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The algebrat structures underlyirg quasi-exat solvability for spin 1/2 Hamilto-
niars in one dimensia are studial in detail Necessar and sufficiert conditiors for
a matrix second-ordedifferentid operato preservig a spa@ of wave functions
with polynomid componerg to be equivalen to a Schralinger operato are found.
Systematt simplificatiors of these conditiors are analyzedand are then applied to
the constructim of new example of multi-paramete QES spin 1/2 Hamiltoniarsin
one dimension © 1997 American Institute of Physics[S0022-24887)03905-4

I. INTRODUCTION

Symmetris hawe traditionally played an essentiarole in quantun mechanics For a few
remarkabd Hamiltonians the knowledge of enoudn symmetries leads to a complet characteriza-
tion of the spectrun by algebrai methods: In general however the spectrun of an arbitrary
Hamiltonian cannda be calculatel analytically During the lag decade a remarkabé intermediate
class of quasi-exactl solvabk (QES spectra problens was introduced for which afinite pait of
the spectrun can be computel by purely algebrac methods’™ The key featue in the latter class
of spectra problens is tha the Hamiltonian H is expressil# as aquadratt combinatia of the
generatas of a finite-dimensionhLie algeba g of first orde differentid operatos preservig a
finite-dimensionamoduk of smooh functiors./". Thus H restrics to alinear transformatio in
the finite-dimensionhvecta spae ./, ard therefoe pat of its spectrun can be computel by
matrix eigenvale methods Appropriat bounday conditiors mug be imposeal so tha the eigen-
functiors thus obtainel qualify as physicd wawve functions as e.g, squae integrability if they
represenhbourd states of the systen®

Thes ideas originally introducel for scala Hamiltoniars describirg spinles particles can be
generalizd to include particles with spin The first step in this direction was taken by Shifman and
Turbiner® using the fact tha a Hamiltonian for a spin 1/2 particke in d spatid dimensiors can be
constructd from alLie superalgela of first orde differentid operatosin d ordinay (commuting
variables and one Grassman (anticommuting variable Alternatively, 2x 2 matrices (or NX N
matrices for particles of arbitray spirf) can be usel to represehthe Grassman variable How-
ever, in stak contras with the scala case very few example of matrix QES Schralinger opera-
tors hawe been found thus far.® There are two importart conceptubreasos for this fact First, the
algebrat structure underlyirg partid integrability in the matrix ca® are richer and less under-
stodl than in the scala case For one thing, as mentione before for matrix Hamiltoniars Lie
superalgebmaof matrix differentid operatos naturally come into play, wherea in the scala case
only Lie algebra neeal be consideredMoreover as we shal explan in Sectia lll, one even has
to go beyord Lie superalgebmof matrix differentid operatos in orde to explan quasi-exact
solvability in the matrix case’® Second® evey scala seconl orde differentid operato in one
dimensim can be transforme into a Schralinger operato of the form —a§+V(x) by a suitable
chang of the independenvariabke x ard a locd rescalirg of the wawve function For matrix
differentid operatorsthe analoge of this result—V(x) being now a Hermitian matrix of smooth
functions—& no longe true unless the operato satisfies quite stringen conditions as we shal see
in detal in Sectim V.

The aim of this pape isto achiee a bette theoretichunderstandig of quasi-exatsolvability
in the matrix case which will enabé us to construt new exampla of matrix QES Schralinger
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operatorsTo this end in Sectiors I ard I we study the algebrat properties of certan algebras
of matrix QES operatorsreviewing the literature on the subje¢ and obtainirg new resuls as well.

In particular we give acomplet characterizatio of the form of a QES matrix differentid operator
preservilg a finite-dimensionh spa@ of wawve functiors with polynomid componentsFor the

importart particula cas of spin 1/2 particles we derive in Section IV necessar and sufficient
conditiors for a QES operato to be equivalen to a non-trivid Schralinge operator These
conditiors turn out to be too complicatel to be solved in full generality and so in Sectiors V and
VI we introduce somre key simplificatiors thet will prove very usefu in the task of finding explicit

examples Finally, the previows resuls are applied in Sectim VII to the constructiom of new
example of multi-paramete QES spin 1/2 Hamiltoniars in one dimension.

II. SCALAR QES OPERATORS

We stat with the scala case introducirg the bast conceps and definitiors ard statirg two
theorens for the one-dimensionacase which will play an importarnt role in what follows. Since
the resuls of this sectian are fairly standardwe will skip mary detaik ard all the proofs referring
the reade to the review articles (Ref. 4) and (Ref. 9) for an in-deph study.

Let M denoe an open subseé of RY, ard let (M) be the Lie algebm of first orde differ-
entid operators

d
E &(2) ——+7;(z) z=(z%,...2% e M,

acting on C*(M), the Lie bracke being definal as the usud commutato betwee operators:
[X,Y]=XY=YX,~ X,Ye ZHM).

Definition 2.1: A finite-dimensionkLie subalgeba g of (M) is called quasi-exact} solv-
able (QES if it preserve afinite-dimensionemoduk ./ 'CC*(M). A differentid operata T is
QESif it lies in the universa envelopiy algebra 74(g) of a QES Lie algebma g.

