological space S, given
x, y ∈ S, we say that x is a specialization of y if y ∈ {x}. Usually, this is denoted by
x y. Note that the arrow induces a partial order, and that with this notation
Lemma 2.5 says that for every p ∈ St

X(M) the set clt(p) is totally ordered under
specialization. We denote by Max(S) the set of maximal points of S with respect
to the specialization order. Clearly, the maximal points are the closed points of
S. In the context of normal spectral spaces, the maximal points have the following
crucial property:

Fact 2.6. Let S be a normal spectral space. Then Max(S) is a quasi-compact
Hausdorff space. Moreover, for each x ∈ S there is a unique r(x) ∈ Max(S) with
r(x) ∈ cl(x), and the retraction map S → Max(S) : x 7→ r(x) is continuous, closed
and proper.

Proof. See [4, Proposition 3] and [8, Proposition 4.1.2]. �

If X is a semialgebraic set, then the set of maximal points of the spectrum of the
ring of semialgebraic functions on X (see Subsection 3.1) is traditionally denoted
with the letter β because it is related with the Stone-Čech compactification of X ,
see [13]. Since our context is similar to the latter, given a definable set X of M we
will denote by βX(M) the set of closed points of St

X(M), that is,

βX(M) = {p ∈ St
X(M) | {p} is closed}.

Note that X is included in βX(M) by considering the map a 7→ tp(a/M) for a in
X . Moreover, the induced topology from Mn on X coincide with the one induced
from βX(M) on X . The following is a straightforward consequence of Lemma 2.5
and Fact 2.6.

Corollary 2.7. (1) The space βX(M) is quasi-compact and Haussdorf.
(2) There is a continuous closed proper retraction r : St

X(M) → βX(M) that maps

p ∈ St
X(M) to the unique m ∈ βX(M) such that m ∈ clt(p).

Proof. We give a proof specialized to our context for the sake of the reader. Let
us show first that for every p ∈ St

X(M) there is m ∈ βX(M) such that m ∈ clt(p).
Since St

X(M) is quasi-compact, by Zorn’s lemma the set {clt(y) : y ∈ clt(p)} has
a minimal element clt(m) with respect to the inclusion partial order. The space
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St
X(M) is T0 and therefore m ∈ βX(M), as required. Moreover, note that since
St
X(M) is normal and hence regular, such a type m ∈ βX(M)∩ clt(p) is the unique

closed point in clt(p). Indeed, if m,m′ ∈ clt(p) ∩ βX(M) were distinct, then there
would exist two disjoint respective open sets Ũ and Ṽ of m and m′ with p ∈ Ũ ∩ Ṽ ,
which is a contradiction.

Once we have established that for every p ∈ St
X(M) there is a unique special-

ization m ∈ βX(M) such that m ∈ clt(p), we define

r : St
X(M) → βX(M)

p 7→ r(p) = m.

It remains to check that the retraction r is continuous and closed. To show that r
is continuous, we fix a definable closed subset C of X . We first claim that:

(1) r−1([C]) =
⋂

{[V ] | C ⊂ V ⊂ X open and definable} .

Fix p ∈ r−1([C]) and suppose there is an open definable subset V of X containing
C such that p /∈ [V ]. Since r(p) ∈ clt(p), we deduce r(p) /∈ [V ], so r(p) /∈ [C], which
is a contradiction. To prove the other inclusion, suppose that p ∈ [V ] for every
open definable subset V of X containing C, and assume that p /∈ r−1([C]). Then
r(p) /∈ [C], so r(p) ∈ [X \C]. Since X \C is open and r(p) ∈ clt(p), we deduce that
p ∈ [X \ C], so p /∈ [C]. Thus, we have

(2) [C] ⊂
⋃

{[X \ F ] | p ∈ [F ] and F ⊂ X definable and closed} .

Indeed, suppose there is q ∈ [C] such that q ∈ [F ] for every closed definable subset
F of X with p ∈ [F ]. Thus q ∈ clt(p), so r(q) = r(p). Since q ∈ [C] and C is closed,
r(q) ∈ [C] and hence r(p) ∈ [C], which is a contradiction. Therefore, we obtain
(2). Now, since [C] is quasi-compact in the Stone topology we deduce that [C] is
contained in [X \ F ] for some closed definable subset F of X with p ∈ [F ]. Thus,
since p ∈ [V ] for every open definable subset V of X containing C, and X \ F is
an open definable subset with C ⊂ X \ F , the choice of p yields that p ∈ [X \ F ],
which is a contradiction. Therefore, we obtain (1).

Finally, since M is definably normal, we deduce that

(3) r−1([C]) =
⋂

{[clX(V )] | C ⊂ V ⊂ X open and definable} ,

where clX(V ) denotes the topological closure of V ⊂ X in X . Indeed, by (1) it
is enough to show that if p ∈ [clX(V )] for every open definable subset V of X
containing X , then p ∈ [V ] for any such V . Fix an open definable subset V of
X containing C and note that there exists an open definable subset U such that
C ⊂ U ⊂ clX(U) ⊂ V . It is enough to take two disjoint open definable sets U
and W with C ⊂ U and V c ⊂ W , which exist as M is definably normal (by the
(A2) assumption). Hence, we have that p ∈ [clX(U)] as U is open and definable,
so p ∈ [V ], as desired. Therefore, we obtain (3) and r is continuous.

Once we have showed that r : St
X(M) → βX(M) is continuous, let us remark

that it is also closed and proper because both St
X(M) is quasi-compact and βX(M)

Hausdorff. �

The set of closed points contains a set which is important from a model-theoretic
point if view.
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Lemma 2.8. Let X ⊂ Mn be definable. The set βX(M) contains the set of all
algebraic types, which is dense in St

X(M).

Proof. Since M is equipped with a T1 topology, the definable set {m} is closed for
each m ∈ X . Thus, the set [x = m] ⊂ St

X(M) is also closed. As [x = m] only
contains the type tp(m/M), algebraic types belong to βX(M). Furthermore, the
set of algebraic types is dense since any LM -formula is realized in M. �

We point out that in general βX(M) does not have a good behavior under
elementary extensions nor intersections. To illustrate this we consider the following
toy example.

Remark 2.9. Let R be the field structure of the real numbers and let X = R. It
is immediate to verify that

βX(R) = {tp(a/R)}a∈R
∪ {p−, p+},

where p− := {x < a | a ∈ R} and p+ := {x > a | a ∈ R}. We remark:

(i) The space βX(R) does not behave well under elementary extensions nor re-
strictions. Indeed, if R1 is an elementary extension of R and ε ∈ R1 is a
positive infinitesimal, then tp(ε/R1) ∈ βX(R1) whereas tp(ε/R) /∈ βX(R).

(ii) Let Y = (0,∞) ⊂ X . Then βY (R) 6= βX(R)∩ [Y ]. Indeed, using the notation
from (i), we have

βY (R) = {tp(a/R)}a∈R>0
∪ {tp(ε/R), p+}.

Hence, the type tp(ε/R) ∈ βY (R) but it does not belong to βX(R) ∩ [Y ].
(iii) It also follows that βX(R) is not closed with respect to the spectral topology.

For example, the type tp(ε/R) ∈ clt(βX(R)). In this case, the subset βX(R)
is closed if and only if X is finite.

2.2. A universal property for closed points. Let M be a topological structure
as above satisfying (A1) and (A2) and let X ⊂Mn be a definable set. We consider
the subspace topology on X and we establish a universal property for βX(M) in
the vein of [16, Lemma 3.7].

Definition 2.10. Let C be a topological space. A continuous map f : X → C
is definably separated by closed sets if for every two disjoint closed subsets C1 and
C2 of C there are two disjoint closed definable subsets X1 and X2 of X such that
f−1(C1) ⊂ X1 and f−1(C2) ⊂ X2.

Remark 2.11. The map i : X →֒ βX(M) is clearly definably separated by closed
sets. Indeed, given two disjoint closed subsets C1 and C2 of βX(M), by quasi-
compactness we may assume that each Ci = βX(M)∩ [Vi] for some definable closed
subset Vi of X . Hence we deduce that i−1(Ci) ⊂ Vi and V1 ∩ V2 = ∅.

It is easy to show that given a continuous map f : X → C into a compact
Hausdorff space, if there exist a continuous extension f̂ : βX(M) → C of f , then f
is definably separated by closed sets. We show the converse:

Proposition 2.12. Let f : X → C be a continuous map, where C is quasi-compact
and Hausdorff. If f is a definably separated by closed sets, then there is a continuous

extension f̂ : βX(M) → C of f to βX(M).
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Proof. We first define f̂ as follows: Given a type p ∈ βX(M), set

f̂(p) :=
⋂

U∈p open

f(U).

The intersection above is not empty, (by quasi-compactness) because it has the
finite intersection property. Thus, it suffices to show that the above intersection
contains a single point. Suppose otherwise there are a and b in f̂(p) with a 6= b.
Since C is regular, there are open respective neighborhoods Ua and Ub of a and b
such that Ua ∩U b = ∅. As f : X → C is a definably separated by closed sets, there
exist two disjoint closed definable subsets Xa and Xb of X such that f−1(Ua) ⊂ Xa

and f−1(U b) ⊂ Xb. We can assume that p /∈ [Xa], so that p ∈ [X \ Xa]. Since
X \ Xa is open, a ∈ f̂(p) ⊂ f(X \Xa). Hence, as a ∈ Ua and a ∈ f(X \Xa), it
follows that Ua ∩ f(X \Xa) 6= ∅. In particular, f−1(Ua) ∩ (X \Xa) 6= ∅, which is
a contradiction as f−1(Ua) ⊂ Xa.

