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The algebraic structures underlying quasi-exact solvability for spin 1/2 Hamilto-
nians in onedimension arestudied in detail. Necessary and sufficient conditions for
a matrix second-order differential operator preserving a space of wave functions
with polynomial components to be equivalent to a Schrödinger operator are found.
Systematic simplifications of these conditions are analyzed, and are then applied to
theconstruction of new examplesof multi-parameter QESspin 1/2 Hamiltonians in
one dimension. © 1997 American Institute of Physics. @S0022-2488~97!03905-4#

I. INTRODUCTION

Symmetries have traditionally played an essential role in quantum mechanics. For a few
remarkable Hamiltonians, the knowledge of enough symmetries leads to a complete characteriza-
tion of the spectrum by algebraic methods.1 In general, however, the spectrum of an arbitrary
Hamiltonian cannot be calculated analytically. During the last decade, a remarkable intermediate
class of quasi-exactly solvable ~QES! spectral problemswas introduced, for which afinite part of
the spectrum can be computed by purely algebraic methods.2–4 The key feature in the latter class
of spectral problems is that the Hamiltonian H is expressible as aquadratic combination of the
generators of a finite-dimensional Lie algebra g of first order differential operators preserving a
finite-dimensional module of smooth functionsN . Thus, H restricts to a linear transformation in
the finite-dimensional vector space N , and therefore part of its spectrum can be computed by
matrix eigenvalue methods. Appropriate boundary conditions must be imposed so that the eigen-
functions thus obtained qualify as physical wave functions, as, e.g., square integrability if they
represent bound states of the system.5

These ideas, originally introduced for scalar Hamiltoniansdescribing spinlessparticles, can be
generalized to includeparticleswith spin. Thefirst step in this direction was taken by Shifman and
Turbiner,6 using the fact that a Hamiltonian for a spin 1/2 particle in d spatial dimensions can be
constructed from aLie superalgebra of first order differential operators in d ordinary ~commuting!
variables and one Grassmann ~anticommuting! variable. Alternatively,7 232 matrices ~or N3N
matrices for particles of arbitrary spin8! can be used to represent the Grassmann variable. How-
ever, in stark contrast with the scalar case, very few examples of matrix QESSchrödinger opera-
tors have been found thus far.6 There are two important conceptual reasons for this fact. First, the
algebraic structures underlying partial integrability in the matrix case are richer and less under-
stood than in the scalar case. For one thing, as mentioned before, for matrix Hamiltonians Lie
superalgebras of matrix differential operators naturally come into play, whereas in the scalar case
only Lie algebras need be considered. Moreover, as we shall explain in Section III , one even has
to go beyond Lie superalgebras of matrix differential operators in order to explain quasi-exact
solvability in the matrix case.7,8 Second,9,5 every scalar second order differential operator in one
dimension can be transformed into a Schrödinger operator of the form 2]x

21V(x) by a suitable
change of the independent variable x and a local rescaling of the wave function. For matrix
differential operators, the analogue of this result—V(x) being now aHermitian matrix of smooth
functions—is no longer true unless theoperator satisfies quite stringent conditions, asweshall see
in detail in Section IV.

Theaim of this paper is to achieveabetter theoretical understanding of quasi-exact solvability
in the matrix case, which wil l enable us to construct new examples of matrix QES Schrödinger
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operators. To this end, in Sections II and II I we study the algebraic properties of certain algebras
of matrix QESoperators, reviewing the literature on the subject and obtaining new results aswell.
In particular, wegive acompletecharacterization of the form of a QESmatrix differential operator
preserving a finite-dimensional space of wave functions with polynomial components. For the
important particular case of spin 1/2 particles, we derive in Section IV necessary and sufficient
conditions for a QES operator to be equivalent to a non-trivial Schrödinger operator. These
conditions turn out to be too complicated to be solved in full generality, and so in Sections V and
VI we introduce somekey simplifications that wil l prove very useful in the task of finding explicit
examples. Finally, the previous results are applied in Section VI I to the construction of new
examples of multi-parameter QES spin 1/2 Hamiltonians in one dimension.

II. SCALAR QES OPERATORS

We start with the scalar case, introducing the basic concepts and definitions and stating two
theorems for the one-dimensional case which wil l play an important role in what follows. Since
the results of this section are fairly standard, wewil l skip many details and all theproofs, referring
the reader to the review articles ~Ref. 4! and ~Ref. 9! for an in-depth study.

Let M denote an open subset of Rd, and let D1(M ) be the Lie algebra of first order differ-
ential operators

X5(
i51

d

j i~z!
]

]zi
1h~z!, z5~z1,...,zd!PM ,

acting on C`(M ), the Lie bracket being defined as the usual commutator between operators:

@X,Y#5XY2YX,¬ X,YPD1~M !.

Definition 2.1: A finite-dimensional Lie subalgebra g of D1(M ) is called quasi-exactly solv-
able ~QES! if it preserves a finite-dimensional moduleN ,C`(M ). A differential operator T is
QES if it lies in the universal enveloping algebraU~g! of a QESLie algebra g.

In general, quasi-exact solvability of a given differential operator T cannot be ascertained
a priori . Therefore, the procedure usually followed consists in classifying QES Lie algebras
modulo a suitable equivalence relation, and then using the canonical forms in the classification
thus obtained to construct QES operators.

Definition 2.2: Two differential operators T(z) and T̄( z̄) are equivalent if they are related by
a change of the independent variables

z̄5w~z! ~1!

and a local scale transformation by a non-vanishing function U(z), i.e.

T̄~ z̄!5U~z!T~z!U21~z!.¬ ~2!

