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ON CONTINUOUS FAMILIES OF GEOMETRIC SEIFERT

CONEMANIFOLD STRUCTURES

MARÍA TERESA LOZANO AND JOSÉ MARÍA MONTESINOS-AMILIBIA

Dedicated to Louis H. Kauffman on the Occasion of his 70th Birthday

Abstract. We determine the Thurston’s geometry possesed by any Seifert
fibered conemanifold structure in a Seifert manifold with orbit space S2 and
no more than three exceptional fibres, whose singular set, composed by fibres,
has at most 3 components which can include exceptional or general fibres (the
total number of exceptional and singular fibres is less or equal than three).
We also give the method to obtain the holonomy of that structure. We apply
these results to three families of Seifert manifolds, namely, spherical, Nil man-
ifolds and manifolds obtained by Dehn surgery in a torus knot K(r,s). As a

consequence we generalize to all torus knots the results obtained in [6] for the
case of the left handle trefoil knot. We associate a plot to each torus knot for
the different geometries, in the spirit of Thurston.
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Introduction

An orbifold is a topological space which locally is as the quotient of a ball by a
properly discontinuous group. In dimension 3 a geometric orbifold is a quotient Γ\X
where X is one of the eight Thurston geometries and the action of Γ < Isom(X)
on X is properly discontinuous. The singularity is the projection of the set of fixed
points of the elements of Γ. A general description of these geometric orbifolds is
given in [1]. A Seifert fibered orbifold is an orbifold structure in a Seifert manifold
where the singular set is a finite number of fibres. Each fibre Li in the singular set
is endowed with a natural number ni, whose meaning is that the angle around the
fibre is 2π/ni.

The concept of Seifert fibered conemanifold generalices that of Seifert fibered
orbifold, by allowing any values for the angles around the singular fibres. In this
way the Seifert orbifolds with a fixed singular set are included in a continuous
family of Seifert fibered conemanifolds. This continuous family of conemanifolds is
the convenient framework to study degenerations and transitions among different
geometries, for instance Spherical-Euclidean-Hyperbolic ([3],[4]), (S2×R)-E3-(H2×
R) or Spherical-Nil- ˜SL(2,R) ([5]). The case of the Seifert fibered conemanifold
structures on the manifolds obtained by Dehn surgery in the left-handed trefoil knot
were studied in [6]. Here we study the case of Seifert fibered conemanifold structures
on the Seifert manifolds with orbit space S2 and with no incompressible fiberwise
torus such that the singular set is a link with no more than three components
which can include exceptional or general fibres (the total number of exceptional and
singular fibres is less or equal than three). This family includes some interesting
subfamilies, as the Seifert manifolds with orbit space S2 and finite fundamental
group, and also the Seifert fibered conemanifold structures in manifolds obtained
by Dehn surgery in a torus knot K(r,s) with singularity the core of the surgery. We
obtain for each torus knot its two limits of sphericity, to be explained later. As a
consequence, we can obtain the holonomy of the Thurston geometry possessed by
any given Seifert fibered orbifold obtained by surgery on a torus knots. The method
to do this is explained in this paper and a concrete example of the application of
this method was developed in [6] for the case of the left handle trefoil knot. In other
words, among other results, in this paper we are generalizing to all torus knot the
results obtained in [6]. We associate a plot for the different geometries, similar to
Thurston’s.

The paper is organized as follows. In Section 1 we describe the family F of Seifert
manifolds to study. In Section 2 the geometries of 2-conemanifold structures in S2

with 2 or 3 cone points are obtained. Those structures are the ones on the orbit
spaces of the manifolds in F . Section 3 contains the theorems that describe the
geometric conemanifold structures on the manifolds in F for the cases of 3, 2 and 1
singular fibres. In the following sections we apply these theorems to the subfamilies
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of spherical manifolds (Section 4), Nil manifolds (Section 5) and manifolds obtained
by Dehn surgery in a torus knot (Section 5).

We use the Seifert notation [11], and the currently standard used orientation
convention for lens spaces and Dehn surgery (see [7]), though it may be the opposite
of the ones used in [8] and [9].

1. Some Seifert manifolds

We consider the family F of closed Seifert manifolds M whose orbit space is
the 2-sphere such that the number of exceptional fibres is less or equal than 3.
The following Seifert signature defines the oriented Seifert manifold up to fibre and
orientation preserving homeomorphism.

M =





(O, o, 0 | b; (a1, b1), (a2, b2), (a3, b3))
(O, o, 0 | b; (a1, a1), (a2, b2))
(O, o, 0 | b; (a1, a1))
(O, o, 0 | b))

where O stands for orientable 3-manifold; o stands for orientable orbit space; 0, for
the genus of the orbit space (S2 in our cases); b is an integer; (ai, bi) are coprime
integers such that 0 < bi < ai.

If the Euler number

e = −b−
∑

i

bi
ai

is different from zero, the manifold M have a spherical, Nil or ˜SL(2,R) geometric
structure. If the Euler number is zero, the possible geometries are S2×R, Euclidean
or H2 × R. Which one of these geometries is the correct one depends on the value
of the orbifold Euler characteristic of the orbit space χ(B)(See for instance, [10]).

χ(B) > 0 χ(B) = 0 χ(B) < 0

e = 0 S2 × R E3 H2 × R

e 6= 0 S3 Nil ˜SL(2,R)

Observe that each manifold in this family F is atoroidal or small, that is, contain
no incompressible fiberwise tori. In fact if a Seifert manifold is atoroidal then either
it belongs to F or its orbit base is the projective plane with at most one cone point
[2].

This family includes some interesting subfamilies:

F1: Seifert manifolds with orbit space S2 and spherical geometry. They have
finite fundamental group. It includes all the fibrations in S3 with two
exceptional fibres, with multiplicities a pair of coprime integers, and whose
general fibre is a torus knot.