Once we have prove that f̂ is a function, we prove that it is continuous. Let Z
be a closed subset of C and suppose that there is some p ∈ f̂−1(Z) \ f̂−1(Z). Since
f̂(p) /∈ Z, we have

Z ∩
⋂

U∈p open

f(U) = ∅,

so Z∩f(U) = ∅ for some definable open set U with p ∈ [U ] (by quasi-compactness).

Since [U ] is open and p ∈ f̂−1(Z), it follows that [U ]∩ f̂−1(Z) 6= ∅, so there is some
q ∈ [U ] such that f̂(q) ∈ Z. By definition we also have f̂(q) ∈ f(U), hence
f̂(q) ∈ Z ∩ f(U), which is a contradiction. �

Remark 2.13. Let X be definable in M and let M′ be an expansion of M satis-
fying (A1) and (A2). Then we can consider also βX(M′). It turns out that there
is a closed continuous surjective map

j : βX(M′) → βX(M).

Indeed, the inclusion continuous map X →֒ βX(M) is definably separated by closed
sets with respect to M′ and therefore there exists a continuous extension j. The
map j is closed and therefore it is surjective because X is dense in both βX(M)
and βX(M′).

Let us describe the map j. Given p ∈ SX(M′), denote by pM the restriction of
p to the language of M, and let r : St

X(M) → βX(M) be the natural retraction
provided in Corollary 2.7. The map

βX(M′) → βX(M), p 7→ r(pM)

is continuous and coincide with j on algebraic types, so they are equal.

The following example shows that the map j from Remark 2.13 is not a homeo-
morphism in general.

Example 2.14. Let R be the field of real numbers and Rexp be the field of real
numbers with the exponentiation. Set X = R

2 and consider in βX(Rexp) the types

q1 := {Y ⊂ R
2 | Y definable in Rexp & ∃t0 > 0, ∀ t > t0, (t, 0) ∈ Y },

q2 := {Y ⊂ R
2 | Y definable in Rexp & ∃t0 > 0, ∀ t > t0, (t, e

−t) ∈ Y }.
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In this case qR1 ∈ βX(R) but qR2 /∈ βX(R). Moreover, qR1 ∈ clt(qR2 ). Indeed, given
an open semialgebraic set U of R2 such that (t, 0) ∈ U for every t large enough, we
have (t, e−t) ∈ U for t large enough. Thus,

j(q1) = r(qR1 ) = r(qR2 ) = j(q2).

2.3. Closed types in topological structures with a dimension. Let M be a
topological structure as above satisfying (A1) and (A2). Assume further that M
is equipped with a dimension satisfying that for all definable sets V ⊂ X ⊂ Mn

we have that dim(clX(V ) \ V ) < dim(V ). This is the case for example if M is an
o-minimal expansion of a real closed field or the p-adic field.

Remark 2.15. The existence of such a well-behaved dimension map implies as-
sumption (A1). Indeed, note first that assumption (A1) is equivalent to the fact
that for any two different types there is an open (equivalently, closed) set which
contains one of these points and not the other. This follows by a standard topologi-
cal argument [27, Exercise 3.1.1]. Now, let p and q be two distinct types in SX(M).
Let V be a definable set which distinguish them, that is to say that V is in one
type but not the other. Clearly, we can take V so that dim(V ) is minimal with this
property. Assume that V is not closed (as otherwise we are done) and suppose that
V ∈ p but V /∈ q. Since dim(clX(V ) \ V ) < dim(V ) and (clX(V ) \ V ) /∈ p, we have
that (clX(V ) \ V ) /∈ q as well due to the minimality of the dimension of V . Thus,
clX(V ) /∈ q and clX(V ) ∈ p, so p and q are distinguished by the closed set clX(V ).

Let X ⊂Mn be a definable set in M. By Corollary 2.7 we know that the space
of closed types βX(M) is quasi-compact and Hausdorff and there is a natural re-
traction r : St

X(M) → βX(M). The following lemma exhibits the relation between
dimension and the spectral topology.

Lemma 2.16. Let p, q ∈ SX(M). The following holds:

(1) If q ∈ clt(p) and q 6= p, then dim(q) < dim(p).
(2) dim(r(p)) ≤ dim(p), with equality if and only if p ∈ βX(M).

In particular, for every p ∈ SX(M) the number of elements in clt(p) is less than
or equal to 1 + dim(p).

Proof. (1) LetW ⊂ X be a definable set in p of minimal dimension. Since q ∈ clt(p),
we have clX(W ) ∈ p and clX(W ) ∈ q, so we can assume dim(p) = dim(X) after
substituting X by clX(W ).

Since the spectral topology is T0 and p 6= q, it follows p /∈ clt(q). Therefore,
there is a definable open subset U of X such that p ∈ [U ] but q /∈ [U ]. Since
p ∈ [clX(U)], we deduce q ∈ [clX(U) \ U ], so

dim(q) ≤ dim(clX(U) \ U) < dim(clX(U)) = dim(U) = dim(X) = dim(p),

as required.
(2) follows immediately from (1). The bound of the cardinality of clt(p) follows

from (1) and Lemma 2.5. �

As we pointed out in Lemma 2.8 the space βX(M) contains all algebraic types
which concentrate on X , but it also may contain types of maximal dimension as
happens in the example of Remark 2.9. Nonetheless, these two kinds of closed types
may have distinct fibers with respect to the retraction r. In fact, the size of the
fiber characterizes types of maximal dimension in the o-minimal setting.
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Proposition 2.17. Let R be an o-minimal expansion of a real closed field. Let
p ∈ βRn(R) be any type. Then r−1({p}) = {p} if and only if dim(p) = n.

Proof. Suppose first that there is some q 6= p with r(q) = p. Note that q 6∈ βRn(R)
and thus dim(p) < dim(q) ≤ n by Lemma 2.16(2).

To prove the other direction, assume that dim(p) < n. We can assume there is a
realization (ā, a) of p with a ∈ dcl(R, ā) and |a| = 1. Let N be the model generated
by R and (ā, a), and set p′ = tp(a/N). This is an algebraic type and there exists
some non-algebraic type q′ = tp(b/N) with r(q′) = p′. For example, take b = a+ ε
for some infinitesimal ε > 0. Set q = tp(ā, b/R).

We claim that r(q) = p. To see this, let U ⊂ Rn be an open R-definable set such
that p ∈ [U ]. Consider now the N -definable set

W = {y ∈ R | (ā, y) ∈ U}

and note that a ∈ W . As U is open and (ā, a) ∈ U , the interior int(W ) of W is
non-empty and a ∈ int(W ). Thus, there is an open interval V = (c, d) ⊂ W with
c, d ∈ N such that c < a < d. It follows that p′ ∈ [V ], so q′ ∈ [V ] because r(q′) = p′.
Hence, b ∈W and so (ā, b) ∈ U , which yields that q ∈ [U ]. Therefore, as q 6= p, we
obtain |r−1({p})| > 1, as required. �

3. The relation with other topological constructions

In this section we fix an o-minimal expansion R of a real closed field and we
study its connections with its definable real sprectrum, as well as with its space of
µ-types introduced by Peterzil and Starchenko [19].

3.1. The relation with the real spectrum. Let R be an o-minimal expansion
of a real closed field. Let CR(X) be the ring of continuous functions from X to R
that are definable in R, that is,

CR(X) = {f : X → R | f is continuous and R-definable} .

The aim of this section is to prove that βX(R) is homeomorphic to the set of closed
points of the real spectrum Sper(CR(X)) of CR(X). The ring CR(X) has the
special feature that the real spectrum is homeomorphic to the (Zariski) spectrum,
and therefore we will work with the latter. We refer the reader to [3, Ch. 7] for the
basic definitions concerning the real spectrum. Let us recall some basic definitions
on the (Zariski) spectrum.

Let Spec(CR(X)) denote the spectrum of CR(X), that is, the set of prime ideals
of CR(X), and we regard it as a topological space with the usual Zariski topology.
Recall that given f ∈ CR(X), a basic open set is

D(f) =
{
p ∈ Spec(CR(X)) | f /∈ p

}
.

Remark 3.1. We briefly justify the existence of the homeomorphism between
Sper(CR(X)) and Spec(CR(X)). The support map

supp : Sper(CR(X)) → Spec(CR(X))

is a continuous mapping, whose image is the set of real prime ideals of CR(X)
(see [3, Prop. 7.1.8]). Each p ∈ Spec(CR(X)) is real prime because the field of
fractions of CR(X)/p is a real field, so supp is surjective. Now, the field of fractions
of CR(X)/p admits a unique ordering and therefore the map supp is injective. For
given f ∈ CR(X) we have (f − |f |)(f + |f |) = 0, so either f − |f | ∈ p or f + |f | ∈ p,
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where |f | denotes the absolute value of f . Since |f | = (
√
|f |)2, the ordering of

CR(X)/p is completely determined by p.

The real spectrum of a ring is a normal spectral space by [3, Rmk. 7.1.17,
Prop. 7.1.25], and therefore we deduce the following.

Fact 3.2. The space Spec(CR(X)) is a normal spectral space.

Proof. For the sake of the reader, we include the proof of normality without using
the machinery of the real spectrum. Let C1 and C2 be two disjoint closed sub-
sets of Spec(CR(X)), which we may assume to be basic closed subsets, by quasi-
compactness of Spec(CR(X)). Hence, there are two continuous definable functions
f1, f2 ∈ CR(X) such that Ci = D(fi)

c for i = 1, 2. Consider the closed definable
sets Z(f1) = f−1

1 ({0}) and Z(f2) = f−1
2 ({0}).