The corresponding notion of equivalence for QES algebras follows directly, i.e. two QESLie
algebras g and ḡ are equivalent if their elements can be mapped into each other by a fixed
transformation ~1!-~2!. Their associated finite-dimensional modulesN and N̄ are then related by

N̄ 5U•N ,¬ ~3!

the functions being expressed in the appropriate coordinates. The local classification of finite-
dimensional QESLie algebras under the above notion of equivalence has already been completed
for the case of one and two ~real or complex! variables. Here we shall need only the one-
dimensional case.10–12,2
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Theorem 2.3: Every (non-singular) QES Lie algebra in one (real or complex) variable is
locally equivalent to a subalgebra of one of the Lie algebras

gn5Span$]z ,z]z ,z
2]z2nz,1%,¬ ~4!

where nPN. The associated gn-module isN n5P n , the space of polynomials of degree at most
n.
~The two-dimensional case, which is considerably more complicated but is not needed for the
sequel, is discussed in Refs. 13, 12 and 14.!

According to the previous theorem, every one-dimensional ~scalar! QES differential operator
T̄ is locally equivalent to an operator TPU(gn) preserving P n for a suitablen. A partial converse
of the latter result follows from the following remarkable theorem due to Turbiner.15

Theorem 2.4: Let T(k) be a k-th order linear differential operator preserving P n . We then
have:

~i! If n>k, then T(k) may be represented by a k-th degree polynomial in the operators

Jn
15z2]z2nz,¬ Jn

05z]z2
n

2
,¬ Jn

25J25]z.¬ ~5!

~i! If k.n, then T(k)5T]z
n111T̃, where T is a linear differential operator of order k2n

21, and T̃ is a linear differential operator of order at most n satisfying (i).

The operators $Jn
1 ,Jn

0,J2% defined above span aQES Lie algebra ĝn isomorphic to sl~2!, and the
Lie algebras gn in Theorem 2.3 are simply a central extension by the constant functions of the
corresponding ĝn .

III. ALGEBRAI C PROPERTIES OF PVSP OPERATORS

In the last section we have seen that every scalar QES scalar differential operator in one
variable is essentially ~up to equivalence! a polynomial in the generators of a Lie algebra ĝn
preserving P n ~for suitable n!. When working with vector-valued wave functions, the natural
generalization of P n is the polynomial vector space P n1 ,...,nN

5P n1
% ••• %P nN

, with elements
C(z)5(c1(z),...,cN(z))

t such that each componentc i is apolynomial of degree at most ni with
complex coefficients.

Definition 3.1: An N3N matrix differential operator T is called polynomial vector space
preserving ~PVSP! if it preserves P n1 ,...,nN

5P n1
% ••• %P nN

for some non-negative integers ni ,
i51,...,N.

We wil l denote by P n1 ,...,nN
(k) the complex vector space of linear PVSP operators of order at

most k preserving P n1 ,...,nN
. Following Refs. 7 and 8, we wil l restrict ourselves in this paper to

studying matrix PVSP differential operators. As we wil l be mainly concerned with spin 1/2
particles, the case N52 deserves special attention.

A. Case N52

Let n>D be non-negative integers, and consider the following set of matrix differential
operators:

T15S Jn2D
1 0

0¬ Jn
1D ,¬ T05S Jn2D

0 0

0¬ Jn
0D ,¬ T25S J2 0

0¬ J2D ,¬ J5
1

2 S n1D 0

0¬ nD ,
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Qa5zas2,¬ Q̄a5q̄a~n,D!s1, a50,...,D, ~6!

with

q̄a~n,D!5 )
k51

D2a

~z]z2n1D2k!]z
a ,¬ ~7!

where we have adopted the convention that a product with its lower limi t greater than the upper
one is automatically 1, and

s15~s2! t5S 0 1

0 0D .
It can be easily checked that the 612D operators in ~6! ~and also any polynomial thereof!
preserveP n2D,n . We now introduce a Z2-grading in the set of 232 matrix differential operators
D232 as follows: an operator

T5S a b

c dD ,
where a,b,c,d belong to the space D of scalar differential operators, is said to be even if b5c
50, and odd if a5d50. Therefore, theT’ s and J areeven and theQ’ s and Q̄’ s odd. Thisgrading,
combined with the usual product ~composition! of operators, endows D232 with an associative
superalgebra structure. We can also construct a Lie superalgebra in D232 by defining a general-
ized Lie product by

@A,B#s5AB2~21!deg A deg BBA.¬ ~8!

However, this product does not closewithin the vector space spanned by our operators ~6!, except
for D50,1. The explicit commutation relations are as follows:7,8

@T1,T2#522T0,¬ @T6,T0#57T6,

@J,Te#50,¬ @J,Qa#52
D

2
Qa ,¬ @J,Q̄a#5

D

2
Q̄a ,

@Qa ,T
e#5S 2a1

D

2
~11e! DQa1e ,¬ @Q̄a ,T

e#5S a2
D

2
~12e! D Q̄a2e ,

$Q̄a ,Qb%5H Mab~T2!a2b, a>b

~T1!b2aMba , b>a,

$Qa ,Qb%5$Q̄a ,Q̄b%50,¬ ~9!

wheree51,0,2, andMab is given, for a>b, by

Mab5 )
j50

D2a21

~T01Jc2 j2bP2! )
k50

b21

~T01J2k2~D2a!P1!

with Jc5D212J, and
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P1512P25S 1 0

0 0D .
As shown in Ref. 7, Mab can beexpressed in termsof T

0, J, the identity, and theCasimir for
the even subalgebra

C52
1

2
~T1T21T2T1!1T0T05

1

4 Sm~m12! 0

0¬ n~n12!
D ,¬ ~10!