F2: Seifert manifolds with orbit space S2 and Nil or Euclidean geometry.
F3: Manifolds obtained by p/q-Dehn surgery on a torus knot in S3.
F4: Homological spheres with 3 exceptional fibres. They are the Brieskorn

complete intersection manifolds M(a1, a2, a3), where gcd(ai, aj) = 1, 0 <
i < j ≤ 3.
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These subfamilies have intersections. In fact, the Poincaré manifold

(O, o, 0 | − 1; (2, 1), (3, 1), (5, 1))

belongs to F1, F3 and F4. More generally, the manifolds in F4 where a1 < a2 < a3,
a3 = |qa1a2 − 1| are the result of 1/q-Dehn surgery on the torus knot K(a2,a1),
belonging to F3, [11].

Consider a geometric Seifert fibered conemanifold structure on M ∈ F such that
(i) the singular set L, if any, consists of fibres (singular or not); and (ii) the union
of L with the set of exceptional fibres has less or equal to three components.

Then the geometry on M is compatible with the fibred Seifert structure. That
is, the fibres are geodesics and the orbit space B of M3 inherits a 2-dimensional
geometric cone manifold structure with spherical, Euclidean or hyperbolic geometry,
as the case may be, and the singular set consists at most of 3 cone-points.

To unify notation, in the case that the Seifert manifold have less than three
exceptional fibres, we will add, at the right of the signature, appropriated symbols
for general fibres. The signature, written between angle brackets, means that the
signature is not normalized (see for instance page 145 in [7]. Then, the manifold
M , objet of our study, has the following signature

M = 〈O, o, 0 | b; (a1, b1), (a2, b2), (a3, b3)〉 ,

where (ai, bi) are coprime integers, 0 < bi < ai, when ai > 1; or (ai, bi) = (1, 0).
We also assume that a1 ≥ a2 ≥ a3.

The change {b, (ai, bi)} −→ {b− r, (ai, bi + rai)} in the signature does not change
the manifold ([7]). Using this, we will often unify the signature for M , that we will
use in the sequel, as follows

M = 〈O, o, 0 | 0; (a1, b1), (a2, b2), (a3, b3 + ba3)〉 .

2. The 2-conemanifold structure on the orbit space

A notation for a 2-dimensional closed orientable orbifold is given by the signature

(O, g | a1, ..., as)

where O stands for orientable surface; g, for the genus of the surface; and a1, ..., as
are the natural numbers associated to the s cone points (P1, ..., Ps), meaning that
the angle around the Pi cone point is 2π/ai.

If the manifold M ∈ F has a conemanifold structure with angles βi = 2αiai
around the (ai, bi)-fibres, the orbit space B has a cone manifold structure in the
2-sphere S2 with three cone points with angles (2α1, 2α2, 2α3), where we will as-
sume 0 ≤ αi ≤ π. By natural generalization of the above orbifold signature to a
cone manifold structure, we denoted the induced 2-conemanifold structure on B by
(O, 0 |π/α1, π/α2, π/α3). The geometry on the 2-conemanifold

(O, 0 |π/α1, π/α2, π/α3)

depends on the value of the angles αi.

Proposition 2.1. For 0 < αi < π, the 2-conemanifold (O, 0 |π/α1, π/α2, π/α3)
supports spherical, Euclidean or hyperbolic geometry according as α1 + α2 + α3 is
>,=, < than π. ([12]). �
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In order to study the continuous deformation of the geometric conemanifold
structures in the Seifert manifold M , we are interested in the description of the
corresponding continuous family of geometric conemanifold structures in the orbit
space B of the Seifert manifold. It is clear that the Euclidean case α1+α2+α3 = π
is a limit case between the spherical and the hyperbolic case. We are interested in all
the possible limits of sphericity or hyperbolicity, for all possible values 0 ≤ αi ≤ π.

The hyperbolic metric in the Poincaré disc model, the open unit disc

D1 =
{
z = x+ iy |x2 + y2 < 1

}

is given by

ds2 =
4dzdz

(1− zz)2
.

In order to study the degeneration on geometric structures, it is more convenient
to work with a disc in C with radius 1√

S
. Then the dilatation

λ : D 1
√

S

−→ D1

z →
√
Sz

is an isometry if and only if the metric on D 1
√

S

is given by

ds2 =
4Sdzdz

(1− Szz)2
, 1 ≥ S > 0

1−1

1/  S

µ

A

O

A

O

2
α

1
α α

3

2
α

1
α

α
3

Figure 1. The hyperbolic plane and a hyperbolic triangle.

Let T(α1,α2,α3), 0 < α1, α2, α3 < π, be a hyperbolic triangle. Figure 1 shows the
triangle T(α1,α2,α3) with the α1 and α3 angles in the vertices placed at the points
0 and 1 respectively and with the α2 angle at the remaining vertex. Let us relate
the angles with the parameter S, using the trigonometric formulas for hyperbolic
triangles.

coshµ =
cosα2 + cosα3 cosα1

sinα3 sinα1
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µ =

∫ 1

0

√
4S

(1 − St2)2
dt =

∫ 1

0

2
√
S

(1− St2)
dt =

= lg(1 +
√
St)− lg(1−

√
St)|10 = lg

1 +
√
S

1−
√
S

⇒ eµ =
1 +

√
S

1−
√
S

⇒ coshµ =
e2µ + 1

2eµ
=

1 + S

1− S

Therefore

cosα2 + cosα3 cosα1

sinα3 sinα1
=

1 + S

1− S
⇒ S =

cosα2 + cosα1 cosα3 − sinα1 sinα3

cosα2 + cosα1 cosα3 + sinα1 sinα3

(2.1) S =
cosα2 + cos(α1 + α3)

cosα2 + cos(α1 − α3)

Analogously, CP 1 with the spherical Riemannian metric,

ds2 =
−4Sdzdz

(1− Szz)2
, S < 0

is the stereographic projection of the sphere S2 with radius 1√
−S

endowed with a

Riemannian metric isometric to the usual spherical metric on the unit sphere in
R3. The circle of radius 1√

−S
is the equator. Figure 2 shows the spherical triangle

T(α1,α2,α3) analogous to the hyperbolic case.