As X is definably normal, there are two open definable subsets U1 ⊃ Z(f1) and
U2 ⊃ Z(f2) such that U1 ∩U2 = ∅. Let g1, g2 ∈ CR(X) be the functions defined by
gi(x) = dist(x,X \ Ui) for each x ∈ X and i = 1, 2. Note that Z(g1) = X \ U1 and
Z(g2) = X \ U2. We claim that Ci ⊂ D(gi). Otherwise, for p ∈ Ci \D(gi) we have
that gi, fi ∈ p. As

Z(f2
i + g2i ) = Z(fi) ∩ Z(gi) ⊂ Ui ∩ (X \ Ui) = ∅,

the function f2
i + g2i ∈ p is a unit, a contradiction. Hence Ci ⊂ D(gi) for i = 1, 2.

It remains to show that D(g1) ∩D(g2) = ∅. Indeed, since

Z(g1 · g2) = Z(g1) ∪ Z(g2) = (X \ U1) ∪ (X \ U2) = X \ (U1 ∩ U2) = X,

the function g1 · g2 is the constant function x 7→ 0 and therefore g1 · g2 ∈ p. Hence,
as p is prime, either p /∈ D(g1) or p /∈ D(g2). �

Now, consider the map

ι : St
X(R) → Spec(CR(X)), p 7→ {f ∈ CR(X) | Z(f) ∈ p},

where Z(f) := f−1({0}) is a definable closed set because f is continuous. In fact,
any definable closed set Z of X is of this form by considering the map f : X → R

given by f(x) = dist(x, Z).

Proposition 3.3. The map ι : St
X(R) → Spec(CR(X)) is injective and spectral,

that is, it is continuous and the inverse image of a quasi-compact open is quasi-
compact.

Proof. To prove that it is continuous, consider an arbitrary basic open set D(f)
given by some f ∈ CR(X). Then

ι−1(D(f)) = {p ∈ St
X(R) | ι(p) ∈ D(f)} = {p ∈ St

X(R) | Z(f) /∈ p} = [X \ Z(f)]

and ι is continuous because the set Z(f) is a closed subset of X . To verify that
the inverse image of a quasi-compact open set U ⊂ Spec(CR(X)) is quasi-compact,
note that U is a finite union of sets of the form D(fi) for i ∈ I, where I finite and
each fi ∈ CR(X). Thus,

ι−1(U) =
⋃

i∈I

ι−1(D(fi)) =
⋃

i∈I

[X \ Z(fi)]

is quasi-compact, as so is each set of the form [V ] for V ⊂ X definable since
SX(R) → St

X(R) is continuous.
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Finally, by [28, Corollary 2.6 and Proposition 3.1] the map ι is injective. We
provide also a direct proof. Consider p, q ∈ St

X(R) with p 6= q such that ι(p) = ι(q).
By assumption (A1), there exists a definable closed subset Z of X such that Z ∈ p
and Z /∈ q. Since Z is closed, there is some f ∈ CR(X) such that Z(f) = Z, so
f ∈ ι(p) but f /∈ ι(q), a contradiction. �

In general, the map ι is not surjective even when R has only the field structure.

Example 3.4. The following two examples correspond to [14, Remark 1.2] (cf. [3,
Remark 2.6.5]) and [28, pp. 1], respectively. In both cases, one finds two functions
f, g ∈ CR(X) with Z(f) = Z(g) and a prime ideal p ∈ Spec(CR(X)) containing one
but not the other, showing that ι cannot be surjective.

(i) Let R be the field of real numbers and X = {(x, y) ∈ R×R | y > 0}∪{(0, 0)}.
Consider the semialgebraic functions f(x, y) = y and g(x, y) = x2 + y2. Their
zero set agree on X but for each k ∈ N the limit at (0, 0) of the semialgebraic
function hk = gk/f does not exist. Therefore the prime ideal

p =
{
h ∈ CR(X)

∣∣ ∃ε > 0, ∀t ∈ [0, ε) lim
x→t

h(x, 0) = 0
}

contains f but not g.
(ii) Let R be the field of real numbers with the exponential map exp and X = R.

Consider the definable functions f(x) = x and g(x) = exp(−1/x2) for x > 0
and g(0) = 0. Their zero set agree on X but for each k ∈ N the limit at 0 of
the definable function hk = gk/f does not exist. Therefore the prime ideal p
given by
{
h ∈ CR(X)

∣∣ ∀k ≥ 1, ∃εk > 0, ∃ck > 1, ∀x ∈ [0, εk) |h(x)| < ck · x
k
}

contains g but not f .

However, for locally compact semialgebraic sets Lojasiewicz’s inequality yields
the surjectivity of ι.

Proposition 3.5. Suppose that R is the field of real numbers and X is locally
compact and semialgebraic. Then the spectral map ι : St

X(R) → Spec(CR(X)) is
surjective and in particular a homeomorphism.

Proof. Let p ∈ Spec(CR(X)), and consider the following collection of definable sets

Σ = {Z(f) | f ∈ p} ∪ {X \ Z(f) | f /∈ p}.

Let us show that Σ is consistent. Assume, towards a contradiction, that

Z(f1) ∩ · · · ∩ Z(fn) ∩
(
X \ Z(g1)

)
∩ · · · ∩

(
X \ Z(gm)

)
= ∅

for some f1, . . . , fn ∈ p and some g1 . . . , gm ∈ CR(X). Define f := f2
1 + · · · + f2

n

and g := g1 · · · gm. Thus, f ∈ p and g /∈ p, because p is prime. Note that

Z(f) =

n⋂

i=1

Z(fi) ⊂
m⋃

j=1

Z(gj) = Z(g).

Therefore, by [3, Theorem 2.6.6] (Lojasiewicz’s inequality) there is some k ∈ N and
some h ∈ CR(X) such that gk = hf . In particular, g ∈ p, which is a contradiction.

Hence, take a complete type p extending Σ. It is obvious that p ⊂ ι(p), since
Σ ⊂ p. On the other hand, given f ∈ ι(p) we have by definition that Z(f) ∈ p, so
X \ Z(f) /∈ Σ ⊂ p. Hence, f ∈ p, yielding that ι(p) = p. �
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As shown in [4, Proposition 2 and 3], the normality of Spec(CR(X)) implies that
the set of maximal ideals Max(CR(X)) is quasi-compact and Hausdorff. Further-
more, there is a continuous retraction map rSpec : Spec(CR(X)) → Max(CR(X)).

Theorem 3.6. The map ι|βX (R) : βX(R) → Max(CR(X)) is a homeomorphism
and the following diagram is commutative:

(4)

St
X(R) Spec(CR(X))

βX(R) Max(CR(X))

ι

r rSpec

ι|βX (R)

Proof. We first show that for every m ∈ Max(CR(X)) there exists some p ∈ βX(R)
such that ι(p) = m. Indeed, let

Σ = {Z(f) | f ∈ m}.

Similarly as we argued above Σ is consistent. Otherwise, let f1, . . . , fn ∈ m be such
that

Z(f1) ∩ . . . ∩ Z(fn) = ∅

and set f = f2
1 + · · · + f2

n. It follows that f ∈ m but Z(f) = ∅, which is a
contradiction. Now, let p ∈ SX(R) be a complete type extending Σ. We claim that
ι(p) = m. Indeed, by definition ι(p) is a prime ideal that contains m, so ι(p) = m by
maximality of m. Now, since the map ι is injective and continuous by Proposition
3.3, the set ι−1({m}) = {p} is closed, hence p ∈ βX(R), as required.

Now we claim that for every q ∈ βX(R) we have ι(q) ∈ Max(CR(X)). Indeed,
the prime ideal ι(q) is contained in a maximal ideal m. Moreover, the previous
paragraph and Proposition 3.3 yield that there is a unique p ∈ βX(R) such that
ι(p) = m. We claim that p ∈ clt(q). Otherwise, suppose that there is some definable
open set U such that p ∈ [U ] and q /∈ [U ]. Thus, there is some f ∈ CR(X) with
Z(f) = X \ U , so that Z(f) /∈ p. In particular, by definition f /∈ ι(p), so f /∈ ι(q),
because ι(q) ⊂ m = ι(p). It follows that Z(f) = X \ U /∈ q, so U ∈ q, which is a
contradiction. Therefore, we have proved that p ∈ clt(q) and since q is closed point,
we get that p = q and hence ι(q) = ι(p) = m is maximal, as required.

Altogether, we have proved that

ι|βX (R) : βX(R) → Max(CR(X))

is a continuous bijection and so a homeomorphism, because as both spaces are
quasi-compact and Hausdorff the map ι|βX (R) is closed.

Finally, observe that given a type q ∈ St
X(R), the ideal rSpec(ι(q)) is the unique

maximal ideal which contains ι(q). Since r(q) ∈ clt(q), it follows that ι(q) ⊂ ι(r(q)),
so

ι(r(q)) = rSpec(ι(q))

and diagram (4) is commutative as required. �

We finish this section noting that St
X(R) is locally connected, similarly as it

happens with the spectrum of the ring of continuous semialgebraic functions (see
[1, Cor. 3.10]).