wherem5n2D, independently from n and the projectors P1 and P2 . It can be readily verified
that $Q̄a ,Qb% gives a D-th order even differential operator, so the vector space spanned by the
operators in ~6! is not closed under the Lie product ~8! whenever D>2. Moreover, it is not
difficult to show that the Lie superalgebra sD generated by the operators ~6! is in this case infinite
dimensional. Indeed, if we commute $Q̄D ,Q0%5(T2)D with $Q̄0 ,QD%5(T1)D iteratively we
obtain monomials in T1, T0, T2 of increasingly higher order. For D51 the underlying algebraic
structure is the classical simple Lie superalgebra osp~2,2!,4,16 whereas for D50 it is h1% sl(2),
where h1 is the 3-dimensional Heisenberg superalgebra. As remarked in Ref. 7, in this latter case
we can leave the grading aside and replace J51 by J̃5s3 , ending up with the Lie algebra
sl(2)% sl(2).

We now state the analogue of Theorem 2.4 for PVSP operators preserving P n2D,n ~a version
of this theorem was first mentioned without proof by Turbiner for D51 in Ref. 16, and subse-
quently by Brihayeand Kosinski for arbitrary D, Ref. 7!. It turnsout that theoperators ~6! play the
same role in the matrix case as the J’ s in ~5! do in the scalar one.

Theorem 3.2: Let n>m, and D5n2m. Let T(k) be a k-th order differential operator in
Pm,n
(k) . We then have:

~i! If m>k, then T(k) is a polynomial in the operators (6), with J replaced by J̃ if D50.
~ii ! If n>k.m, then T(k)5T]z

m111T̃, where T and T̃ arematrix linear differential operators
of the form

T5Sa~k2m21! 0

c~k2m21! 0D,¬ T̃5Sã ~m! b̃~k!

c̃ ~m! d̃~k!D,
where thesuperscripts indicate thehighest possiblederivative in each entry, and T̃ satisfies
(i).

~iii ! If k.n, then T(k)5T]z
n111T̃, where T is a 232 matrix linear differential operator of

order k2n21, and T̃:Pm,n→Pm,n is a linear PVSP operator of order at most n verifying
(i) or (ii) .

The proof of these results is based on a straightforward analysis, using Theorem 2.4, of the action
of the components of T(k) on Pm,n . A somewhat weaker version of the previous theorem, namely
that any differential operator preserving Pm,n can be expressed as the sum of a polynomial in the
generators of sD plus adifferential operator annihilating Pm,n , follows directly from Burnside’s
theorem,17,18 applied to the complexification of sD .

The next issue to be addressed is to find out the number of parameters determining ageneric
k-th order linear differential operator preserving Pm,n , that is, the dimension of Pm,n

(k) . In the
scalar case, any k-th degree polynomial in Jn

1 , Jn
0, J2 may be constructed from the monomials

$(Jn
6) r(Jn

0)s2r%r50
s , s50,...,k, and so dim P n

(k)5(k11)2 if n>k.15 Remarkably, in the matrix
case we have dim Pm,n

(k) 54(k11)2 independently of m and n, provided m>k>n2m,7 as a
consequence of the following Lemma:
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Lemma 3.3: The following monomials form abasis of the vector space of polynomials in the
operators (6) of differential order at most k:

$X~T6!r~T0!s2r%r50
s ,¬ $Qa~T1!s%a51

D ,¬ s50,...,k,¬ ~11!

where X51, J ~or J̃, if D50!, Q0 , along with, if k>D:

$Q̄0~T
6!r~T0!s2r%r50

s ,¬ $Q̄a~T2!s%a51
D ,¬ s50,...,k2D.¬ ~12!

Proof: Linear independence of the monomials is straightforward from the definition of the
operators. Completeness is aconsequence of the following facts. In the first place, every Js is a
linear combination of $1, J% ~and analogously for J̃!. Secondly, JQa is proportional to Qa , and
QaQb50 ~and the same for the Q̄’s!. Third, any product QaQ̄b is a diagonal PVSPoperator, and
thus expressible through the T’ s and J ~or J̃!. Finally, the formulas (a>1)

QaT
05Qa21T

11
n2D

2
Qa ,¬ QaT

25Qa21T
01

n2D

2
Qa21 ,

Q̄aT
05Q̄a21T

21S n211D Q̄a ,¬ Q̄aT
15Q̄a21T

01S n211D Q̄a21 ,

allow us to removeevery T0 and T2 ~respectively T1! from themonomialswithQa ~respectively
Q̄a!, a51,...,D. Q.E.D.

Corollary 3.4: Let n>m>k, and D5n2m. We then have:

dim Pm,n
~k! 5H 4~k11!2,¬ k>D

~k11!~3k1D13!,¬ D.k
.

If m,k, dim Pm,n
(k) is no longer finite, as arbitrary differential operators are involved in this case.