1−1

1/  -S

µ

A

O

A

O

2
α

1
α α

3

2
α

1
α α

3

Figure 2. The spherical case.

In this spherical case, applying the cosine rule

cosµ =
cosα2 + cosα3 cosα1

sinα3 sinα1
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µ =

∫ 1

0

√
−4S

(1 − St2)2
dt =

∫ 1

0

i2
√
S

(1− St2)
dt

⇒ −iµ = lg(1 +
√
St)− lg(1−

√
St)|10 = lg

1 +
√
S

1−
√
S

⇒ e−iµ =
1 +

√
S

1−
√
S

⇒ cosµ =
eiµ + e−iµ

2
=

1 + S

1− S

Therefore as before
cosα2 + cosα3 cosα1

sinα3 sinα1
=

1 + S

1− S
⇒ S =

cosα2 + cosα1 cosα3 − sinα1 sinα3

cosα2 + cosα1 cosα3 + sinα1 sinα3

(2.2) S =
cosα2 + cos(α1 + α3)

cosα2 + cos(α1 − α3)

Observe that this formula (2.2) for the spherical case, coincides with the formula
(2.1) for the hyperbolic case.

The limit cases, when the geometry fails to be hyperbolic or spherical and be-
comes Euclidean, are obtained when the radius is ∞, that is, when S = 0. Next we
compute the relationship between the values of the angles αi making S = 0.

S = 0 ⇔
{

N(S) := cosα2 + cos(α1 + α3) = 0; and
D(S) := cosα2 + cos(α1 − α3) 6= 0

Then,

N(S) = 0 ⇔
{

cosα2 = − cos(α1 + α3) = cos(π − α1 − α3); or
cos(α1 + α3) = − cosα2 = cos(π − α2).

This implies that

α2 =

{
π − α1 − α3 ⇒ α1 + α2 + α3 = π; or
2π − (π − α1 − α3) = π + α1 + α3 ⇒ −α1 + α2 − α3 = π

or

α1 + α3 =

{
π − α2 ⇒ α1 + α2 + α3 = π; or
2π − (π − α2) = π + α2 ⇒ α1 − α2 + α3 = π

On the other hand, if D(S) = 0 when N(S) = 0,

0 = cosα2 + cos(α1 + α3) = cosα2 + cos(α1 − α3) ⇒

cos(α1 + α3) = cos(α1 − α3) ⇒ α1 + α3 =

{
α1 − α3 ⇒ α3 = 0; or
2π − (α1 − α3) ⇒ α1 = π

}

For α3 = 0, S = 1 and the triangle is hyperbolic. For α1 = π, S = 1 and the
triangle is spherical. In this case, α2 = α3. See Figure 3.

Then S = 0 for α3 6= 0, α1 6= π and

(2.3)
p1 : α1 + α2 + α3 = π; or
p2 : −α1 + α2 − α3 = π; or
p3 : α1 − α2 + α3 = π.

Consider the 3-dimensional space with coordinates (α1, α2, α3). The points in
this space defining the values for the angles of a possible triangle belong to the
cube [0, π]× [0, π]× [0, π]. Observe that if the point (α1, α2, α3) defines an oriented
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1−1

A

O

2α

1
α

α3

1

A

O

1
α =π

α
32

α  =α
3

−1

Figure 3. The cases α3 = 0 and α1 = π

triangle, the points (α2, α3, α1) and (α3, α1, α2) define the same oriented triangle up
to orientation preserving isometry. Therefore all the angle conditions and equations
of planes, that delimit regions containing points corresponding to triangles in the
same geometry, must have a 3-cyclic symmetrical position around the diagonal line
(α, α, α) with vertices (0, 0, 0), (π, π, π). They are

(2.4)





α2 6= 0, α3 6= π; and
p4 : α1 − α2 − α3 = π; or
p5 : −α1 + α2 + α3 = π.

(2.5)





α1 6= 0, α2 6= π; and
p6 : −α1 − α2 + α3 = π; or
p7 : α1 + α2 − α3 = π.

The first equation, p1, in (2.3), α1+α2+α3 = π, defines a plane which intersects
the cube in the triangle with vertices (π, 0, 0), (0, 0, π), (0, π, 0). See Figure 4. Each
point in the interior of this triangle defines a Euclidean triangle in the Euclidean
space. The points in the cube at the side α1 + α2 + α3 < π define hyperbolic
triangles; and at side α1 + α2 + α3 > π the points may define a spherical triangle
as we presently explain.

(0,0,0)

(π,0,0)

(0,0,π)

(π,0,0)

(0,0,π)

(0,π,0)(0,π,0)

Figure 4. The hyperbolic region and the Euclidean case

The planes defined by equations p2, p4 and p6 in (2.3), (2.4) and (2.5), intersect
the cube just in a vertex. They do not delimite any region in the cube.
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The planes defined by the equations p3, p5 and p7 intersect the cube in the
triangles with vertices

p3 : (π, 0, 0), (0, 0, π), (π, π, π)
p5 : (0, π, 0), (0, 0, π), (π, π, π)
p7 : (π, 0, 0), (0, π, 0), (π, π, π)

(0,π,0)(0,π,0)

(π,π,π)

(π,0,0)

(0,0,π)

Figure 5. The spherical region

Points in the interior of the tetrahedron delimited by p1, p3, p5, p7, with vertices
(π, 0, 0), (0, π, 0), (0, 0, π), (π, π, π), represent spherical triangles. (See Figure 5).