In general quasi-exat solvability of a given differentid operato T cannd be ascertained
a priori. Therefore the procedue usually followed consiss in classifyirg QES Lie algebras
modub a suitabk equivalene relation and then using the canonich forms in the classification
thus obtainel to construt QES operators. o

Definition 2.2 Two differentid operatos T(z) and T(z) are equivalen if they are related by
a chang of the independenvariables

z=¢(2) (o
and alocal scak transformatio by a non-vanishig function U(2), i.e.
T@=U@)T(2U Y 2)~ @

The correspondig notion of equivalene for QES algebra follows directly, i.e. two QES Lie
algebra g ard g are equivalen if their elemens can be mappel into ead othe by a fixed
transformatia (1)-(2). Their associatd finite-dimensionamodules. /" and ./ are then related by

A =Ut 3)

the functiors being expressd in the appropria¢ coordinates The locd classificatiom of finite-
dimensionhQES Lie algebra unde the abowe notion of equivalene has alread been completed
for the ca® of one ard two (red or complex variables Here we shal neal only the one-
dimensionhcase’®122
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Theorem 2.3 Evely (non-singulaj QES Lie algebma in one (rea or comple) variable is
locally equivalen to a subalgeba of one of the Lie algebras

gn=Spand,,zd,,2%9,—nz,1} - (4)

where ne N. The associatd g,-moduk is./,,=%,, the spae of polynomias of degres at most
n.
(The two-dimensionh case which is considerabl more complicate but is not needé for the
sequelis discussd in Refs 13, 12 ard 14
__According to the previows theorem evely one-dimensiona(scalay QES differentid operator
T islocally equivalento an operate T € 72(g,,) preservig 7, for asuitabkn. A partid converse
of the latter resut follows from the following remarkabé theoren due to Turbiner!®

Theorem 2.4 Let T be ak-th order linear differentid operata preservimy 7%, . We then
have:

(i)  1f n=k, then T®) may be representd by a k-th degree polynomid in the operators

n

3 =20,—nz~ ngzaz—z,ﬂ J,=d_=d,.~ (5)

() 1fk>n, then TW=T4"*+T, wher T is alinear differentid operata of order k—n
—1,and T is alinear differentid operata of order at mog n satisfyirg (i).

+

The operatos {J,, ,Jg,J‘} definad abowe span a QES Lie algeba g,, isomorphc to s[(2), and the
Lie algebra g,, in Theoren 2.3 are simply a centrd extensim by the constan functiors of the
correspondig g, .

Ill. ALGEBRAI C PROPERTIES OF PVSP OPERATORS

In the lag section we hawe sea tha evel scala QES scala differentid operato in one
variabk is essentialf (up to equivalencg a polynomiad in the generatos of a Lie algeba g,
preservig &, (for suitabk n). When working with vector-value wave functions the natural
generalizatia of 7, is the polynomid vectos spae ;:’/Pnl ,,,,, nN=;:’/fnlea---eay"—>nN, with elements
W(2)=(1(2),....¥n(2))! sud tha eadr componentiy; is apolynomid of degre at mog n; with
comple coefficients.

Definition 3.1. An NXN matrix differentid operata T is called polynomid vecta space
preservirg (PVSP if it preserve ;'9/'>nl ”N:%‘l@ e @:’an for somre non-negatie integes n; ,
i=1,..N.

mog k preservim :'J)nl _____
studyirg matrix PVSP differentid operators As we will be mainly concernd with spin 1/2
particles the cae N=2 deserve speci4 attention.

A. Case N=2

Let n=A be non-negatie integers ard conside the following se& of matrix differential
operators:

o J_, 0 o P, 0 - J- o) J_E
- J) - J) 0~ J7) 2

n+A O
0~ n/’
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Q,=2z% -~ Q,=0q,(n,A)o*, a=0,..A, (6)
with
A—a
q_a(n,A)=kH (zd,—n+A—Kk)a% = (7)
=1

where we hawe adopte the conventia tha a produd with its lower limit greate than the upper
ore is automaticaly 1, and
0 1
ot=(o7)t= .

0 0

It can be easily checkel tha the 6+2A operatos in (6) (and also ary polynomid thereoj
presere 7,_, n. We now introdue a Z,-gradirg in the se of 2X 2 matrix differentid operators
YD, as follows: an operator
a b
T=

c d

where a,b,c,d belorg to the spae & of scala differentid operatorsis sad to be even if b=c
=0, ard odd if a=d=0. Thereforethe T'sand J are even ard the Q’sand Q’s odd This grading,
combina with the usua produd (composition of operatorsendovs &, , with an associative
superalgela structure We can alo construt a Lie superalgelain &, ., by defining a general-
ized Lie produd by

[A,B]s=AB—(—1)duAduBgA (8

However this produd does not close within the vecta spae spanne by our operatos (6), except
for A=0,1 The explicit commutatim relatiors are as follows:®

[TH, T ]=-2T%- [T, TO1=%T",

A A —
[J,TG]ZO’_‘ [J’Qa]:_EQa!_' [‘Jan]:EQay

A
—a+§ (1+e)

_ A _
[QavTe]: Qa+5!_' [Qa!TE]:(a_§(1_6)>Qae!

— M (TP a=p
{Qa ,QB}:[(T-F)B_QMECU ,82(1,
{Qu Qst={Qu.Qp} =0 (9)
wheree=+,0,—, andM .z is given for o=, by

A—a—1 B-1

M op= _HO (TO+J.—j —,BPz)kﬂo (T°4+J—k—(A—a)Py)
& -

with J;.=A—-1-J, and
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10
Plzl_Pzz 0 0 .