B. Case N>2

We now examine briefly some aspects of the case N.2. Let n1<•••<nN be non-negative
integers, and let D i j5nj2ni , where j. i . Consider the following set of N3N matrix differential
operators:8

Te5diag~Jn1
e ,...,JnN

e !, e51,0,2,

Pi5diag~0,...,0,1,0,...,0!,

Qa~ i , j !5zal i j ,¬ i. j , a50,...,D j i ,

Q̄a~ i , j !5q̄a~nj ,D i j !l i j ,¬ j. i , a50,...,D i j ,¬ ~13!

where (l i j )pq5d ipd jq . It can be readily verified that the operators in ~13! preserve P n1 ,...,nN
. A

complication arising when N.2 is to define asuitable composition law between the latter opera-
tors. In the approach of Brihayeet al.,8 this composition law is defined to be an anticommutator if
both operators are off-diagonal and a commutator otherwise, but the algebra thus obtained is no
longer a Lie superalgebra, since the anticommutator of two off-diagonal operators is not always a
diagonal one. This reflects the fact that theZ2-grading we introduced for N52 ~i.e. classifying the
operators in diagonal and off-diagonal! doesnot definean associative superalgebra inDN3N when
N.2, for the usual product ~composition! of two off-diagonal matrix differential operators is not
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necessarily diagonal. A possible generalization of this Z2-grading endowing DN3N with an asso-
ciative superalgebra structure can be defined as follows. An operator T5al i j , where aPD , is
said to be even ~respectively odd! if i1 j is even ~respectively odd!. Hence, any diagonal operator
is even. We can likewise use this grading and the generalized Lie product ~8! to construct a Lie
superalgebrastructure inDN3N . It isnot clear, however, whether this construction is really useful,
and so it wil l not be further discussed.

As remarked by Brihaye et al.,8 Theorem 3.2 can be easily generalized to arbitrary N, the
operators ~13! playing the same role as those in ~6! for N52. Moreover, it is not difficult to show
that dim P n1 ,...,nN

(k) is still independent of the ni ’ s if they are large enough and their differences are

small enough. More precisely, if n1>k, we have:

dim P n1 ,...,nN
~k! 5H N2~k11!2,¬ k.D1N

N~N11!

2
~k11!21~k11!(

i, j
u i j ,¬ D1N.k,

whereu i j5D i j if D i j.k, andu i j5k11 if D i j<k. If k.n1 , arbitrary differential operators are
involved and thus P n1 ,...,nN

(k) is infinite-dimensional.

Although no attempt wil l bemadehere to give aformal definition of a QESalgebra of matrix
differential operators, it is clear that Definition 2.1 of a QESdifferential operator is too restrictive
in the matrix case. Indeed, the results of this section suggest that in the matrix case one should
include at least Lie superalgebras of differential operators—not necessarily finite-dimensional nor
spanned by first order operators—preserving afinite-dimensional module of functions among the
class of matrix QES algebras. In any case, it is intuitively clear that PVSP operators are just a
particular class of QES operators.

IV. SPIN 1/2 SCHRÖDINGER OPERATORS

From now on we wil l deal only with 232 matrix second order differential operators ~N5k
52 in the notation of the previous sections!. We start by formally defining the class of matrix
Schrödinger operators:

Definition 4.1: A Schrödinger-like operator is asecond order differential operator of the form
H52]x

21V(x), where V is an arbitrary 232 (complex) matrix. A Schrödinger operator (or
Hamiltonian) is a Hermitian Schrödinger-like operator, i.e. the matrix V is of the form

V5S v1~x! v* ~x!

v~x! v2~x!
D ,¬ ~14!

where v1 and v2 are real-valued functions and v is an arbitrary complex-valued function.
The notion of equivalence we shall use for matrix differential operators is the same as in the

scalar case ~see Definition 2.2!, where now the gauge factor U(z) is an invertible complex 2
32 matrix. We wil l be interested in constructing one-dimensional Schrödinger operators H
equivalent to a second order differential operator T in Pm,n

(2) , with D5n2m>0. This equivalence
can then be used to construct m1n12 eigenfunctions of H from the corresponding ones of T
obtained by diagonalization of the (m1n12)3(m1n12) Hermitian matrix representing T in
Pm,n . We wil l assume that m>2, and thus T is a polynomial in the operators ~6!, according to
Theorem 3.2

Let T:Pm,n→Pm,n (n>m>2) beasecond-order PVSPoperator. From Theorem 3.2 wehave

2T5A2~z!]z
21A1~z!]z1A0~z!,¬ ~15!
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where the Ai ’ s are 232 matrices with polynomial entries ~in this section, capital letters wil l be
reserved for matrices!. Assume that T(z) is equivalent to a Schrödinger operator H(x) under a
gauge transformation U(z) and a local change of variable by a real-valued function x5w(z), i.e.

2T~z!52U21~z!H~x!U~z!5]x
212A]x2B,¬ ~16!

with

A~x!5Ũ21Ũx ,¬ B~x!5Ũ21VŨ2A22Ax ,¬ Ũ~x!5U~w21~x!!.

Here and in what follows, a subscripted x denotes derivation with respect to x, while derivatives
with respect to z wil l be denoted with a prime 8. Expressing T(z) in the variable x, we obtain the
operator T̃(x) given by

2T̃~x!5@A2w82]x
21~A1w81A2w9!]x1A0#w21~x! ,¬ ~17!

and comparing with ~16! we conclude that A2 must be amultiple of the identity. It then follows
that the only monomials in Lemma3.3 which contribute to A2 are $(T6) r(T0)22r% r50

2 , and taking
into account the explicit form of the Te’ s ~see ~6!!, we conclude that A2 is a 4-th degree polyno-
mial p4 times the identity matrix. ~Unless otherwise stated, we wil l denote by pn(z) an arbitrary
polynomial in z of degreeat most n with complex coefficients.! Wealso deduce thatw(z) satisfies
the equation p4w8251, or

x5Ez 1

Ap4~s!
ds,¬ ~18!

and thus the coefficients of p4 must be real. Identifying the corresponding remaining terms in ~16!
and ~17!, we then get

A~x!5
1

2Ap4
SA12

1

2
p48DU

w21~x!

,¬ B~x!52A0uw21~x! .¬ ~19!