Lemma 3.7. The topological space St
X(R) is locally connected.
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Proof. We first note that if U is a definable open subset of X which is definably
connected, then [U ] is connected in St

X(R). Otherwise, there are open and closed
disjoint non-empty subsets C1 and C2 of St

X(R) such that [U ] = C1 ∪C2. Since C1

and C2 are open in St
X(R), we have C1 =

⋃
i∈I [Vi] and C2 =

⋃
j∈J [Wj ] for Ui and

Wj open definable subsets of X . The space SX(R) is quasi-compact with respect
to the Stone topology, so we can assume that I and J are finite. Thus, the sets
V :=

⋃
i∈I Vi and W :=

⋃
j∈J Wj are definable, open and closed disjoint non-empty

subsets of X such that U = V ∪W , which is a contradiction.
Let p ∈ St

X(R) and let Ũ be an open neighborhood of p in St
X(R). Then, there

is an open definable subset U of X such that p ∈ [U ] ⊂ Ũ . By [12, Prop 3.2.18] the
definable set U has finitely many definably connected components which are open
and closed. Therefore, we can assume that U is definably connected. In particular,
the set [U ] is connected for the spectral topology, as required. �

3.2. The relation with infinitesimal types. Fix a definable group G ⊂ Rn in
the o-minimal expansion R of a real closed field. As usual, by [21] we can regard G
as a topological group. Moreover, by Robson’s embedding theorem [12, Thm. 10.1.8]
we can assume that the group topology coincides with the topology induced by the
ambient space Rn. We say that a set X is a G-set if G acts on X and is a G-space if
in addition X is a topological space and G acts continuously on X (i.e. the group
action (g, x) 7→ g · x is a continuous map).

Lemma 3.8. There is an action from G on βG(R) given by the map (g, p) 7→ g · p.
In particular, the set βG(R) is a G-set.

Proof. Given g ∈ G, the map πg : St
G(R) → St

G(R) given by p 7→ g · p is a
homeomorphism. Hence, it maps closed points to closed points. �

Once we have an action from G on βG(R), it is natural to ask whether this action
is continuous. We will prove that the action is continuous if and only if βG(R) is
canonically isomorphic to the compactification Sµ

X(R) introduced in [19].
We recall the definition of Sµ

X(R) and we refer the reader to [19, Appendix A.1]
for further details and its basic properties.

Definition 3.9. The infinitesimal type µ of G is the partial type over R consisting
of all LR-formulas defining open neighborhoods of the identity.

Fix a definable G-set X ⊂ Rn and assume that G acts definably on X . Given
two LR-formulas ϕ(x) and ψ(x) such that ϕ(R) ⊂ G and ψ(R) ⊂ X , we write ϕ ·ψ
to denote the LR-formula

(ϕ · ψ)(x) = ∃u∃v(ϕ(u) ∧ ψ(v) ∧ x = uv).

For p ∈ SX(R) we define µ · p as the partial type

(µ · p)(x) =
⋃

{(θ · ψ)(x) | θ ∈ µ and ψ ∈ p} .

For p, q ∈ SX(R) we say that p ∼µ q if µ · p and µ · q are equivalent partial types.
The set Sµ

X(R) is the quotient SX(R)/ ∼µ and we consider the quotient topology
on it. It is a quasi-compact Hausdorff space, and a basis for its topology is given
by open sets of the form

Uµ
ϕ = {[p]µ ∈ Sµ

X(R) | µ · p ⊢ ϕ}
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for ϕ(x) an LR-formula with ϕ(R) ⊂ X , see [19, Claim A.3]. Moreover, the natural
projection SX(R) → Sµ

X(R) is continuous and closed [19, Claim A.2].

Henceforth we will work with the natural definable continuous action of G on
itself (even though it is possible to extend our results to other G-spaces, see Remark
3.16). Our purpose is to compare βG(R) with Sµ

G(R). As first step, we have the
following:

Lemma 3.10. The natural projection π : St
G(R) → Sµ

G(R) is continuous and
preserves the action of G. In particular, the map π|βG(R) is also a continuous
surjection.

Proof. Let V be the preimage of Uµ
ϕ under π. Given q ∈ V , since µ · q ⊢ ϕ and

µ ·µ = µ, we can find by compactness some θ ∈ µ and ψ ∈ q such that (θ ·θ ·ψ) ⊢ ϕ.
By assumption, the definable set (θ · ψ)(R) is open, as so is θ(R). Hence, V is also
open since q ∈ [θ ·ψ] ⊂ V . We have used that [θ ·ψ] ⊂ V because (θ · θ ·ψ) ⊢ ϕ. �

One of the main properties of the space Sµ
G(R) is that G acts continuoulsy on

it [19, Claim A.5]. We now give an equivalent condition for the continuity of the
action of G on βG(R).

Proposition 3.11. The action of G on βG(R) is continuous if and only if the map
π|βG(R) is a homeomorphism.

Proof. Assume that the action of G on βG(R) is continuous and consider the map
i : G → βG(R) given by g 7→ tp(g/R). Note that i is by Remark 2.11 definably
separated (by closed sets). Thus, by [19, Claim A.12] there is a continuous map
i∗ : Sµ

G(R) → βG(R) that extends i. Notice now that i∗◦π|βG(R) : βG(R) → βG(R)
is the identity on algebraic types. Hence, it is the identity, so βG(R) and Sµ

G(R)
are homeomorphic. Reciprocally, if π|βG(R) is a homeomorphism, then we deduce
since it preserves the action of G that the action of G over βG(R) is continuous
from the fact the action of G over Sµ

G(R) is continuous [19, Claim A.5]. �

Next, we prove that βG(R) and Sµ
G(R) are homeomorphic whenever G is defi-

nably compact. We will need the following topological lemma:

Lemma 3.12. Let Z be a definably compact subset of G, and let V be an open
definable subset of G with Z ⊂ V . Then there is a definable open neighborhood W
of the identity such that WZ ⊂ V .

Proof. Let f : G×G→ G be the continuous group operation. Note that f−1(V ) is
an open definable subset of G×G, and {e}×Z ⊂ f−1(V ). Given ε > 0 and z ∈ G

we denote B̃ε(z) := Bε(z) ∩G. For every z ∈ Z we can consider

f(z) := sup{ε > 0 : ∃δ > 0, B̃ε(e) · B̃δ(z) ⊂ V } > 0.

Suppose there is no ε > 0 such that for every z ∈ Z we have f(z) > ε. Then by
definable choice there is a definable curve α : (0,∞) → Z such that f(α(t)) < t
for every t > 0. By o-minimality there is some ε1 > 0 such that α : (0, ε1) → Z
is continuous. As Z is definably compact, we have z0 := limt→0 α(t) ∈ Z, so there
are ε0 > 0 and δ0 > 0 such that B̃ε0(e) · B̃δ0(z0) ⊂ V . Since α is continuous,
the open definable set α−1(B̃δ0(z0)) contains an interval of the form (0, ε2). Thus,
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α(t) ∈ B̃δ0(z0) for every t < ε2. In particular, for each t < ε2 there is δt > 0 with
B̃δt(α(t)) ⊂ B̃δ0(z0), so

B̃ε0(e) · B̃δt(α(t)) ⊂ B̃ε0(e) · B̃δ0(z0) ⊂ V.

It follows that f(α(t)) > ε0 for every t < ε2, which contradicts the fact that
ε0 < f(α(t)) < t for every t < min{ε0, ε2}. Consequently, there is an ε > 0 such
that W := B̃ε(e) satisfies WZ ⊂ V , as required. �

We can now state and prove the main result of this section.

Theorem 3.13. For each type p ∈ SG(R) we have that r(p) ∼µ p. Furthermore,
if p is bounded, then r(p) is the unique type in βG(R) satisfying this, i.e.,

[p]µ ∩ βG(R) = {r(p)}.

Proof. Let p ∈ SG(R) and note first that q ∼µ p if and only if q ⊢ µ · p, see [19,
Claim 2.7]. Thus, the partial type µ · p determines a closed subset

[µ · p] =
{
q ∈ St

G(R) | q ⊢ µ · p
}

in St
G(R), because [µ · p] is the inverse image of {[p]µ} under π : St

G(R) → Sµ
G(R),

which is continuous by Lemma 3.10. Hence, we deduce that clt(p) ⊂ [µ · p], so
r(p) ∈ [µ · p], which yields that r(p) ∼µ p.

Assume now that p is bounded, and let us show: [p]µ ∩ βG(R) = {r(p)}. We
can clearly assume r(p) = p and suppose, to get a contradiction, that there exists
some q ∈ βG(R) \ {p} such that q ∼µ p. Since βG(R) is quasi-compact and
Hausdorff, there are two disjoint open definable subsets U1 ⊂ G and U2 ⊂ G with
p ∈ [U1], q ∈ [U2] and U1 ∩ U2 = ∅, where Ui denotes the topological closure of
Ui in G for i = 1, 2. In particular, since p is bounded, we can assume that U1 is
also bounded, so that U1 is definably compact and contained in the open definable
set G \ U2. By Lemma 3.12 there is an open definable neighborhood W of e such
that W · U1 ⊂ G \ U2. On the other hand, note that W · U1 ∈ µ · p. Since
q ∼µ p, we have q ⊢ µ · p and hence q ∈ [W · U1], which is a contradiction, because
U2 ∩ (W · U1) = ∅. �

Corollary 3.14. Let G be a definably compact group. Then the map p 7→ [p]µ from
βG(R) to Sµ

G(R) is a homeomorphism, so the action of G on βG(R) is continuous.

Proof. By Lemma 3.10, the natural projection βG(R) → Sµ
G(R) is continuous. In

addition, it is bijective by Theorem 3.13 and therefore it is a homeomorphism.
Hence, the action of G on βG(R) is continuous, which follows from the proof of [19,
Claim A.5]. �

In general, if p is not bounded then [p]µ ∩ βX(R) is not a singleton. We refer to
the following example from [19].