Points in the interior of the faces p3, p5, p7 of this tetrahedon correspond to
the limit of spherical triangles in Euclidean space (S = 0). The limit is no longer
a triangle (in Euclidean space) because the sum of the three coordinates α1, α2

and α3 is bigger than π. The points lying on these faces represent upper limits of
sphericity. The face p1 is the lower limit of sphericity. (Compare [6]).

Points in the edges l1 = ((π, 0, 0), (π, π, π)), l2 = ((0, π, 0), (π, π, π)) and l3 =
((0, 0, π), (π, π, π)), correspond to spherical triangles T(π,α,α), T(α,π,α) and T(α,α,π),
respectively.

(0,π,0)(0,π,0)

(0,0,0)

(π,π,π)

(π,0,0)

(0,0,π)

Figure 6.

We collect in the following lemma the kind of geometry possessed by the elements
of the continuous family

{
T(α1,α2,α3)

}
of triangles.

Lemma 2.1. The triangle T(α1,α2,α3) is hyperbolic for points in the closed tetrahe-
dron

th = ((0, 0, 0), (π, 0, 0), (0, π, 0), (0, 0, π)) ,
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excepting the points in the face

fe = ((π, 0, 0), (0, π, 0), (0, 0, π)) .

Points in the interior of the face fe correspond to Euclidean triangles. This face
is the limit of hyperbolicity and the lower limit of sphericity.

The triangle T(α1,α2,α3) is spherical for points in the interior of the tetrahedron

ts = ((π, 0, 0), (0, π, 0), (0, 0, π), (π, π, π)) .

For points in the interior of the faces

f1 = ((0, π, 0), (0, 0, π), (π, π, π)) ,

f2 = ((π, 0, 0), (0, 0, π), (π, π, π)) and

f3 = ((π, 0, 0), (0, π, 0), (π, π, π))

the geometry is Euclidean but T(α1,α2,α3) is not a Euclidean triangle.
Points in the edges

l1 = ((π, 0, 0), (π, π, π)) ,

l2 = ((0, π, 0), (π, π, π)) and

l3 = ((0, 0, π), (π, π, π))

correspond to spherical triangles. Figure 6. �

µ

A

O

µ

B

C

µ

A

O

µ

B

C

α3 α3

α3

2α
2α

2α
2α

1
α

1
α 1

α

1
α

α3

Figure 7.

Theorem 2.1. There exists a continuous family, depending on three parameters,
of geometric cone manifold structures,

(O, 0 |π/α1, π/α2, π/α3),

in the 2-sphere S2 with three conic points with angles (2α1, 2α2, 2α3) such that the
geometry is

• hyperbolic for 0 ≤ α1 + α2 + α3 < π,
• Euclidean for α1 + α2 + α3 = π, αi > 0,
• spherical for

– the interior of the tetrahedon

ts = ((π, 0, 0), (0, π, 0), (0, 0, π), (π, π, π)) .
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– the edges of ts

l1 = ((π, 0, 0), (π, π, π))

l2 = ((0, π, 0), (π, π, π))

l3 = ((0, 0, π), (π, π, π))

The faces of this tetrahedron define the limits of sphericity.

Proof. The cone manifold (O, 0 |π/α1, π/α2, π/α3) is obtained from the union of
the two left (resp. right) triangles in Figure 7 by the isometric identifications
OB ≡ OC and AB ≡ AC, in the spherical (resp. Hyperbolic) case.

For points in the interior of the faces f1 = ((0, π, 0), (0, 0, π), (π, π, π)),
f2 = ((π, 0, 0), (0, 0, π), (π, π, π)) and f3 = ((π, 0, 0), (0, π, 0), (π, π, π)) the geometry
is Euclidean but T(α1,α2,α3) is no longer a triangle, therefore the geometric cone
manifold structures do not exist. Figure 6. �

We are also interested in the particular cases with only two or one variable angles.

(0,0)

(0,2π/3)

(2π/3,0)

(π/3,π)

(π,π/3)

(0,0)
(4π/5,0)

(π,π/5)

(π/5,π)

(0,4π/5)

(0,0)

(0,π/2)

(π/2,0)

(π/2,π)

(π,π/2)

Figure 8. Cases a1 = 2, 3, 5

Theorem 2.2. For each natural number a1, 1 < a1, there exists a bi-parametric
continuous family of geometric cone manifold structures,

(O, 0 | a1, π/α2, π/α3),

in the 2-sphere S2, with three conic points with angles (2πa1

, 2α2, 2α3) such that the
geometry is

• hyperbolic for 0 ≤ α2 + α3 < a1−1
a1

π,

• Euclidean for α2 + α3 = a1−1
a1

π, αi > 0,
• spherical for

– points in the interior of the rectangle, where
{ a1−1

a1

π < α2 + α3 < a1+1
a1

π, and
1−a1

a1

π < α2 − α3 < a1−1
a1

π.

The edges of this rectangle define the limits of sphericity for the 2-
conemanifold (O, 0 | a1, π/α2, π/α3).

– The vertices (π, π/a1) and (π/a1, π) of this rectangle define the spher-
ical orbifold (O, 0 | a1, a1) with two conic points.
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The case a1 = 1 gives the continuous family of spherical cone manifold structures,

(O, 0 |π/α, π/α),
in the 2-sphere S2, with two conic points with equal angle 2α, 0 < α ≤ π.

Proof. The geometry on a triangle Tπ/a1,α2,α3) with a fixed angle π/a1 and two
variable angles (α2, α3) corresponds to the points in the intersection of the cube in
R3 with the plane α1 = π/a1. Figure 8.

The spherical cone manifold structure, (O, 0 |π/α, π/α), is defined by points in
the edges with vertices ((π, 0, 0), (π, π, π)), ((0, π, 0), (π, π, π)) and ((0, 0, π), (π, π, π))
in the faces of the cube. �

The case with two fixed angles π/a1, π/a2 and one variable angle α3 is the
following.