Thus, we have shown:
Theorem 4.2: Let T be aPVSP operator in Pm,n

(2) , with n>m>2. Then T is equivalent to a
Schrödinger-like operator if and only if it is of the form

2T5p4]z
21A1]z1A0 .¬ ~20!

The operator T is equivalent to a Schrödinger operator 2]x
21V(x) if and only if (20) holds, and

in addition there is an invertible matrix Ũ satisfying the differential equation

Ũx5ŨA¬ ~21!

and such that

V5ŨW̃Ũ21,¬ where¬ W̃5B1A21Ax ,¬ ~22!

is Hermitian (with x, A, and B given by (18) and (19)).
The eigenfunctions of the Hamiltonian H are of the form c(x)5ŨC̃ with C̃(x)

5C(w21(x)), where C(z) is an eigenfunction of T andc must satisfy suitable boundary con-
ditions to qualify as aphysical wave function.
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We note that once an invertible solution Ũ of equation ~21! has been found, any other
invertible solution is of the form U0Ũ for some U0 in GL~2,C!. In fact, multiplying Ũ by such
U0 is equivalent to performing a further constant scale transformation by U0 . In the scalar case
this additional freedom is absent, for differential operators are unaffected by scale transformations
by constant functions. Notealso that ascale transformation by an arbitrary constant matrix U0 will
not map every Hamiltonian into another Hamiltonian, unless U0 belongs to R13U(2).

A matrix differential operator wil l be called uncoupled if it is either upper or lower triangular.
SinceA2 in ~15! must be amultiple of the identity matrix, it follows that a PVSP operator of the
form ~20! wil l be automatically uncoupled whenever D.1, as none of the monomials ~12! can
then be present in T. Moreover, the following result shows that any Hamiltonian we may obtain
from T when D.1 wil l be essentially diagonal:

Proposition 4.3: Every Hamiltonian H obtained from an uncoupled PVSP operator T of the
form (20) is diagonal, up to equivalence.

Proof: If T is uncoupled, the integration of equation ~21! is straightforward. Multiplying Ũ
from the left by an appropriateU0 in R13U(2), we construct a new gauge factor uncoupled in
the same way as T. Using this new gauge factor, we obtain a Hamiltonian Ĥ given by

Ĥ5U0HU0
215U0ŨT̃~U0Ũ !21,

which is both diagonal and equivalent to the initial one. Q.E.D.
Consequently, the only cases we need to consider are D50,1.
There are two main difficulties associated with themethod just outlined for constructing QES

spin 1/2 Hamiltonians. In the first place, one needs to invert the elliptic integral ~18! in order to
compute z as a function of x, which is no easy task. Secondly, the differential equation ~21!
cannot in general be solved in closed form, thus preventing us from verifying the Hermiticity of
V. The former complication can be overcome, as we shall see in the next section. The latter is
more difficult to handle, although imposing further constraints on the initial PVSP operator will
contribute to simplify the problem, as shown in Section VI.

We shall finish this section with a few remarks on the physical significance of matrix Schrö-
dinger operators. First of all, one-dimensional 232 matrix Schrödinger operators can be obtained
by separation of variables from the three-dimensional Pauli Hamiltonian describing a spin 1/2
charged particle in non-relativistic quantum mechanics. Consider, indeed, the Pauli Hamiltonian

HPauli5~ i¹1eA!21ef2es•B,

where f and A5(A1,A2,A3) are respectively the scalar and vector potential of the external
electromagnetic field, B5“3A is themagnetic field, s5(s1,s2,s3) are the Pauli matrices, e is
theelectric charge, and physical units havebeen chosen so that \5c52m51. If , for example, the
vector and scalar potentials depend only on the x coordinate ~and we take, without loss of gen-
erality, A150! then HPauli obviously commutes with the y and z components of the linear mo-
mentum. The eigenfunctions of HPauli can then be sought in the form

ei ~pyy1pzz!c~x!;¬ py ,pzPR,

where the two-component spinorc(x) is an eigenfunction of the one-dimensional matrix Schro¨-
dinger operator with potential ~14! given by

v j~x!5ef1~eA22py!
21~eA32pz!

21~21! je
dA2

dx
,¬ j51,2,

v~x!5 ie
dA3

dx
.
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More surprisingly, one-dimensional 232 matrix operators are also directly related to Dirac’s
relativistic equation for aspin 1/2 charged particle in an external electromagnetic field. To see this,
let us write the latter equation as

~ i ]”2eA”2m!C~x!50, ~23!

where a”5gmam , the gm’ s are 434 matrices satisfying

$gm,gn%52gmn,

the metric tensor (gmn)5diag(1,21,21,21) is used to raise and lower indices,]m5]/]xm, x0

5t, A05f andm is the particle’s mass. Multiplying Dirac’s equation by the operatori ]”2eA”
1m we easily arrive at the second-order equation

F ~ i ]2eA!22m22
e

2
FmnsmnGC50,¬ ~24!

wheresmn5 i /2@gm,gn# and Fmn5]mAn2]nAm is theelectromagnetic field strength tensor. In the
chiral representation of the gammamatrices,19 ~24! decouples into two independent equations for
the upper and lower components C6(x) of C(x), namely ~cf. Ref. 20!

@~ i ]2eA!22m21es•~B7 iE!#C650.