Example 3.15. LetG = R
2 and let R be an elementary extension of the field of real

numbers R. Fix some infinite element a ∈ R and consider the types p = tp(a, 0/R)
and q = tp(a, a−1/R). Both types are closed in St

G(R) but p ∼µ q. In particular,
the action R

2 × βG(R) → βG(R) is not continuous by Lemma 3.11.

Remark 3.16. An inspection of the proof of Lemma 3.10 yields that: If G is a
definable o-minimal group, the set X ⊂ Rn is a definable G-space and the action
(g, x) 7→ g · x is definable, continuous and for every x ∈ X the map g 7→ g · x is



19

open, then the natural projection map βX(R) → Sµ
X(R) is continuous, so it is a

homeomorphism. It is enough to adapt the proofs of Theorem 3.13 and Corollary
3.14.

4. Closed, finitely satisfiable and invariant types

Fix an o-minimal expansion R of a real closed field and let R̄ be a sufficiently
saturated elementary extension. Given a definable subset X ⊂ R̄n definable over
R, we can consider the space of closed points βX(R̄) within St

X(R̄), as well as the
usual space of types SX(R̄). In SX(R̄) we have two natural subsets with respect
to the structure R. Namely, the set of types SX(R̄)fsR which are finitely satisfiable
in R and the set of R-invariant types SX(R̄)invR . Recall that a type p ∈ SX(R̄) is:

i) R-invariant if for every automorphism σ ∈ AutR(R̄) of R̄ that fixes R point-
wise we have σ(p) = p, where σ(p) := {ψ(x, σ(b)) : ψ(x, b) ∈ p}, and

ii) finitely satisfiable in R if for every formula ψ(x, b) ∈ p the set of realizations
ψ(R, b) := ψ(R̄, b) ∩R of ψ(x, b) is non-empty.

We briefly recall some well-known facts on invariant and finitely satisfiable types.

Remark 4.1. It is very easy to verify that finitely satisfiable types in R are R-
invariant. Indeed, given a formula ψ(x, b) and some σ ∈ AutR(R̄), if p is finitely
satisfiable in R, then the relation ψ(a, b) ↔ ψ(a, σ(b)) holds for every a ∈ R. Thus
ψ(x, σ(b)) ∈ p whenever ψ(x, b) ∈ p.

The sets SX(R̄)invR and SX(R̄)fsR are both closed in SX(R̄). For the latter, notice
that

SX(R̄)fsR =
⋂

{[¬ψ] : ψ is an LR̄-formulas with ψ(R) = ∅} .

For the former, given any σ ∈ AutR(R̄), the map SX(R̄) → SX(R̄) × SX(R̄)
defined by p 7→ (p, σ(p)) is continuous. Thus, the preimage Cσ of the diagonal of
SX(R̄) × SX(R̄) under this map is a closed subset of SX(R̄), because SX(R̄) is
Hausdorff. Hence SX(R̄)invR =

⋂
σAutR(R̄) Cσ is a closed subset of SX(R̄).

It will also be useful to regard SX(R̄)fsR as the space of types of the externally
definable sets. Recall that a set Z ⊂ Rn is called externally definable if there
exists some LR̄-formula φ(x) such that Z = φ(R). If SX(R)ext denotes the set of
ultrafilters of externally definable subsets of X with the Stone topology, then the
map

SX(R̄)fsR → SX(R)ext, p 7→ {ψ(R) : ψ(x) ∈ p}

is certainly a homeomorphism.

4.1. Finitely satisfiable types are closed. We aim to prove that SX(R̄)fsR is
contained and closed in βX(R). In order to see that we obtain some results on
externally definable set, which are interesting by themselves. We show that any
externally definable set of Rn is given by the trace of an open set.

The cell decomposition [12, Ch. 3] is a fundamental result for the development
of o-minimal structures. A cell in the o-minimal structure R̄ is defined inductively.
A subset of R̄ is a cell if it is a point or an open interval of R̄ with endpoints in
R̄ ∪ {±∞}. More generally, a subset C ⊂ R̄n+1 is a cell if there is a cell D ⊂ R̄n

an either there is a continuous R̄-definable function f : D → R̄ such that C is the
graph of f , or there are two continuous R̄-definable functions f1, f2 : D → R̄ with
f1(x) < f2(x) for all x ∈ D such that C = {(x, y) : x ∈ D and f1(x) < y < f2(x)}.
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Lemma 4.2. Let C ⊂ R̄n be a cell. Then there exists some open cell U ⊂ R̄n such
that C ⊂ U and C ∩Rn = U ∩Rn. Moreover, there is also a definable continuous
retraction r : U → C.

Proof. We proceed by induction on n. For n = 1, suppose first that C = {a}. In
this case set U = (a− δ, a+ δ) for some δ > 0 infinitesimal with respect to a model
containing M and a. It is clear that U and the definable constant map r : U → C
defined by u 7→ a satisfy the requirements. On the other hand, if C is an open
interval, then it suffices to set U = C and r as the identity map.

Assume that the statement holds for n and let C be a cell of R̄n+1. Suppose
first that C is the graph Γ(f) of a definable continuous function f : D → R̄ with
D ⊂ R̄n a cell. By induction, there is a definable open cell U of R̄n containing
D such that D ∩ Rn = U ∩ Rn and a definable continuous retraction r : U → D.
Set g = f ◦ r, which is a definable continuous function such that g|D = f . Set
V = (g − δ, g + δ)U for some δ > 0 infinitesimal with respect to R, that is,

V = {(x̄, y) ∈ U × R̄ | y ∈ (g(x̄)− δ, g(x̄) + δ)}.

It is clear that V ⊂ R̄n+1 is an open cell such that C ⊂ V . Moreover, since
U ∩ Rn = D ∩ Rn and g|D = f , it holds V ∩ Rn+1 ⊂ C ∩ Rn+1. To obtain
a definable continuous retraction r̃ : V → C it is enough to consider the map
(x̄, y) 7→ (r(x̄), g(x̄)).

Finally, suppose that C = (f1, f2)D for some cell D ⊂ R̄n and some definable
functions f1, f2 : D → R̄ with f1 < f2. By induction hypothesis, there exists
a definable open cell U of R̄n containing D such that D ∩ Rn = U ∩ Rn and a
definable continuous retraction r : U → D. For i = 1, 2 set gi = fi ◦ r : U → R̄ and
note that gi|D = fi for i = 1, 2. Now, take V = (g1, g2)U , that is,

V = {(x̄, y) ∈ Ū × R̄ | y ∈ (g1(x̄), g2(x̄))}.

It holds C ⊂ V and that V ∩Rn+1 ⊂ C∩Rn+1. Now, to obtain a definable retraction
r̃ : V → C it is enough to consider the map (x̄, y) 7→ (r(x̄), y), as required. �

Proposition 4.3. Let Z ⊂ Rn be an externally definable set given by a set W of
R̄n, i.e. W ∩Rn = Z. Then there is a definable open set U of R̄n such that W ⊂ U
and Z = U ∩Rn.

Proof. Let C = {C1, . . . , Cr} be a cell decomposition of R̄n compatible with W .
For each i let Ui be the open cell given by the previous lemma containing Ci and
note that

Z =W ∩Rn =

r⊔

i=1

Ci ∩R
n =

r⊔

i=1

Ui ∩R
n.

Thus, the definable open set U := U1 ∪ . . . ∪ Ur yields the result. �

As a consequence, we obtain:

Corollary 4.4. The collection
{
[φ] ∩ SX(R̄)fsR | φ ∈ LR̄, φ(R̄) ⊂ X is open and definable

}

is a basis of the space SX(R̄)fsR with respect to the Stone topology. In particular,
the subspace topologies on SX(R̄)fsR induced from both the Stone and the spectral
topologies coincide.

We also deduce the following:
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Corollary 4.5. The set SX(R̄)fsR is closed in St
X(R̄) and contained in βX(R̄).

Namely,

(i) clt(SX(R̄)fsR) = SX(R̄)fsR and
(ii) for every p ∈ SX(R̄)fsR we have that r(p) = p.

Proof. (i) We prove that

SX(R̄)fsR =
⋂{

[¬ψ] | ψ ∈ LR̄, ψ(R̄) ⊂ X open and ψ(R) = ∅
}
.

It is clear that the inclusion ⊂ holds. For the other inclusion, suppose p /∈ SX(R̄)fsR
and let ϕ(x) be an LR̄-formula witnessing this. By Proposition 4.3 there is some
LR̄-formula ψ(x) such that ψ(R̄) is open with ϕ(R̄) ⊂ ψ(R̄) and ϕ(R) = ψ(R).
Hence, p ∈ [ψ], which yields the desired equality.

(ii) By (i) the set SX(R̄)fsR is closed in St
X(R̄). Thus, a point of SX(R̄)fsR is closed

in SX(R̄)cohR if and only if it is closed in St
X(R̄). On the other hand, the previous

corollary asserts that the subspace topologies on SX(R̄)fsR induced from both the
Stone and the spectral topology coincide. Consequently, a point of SX(R̄)fsR is
always closed in SX(R̄)fsR, as required. �

4.2. Invariant types. Once we have seen that finitely satisfiable types are closed
within the spectral topology, it is natural to ask which is the relation between them
and closed invariant types, as well as the relation between invariant and closed
types. We first prove:

Lemma 4.6. The set SX(R̄)invR is a closed subspace of St
X(R̄). In particular, the

set St
X(R̄)invR of R-invariant types with the induced spectral topology from St

X(R̄) is
a normal spectral space.