Theorem 2.3. For each pair of natural numbers (a1, a2), 1 < a1 ≤ a2 there exists
a continuous family of geometric cone manifold structures,

(O, 0 | a1, a2, π/α3),

in the 2-sphere S2, with three conic points with angles (2πa1

, 2π
a2

, 2α3) such that the
geometry is hyperbolic for 0 < α3 < αL, Euclidean for αL and spherical for αL <
α3 < αU , where

2αL = 2
a2a1 − a2 − a1

a2a1
π 2αU = 2

a2a1 − a2 + a1
a2a1

π

are, respectively, the lower and the upper limits of sphericity for the 2-conemanifold
(O, 0 | a1, a2, π/α3). The amplitude of this spherical interval, [2αL, 2αU ], is in-
versely proportional to a2: 2αU − 2αL = 4π

a2

.

The case a1 = 1 gives the spherical orbifold structures, (O, 0 | 2π/a2, 2π/a2), in
the 2-sphere S2, with two conic points with equal angle 2π/a2.

Proof. For each pair of natural numbers (a1, a2), 1 < a1 ≤ a2 the region of spheric-
ity is an interval. Since the Euclidean case comes from

π

a1
+

π

a2
+ α3 = π ⇔ α3 = (1 − 1

a1
− 1

a2
)π =

a2a1 − a2 − a1
a2a1

π ≥ 0

then 2a2a1−a2−a1

a2a1

is the limit of hyperbolicity and also the lower limit of sphericity.
The obtain the upper limit of sphericity observe that it is limited by the inequalities
given by p3, p5, p7:

(2.6)

π
a1

− π
a2

+ α3 < π ⇔ α3 < a1a2−a2+a1

a1a2

π

− π
a1

+ π
a2

+ α3 < π ⇔ α3 < a1a2+a2−a1

a1a2

π
π
a1

+ π
a2

− α3 < π ⇔ α3 > −a1a2+a2+a1

a1a2

π ≤ 0

The third inequality in (2.6) gives no restriction because 1 < a1 ≤ a2. Since
a1 ≤ a2, the first two inequalities in (2.6) reduce to

α3 <
a1a2 − a2 + a1

a1a2
π.

Hence 2a1a2−a2+a1

a1a2

π is the upper limit of sphericity.
�
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3. The geometric structure on M ∈ F
We consider R3 as the space of coordinates (β1, β2, β3), and we obtain the regions

for the possible geometries in the conemanifold structure in M with cone angles
βi along the (ai, bi)-fibres, i = 1, 2, 3. If the (ai, bi)-fibre does not belong to the
singular set, the angle βi is 2π.

In the formulation of the next theorems we write in brackets the case e(M) = 0.

µ

A

O

µ

B

C

α

µ

A

O

α

µ

B

C

π/a2

π/a2

π/a1
π/a1

Figure 9. The prism D

A BOC

l’AlA lC l’OlO lB

Figure 10. The boundary of D̂

Theorem 3.1. Let M be a Seifert manifold

M = 〈O, o, 0 | b; (a1, b1), (a2, b2), (a3, b3)〉 =
= 〈O, o, 0 | 0; (a1, b1), (a2, b2), (a3, b3 + ba3)〉

such that either (ai, bi) are coprime integers, with 0 < bi < ai > 1, or (ai, bi) =
(1, 0). If the Euler number e(M) 6= 0 (resp. e(M) = 0), then M has geometric
conemanifold structures (M, (β1, β2, β3)) with the singularity L, if any, is along
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the (ai, bi)-fibres. The geometry can be ˜SL(2,R), Nil or spherical (resp. H2 × R,
Euclidean or S2 × R).

The geometry is ˜SL(2,R) (resp. H2 × R) for

0 ≤ β1a2a3 + β2a1a3 + β3a1a2 < 2a1a2a3π

The geometry is Nil (resp. Euclidean) for

β1a2a3 + β2a1a3 + β3a1a2 = 2a1a2a3π, βi > 0

The geometry is spherical (resp. S2 × R) for points in the interior of the tetra-
hedron ts in R3

ts = ((2a1π, 0, 0), (0, 2a2π, 0), (0, 0, 2a3π), (2a1π, 2a2π, 2a3π))

and for points in the edges

l1 = ((2a1π, 0, 0), (2a1π, 2a2π, 2a3π))
l2 = ((0, 2a2π, 0), (2a1π, 2a2π, 2a3π))
l3 = ((0, 0, 2a3π), (2a1π, 2a2π, 2a3π)) .

Proof. Suppose e(M) 6= 0. By a similar construction as the one made for the
trefoil knot in [6], one can define geometric cone manifold structures in the Seifert
manifold M , such that the 2-conemanifold structure in the orbit space is

(O, 0 |π/α1, π/α2, π/α3)

and the singular set L in M is the set of exceptional fibres, where the angle around
the (ai, bi)-fibre is

(3.1) βi = ai2α.