Asshownin Ref. 7, M,z can be expressé in terms of TO, J, the identity, and the Casim for
the even subalgebra

m(m+2) 0

0- n(n+2)/’ (10

1
C=—5(TT +T T+)+T°T°—4(

where m=n—A, independenyl from n ard the projectos P, ard P,. It can be readily verified
tha {Q,,Qp} gives a A-th orde even differentid operatoy so the vecta spa@ spannd by the
operatos in (6) is not closed unde the Lie produd (8) wheneve A=2. Moreover it is not
difficult to show tha the Lie superalgelas, generatd by the operatos (6) is in this cas infinite

dimensional Indeed if we commue {Q,,Qo}=(T")* with {Q,,Q,}=(T")? iteratively we
obtain monomiasin T*, T%, T~ of increasingy highe order For A =1 the underlyirg algebraic
structue is the classich simple Lie superalgel osp(2,2),*® wherea for A=0 it is h;®s[(2),

whete b, is the 3-dimensionaHeisenbeg superalgebraAs remarkel in Ref. 7, in this latter case
we can leawe the gradirg asice ard repla@ J=1 by J=o03, endirg up with the Lie algebra
sl(2)@sl(2).

We now stae the analoge of Theoren 2.4 for PVSP operatos preservig 7%,_ 5  (aversion
of this theoren was first mentiona without prod by Turbineg for A=1 in Ref 16, ard subse-
quentl by Brihaye and Kosinsk for arbitray A, Ref. 7). It turns out that the operatos (6) play the
sane role in the matrix cas asthe J's in (5) do in the scala one.

Theorem 3.2 Let n=m, and A=n—m. Let T® be ak-th order differentid operata in
AR . We then have

(i) 1f m=k, then T® is apolynomid in the operatoss (6), with J replaced by Jif A=0.
(i) Ifn=k>m, then T®=Tg™ 14T, where T and T are matrix linear differentid operators

of the form
ak-m=1 o\ _ [am™ pw
T={ gem-1) 0)” T:(E (m aao)'
whete the superscrips indicate the highes possibé derivative in eac entry, and T satisfies
OF

(i) If k>n, then T(")—Ta”+1+? ‘where T is a 2X 2 matrix linear differentid operato of
order k—n—1, and T.7 mn—Zmn IS alinear PVS operato of order at mog n verifying

(i) or (ii).

The prod of thes resuls is basel on a straightforwad analysis using Theoren 2.4, of the action
of the componerg of T® on Zmn- A somewhaweake versim of the previows theorem namely
that ary differentid operato preservig 7, , can be expresse as the sum of a polynomid in the
generatcs of s, plus adifferentid operate annihilatirg 7, ,,, follows directly from Burnside’s
theorem'”*® applied to the complexificatian of s, .

The nex isste to be addresse is to find out the numbe of parametes determinirg ageneric
k-th order linear differentid operato preservig 7, ,, tha is, the dimensim of 749 . In the
scala case ary k-th degree polynomid in J; , JO J~ may be constructd from the monomials
{(37) (3D, .k, ard so dim /fk)—(k+ 1)2 if n=k.*® Remarkablyin the matrix
ca® we hawe dim /‘nf?n=4(k+ 1)? independenyl of m and n, provided m=k=n-m,’ as a
consequereof the following Lemma:

J. Math. Phys., Vol. 38, No. 6, June 1997

Copyright ©2001. All Rights Reserved.



2800 Finkel, Gonzalez-Lopez, and Rodriguez: QES spin 1/2 Schrodinger operators

Lemna 3.3 The following monomia$ form a bass of the vecta spae of polynomiat in the
operatoss (6) of differentid order at mog k:

XTHT) N o7 {Qu(TH)Faz17 50, ki (19
where X=1, J (or 3, if A=0), Qp, along with, if k=A:
{Q(T) (T H_g,~ {Qu(T )%y, 5=0,.. k=4~ (12

Proof. Linear independene of the monomias is straightforwad from the definition of the
operators Completenesis aconsequereof the following facts In the first place evey Jisa
linear combinatio of {1, J} (and analogous} for J). Secondly JQ,, is proportiona to Q,, and
Q.,Qz=0 (and the sane for the Q’s). Third, ary produc¢ Q,Q is adiagona PVSP operator and
thus expressil# through the T's ard J (or J). Finally, the formulas (a=1)

Q,T°=0Q T*+EQ 0, T =0 T°+EQ
a a—1 2 ar! a a—1 2 a—1:

Q_ozTO:Q_(J—lT_+ > Q—a—li

n — = — n
§+1)Qa,—| QaT+=Qa_1T°+(—+1

allow usto remowe evey T° and T~ (respectivgf T™) from the monomias with Q,, (respectively
Q,), a=1,...A. Q.E.D.
Corollary 3.4: Let n=m=k, and A=n—m. We then have

4(k+1)2- k=A

im AR —
dim 7 (k+1)(3k+A+3), A>K

If m<k, dim /‘nf)n is no longe finite, as arbitray differentid operatos are involved in this case.