Proof. It is enough to prove that for p ∈ SX(R̄)invR its closure clt(p) in St
X(R̄)

is contained in SX(R̄)invR . Indeed, if q ∈ clt(SX(R̄)invR ), then for each open R̄-
definable subset U ⊂ X with q ∈ [U ] we have [U ] ∩ SX(R̄)invR 6= ∅. Since SX(R̄)invR

is a closed subset of SX(R̄) with the Stone topology, by quasi-compactness there is
a type p ∈ SX(R̄)invR that is in all the open neighbourhoods in St

X(R̄) of q and so
q ∈ clt(p) ⊂ SX(R̄)invR .

Now, let p ∈ SX(R̄)invR . Consider σ ∈ AutR(R̄) and note that St
X(R̄) → St

X(R̄)

given by p 7→ σ(p) is a homeomorphism. Thus σ(clt(p)) = clt(σ(p)) = clt(p). It is
also clear that σ(q1) ∈ clt(σ(q2)) whenever q1 ∈ clt(q2). Therefore σ respects the
specialization order, so by Lemmas 2.5 and 2.16 the set clt(p) is a finite set totally
ordered under specialization. We deduce that σ fixes clt(p) pointwise, as required.

The fact that St
X(R̄)invR is a spectral space follows from [8, Thm. 2.1.3], as

SX(R̄)invR is closed in SX(R̄) with respect to the Stone topology. Since St
X(R̄)invR is

closed in St
X(R̄) and the latter is normal, we deduce that St

X(R̄)invR is normal. �

Remark 4.7. The statement above yields that SX(R̄)invR is closed under images of
the map r : St

X(R̄) → βX(R̄) and that the set of closed points of St
X(R̄)invR agrees

with St
X(R̄)invR ∩ βX(R̄). As a consequence, the natural retraction from St

X(R̄)invR

onto its closed points coincides with r|St
X
(R̄)inv

R
.

In general, to be a closed point of St
X(R̄)invR depends on the set X , see Example

4.9 below. However, when X is closed, we prove the following:
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Theorem 4.8. Assume that X ⊂ R̄n is closed. A type is R-invariant, bounded
and closed if and only if it is finitely satisfiable in R, that is:

SX(R̄)invR ∩ βX(R̄) ∩ SX(R̄)bdd = SX(R̄)fsR,

where SX(R̄)bdd is the set of bounded types.

Proof. By Corollary 4.5 we have SX(R̄)fsR ⊂ βX(R̄). Hence to prove that the
inclusion ⊃ of the statement holds, it suffices to see that any p ∈ SX(R̄)fsR is
bounded. Choose some r ∈ R̄ with r > ‖m‖ for every m ∈ X ∩ Rn. Thus the
definable subset

V = {x ∈ X | ‖x‖ > r}

is not realized in R, hence p ∈ [V c], which implies that p is bounded.
To prove the other inclusion, fix some p ∈ SX(R̄)invR ∩ βX(R̄) ∩ SX(R̄)bdd. Let

ϕ(x) be an arbitrary LR̄-formula such that p ∈ [ϕ], and let us show that ϕ(R) is
non-empty. Clearly, we may take ϕ(R̄) to be bounded. As clt(p) = {p}, there exist
some LR̄-formulas ψi(x) such that each ψi(R̄) ⊂ X is closed in X and

{p} =
⋂

i∈I

[ψi]

in St
X(R̄). Thus, we have that {ψi(x) | i ∈ I} ∪ {¬ϕ(x)} is inconsistent, so there is

some finite I0 ⊂ I such that

ψ(x) :=
∧

i∈I0

ψi(x) ⊢ ϕ(x).

Note that p ∈ [ψ] and ψ(R̄) ⊂ ϕ(R̄) is closed in R̄n as so is X . Thus, as p is
R-invariant, by [18, Theorem 6.5] (see also [9, Theorem 3.5] or [25]) we deduce that
ψ(R) 6= ∅, so ϕ(R) 6= ∅ and consequently p ∈ SX(R̄)fsR. �

The following easy example shows that in general the statement above fails for
unbounded types, as well as for non-closed sets:

Example 4.9. Let R be the real closed field and let R̄ denote a sufficiently satu-
rated and homogeneous elementary extension.

i) Set X = R̄ and let p1 ∈ SX(R̄) be the type at infinity, that is, the type
p1(x) is determined by all formulas a < x for a ∈ R̄. Then p1 is unbounded,
R-invariant, closed in St

X(R̄), but it is not finitely satisfiable in R.
ii) Set Y = (0,∞) and let p2 ∈ SY (R̄) be the infinitesimal type, that is, the type

p2(x) is determined by formulas of the form 0 < x ∧ x < a for a ∈ R̄. Then p2
is bounded, R-invariant, closed in St

Y (R̄), but it is not finitely satisfiable in R.

When the set X ⊂ Rn is bounded and closed, Remark 4.7 and Theorem 4.8
yield that the retraction r|SX (R̄)inv

R
maps invariant types to finitely satisfiable ones.

Summarizing, we get the following statement:

Corollary 4.10. Assume X ⊂ Rn is definably compact. Then

SX(R̄)invR ∩ βX(R̄) = SX(R̄)fsR,

and therefore there is a continuous retraction r|St
X
(R̄)inv

R
: St

X(R̄)invR → SX(R̄)fsR.

We stress out that by Corollary 4.5 the spectral and the Stone topologies coincide
on SX(R̄)fsR and hence there is no need to distinguish them.

To conclude the section we prove that the retraction r|St
X
(R̄)inv

R
is essentially

unique when X ⊂ Rn is definably compact.
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Proposition 4.11. Assume X ⊂ Rn is definably compact. There is a unique
continuous retraction from St

X(R̄)invR onto SX(R̄)fsR. In particular, it is r|SX (R̄)inv
R

.

Proof. Let f denote a continuous retraction from St
X(R̄)invR onto SX(R̄)fsR. By

continuity f preserves specializations, that is, if q ∈ clt(p) then f(q) ∈ clt(f(p)) for
any p, q ∈ St

X(R̄)invR . Note that r(p) ∈ clt(p), so

f(r(p)) ∈ clt(f(p)) = {f(p)}

since f(p) ∈ βX(R̄) by Corollary 4.5. As f is a retraction and we have by Theorem
4.8 that r(p) ∈ SX(R̄)fsR, we deduce f(r(p)) = r(p). Altogether we conclude r(p) =
f(p), as desired. �

5. An honest topology

The results of the previous section yield the existence of a continuous retraction

r|St
X
(R̄)inv

R
: St

R(R̄)invR → SX(R̄)fsR,

when X ⊂ R̄n is a definably compact set definable in an o-minimal saturated
extension R̄ of a real closed field R. This retraction comes from considering the
spectral topology on the space of types and it captures in a way the fact of being
infinitesimally close. It does not seem feasible to transfer this construction for
arbitrary NIP structures M � M̄ due to the absence of a natural topology on M̄.
Nonetheless, Simon [23] is able to construct for NIP structures a canonical conti-
nuous retraction FM : SX(M̄)invM → SX(M̄)fsM . His construction lacks a priori of a
topological interpretation. The purpose of this final section is to find a topological
interpretation of FM within the context of spectral spaces.

Let T be a complete L-theory with NIP. Henceforth we fix a model M of T and
a saturated elementary extension M̄ of M. For a subset X ⊂Mn definable in M,
the retraction

FM : SX(M̄)invM → SX(M̄)fsM
is continuous with respect to the Stone topology and satisfies FM (p)|M = p|M . We
refer to [23, Section 3] for further details (cf. [7]), but we briefly recall some details
of Simon’s construction.

Remark 5.1. Let χ(x) be an LM̄ -formula and fix a saturated model M ′ of M
inside M̄ that contains the parameters of χ. Consider a new unary predicate P
and set LP = L∪{P} and fix the LP -structure (M′,M) with P (M ′) =M . Choose
inside M̄ a sufficiently saturated elementary extension (N ′,N ) of (M′,M). In [23,
Sec. 3.1] it is proven that for every p ∈ SX(M̄)invM both p|N (x) ∪ {P (x), χ(x)} and
p|N(x) ∪ {P (x),¬χ(x)} cannot be consistent. In particular, either

(∗) p|N (x) ∪ {P (x)} ⊢ χ(x) or p|N (x) ∪ {P (x)} ⊢ ¬χ(x).

Therefore there is a unique type FM (p) ∈ SX(M′) such that p|N ∪{P (x)}∪FM (p)
is consistent. Note that FM (p) is finitely satisfiable in M as it is consistent with P .

The following example shows that the retraction FM is certainly different from
r|St

X
(R̄)inv

R
.

Example 5.2. Let R be the real field and consider some sufficiently saturated
model R̄ of its theory. Let X = [0, 1] and let p(x) be the complete type determined
by the formulas 0 < x and x < a for every a ∈ R̄>0. This is an R-invariant type
and satisfies that r(p) = tp(0/R̄). On the other hand, the formula x = 0 does not
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belong to p|M , so r(p)|M 6= p|M = FM (p)|M . Hence, both retractions r and FM

are distinct.

Our goal is to equip SX(M̄)invM with a topology of normal spectral space and to
show that the natural retraction to the closed points is Simon’s retraction FM .

Definition 5.3. An LM̄ -formula θ(x) is honest over M if for any LM -formula ϕ(x)
we have θ(M̄) ⊂ ϕ(M̄ ) whenever θ(M) ⊂ ϕ(M).