Let B be the union of the two triangles depicted in Figure 7 minus a neighbor-
hood of the vertices C and B with angle α, provided with the suitable geometry
(hyperbolic, Euclidean or spherical). Consider a fibred prism D with orbit space B

in the corresponding geometry ( ˜SL(2,R), Nil or S3 geometry), Figure 9. Identify
botton and top by the isometric translation along the fibres by 2π. The boundary

of the resulting solid torus D̂ is divided into six fibred annuli, Figure 10. Two of
them, say lA and l′A, intersect each other along the fibre over the vertex A: A×S1.
The fibres lO and l′O, intersect each other along the fibre over the vertex O: O×S1.
The remaining two, say lC and lB, are the product of the boundary of the neigh-
borhood of vertices C and B cross S1. Identify lO and l′O by an isometry, g(a1, b1),
which projects into the orbit space upon a rotation of angle 2αi around de point O,
leaving invariant the fibre O × S1 in such a way that the fibration induced on the
quotient has the invariant fibre as an exceptional fibre of type (a1, b1). The result
is a solid torus with a geometric Seifert structure with an exceptional fibre of type
(a1, b1). Next, identify analogously lA and l′A by an isometry, g(a2, b2), in such a
way that the fibration induced on the quotient has the invariant fibre A×S1 as an
exceptional fibre if type (a2, b2). We have obtained a geometric manifold N , with
boundary the fibred torus lC ∪ lB. Attach a solid fibred torus T(a3,b3+ba3), whose
core is a exceptional fibre of type (a3, b3 + ba3). The meridian of T(a3,b3+ba3) is
glued to a curve made up of two “horizontal” segments. Extend the geometry in N
to the attached T(a3,b3+ba3). The result is our Seifert manifold M with geometry.
The exceptional fibre (a3, b3+ba3) projects into the orbit space to the point C ≡ B
with an angle 2α3. Then the angle around the (ai, bi)-fibre is βi = 2αiai, i = 1, 2, 3.
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If e(M) = 0, consider the product S2 × S1. Endow the factor S2 with the
geometric conemanifold structure (O, 0 |π/α1, π/α2, π/α3), given in Theorem 2.1.
Let Ai be the cone point with angle αi. Next, make surgery along each fibre Ai×S1

such that it becomes a exceptional fibre of type (ai, bi) for i = 1, 2 and (a3, b3+ba3)
for i = 3. The resulting manifold is our Seifert manifold M with the corresponding
product geometry.

Therefore, in both cases, the issue is a geometric Seifert conemanifold with sin-
gularity, if any, along the (ai, bi)-fibres where the angle is

βi = 2aiαi.

This relation between αi and βi and Theorem 2.1 gives the values of the angles βi

for every possible geometry.
Consider the 3-dimensional space with coordinates (β1, β2, β3). The points in

this space defining the values for βi thus obtained belong to the cube [0, 2a1π] ×
[0, 2a2π] × [0, 2a3π]. The regions for the different geometries are obtained by ap-
propriated scaling of the regions in Figure 6. �

Theorem 3.2. Let M be a Seifert manifold

M = 〈O, o, 0 | b; (a1, b1), (a2, b2), (a3, b3)〉 =
= 〈O, o, 0 | 0; (a1, b1), (a2, b2), (a3, b3 + ba3)〉

such that either (ai, bi) are coprime integers, with 0 < bi < ai > 1, or (ai, bi) =
(1, 0). If the Euler number e(M) 6= 0 (resp. e(M) = 0), then M has geometric
conemanifold structures (M, (β2, β3)) with the singularity L, if any, is along the

(ai, bi)-fibres, i = 2, 3. The geometry can be ˜SL(2,R), Nil or spherical (resp. H2 ×
R, Euclidean or S2 × R).

The geometry is ˜SL(2,R) (resp. H2 × R) for

0 ≤ β2a1a3 + β3a1a2 < 2(a1 − 1)a2a3π

The geometry is Nil (resp. Euclidean) for

β2a1a3 + β3a1a2 = 2(a1 − 1)a2a3π > 0

The geometry is spherical (resp. S2×R) for points in the interior of the rectangle
in R2 with coordinates (β2, β3), where

{
2(a1 − 1)a2a3π < β2a1a3 + β3a1a2 < 2(a1 + 1)a2a3π and
2(1− a1)a2a3π < β2a1a3 − β3a1a2 < 2(a1 − 1)a2a3π

,

and also for (β2, β3) = (2π, 2πa3

a1

) or (β2, β3) = (2πa2

a1

, 2π).

The geometry is also spherical (S2 × R) for the three families of conemani-
fold structures in M with cone angles (2αa1, 2αa2, 2πa3), (2αa1, 2πa2, 2αa3) and
(2πa1, 2αa2, 2αa3), 0 < α ≤ π, along the fibres (a1, a2, a3).

Proof. The proof is analogous to the proof of the above Theorem 3.1 but endowing
the factor S2 with the geometric conemanifold structure (O, 0 | a1, π/α2, π/α3) given
in Theorem 2.2. �

Theorem 3.3. Let M be a Seifert manifold

M = 〈O, o, 0 | b; (a1, b1), (a2, b2), (a3, b3)〉 =
= 〈O, o, 0 | 0; (a1, b1), (a2, b2), (a3, b3 + ba3)〉
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such that either (ai, bi) are coprime integers, with 0 < bi < ai > 1, or (ai, bi) =
(1, 0). If the Euler number e(M) 6= 0 (resp. e(M) = 0), then M has geometric
conemanifold structures (M, (β3)) with the singularity L, if any, is the (a3, b3)-fibre.

The geometry can be ˜SL(2,R), Nil or spherical (resp. H2×R, Euclidean or S2×R).

The geometry is ˜SL(2,R) (resp. H2 × R) for

0 ≤ β3 < 2
a3(a2a1 − a2 − a1)

a2a1
π = βL

The geometry is Nil (resp. Euclidean) for

β3 = βL = 2
a3(a2a1 − a2 − a1)

a2a1
π

The geometry is spherical (resp. S2 × R) for

βL = 2
a3(a2a1 − a2 − a1)

a2a1
π < β3 < 2

a3(a2a1 − a2 + a1)

a2a1
π = βU .

The values βL and βU are the lower and upper limits of sphericity.

Proof. The proof is analogous to the proof of the above Theorem 3.1 but endowing
the base S2 with the geometric conemanifold structure (O, 0 | a1, a2, π/α3) given in
Theorem 2.3. �

Corollary 3.1. The cone angle around the singular set L in the Nil cone manifold
structure in the Seifert manifold (M,β3), is always a rational multiple of π.