B. Case N>2

We now examire briefly sone aspecs of the ca®e N>2. Let n;<---<ny be non-negative

integers and let Aj;=n;—n;, wher j>i. Conside the following se of NXN matrix differential
operatorgt

Te=diag(J5 ... Jf ), €=+.0,—,
P, =diag(0,...,0,1,0...,0),

Qa(i,j)=za)\ij,—| |>J, a=0,...,Aji,

Qa(i,j)=a(nj,Aij))\ij,—| _|>|, a=0,...,Aij,—| (13)

whete (\jj) pq= 6ipdjq - It can be readily verified tha the operatos in (13) presere ;?/>n1 ,,,,, ny- A

complicatian arising when N>2 is to define asuitabke composition law betwee the latter opera-
tors In the approab of Brihaye et al.,® this compositim law is definal to be an anticommutatoif

both operatos are off-diagond and a commutato otherwise but the algebg thus obtainel is no
longe a Lie superalgebrssince the anticommutatoof two off-diagona operatos is not always a
diagon& one This reflecs the fact that the Z,-gradirg we introducel for N=2 (i.e. classifyirg the
operatos in diagond and off-diagona) does nat defire an associatie superalgelain &y« when
N>2, for the usud produd (composition of two off-diagona matrix differentid operatos is not
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necessanl diagonal A possibé generalizatia of this Z,-gradirg endowirg %y« With an asso-
ciative superalgela structue can be definel as follows. An operato T=a\;;, where ac 7, is
sad to be even (respectivef odd if i +] is even (respectivef odd. Hence ary diagona operator
is even We can likewise use this gradirg and the generalizd Lie produg (8) to construt a Lie
superalgelastructuein Zy«y - Itisnat clear however whethe this constructio is really useful,
ard so it will not be further discussed.

As remarkel by Brihaye et al.® Theoren 3.2 can be easiy generalizd to arbitray N, the
operatos (13) playing the sane role as thos in (6) for N=2. Moreover it is nat difficult to show
tha dim 9/"") n, IS still independenof the n;’s if they are large enough ard therr difference are

.....

smal enough More precisely if n,=k, we have:

N2(k+1)2,~ k>A;y
dim #AY  ={ N(N+1)

N ——— (k+1)2+(k+1) Y, 6, A=k,
i<j
where 6;;=A;; if Aj;>k, and 6;;=k+1 if Ajj<k. If k>ny, arbitray differentid operatos are
involved and thus 7 /i") _____ oy 1S infinite-dimensional.

Although no attempn will be macke here to give aformd definition of a QES algeba of matrix
differentid operatorsit is clea that Definition 2.1 of a QES differentid operato is too restrictive
in the matrix case Indeed the resuls of this section suggestha in the matrix cas one should
include at leag Lie superalgebismof differentid operators—nbnecessanl finite-dimensionanor
spannd by first orda operators—preservina finite-dimensionamoduk of functions amorg the
class of matrix QES algebrasin ary case it is intuitively clea tha PVSP operatos are just a
particula class of QES operators.

IV. SPIN 1/2 SCHRODINGER OPERATORS

From now on we will ded only with 2xX2 matrix secoml orde differentid operatos (N=k
=2 in the notatim of the previos section$. We stat by formally defining the class of matrix
Schralinge operators:

Definition 4.1: A Schralinger-like operata is asecomnl order differentid operata of the form
H= —a>2<+V(x), where V is an arbitrary 2X2 (comple) matrix A Schralinge operata (or
Hamiltonian) is a Hermitian Schralinger-like operator, i.e. the matrix V is of the form

:(Ul(x) U*(X))

b0 030 49
where v, and v, are real-valueal functiors and v is an arbitrary complex-valud function

The notion of equivalene we shal use for matrix differentid operatos is the sane as in the
scala ca® (see Definition 2.2), wher now the gaug factar U(z) is an invertible complex 2
X2 matrix. We will be interestd in constructig one-dimensiorlaSchralinga operatos H
equivalen to a seconl orde differentid operato T in /{ﬁ’n , with A=n—m=0. This equivalence
can then be usal to constru¢ m+n+2 eigenfunctios of H from the correspondig ones of T
obtainal by diagonalizatio of the (m+n+2)X(m+n+2) Hermitian matrix representig T in
Pmn- We will assune tha m=2, and thus T is a polynomid in the operatos (6), accordiry to
Theoren 3.2

Let T: 7 n—Zmn (N=mM=2) be asecond-ordePVSP operator From Theoren 3.2 we have

—T=Ax(2) 32+ A1(2) 9+ Ag(2) - (15)
J. Math. Phys., Vol. 38, No. 6, June 1997
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whetre the A;’s are 2X 2 matrices with polynomid entries (in this section capitd letters will be
reserve for matrice$. Assune tha T(z) is equivalen to a Schralinge operato H(x) unde a
gauge transformatia U(z) and alocd chang of variabk by a real-valuel function x=¢(2), i.e.

—T(2)=-U"Y2)H(x)U(2)= 32+ 2Ad,— B, (16)
with
A(X)=U"1U, - B(x)=U WU—-A2-A, ,~ U(x)=U(¢ Lx)).

Here ard in what follows, a subscriptd x denote derivatian with respetto x, while derivatives
with respetto z will be denotel with a prime . Expressig T(z) in the variabk x, we obtan the
operato T(x) given by

—T(x)=[Az0" %5+ (Arg’ TA20") Iy Aol p-1(x) 17

ard comparirg with (16) we conclude tha A, mug be amultiple of the identity. It then follows

that the only monomiasin Lemma 3.3 which contribue to A, are {(T*)"(T%)?2 "}2_,, and taking

into accoun the explicit form of the T¢'s (see (6)), we concluck tha A, is a 4-th degres polyno-

mial p, times the identity matrix. (Unless otherwis stated we will denog by p,(z) an arbitrary
polynomid in z of degres at mog n with complex coefficients) We also dedue that ¢(z) satisfies
the equatin p,¢'2=1, or

z 1
= ds,— 18
Xfms 19

ard thus the coefficiens of p, mug be real Identifying the correspondig remainirg ternsin (16)
ard (17), we then get