By definition if θ(M) is empty, then θ(M̄) must be also empty. Each LM -
formula, and each LM̄ -formula θ(x) with θ(M) = M |x|, is honest. Furthermore,
the following result of Chernikov and Simon yields the existence of honest formulas
(the third clause appears in [7, Prop 3.11]):

Fact 5.4. [6, Proposition 1.7] For any LM̄ -formula ψ(x) there exists an LM̄ -formula
θ(x) honest over M such that θ(M) = ψ(M). Moreover, there is an honest formula
θ′(x) ∈ LM̄ such that

i) θ(M) = ψ(M) = ¬θ′(M),
ii) θ(M̄) ⊂ ¬θ′(M̄) and
iii) no M -invariant type contains the formula ¬θ′ ∧ ¬θ.

Since it is clear from the context, we shall omit the reference “over M ” when
talking about honestity. As a finite disjunction of honest formulas is again honest,
we can equip the set Sn(M̄) with a new topology.

Definition 5.5. The honest topology on SX(M̄) has as a basis of closed sets the
sets of the form [θ] where θ(x) is honest. We denote the space of types with the
honest topology by Sh

X(M̄).

Proposition 5.6. The topological space Sh
X(M̄) is spectral.

Proof. To see that it is T0, let p and q be different types in SX(M̄). We show
that there is an honest LM̄ -formula θ so that p ∈ [θ] and q /∈ [θ], or p /∈ [θ] and
q ∈ [θ]. Since p 6= q, there is an LM̄ -formula ψ such that ψ ∈ p and ¬ψ ∈ q. We
first consider the cases when p is not finitely satisfiable in M . Then we can find
an LM̄ -formula ψ0 ∈ p such that ψ0(M) = ∅ and ψ0(M̄) ⊂ ψ(M̄). Thus ¬ψ0 is
honest and clearly q ∈ [¬ψ0], which yields the result. Likewise, we obtain the result
whenever q is not finitely satisfiable. Therefore we may assume that both p and q
are finitely satisfiable in M , in which case, it is enough to take honest definitions
θ1 and θ2 of ψ and ¬ψ respectively. It follows that p ∈ [θ1] \ [θ2] and q ∈ [θ2] \ [θ1],
as desired.

The map SX(M̄) → Sh
X(M̄) given by p 7→ p is continuous and thus S(M̄)h

is quasi-compact. Hence we get (S1). Moreover, the continuity of the map above
yields that every basic open set is quasi-compact. Hence, the set of all quasi-
compact open sets is the set of finite unions of basic open sets. Thus (S2) and (S3)
follow. Finally, to show that Sh

X(M̄) is sober, let C be a nonempty closed and
irreducible subset of Sh

X(M̄). It is straightforward to check that the set

Σ(x) = {θ(x) ∈ LM̄ | C ⊂ [θ], [θ] honest} ∪ {¬θ(x) ∈ LM̄ | C 6⊂ [θ], [θ] honest}

is consistent. Therefore we can complete it into a type p ∈ SX(M̄). Clearly p ∈ C

because p belongs to all the basic closed sets containing C, so clh(p) ⊂ C. Suppose
there is q ∈ C such that q /∈ clh(p). Then there is an honest formula θ0 such that
q ∈ [¬θ0] and p ∈ [θ0]. By definition of Σ(x) and since p ∈ [θ0], we deduce C ⊂ [θ0],
so q ∈ [θ0], which is a contradiction. It follows that clh(p) = C, as required. �
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Remark 5.7. The induced honest topology and the constructible topology on
SX(M̄)fsM coincide and hence there is no need to distinguish them. In fact, one
can prove that every basic closed set in SX(M̄)fsM is open. Indeed, a basic closed
subset is of the form SX(M̄)fsM ∩ [θ], for some honest formula θ. We may assume
SX(M̄)fsM 6⊂ [θ]. Thus, ¬θ(M) 6= ∅, so we can find an honest definition ψ for ¬θ.
Since ψ(M) = ¬θ(M), we deduce SX(M̄)fsM ∩ [¬θ] = SX(M̄)fsM ∩ [ψ] is also closed.

Lemma 5.8. Every finitely satisfiable type in M is a closed point of Sh
X(M̄).

Proof. Let p be finitely satisfiable in M . We show that it is closed. Pick q ∈ clh(p)
and suppose that q is not finitely satisfiable in M . Thus, there is some formula
ψ ∈ q such that ψ(M) = ∅. Since ¬ψ is honest, the type q belongs to the open set
[ψ] and p /∈ [ψ], we get a contradiction. Hence, the type q is finitely satisfiable in M
as well. This yields that p = q, since SX(M̄)fsM with the inherited honest topology
is a Hausdorff space. �

Example 5.9. In general, it is not true that the closed points coincide with the
finitely satisfiable types in M . For example, if M = Ralg and M̄ is a saturated
elementary extension containing R, the type tp(π/M̄) is not finitely satisfiable in
M . However, both the intervals [0, π] and [π, 4] of M̄ are honest definitions over
M , and [0, π] ∩ [π, 4] = {π}, so that tp(π/M̄) is closed in Sh

X(M̄). One can check
that the honest topology is normal in this example.

Henceforth, the space SX(M̄)invM with the subspace honest topology is denoted
by Sh

X(M̄)invM .

Proposition 5.10. The topological space Sh
X(M̄)invM is spectral.

Proof. This follows from [8, Thm. 2.1.3]. Nevertheless, we give a direct proof for
completeness. Properties (S1)-(S3) follow from the fact that Sh

X(M̄) is a spectral
space and SX(M̄)invM is closed in SX(M̄) with the Stone topology. Let us show (S4).
Pick a closed and irreducible set C0 of Sh

X(M̄)invM . Consider its closure C := clh(C0)
in Sh

X(M̄). We clearly have that the closed and irreducible subset C of Sh
X(M̄)

satisfies C ∩ SX(M̄)invM = C0. Hence, since Sh
X(M̄) is a spectral space, there is

a unique p ∈ Sh
X(M̄) such that clh(p) = C. Let us see that p ∈ SX(M̄)invM . For

each σ ∈ AutM (M̄) the induced map Sh
X(M̄) → Sh

X(M̄) given by p 7→ σ(p) is a
homeomorphism. Indeed, it is enough to note that if θ(x, d) is honest, then so is
θ(x, σ(d)). Hence, it follows that

clh(σ(p)) = σ(clh(p)) = σ(C) = σ(clh(C0)) = clh(σ(C0)) = clh(C0) = C

and by uniqueness of p we deduce that σ(p) = p. Thus p ∈ C ∩ SX(M̄)invM = C0,
so C0 is the closure of p in Sh

X(M̄)invM , as required. �

We now analyze whether Sh
X(M̄)invM is normal. We will obtain that this is the

case in several interesting NIP theories, as for example distal theories. To that end
we need to characterize Simon’s FM retraction.

Proposition 5.11. Let p ∈ SX(M̄)invM . An LM̄ -formula ψ(x) belongs to FM (p) if
and only if there is an honest LM̄ -formula θ(x) ∈ p such that θ(M) = ψ(M).

Proof. (⇒) Let ψ(x) be an LM̄ -formula and suppose ψ(x) ∈ FM (p). Let M′ � M̄
be an |M |+-saturated elementary extension of M containing the parameters of
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ψ(x). Now, working in the language LP = L∪{P}, consider a sufficiently saturated
elementary extension (N ′,N ) of (M′,M). Set

S :=
{
q ∈ SX(M̄)invM : q|N (x) ∪ {P (x)} ∪ {ψ(x)} is consistent

}
.

By (∗) in Remark 5.1 for every q ∈ S there is some LN -formula θq such that
θq(x) ∧ P (x) ⊢ ψ(x). Since S is a closed subset of SX(M̄)invM and S ⊂

⋃
q∈S [θq],

by quasi-compactness there is an LN -formula θ(x) such that θ(x) ∧ P (x) ⊢ ψ(x)
and S ⊂ [θ]. In particular, there is no type q ∈ SX(M̄)invM for which the set
q|N (x) ∪ {P (x)} ∪ {ψ(x) ∧ ¬θ(x)} is consistent.

By definition of FM (p) we have p ∈ S, so θ ∈ p. Therefore, it is enough to
show that θ is an honest and θ(M) = ψ(M). For the latter, if a ∈ ψ(M) then
tp(a/M̄) ∈ S and so a ∈ θ(M). On the other hand, if a ∈ θ(M), then, since
θ(x) ∧ P (x) ⊢ ψ(x), we deduce a ∈ ψ(M). Hence θ(M) = ψ(M). Finally, to prove
that θ(x) is honest, let ϕ(x) be an LM -formula with ψ(M) = θ(M) ⊂ ϕ(M). Then
(M′,M) and so (N ′,N ) satisfy

∀x(ψ(x) ∧ P (x) → ϕ(x)).

As θ(x) ∧ P (x) ⊢ ψ(x), we deduce that (N ′, N) satisfies ∀x(θ(x) ∧ P (x) → ϕ(x))
and, since θ has parameters in N , we deduce θ(M̄) ⊂ ϕ(M̄ ).
(⇐) Fix ψ(x) and let θ(x, b) ∈ p be an honest LM̄ -formula such that θ(M, b) =
ψ(M). As before, consider an |M |+-saturated elementary extension M′ � M̄ of
M containing the parameters of ψ(x) and θ(x, b). Also, consider a sufficiently
saturated elementary extension (N ′,N ) of (M′,M).

Suppose that ψ(x) 6∈ FM (p). As ψ(M) = θ(M, b), we deduce ¬θ(x, b) ∈ FM (p).
By the implication (⇒), there is some honest θ0(x, c) ∈ p|N such that θ0(M, c) =
¬θ(M, b) and θ0(x, c) ∧ P (x) ⊢ ¬θ(x, b). Since p is M -invariant and p ∈ [θ(x, b) ∧
θ0(x, c)], the formula θ(x, b) ∧ θ0(x, c) is consistent. Set

ϕ(y, z) := ∃x(θ(x, y) ∧ θ0(x, z)).