If the electromagnetic four-potential Am is time-independent, and we look for solutions of Dirac’s
equation with well-defined energy E, i.e. we set C65e2 iEtc6(x,y,z), we obtain the following
equation for c6 :

@~ i¹1eA!22~E2eA0!21m22es•~B7 iE!#c650,¬ ~25!

which has the same structure asPauli’s non-relativistic equation. Just aswas the casewith Pauli’s
equation, separation of variables in ~25! often leads to the eigenvalue problem for a one-
dimensional matrix Schrödinger operator. For instance, suppose that A050 and that A is of the
form

A5Aw~r!ew1Az~r!ez

in cylindrical coordinates (r,w,z). The left-hand side of~25! then commutes with thez compo-
nents of the linear momentum (2 i ]z) and the total angular momentum (2 i ]w11/2s3), which
allows us to look for solutions of ~25! of the form

c~r,w,z!5eipzzSR1~r!ei ~ j z21/2!w

R2~r!ei ~ j z11/2!wD ,¬ pzPR, j zPN1
1

2
.¬ ~26!

Here we have dropped the subscript 6, sincec1 andc2 satisfy the same equation. Substituting
~26! into ~25! weobtain that the two-component spinor ( f 1(x) f 2(x))

t5x1/2(R1(x) R2(x))
t is an

eigenfunction of the one-dimensional 232 matrix Schrödinger operator on ~0,̀ ! with potential

V~x!5~pz2eAz~x!!21e2Aw
2~x!1e

dAz
dx

~x!s22e
Aw~x!

x
~2 j z2s3!1

j z
x2

~ j z2s3!,

with eigenvalueE22m2 and boundary condition f 1(0)5 f 2(0)50. Seealso Ref. 21 for adifferent
approach.
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V. GL(2) ACTION AND CANONICAL FORMS

In this section we wil l study how the GL~2! action on the projective line RP1 induces an
automorphism in the superalgebras sD generated by the operators ~6!. Thiswil l allow us to reduce
the polynomial p4(z) to some simple canonical forms, facilitating the evaluation of the integral
~18!. These ideas were first applied in the context of QES systems to analyze the normalizability
of the wave functions of scalar QESHamiltonians.5 We introduce some definitions and results in
the scalar case, and then show how to extend these concepts to the matrix superalgebras sD .

The action of GL(2)5GL(2,R) on RP1 via linear fractional or Möbius transformations,

z°w5
az1b

gz1d
,¬ C5S a b

g d D , uCu5ad2bgÞ0, ~27!

induces an action on P n , mapping a polynomial p(w) to the polynomial p̄(z) given by

p̄~z!5~gz1d!npS az1b

gz1d D .¬ ~28!

This defines an irreducible multiplier representation of GL~2! in P n ,
22 which wil l be denoted by

rn,0 . Since the infinitesimal generators of this multiplier representation coincide with the genera-
tors of gn , cf. ~4!, it follows that the representationrn,0 induces an automorphism of the Lie
algebra ĝn spanned by the Jn

e ’ s in ~5!.5 Performing the explicit scale transformation and change of
variable,

Jn
e~w!°~gz1d!nJn

e S az1b

gz1d D ~gz1d!2n,¬ ~29!

we obtain:

S Jn1Jn0
J2

D °
1

uCu S a2 2ab b2

ag ad1bg bd

g2 2gd d2
D S Jn1Jn0

J2
D .

Therefore, the Jn
e ’ s transform according to the representationr2,215r2,0^ det21 of GL~2!, where

det21 is the reciprocal of the representation det:C°uCu. It is convenient at this stage to introduce
a larger class of representations of GL~2!:

Definition 5.1: Let n>0, i be integers. The (irreducible) multiplier representationrn,i of
GL~2! on P n is defined by

p~w!° p̄~z!5~ad2bg! i~gz1d!npS az1b

gz1d D .
We note the isomorphism betweenrn,i andrn,0^deti. As shown in Ref. 5, a second-degree

polynomial in the Jn
e ’ s ~in fact, any operator in P n

(2) if n>2, or any QES operator on the line
modulo equivalence, according to Theorems 2.3 and 2.4! may be written as

p2~Jn
e !5p]z

21S q2
n21

2
p8D ]z1r2

n

2
q81

n~n21!

12
p9,¬ ~30!

where p, q, and r are polynomials in z of degrees 4, 2, and 0 respectively. The transformation of
p2(Jn

e) under the action ~29! is easily described in terms of the triple (p,q,r ).5
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Lemma 5.2: Let p2 be asecond-degree polynomial in the operators Jn
e(w), determined by the

triple (p(w),q(w),r ). Then, the transformed polynomial p̄2 under the GL~2! action (29) is de-
termined by the triple ( p̄(z),q̄(z), r̄ ) given by

p̄~z!5
~gz1d!4

uCu2
pS az1b

gz1d D ,¬ q̄~z!5
~gz1d!2

uCu
qS az1b

gz1d D ,¬ r̄5r .

Therefore, a second-degree polynomial p2 in the Jn
e ’ s transforms according to the direct sum

representationr4,22% r2,21% r0,0 under the GL~2! action ~29!. One can choose a particularly
simple representative of theGL~2! orbit generated by p2 by placing the polynomial p ~assumed to
be real! in its associated triple (p,q,r ) in canonical form.23

Theorem 5.3: Every non-zero quartic real polynomial p(z) transforming under the represen-
tation r4,22 of GL~2! is equivalent to one of the following canonical forms:

~1! n~z41tz211!, tÞ62, ~5! n~z221!,

~2! n~z41tz221!,¬ ~6! nz2,

~3! n~z211!2,¬ ~7! z,

~4! n~z211!,¬ ~8! 1,

~31!

wherenÞ0 and t are real numbers.
We now generalize these results to the matrix case. The induced action of GL~2! on

P n2D,n analogous to ~28! is:

S p1~w!

p2~w! D°S p̄1~z!

p̄2~z! D5Û~z!S p1~w~z!!

p2~w~z!! D ,
where

Û~z!5diag~~gz1d!n2D,~gz1d!n!,

and w(z) is given by ~27!. This representation of GL~2! in P n2D,n is obviously isomorphic to
rn2D,0% rn,0 . The following Lemma describes the induced action on sD :

Lemma 5.4: The action of GL~2! on sD given by

X~w!°X̄~z!5Û~z!XS az1b

gz1d D Û21~z!,¬ XPsD ,¬ ~32!

defines a Lie superalgebra automorphism. The generators of sD , cf. (6), transform according to
the following irreducible representations:

$Te%→r2,21 ,¬ $J%→r0,0,

$Qa%→rD,0 ,¬ $Q̄a%→rD,2D .