AGX) = (A ! )
X: [
( 2 ,—p4 1 2p4

Thus we hawe shown:
Theorem 4.2 Let T be aPVS operata in 742) | with n=m=2. Then T is equivalen to a
Schralinger-like operata if and only if it is of the form

, 1 B(X) = _A0| t,a_l(X) .7 (19)

1%

—T=p4d2+A10,+Ag.m (20)

The operata T is equivalen to aSchr"cdl[\ger operatag — 07)2(+V(x) if and only if (20) holds and
in addition there is an invertible matrix U satisfyirg the differentid equation

Uy,=UA- (21
and sud that
V=UWU !~ wherex W=B+A2+A, - (22
is Hermitian (with x, A, and B given by (18) and (19)). . _
The eigenfunctios of the Hamiltonian H are of the form ¢(x)=UW¥ with W(x)

=V (¢ 1(x)), wher ¥(z) is an eigenfunctim of T and ¢ must satisfy suitable boundary con-
ditions to qualify as aphysica wave function.
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We note tha once an invertible solution U of equation (21) hes been found ary other
invertible solution is of the form UOU for sonme U, in GL(2,0). In fact, multiplying U by such
U, is equivalen to performirg a further constam scak transformatio by U,. In the scala case
this additiona freedan is absentfor differentid operatos are unaffectel by scak transformations
by constanfunctions Note als that a scak transformatio by an arbitraly constathmatrix Uy will
not map every Hamiltonian into anothe Hamiltonian unles U, belong to R* X U(2).

A matrix differentid operato will be called uncouplél if it is eitha uppe or lower triangular.
Sine A, in (15 mug be amultiple of the identity matrix, it follows tha a PVSP operato of the
form (20) will be automatical}y uncouplel wheneve A>1, as nore of the monomiaé (12) can
then be presehin T. Moreover the following resut shows tha any Hamiltonian we may obtain
from T when A>1 will be essential} diagonal:

Propositian 4.3 Evely Hamiltonian H obtainel from an uncouplel PVS operata T of the
form (20) is diagonal up to equivalence. _

Proof. If T is uncoupled the integratiln of equatia (21) is straightforward Multiplying U
from the left by an appropria¢ U, in R* X U(2), we constru¢ a new gaug factar uncouplel in
the same way as T. Using this new gauge factor, we obtan a Hamiltonian H given by

H=UHUg*=U,UT(UoU) 2,

which is both diagon& ard equivalen to the initial one Q.E.D.

Consequentlythe only casa we neal to conside are A=0,1.

Thete are two main difficulties associate with the methal just outlined for constructig QES
spin 1/2 Hamiltonians In the first place one need to invert the elliptic integrd (18) in orde to
comput z as a function of x, which is no eay task Secondly the differentid equatio (21)
cannda in generd be solved in closal form, thus preventirg us from verifying the Hermiticity of
V. The former complication can be overcome as we shal see in the next section The latter is
more difficult to handle althoudh imposirg further constraing on the initial PVSP operato will
contribue to simplify the problem as shown in Sectio VI.

We shal finish this section with a few remarls on the physica significan@ of matrix Schro
dinge operatorsFirst of all, one-dimensiorla2 X 2 matrix Schralinge operatos can be obtained
by separatio of variables from the three-dimensioraPaul Hamiltonian describirg a spin 1/2
chargel particle in non-relativistt quantum mechanicsConsider indeed the Paul Hamiltonian

Hpaui=(1V +eA)?+e¢p—ea-B,

where ¢ and A= (A% ,A? A% are respectivel the scala and vecta potentid of the external
electromagnetifield, B=V X A is the magnett field, o= (o},0?,0°) are the Paul matricese is
the electrc charge and physica units hawe been chosa so tha #=c=2m=1. If, for example the
vecta and scala potentias depemn only on the x coordinaé (and we take without loss of gen-
erality, A'=0) then Hp,,; obviousy commute with the y ard z componers of the linear mo-
mentum The eigenfunctios of Hp,,i can then be sough in the form

ei(pyy+ pzz)w(x);ﬂ py ,pze R'

where the two-componenspinor ¢(x) is an eigenfunction of the one-dimensional matrix Sehro
dinge operato with potentid (14) given by

- dA?
vj(X)=ep+(eA—py)?+(eA—p)*+(-1le o j=12,
A3

v(X)= |e—x
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More surprisingly one-dimensiona2 X 2 matrix operatos are als directly related to Dirac’s
relativistic equatian for a spin 1/2 chargel particle in an externd electromagnetifield. To see this,
let us write the latter equatian as

(il—eA—m)¥(x)=0, (23
wher a=y*a,,, the y*'s are 4X 4 matrices satisfying
{r*.y"t=29"",

the metric tenso (g,,) =diag(1,-1,—1,—1) is usel to raise and lower indices,d, = d/ Ix*, x0

=t, A= ¢ andm is the particle’s mass. Multiplying Dirac’s equation by the operator e A
+m we easily arrive at the second-ordeequation

HE 2_ Z_S nv —
(io—eA)*—m ZFWU =0 (24

wheres*’=i/2[ y*,y"] ad F,,=d,A,—d,A, isthe electromagnetifield strengh tensor In the
chird representatio of the gamna matrices® (24) decoupls into two independenequatiors for
the uppe and lower componerg ¥..(x) of ¥(x), namey (cf. Ref. 20)

[(i9—eA)2—m?+eo- (BFIE)]V.=0.