Proof. The value of the cone angle is βL = 2a3(a2a1−a2−a1)
a2a1

π �

Corollary 3.2. The quotient βU/βL between the upper and lower sphericity limits
for the conemanifold structures (M,β3) in the manifold M does not depend on the
third fibre a3.

Proof. It follows from Theorem 3.3 that

βU

βL
=

a2a1 − a2 + a1
a2a1 − a2 − a1

�

Observe that the relative position of 2π respect to βL and βU define the geometry
of the Seifert manifold M , where the fibres are geodesics:

˜SL(2,R) (resp. H2 × R) geometry ⇔ 2π < βL

Nil (resp. Euclidean) geometry ⇔ βL = 2π,
Spherical (resp. S2 × R) geometry ⇔ βL < 2π < βU .

4. F1: Manifolds with finite fundamental group

The Seifert manifolds with finite fundamental group and orbit space S2 have
at most three exceptional fibres and Euler number e(M) 6= 0. All of them are
spherical manifolds, therefore for all the conemanifold structures with singular
set only one exceptional or general fibre, 2π lies between the limits of spheric-
ity: βL < 2π < βU . Manifolds with less or equal than two exceptional fibres are
lens spaces. If the manifold has three exceptional fibres, they are of multiplicity
(2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5). Because it is an interesting particular case, we
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first study the case of the Hopf fibration, although it could be included in the
general study for Seifert fibrations in lens spaces.

4.1. S3 with no exceptional fibres: the Hopf fibration.

The Hopf fibration on S3 is the Seifert manifold

M = (O, o, 0 | − 1; ) = 〈O, o, 0 | − 1; (1, 0), (1, 0), (1, 0)〉
This Seifert structure in S3 has conemanifold structures (S3, (β1, β2, β3)) with sin-
gularity three fibres of the Hopf fibration with angle βi on the fibre ai, whose
geometry depends on the region containing the point

(α1, α2, α3) =

(
β1

2
,
β2

2
,
β3

2

)

in Figure 6, according to Theorem 3.1. The three geometries (Spherical, Nil and
˜SL(2,R)) are possible.
The possibilities with only two fibres as singular set, the Hopf link, correspond

to points in the faces of the cube in Figure 6

Π1 : α1 = π,

Π2 : α2 = π and

Π3 : α3 = π.

Remark 4.1. There are conemanifold spherical structures (S3, (β, β)), with sin-
gular set the Hopf link, where 0 < β ≤ 2π. The fibres of the Hopf fibration are
geodesics of the geometric structure.

Remark 4.2. The Seifert manifold S3 = (O, o, 0 | −1; ) admits no geometric Seifert
conemanifold structure with singular set one fibre of this (Hopf) fibration.

4.2. Seifert manifold structures in lens spaces.

The Seifert manifold

M = (O, o, 0 | b; (a1, b1), (a2, b2)) = 〈O, o, 0 | b; (a1, b1), (a2, b2), (a3, b3)〉
where (a3, b3) = (1, 0) and with Euler number number

e = −ba1a2 + a1b2 + a2b1
a1a2

6= 0 ⇒ m := ba1a2 + a1b2 + a2b1 6= 0,

is the lens space L(m, ra2+ sb2) where −ra1+ s(ba1+ b1) = 1 ([9]. The orientation
in [9] is the opposite to the standard one used currently.).

We consider the following three cases

(1) Two exceptional fibres. Here (ai, bi) are coprime integers, 0 < bi < ai,
i = 1, 2, 1 < a1 ≤ a2, (a3, b3) = (1, 0);

(2) One exceptional fibre. Here (a1, b1) are coprime integers, 0 < b1 < a1,
(a2, b2) = (a3, b3) = (1, 0);

(3) No exceptional fibres, (ai, bi) = (1, 0), i = 1, 2, 3.

According to Theorem 3.1, the geometry of the conemanifold structure (M, (β1, β2, β3)),
where βi is the angle on the (ai, bi)-fibre, depends on the region in Figure 6 to which
the point

(α1, α2, α3) =

(
β1

2a1
,
β2

2a2
,
β3

2a3

)
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belongs. The three geometries (Spherical, Nil and ˜SL(2,R)) are possible.
According to Theorem 3.2, the geometry when the singular set is the union of

two (ai, bi)-fibres is given by a point (α1, α2, α3) belonging to the intersection of
the cube in Figure 6 with one of the following planes

Π1 : α1 = π/a1,

Π2 : α2 = π/a2

Π3 : α3 = π.

In case (1) (two exceptional fibres), the intersection of the cube with Π1 or Π2 yields
regions, with shape as in Figure 8, where the three geometries (Spherical, Nil and

˜SL(2,R)) are possible. The singularity of the Seifert conemanifold structure is the
union of an exceptional fibre and a general fibre. The plane Π3 intersects the cube in
one of its faces. Therefore the singular set of the associated conemanifold structures
is the union of the two exceptional fibres, in such a way that the continuous family
only depends on one parameter, say α. The elements of this continuous family are
the spherical conemanifold structures (M, (β1, β2)), where βi = 2αai, 0 < α ≤ π,
(Theorem 3.2).

In case (2) (one exceptional fibre (a1, b1) (a2 = a3 = 1)), the intersection of the
cube with Π1 yields regions as in Figure 8, where the three geometries are possible.
The intersection of the cube with Π2 or Π3 are faces of the cube. Then, the singular
set of the associated conemanifolds structures is the union of the exceptional fibre
and a general fibre. As before, this continuous family only depends on one param-
eter, say α. The elements of this continuous family are the spherical conemanifold
structures (M, (2αa1, 2α)), 0 < α ≤ π.