A straightforward generalization of equation ~30! and of Lemma 5.2 to a second-degree
polynomial in the Te’ s shows that the ~real! polynomial p4 in ~20! transforms according to the
representationr4,22 under theGL~2! action ~32!. Wewil l henceforth assume that p4 is one of the
canonical forms given in Theorem 5.3. The integral ~18! and the inverse z5w21(x) can then be
easily computed for each of these canonical forms.9

Before finishing this section, let uspoint out that equations ~21! and ~22! adopt a simpler form
in the variable z, because in that case only rational functions appear. Explicitly, the equation for
the gauge factor reads:
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U85UÂ,¬ with¬ Â~z!5
Auw~z!

Ap4
5

1

2p4
SA12

1

2
p48D ,¬ ~33!

while Ũ and W̃ in equation ~22! are substituted by U andW, where

W52A01p4Â81p4Â
21 1

2 p48Â.¬ ~34!

Wenow useTheorem 3.2, Lemma3.3 and theexplicit form of theoperators ~6! to compute Â and
A0 for themost general operator in P n2D,n

(2) of the form ~20!, in the casesD50, 1. We denote by
pn

a the polynomial ( i50
n a iz

i , wherea i are arbitrary complex numbers. If the polynomial p4 isnot
one of the first three canonical forms, we obtain:

Case D50:

p4Â5S p2a p2
b

p2
c p2

dD ,¬ A05S â022na2z¬ b̂022nb2z

ĉ022nc2z¬ d̂022nd2z
D .¬ ~35!

Case D51:

p4Â5S p2a p1
b

p3
c p2

dD ,¬ A05S â022~n21!a2z¬ 22nb1

ĉ01 ĉ1z22~n21!c3z
2 d̂022nd2z

D ,¬ ~36!

where â0 , b̂0 , ĉ0 , ĉ1 , and d̂0 are arbitrary complex numbers. If p4 is one of the first three
canonical forms, the following extra terms are present in p4Â and A0 :

p4Â→2diag~~n2D!nz3,nnz3!,¬ ~37!

A0→1diag~~n2D!~n2D21!nz2,n~n21!nz2!.¬ ~38!

VI. THE GAUGE FACTOR

In this section we wil l deal with the differential equation ~33! for the gauge factor U(z). As
remarked in Section IV, this equation cannot be solved in closed form for every Â. Alternatively,
~33! can be written as two ~uncoupled! identical first-order linear systems; unfortunately, the
associated scalar second-order ordinary differential equation is not any of the standard equations
of Mathematical Physics.

However, if we restrict ourselves to matrices Â satisfying the equation

F Â~z!,E
z0

z

Â~s!dsG50,¬ ~39!

for some z0PR, we can readily integrate the gauge equation ~33!. Recall that this condition on
Â was indeed verified by the QES Schrödinger operator found by Shifman and Turbiner.6 If ~39!
is satisfied, weshall say that weare in thecommuting case. In this case, thegeneral solution of the
gauge equation is given by:

U~z!5U0 exp E
z0

z

Â~s!ds,¬ ~40!
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where U0 is in GL(2,C). We wil l make use of the following elementary Lemma to describe the
most general form of Â in the commuting case:

Lemma 6.1: Let M (z) be a 232 matrix satisfying equation (39). Then M is of the form:

M5 f ~z!M01g~z!,¬ ~41!

where f and g are scalar functions, and M0 is a 232 constant matrix.
With this Lemma in mind, looking at the expressions for Â(D50,1) that we obtained in

Section V, cf. ~35!–~37!, we find that the most general Â satisfying ~39! is of the form

p4Â5 p̂2~z!1Ǎ~z!,

where, as usual, p̂2 denotes a second-degree polynomial in z with complex coefficients, and the
matrix Ǎ is given in Table I.

Note that if D51 and p4 is one of the first three canonical forms, every Hamiltonian we can
possibly obtain wil l be diagonal, modulo equivalence.

Finally, let us remark that in the non-commuting case ~that is, when @Â,*zÂ#Þ0), we may
still be able to integrate ~33! explicitly by imposing other constraints on Â, as e.g. assuming it is
uncoupled. Alternatively, if p4 is not any of thefirst threecanonical forms, and weassume that the
columns ~or rows! of Â are proportional to each other ~the ratio of the respective entries being a
constant!, we can also reduce ~33! to quadratures. Unfortunately, we have not been able to find
any interesting examples of QES Hamiltonians in the non-commuting case.

VII. EXAMPLES

In this final section we exhibit some new examples of spin 1/2 Schrödinger operators equiva-
lent to aPVSPoperator of the form ~20!. In the previous section wehave seen how, by restricting
ourselves to the commuting case, we were able to integrate equation ~33! explicitly. This is not,
however, the end of the problem, for we must still check that the matrix

V5UWU21uw21~x! ,¬ ~42!

withW given by ~34!, is Hermitian. Moreover, one has to make sure that the algebraic eigenfunc-
tionsof H ~of the formUCuz5w(x) , withC(z)PP n2D,n! satisfy appropriate boundary conditions.
We shall restrict ourselves in this paper to QES Hamiltonians with square integrable eigenfunc-
tions, corresponding to bound states of the system. Wewil l also require the expected value of the
potential V to be bounded from below, i.e.