If the electromagneti four-potentia A* is time-independentind we look for solutiors of Dirac’s
equatia with well-defined energy E, i.e. we se ¥. =e 'Ely, (x,y,2), we obtan the following
equatio for . :

[(iV+eA)>—(E—eA%)?+m?—eo (BFIE)]. =0 (29

which has the sane structue as Pauli’s non-relativistc equation Jug as was the cag with Pauli’'s
equation separatia of variables in (25) often leads to the eigenvale problem for a one-
dimensionamatrix Schralinge operator For instance suppos tha A°=0 ard tha A is of the
form

A=Ay (p)e,+Ap)e

in cylindricd coordinats (p,¢,z). The left-hand side of25) then commutes with the compo-
nens of the linear momentun (—id,) and the totd angula momentum (—id,+ 1/20%), which
allows us to look for solutiors of (25) of the form

Rl(p)ei(j27 12)¢

P(p,p,2) =P R,(p)eliz+12e

1
),—| p;€R, jZeN+§.ﬂ (26)

Here we hawe droppel the subscrip +, sincey, and ¢ _ satisfy the same equation Substituting
(26) into (25) we obtai that the two-componenspina (f1(x) f,(x))'=xY(R;(x) R,(x))!isan
eigenfunctio of the one-dimensiona2 X 2 matrix Schralinge operate on (0,) with potential

A (X)

X

VX0 = (b A+ A2 e S (ot —e o (2,09 12 1, 09),

with eigenvale E?—m? and bounday condition f,(0)=f,(0)=0. See also Ref. 21 for adifferent
approach.
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V. GL(2) ACTION AND CANONICAL FORMS

In this section we will stud/ how the GL(2) action on the projective line RP! induces an
automorphim in the superalgebrss, generatd by the operatos (6). This will allow us to reduce
the polynomid p,(z) to sone simple canonicé forms, facilitating the evaluation of the integral
(18). Thex ideas were first applied in the contex of QES systens to analyz the normalizability
of the wave functiors of scala QES Hamiltonians. We introdue some definitions and resuls in
the scala case ard then showv how to exterd these conceps to the matrix superalgebi®s, .

The action of GL(2)=GL(2,R) on RP! vialinear fractiond or Mobius transformations,

az+ B (a B
7Z—W= - = S

275 ) |Cl=as—By+0, (27)

induces an action on #%,, mappirg a polynomid p(w) to the polynomid p(z) given by

_ az+ B
— n
P(2)=(72+ 9P|~ 5

- (28

This defines an irreducible multiplier representatio of GL(2) in 2, ,%? which wil| be denotel by
pno- Since the infinitesimd generatos of this multiplier representatio coincide with the genera-
tors of g,, cf. (4), it follows tha the representatiorp, o induces an automorphim of the Lie
algeba g, spannd by the J¢'sin (5).% Performiry the explicit scak transformatio and chang of
variable,

az+ B

€ nqe
Jn(W)H('yZ"" d) Jn yz+ 5

)(yz+ ) "= (29

we obtain:

W\, o® 228  B%\ [
Nz | ey as+py ps|| 3
L ERATT S\
J y 2y6 & J

Therefore the J;'s transfom accordirg to the representatiop, ;= p, o® det ! of GL(2), where
det ! is the reciproca of the representatio detC—|C|. It is convenien at this stag to introduce
a large class of representationof GL(2):

Definition 5.1: Let n=0, i be integers The (irreducible) multiplier representationp, ; of
GL(2) on &, is definal by

. i N az+ B
p(W)—p(2)=(ad—By) (yz+5)"p vzt 5)-

We note the isomorphisn betweenp,, ; and p, o® det. As shown in Ref. 5, a second-degree
polynomid in the J¢'s (in fact, ary operato in A2 if n=2, or ary QES operato on the line
modub equivalenceaccordimg to Theorens 2.3 ard 2.4) may be written as

. 5 n-1 | n ~nn-1)
P2(Jn)=pdz+|q——— P’ I+ 1= 5 Q'+ —5— P’ (30

wher p, g, and r are polynomiak in z of degres 4, 2, ard 0 respectively The transformatia of
P,(J5) unde the action (29) is easily describe in terms of the triple (p,q,r).>
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Lemna 5.2 Let p, be asecond-degmepolynomia in the operators J5(w), determine by the
triple (p(w),q(w),r). Then the transforme polynomid p, unde the GL(2) action (29) is de-
terminal by the triple (p(2),q(z),r) given by

_ (yz+6)*

Z+
(2= a2 =

074 )

az+B)  _ (yz+6)?
Pl Y27 s) ™ 9@="g

2 F=r.

Therefore a second-degrepolynomid p, in the J;’s transforns accordig to the dired sum
representatiorp, _,®p, 1 pgo unde the GL(2) action (29). One can choo® a particularly
simple representatie of the GL(2) orbit generatd by p, by placing the polynomid p (assumd to
be real) in its associate triple (p,q,r) in canonich form .23

Theorem 5.3 Evely non-zeo quartic real polynomia p(z) transformirg unde the represen-
tation p,_, of GL(2) is equivaler to one of the following canonica forms:

(1) w(*+72°+1), 7#*2, (5) v(Z#-1),

(2) v(Z*+7122-1),~ (6) vz
(3) w(Z?+1)%- (7) z, (@D
(4) v(Z%+1),~ (8) 1,

wherev+#0 and 7 are real numbers.
We now generalie the resuls to the matrix case The induced action of GL(2) on
Zn—a.n @analogos to (28) is:

(p%w))ﬁ(?(z)) :0(2)(pl<w<z>>)
p*(w)/ "\ p%(2) p*(w(2)))’
where

U(2)=diag((yz+8)"*,(y2+ )",
ard w(z) is given by (27). This representatio of GL(2) in #,_, , iS obviousy isomorpht to
Pn—1,09pn,0. The following Lemma describe the induced action on s, :

Lemna 5.4: The action of GL(2) on s, given by

aZ+

A U Yz),~ Xes, (32

X(w)—X(2)=U(z)X 73

defines aLie superalgeba automorphismThe generatos of s, , cf. (6), transform accordirg to
the following irreducible representations:

{Th—=p2-1,7 {I}—poo

{Qa}—’PA,o," {Q_a}_>pA,*A'

A straightforwad generalizatia of equatim (30) and of Lemma 5.2 to a second-degree
polynomid in the T¢'s shows tha the (rea) polynomid p, in (20) transforns accordimg to the
representatiop, _, unde the GL(2) action (32). We will henceforth assune that p, is one of the
canonich forms given in Theoren 5.3 The integrd (18) and the invere z= ¢~ 1(x) can then be
easily compute for eat of thee canonicé forms?

Before finishing this section let us point out that equatiors (21) and (22) adop a simple form
in the variabk z, becaus in tha cas only rationd functiors appear Explicitly, the equatia for
the gauge facta reads:
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U’'=UA,~ with- A(Z):M:i (Al—} pf;),—' (33
Jp. 204|772

while U and W in equatia (22) are substitutel by U and W, where
W= —Ag+paA’ +paAZ+ 3 pliA.- (34)

We now use Theoren 3.2, Lemnma 3.3 ard the explicit form of the operatos (6) to compuge A and
A, for the mog generaoperato in ;%@A’n of the form (20), in the cass A=0, 1. We denok by
p; the polynomid E{;Oaiz‘, whereq; are arbitraly complex numbers|If the polynomid p, is not
one of the first three canonicé forms, we obtain:

Caz A=0:
. (P3PS 89— 2nayz- by—2nby,z
PsA=| ¢ T AT A ~ -7 (39
Pz P2 Co—2NnCyz~ do—2nd,z
Caz A=1:
. [pd pb ag—2(n—1)ayz- —2nb,
A= : =la . a ~ - 36
P ps pg) T Mo g+ eaz—2n-1)esz? do-2ndyz 39

where 3, by, &, &, and d, are arbitray complex numbers If p, is ore of the first three
canonichforms the following extra ternms are presenin p,A and Ay:

psA— —diag((n—A)vZ%,nvz3),- (37)
Ay— +diag((n—A)(n—A—1)vz?n(n—1)vz?).- (39

VI. THE GAUGE FACTOR

In this sectio we wil| ded with the differentid equatio (33) for the gaug factar U(z). As
remarkel in Sectim IV, this equatio canna be solved in closed form for evely A. Alternatively,
(33) can be written as two (uncoupled identicd first-orde linear systems unfortunately the
associatd scala second-ordeordinay differentid equatio is not ary of the standad equations
of Mathematich Physics.

However if we restrid ourselve to matrices A satisfyirg the equation

=0 (39

A(z),fz,&(s)ds
20

for some zye R, we can readiy integrae the gaug equation (33). Recal tha this condition on
A was indeal verified by the QES Schralinge operato found by Shifman ard Turbiner® If (39)
is satisfied we shal say tha we are in the commutilg case In this case the generasolution of the
gauge equatian is given by:

U(z)=U, exp JZA(s)ds,—u (40)
)
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TABLE |. Matrix A(z) for the canonichforms 1-8(«, B,y € C).

p, in canonicé forms 1-3- p, in canonicé forms 4-8
A=0 a B a B
pz( _ -z P2 _
Y @ Y o
A=1 n-1 0 a B a 0 0 0
(p—v2) Pl P | pd
y n Y —a Y —a Yy 0

where Ug isin GL(2,0). We will make use of the following elementay Lemma to descrite the
mog gener& form of A in the commutirg case:
Lemna 6.1 Let M(z) be a 2X 2 matrix satisfyirg equatia (39). Then M is of the form:

M=f(z)My+9(2),~ (41)

where f and g are scala functions and Mg is a 2X2 constam matrix.
With this Lemma in mind, looking at the expressios for A(A=0,1) tha we obtainel in
Sectian V, cf. (35)—(37), we find tha the mog genera A satisfyirg (39) is of the form

p4A= P2(2) +A(Z),

where as usual p, denots a second-degeepolynomid in z with complex coefficients and the
matrix A is given in Table I.

Note tha if A=1 and p, is one of the first three canonicaforms, every Hamiltonian we can
possiby obtan will be diagona] modub equivalence. o

Finally, let us remak tha in the non-commutirg cas (tha is, when [A, [*A]+#0), we may
still be able to integrae (33) explicitly by imposing othe constraing on A, as e.g assumig it is
uncoupledAlternatively, if p, isnot ary of thefirst three canonicaforms and we assune tha the
columrs (or rows) of A are proportiond to eat othe (the ratio of the respectie entries being a
constan), we can al® redu@ (33) to quadraturesUnfortunately we hawe nat been able to find
ary interestig example of QES Hamiltoniars in the non-commutig case.