The pair (N ′, N) satisfies the LM ′ -sentence

∃z(P (z) ∧ ϕ(b, z) ∧ ∀x
(
θ0(x, z) ∧ P (x) → ¬θ(x, b)

)
,

and so does (M ′,M). Therefore there exists m ∈ M such that ϕ(b,m) holds and
θ0(M,m) ⊂ ¬θ(M, b). In particular, we obtain that θ(M̄, b) ∩ θ0(M̄,m) 6= ∅ by
the definition of ϕ(y, z) and also that θ(M, b) ⊂ ¬θ0(M,m). However, as θ(x, b)
is honest and θ0(x,m) is an LM -formula, the latter yields θ(M̄, b) ⊂ ¬θ0(M̄,m),
which is a contradiction. �

As an immediate consequence, we obtain the following:

FM (p) ∈
⋂

{[θ] : θ ∈ p is honest} = clh(p).

We will use the following notation: given an LM̄ -formula ψ(x), we write

[ψ]inv := {p ∈ SX(M̄)invM : ψ ∈ p}.

Corollary 5.12. If θ1, . . . , θℓ are honest formulas and [θ1]
inv ∩ · · · ∩ [θℓ]

inv is non-
empty, then

(θ1 ∧ · · · ∧ θℓ)(M) 6= ∅.

Proof. By assumption, there is an M -invariant type p ∈ [θi]
inv for i = 1, . . . , ℓ, so

by Proposition 5.11 we have θ1, . . . , θℓ ∈ FM (p). Since FM (p) is finitely satisfiable
in M , we deduce (θ1 ∧ · · · ∧ θℓ)(M) 6= ∅, as required. �
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Recall that if X is a normal spectral space, then the set of the closed points
Max(X) is a quasi-compact Hausdorff topological space. Moreover, for every x ∈ X
there is a unique closed point r(x) ∈ cl(x) and the map r : X → Max(X) is a
continuous retraction (see Fact 2.6). In the following result we show that Sh

X(M̄)invM

is a normal spectral space and that FM coincides with the natural retraction to the
closed points.

Theorem 5.13. The closed points of the spectral topological space Sh
X(M̄)invM are

exactly the finitely satisfiable types. Moreover, the space Sh
X(M̄)invM is normal and

the natural retraction to the closed points

rhM : Sh
X(M̄)invM → SX(M̄)fsM

coincides with FM .

Proof. Let p ∈ SX(M̄)invM be a closed point and let us show that p is finitely
satisfiable in M . The converse follows from Lemma 5.8. Since

⋂

θ∈p honest

[θ]inv = clh(p) ∩ SX(M̄)invM = {p},

for any ψ ∈ p there are finitely many honest formulas θ1, . . . , θℓ ∈ p such that

[θ1]
inv ∩ · · · ∩ [θℓ]

inv ⊂ [ψ]inv.

Thus, by Corollary 5.12 we have ∅ 6= (θ1 ∧ · · · ∧ θℓ)(M) ⊂ ψ(M).
By [4, Prop 2], to prove that Sh

X(M̄)invM is normal it is enough to show for any
p ∈ Sh

X(M̄)invM that clh(p) ∩ SX(M̄)fsM = {FM (p)}. Fix q ∈ SX(M̄)fsM such that
q ∈ clh(p) and q 6= FM (p). Then there is an honest formula θ(x) ∈ q such that
¬θ(x) ∈ FM (p). By Proposition 5.11 there is an honest formula θ0 ∈ p with
θ0(M) = ¬θ(M). Since p ∈ [θ0]

inv, we get q ∈ [θ0]
inv, so θ ∧ θ0 ∈ q, which is a

contradiction since (θ ∧ θ0)(M) = ∅ and q is finitely satisfiable in M .
Once we have shown that Sh

X(M̄)invM is a normal spectral space, the retraction
rhM (p) is by definition the unique closed point in clh(p), so rhM (p) = FM (p) for
every p ∈ Sh

X(M̄)invM . In particular, the map FM is continuous for the honest
topology. �

Remark 5.14. We write down an alternative proof of the normality of Sh
X(M̄)invM

which gives more information on how two closed non-empty disjoint subsets C1 and
C2 of Sh

X(M̄)invM are separated. We can assume that C1 = [ψ1]
inv and C2 = [ψ2]

inv

where both ψ1 and ψ2 are a finite conjunction of honest formulas. By Corollary
5.12, we have ψ1(M) 6= ∅ and ψ2(M) 6= ∅. Thus, by Fact 5.4 there are two honest
LM̄ -formulas θ1(x) and θ2(x) such that:

• θ1(M) = ψ1(M) = ¬θ2(M), θ1(M̄) ⊂ ¬θ2(M̄) and
• no M -invariant type contains the formula ¬θ2 ∧ ¬θ1.

In particular, the set [θ1]inv = [¬θ2]inv is open and closed in SX(M̄)invM . In addition,
we check that [ψi]

inv ⊂ [θi]
inv for i = 1, 2. Indeed, if [ψ1]

inv ∩ [θ2]
inv were non-

empty, then it would follow by Corollary 5.12 that ψ1(M) ∩ θ2(M) 6= ∅, which
is a contradiction. Therefore [ψ1]

inv ⊂ [¬θ2]inv = [θ1]
inv. Likewise, we get that

[ψ2]
inv ∩ [θ1]

inv = ∅, as otherwise ψ2(M)∩ θ1(M) and hence ψ1(M)∩ψ2(M) would
be non-empty. Consequently [ψ2]

inv ⊂ [¬θ1]
inv = [θ2]

inv, as required.
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As in the case of the spectral topology, the closure of a point in Sh
X(M̄)invM is

totally ordered under specialization. However, the reason why this is true in the
honest topology is radically different and concerns the small size of such closure:

Proposition 5.15. For every p ∈ Sh
X(M̄)invM we have that clh(p) = {p, FM (p)}.

Proof. Assume p /∈ SX(M̄)fsM , since the points of the latter set are closed. Suppose
that there is some p1 ∈ clh(p) with p1 6= p and p1 6= FM (p). Note that

FM (p) = rhM (p) = rhM (p1) ∈ clh(p1).

Since the honest topology is T0 and p1 6= FM (p), there is an honest formula θ1(x)
such that θ1 ∈ FM (p) but θ1 /∈ p1. We claim: clh(p) = clh(p1).

It is enough to show that clh(p) ⊂ clh(p1), so pick an honest formula θ(x) with
p1 ∈ [θ]. Thus, θ ∧ θ1 ∈ FM (p) and so (θ ∧ θ1)(M) 6= ∅. By Proposition 5.11 there
is an honest formula θ′ ∈ p with (θ ∧ θ1)(M) = θ′(M). Thus θ ∧ θ′ ∧ ¬θ1 ∈ p1, as
p1 ∈ clh(p). Note that (θ ∧ θ′ ∧ ¬θ1)(M) = ∅, so θ ∧ θ′ ∧ ¬θ1 is an open set in the
honest topology. Hence, as p1 ∈ [θ ∧ θ′ ∧ ¬θ1], it follows p ∈ [θ ∧ θ′ ∧ ¬θ1] and so
p ∈ [θ], as required.

However, once we have shown that clh(p) = clh(p1), since the honest topology is
T0, it follows that p = p1, which is a contradiction. �

We finish the paper pointing out two more differences between the spectral and
the honest topology (see Lemma 3.7 and Lemma 2.16).

Lemma 5.16. The normal spectral space Sh
X(M̄)invM is not locally connected.

Proof. Suppose that Sh
X(M̄)invM is locally connected and fix a connected component

C of Sh
X(M̄)invM containing a non-algebraic point. As C is open and closed, there

are honest LM̄ -formulas θ1, . . . , θℓ such that C = [θ1]
inv ∩· · ·∩ [θℓ]

inv. By Corollary
5.12 there is some m ∈ (θ1 ∧ · · · ∧ θℓ)(M). Both the formulas x = m and ¬(x = m)
are M -definable and therefore they are honest. Since C ⊂ [x = m] ∪ [¬(x = m)]
and C is connected, we deduce that C equals [x = m], which is a contradiction. �

Lemma 5.17. Assume that for every model of the theory the definable closure
provides a geometry (so that we have a well-defined dimension). Then dim(p) =
dim(FM (p)) for all p ∈ Sh

X(M̄)invM .

Proof. For each p ∈ Sh
X(M̄)invM we have p|M = FM (p). It is enough to prove: if

dim(p) = d, then there is an M-definable set in p of dimension d.
Let a be a realization of p and let b = (b1, . . . , bℓ) ∈ M̄ ℓ be such that dim(b/M) =

ℓ and dim(a/M, b) = d. Suppose dim(a/M) < d. Since

dim(a, b/M) = dim(a/M, b) + dim(b/M) = dim(b/M, a) + dim(a/M),

it follows that dim(b/M, a) < dim(b/M) = ℓ. Then there exists an M-definable
function f such that f(a, b1, . . . , bℓ−1) = bℓ, so f(x, b1, . . . , bℓ−1) = bℓ ∈ p. For each
automorphism σ of M̄ that fixes M, b1, . . . , bℓ−1 pointwise we have that

f(x, b1, . . . , bℓ−1) = σ(bℓ)

belongs to p, so σ(bℓ) = f(a, b1, . . . , bℓ−1) = bℓ. We deduce that bℓ is in the definable
closure of M, b1, . . . , bℓ−1, so dim(b/M) < ℓ, which is a contradiction. �
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