^c,Vc&>cici2,¬ with cPL2~R! %L2~R!,¬ ~43!

for some cPR. Again, if we start with the most general PVSP operator of the form ~20! and we
limi t ourselves to the commuting case, even if no conceptual difficulty is involved, the algebraic

TABLE I. Matrix Ǎ(z) for the canonical forms128~a,b,g P C!.

p4 in canonical forms 1-3¬ p4 in canonical forms 4-8

D50
p2Sa b

g 2a
D2nnz3 p2Sa b

g 2a
D

D51
~p22nz3!Sn21 0

g n
D p1Sa b

g 2a
D, p2Sa 0

g 2a
D, p3S0 0

g 0
D
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constraints imposed by all these conditions turn out to be very complicated to solve in full
generality. This situation is analogous to what we find when trying to construct scalar QES
Schrödinger operators in more than one spatial dimension.4,9 In fact, in the commuting case with
D50 we were not able to find any non-trivial example satisfying all the required physical con-
ditions. We conjecture that in this case all QES potentials are either non-normalizable, not
bounded from below, or diagonalizable by a constant gauge transformation.

We now present some relevant examples of QES spin 1/2 Hamiltonians for the commuting
case with D51.

Example 1: Let T be the four-parameter PVSP operator given by

2T5~T0!212a2T
112~n11!T022JT012b1Q̄012b0Q̄122b1Q0T

0

22b0Q0T
22~4a2b01~3n11!b1!Q024a2b1Q12S 2d̂01n1

1

2D J,
with all the parameters real. Since p45z2 we are in case 6 of Theorem 5.3. Solving equation ~18!
for z, we obtain z5ex. The gauge factor reads:

U~z!5Azea2zS cos u¬ sin u

2sin u¬ cos uD ,¬ where u52
b0
z

1b1 log z.

Using ~42!, we obtain a potential V(x) with entries given by ~see ~14!!:

v j52b0
2e22x22b0b1e

2x1~2n11!a2e
x1a2

2e2x1~21! j~a~x!cos 2ũ2b~x!sin 2ũ!,¬ j51,2

v5a~x!sin 2ũ1b~x!cos 2ũ,

where ũ5b1x2b0e
2x, and

a~x!52
d̂0
2

1a2e
x, b~x!5~2n11!b112a2~b01b1e

x!.

We have ignored a constant multiple of the identity in V, which is equivalent to fixing a new
origin in the energy scale. It may be easily verified that the expected value of the potential is
bounded from below, that is, equation ~43! holds, if and only if b050. ~Note, however, that even
in this case the amplitude of the oscillations of v(x) tends to infinity as x→1`.! Finally, the
condition a2,0 is necessary and sufficient to ensure the square integrability of the eigenfunctions
c(x).

Example 2: As our second example, we consider:

2T5T2T012a1T
01~ 2a01n2 1

2!T22JT212b1Q̄022b1Q0T
0

2b1~4a013n11!Q024a1b1Q112~2â02a1!J,

where all the coefficients are real, and b1Þ0. Since p45z ~case 7!, we have z5x2/4. The gauge
factor is chosen as follows:

U~z!5za0ea1zS cos b1z¬ sin b1z

2sin b1z¬ cos b1z
D .

The entries of the potential V(x) are given by
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v j5
2a0~2a021!

x2
1
1

4
~a1

22b1
2!x21~21! j S â0 cosb1x22

2a~x!sin
b1x

2

2 D ,
v5â0 sin

b1x
2

2
1a~x!cos

b1x
2

2
,

with j51, 2, anda(x) is defined by

a~x!5
b1
2

~4a014n111a1x
2!.

We first note that the potential is singular at the origin unless a050,1/2. Let us introduce the
parameter l52a021, in terms of which the coefficient of x22 in v j is l(l11). If l is a
non-negative integer l , we may regard

~2]x
21V~x!2E!c~x!50, 0,x,`, ~44!

as the radial equation obtained after separating variables in the three-dimensional Schrödinger
equation with a spherically symmetric Hamiltonian given by

Ĥ52D1U~r !,¬ with¬ U~x!5V~x!2
l ~ l11!

x2
,

whereD denotes the usual flat Laplacian. Given anon-negative integer l and a spherical harmonic
Ylm(u,f), if c is an eigenfunction for the equation~44! satisfying

lim
x→01

c~x!50,¬ ~45!

then

Ĉ~r ,u,f!5
c~r !

r
Ylm~u,f!

wil l be an eigenfunction for Ĥ with angular momentum l . If l is not a non-negative integer, we
shall consider ~44! as the radial equation for the singular potential U(r )5V(r ) at zero angular
momentum. The potential U(r ) is physically meaningful, in the sense that the Hamiltonian Ĥ
admits self-adjoint extensions and its spectrum is bounded from below, whenever lÞ21/2.24,5

The boundary condition ~45! must be satisfied in the singular case for all values of l. This
boundary condition is verified if and only if a0.0. Theexpected valueof thepotential is bounded
from below whenever

Ua1b1U.11&.

Finally, the conditions

a0>0,¬ a1,0,

ensure that c lies in L2(I )%L2(I ), where I5@0,̀ ) in the singular case or at zero angular mo-
mentum, or I5R in the non-singular one-dimensional case.
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