VIl. EXAMPLES

In this final section we exhibit some new examplas of spin 1/2 Schralinge’ operatos equiva-
lent to a PVSP operateo of the form (20). In the previous secticn we hawe se@ how, by restricting
ourselve to the commutirg case we were able to integrae equatia (33) explicitly. This is not,
however the erd of the problem for we mug still ched that the matrix

V=UWU Y 14, (42

with W given by (34), is Hermitian Moreover one has to make sure tha the algebrat eigenfunc-
tionsof H (of theform UW|,_, , With W (2) e 7, _, ) satisl appropria¢ bounday conditions.
We shal restrid ourselva in this pape to QES Hamiltoniars with squae integrabé eigenfunc-
tions, correspondig to bourd states of the system We will also require the expecté value of the
potentid V to be boundel from below, i.e.

(V) =clly

for sone ce R. Again, if we stat with the mog gener&d PVSP operato of the form (20) and we
limit ourselve to the commutirg case even if no conceptuhdifficulty is involved the algebraic

|2~ with ¢eL2(R)®L2(R),~ (43
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constrains imposeal by all thee conditiors turn out to be very complicatel to solve in full
generality This situation is analogos to wha we find when trying to constru¢ scala QES
Schralinge’ operatos in more than one spatia dimension*® In fact, in the commutirg cas with
A=0 we were nat able to find any non-trivid exampek satisfyirg all the required physica con-
ditions We conjectue that in this cae all QES potentiat are eitha non-normalizable not
boundel from below, or diagonalizal# by a constaih gauge transformation.

We now preseh sore relevan example of QES spin 1/2 Hamiltoniars for the commuting
cae with A=1.

Exampek 1: Let T be the four-paramete PVSP operato given by

—T=(T%2+2a,T* +2(n+1)T°— 2T+ 2b; Qo+ 2byQ; — 2b,Q,T°

~ 1
—2boQoT ™ —(4azbo+ (3n+1)b1) Qo 4a,h; Q1 — | 2do+n+ 5|3,

with all the parametesreal Since p,=z? we are in cas 6 of Theoren 5.3. Solving equatio (18)
for z, we obtan z=e€*. The gauge facta reads:

U(z):\/zeazz CosuU~ sinu

bo
. ,m where u=—-—+b; log z.
—sinu- cosu z

Using (42), we obtan a potentid V(x) with entries given by (see (14)):
vj=—bje ¥*—2bgbie ¥+ (2n+1)aye*+aze?+ (— 1)) (a(x)cos - B(x)sin A),~ j=1,2
v =a(x)sin A+ B(x)cos i,

wher U=b,;x—bye %, and

d
a(x)=— 70 +a,e5,  B(X)=(2n+1)by+2a,(by+ b, e).

We haw ignored a constah multiple of the identity in V, which is equivalen to fixing a new
origin in the energy scale It may be easily verified tha the expectd value of the potentid is
boundel from below, that is, equatia (43) holds if ard only if by=0. (Note, however tha even
in this cae the amplituce of the oscillatiors of v(x) tends to infinity as x— +«.) Finally, the
condition a,<<0 is necessarand sufficiert to ensue the squae integrability of the eigenfunctions

P(X).

Exampek 2: As our secom example we consider:
~T=T T%+2a, T+ ( 28+ n— 3) T~ =T +2b,Qp—2b,Q,T°
—by(4ap+3n+1)Qy—4a;b;Q,+2(239—a;)J,

whete all the coefficiens are real and b, #0. Sinee p,=z (cag 7), we hawe z=x%/4. The gauge
factar is chosa as follows:

U(2) = 220eR2 cosbyz sinbyz
—sin b;z~ cosbyz/)”

The entries of the potentid V(x) are given by
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2ag(2a—1) 1 . G ~ byx?
vj=O—X20—+Z(a§—b§)x2+(—1)l Qo COSlT—a(X)SIan :
. b b,x?
v=ag smT+ a(x)cosT,

with j=1, 2, and a(x) is defined by
b,
a(x)= = (4ap+4n+ 1+ayx?).

We first note tha the potentid is singula at the origin unles a;=0,1/2 Let us introdue the
paramete A =2a,— 1, in terms of which the coefficiert of x 2 in vj iIsN(A+1). If Nisa
non-negatie intege |, we may regard

(—R+V(X)—E)(x)=0, 0<x<os, (44)

as the radid equatim obtainal after separatig variables in the three-dimensiodaSchralinger
equatio with a sphericaly symmetrc Hamiltonian given by

I(1+1)
X2

H=—A+U(r),~ with- U(x)=V(x)—

wher A denota the usua flat Laplacian Given anon-negatie intege | ard a spherichharmonic
Y\m(60,0), if ¢is an eigenfunction for the equatida4) satisfying

lim (x)=0,~ (45)

x—07"

then

®<r,a,¢>=@vm<e,¢>

will be an eigenfunctio for H with angula momentun I. If A is not a non-negatie integer we
shal conside (44) as the radid equatio for the singula potentid U(r)=V(r) a zem angular
momentum The potentid U(r) is physicaly meaningfu] in the seng tha the Hamiltonian H

admit self-adjoirt extensios and its spectrun is boundel from below, wheneve \ # —1/2.24°
The bounday condition (45 mug be satisfi@ in the singula ca® for all values of \. This
bounday condition is verified if and only if ay>0. The expectd value of the potentid is bounded
from belonv whenever

ay

b, >1+v2.

Finally, the conditions
3020,_' al<0,

ensue that ¢ lies in L2(1)@L%(l), where | =[0,%) in the singula cas or at zeo angula mo-
mentum or | =R in the non-singula one-dimensionacase.
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