In case (3) (no exceptional fibres), (a1 = a2 = a3 = 1), the intersection of
the cube with Π1, Π2 or Π3, are faces of the cube. There exist three analogous
continuous families depending on one parameter, say α, of conemanifolds structures
whose singular set is the union two general fibres. The elements of this continuous
family are the spherical conemanifold structures (M, (2α, 2α)), 0 < α ≤ π.

Remark 4.3. In particular, when M is S3 with a Seifert structure with two ex-
ceptional fibres (a1, b1) and (a2, b2), we obtain a continuous family of spherical
conemanifold structures (S3, (β1, β2)), where the singular set is the Hopf link and
βi = 2αai, 0 < α ≤ π. The fibres, toroidal knots, are geodesics of the geometry.

The geometry when the singular set is only one (ai, bi)-fibre is given by a point
(α1, α2, α3) belonging to the intersection of the cube in Figure 6 with one of the
following lines

Γ1 : α2 = π/a2, α3 = π
Γ2 : α1 = π/a1, α3 = π
Γ3 : α1 = π/a1, α2 = π/a2.

If the line is contained in the interior of the cube, a continuous family of coneman-
ifold structures exists. This is the case of Γ3, when a1 6= 1 6= a2. If the line is in
the interior of a face of the cube, only an orbifold structure exists. For instance,
Γ1 when a2 6= 1, yields the orbifold structure (M,a2) whose singular set is the
(a1, b1)-fibre. If the line is an edge of the cube, there is no conemanifold structure.
In this case there is only the spherical manifold structure M .
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This implies that in a Seifert manifold with two exceptional fibres, geometric
conemanifold structures whose singular set is composed of just one fibre, are possible
if and only if the singular set is a general fibre.

Let (L(m, ra2 + sb2), β) be a conemanifold structure whose singularity is a gen-
eral fibre of the Seifert structure (O, o, 0 | b; (a1, a1), (a2, b2)). By Theorem 3.3, its
limits of sphericity are the angles

(4.1) βL = 2
a2a1 − a2 − a1

a2a1
π, βU = 2

a2a1 − a2 + a1
a2a1

π.

The geometry is spherical for

(4.2) βL < β < βU ;

Nil geometry for β = βL; and ˜SL(2,R) geometry for

(4.3) 0 ≤ β < βL.

4.3. {a1, a2, a3} = {2, 2, n}: prism manifold.

The manifold

M = (O, o, 0 | b; (2, 1), (2, 1), (n, b3)) = 〈O, o, 0 | − 1; (2, 1), (2, 1), (n, (b+ 1)n+ b3)〉
where (n, b3) are coprime integers, 0 < b3 < n, n ≥ 2 and

e = −bn+ n+ b3
n

6= 0 ⇒ m := (b+ 1)n+ b3 6= 0

is called the prism manifold Pn,m. It is the manifold obtained from a prism with
base a regular polygon of 4m edges by identifying the botton with the top of the
prism by a (π/2m) right rotation, and each lateral face of the prism is identify with
the opposite face by a (π/2) right rotation.

The manifold Pn,1 = (O, o, 0 | −1; (2, 1), (2, 1), (n, 1)) is the manifold of spherical
tessellations M(Sn22) ([7]). The simplest example is the quaternionic manifold

P(2,1) = (O, o, 0 | − 1; (2, 1), (2, 1), (2, 1))

whose fundamental group is the quaternion group of 8 elements. The manifold is
the quotient of S3 by the action of this group and is has a cube as a fundamental
domain. Each face of the cube is identify with the opposite by a (π/2) right rotation.

This prism manifold has conemanifold structures (M, (β1, β2, β3)) with angle βi

on the (ai, bi)-fibre. According to Theorem 3.1, the geometry of (M, (β1, β2, β3))
depends on the regions in Figure 6 to which the point

(α1, α2, α3) =

(
β1

4
,
β2

4
,
β3

2n

)

belongs. The three geometries (Spherical, Nil and ˜SL(2,R)) are possible.
The possibilities with only two fibres as singular set are obtained by the inter-

section of the cube in Figure 6 with the planes

Π1 : α1 = π/4,

Π2 : α2 = π/4 and

Π3 : α3 = π/2n

giving regions as in Figure 8, where the three geometries (Spherical, Nil and

˜SL(2,R)) are possible.
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The conemanifold structure
(
P(n,m), β

)
, with the fibre of order n of the above

Seifert structure as singular set has the following limits of sphericity

(4.4) βL = 0, βU = 2nπ.

The geometry is spherical for

(4.5) βL < β < βU = 2nπ;

Nil geometry for β = βL = 0; and there are no ˜SL(2,R) geometric conemanifolds.

Remark 4.4. The exterior of the fibre of order n in the prism manifold P(n,m) has

a complete Nil geometry. There are no ˜SL(2,R) geometric conemanifold structures
on P(n,m) with the fibre of order n as singular set.

The prism manifold has also conemanifold structures
(
P(n,m), β

′
)
, whose singu-

larity is a (2, 1)-fibre of the above Seifert structure, with the following limits of
sphericity

(4.6) β′
L = 2(n− 2)π, β′

U = 2(n+ 2)π.

The geometry is spherical for

(4.7) β′
L = 2(n− 2)π < β′ < β′

U = 2(n+ 2)π;

Nil geometry for β′ = βL = 2(n− 2)π; and ˜SL(2,R)) geometry for

(4.8) 0 ≤ β′ < β′
L = 2(n− 2)π.

In particular, if n = 2, it follows that there are no ˜SL(2,R) geometric coneman-
ifold structures

(
P(2,m), β

)
with singular set an exceptional fibre.

4.4. {a1, a2, a3} = {2, 3, 3}.

The manifold

M = (O, o, 0 | b; (2, 1), (3, b2), (3, b3)) = 〈O, o, 0 | − 1; (2, 1), (3, b2), (3, (b+ 1)3 + b3)〉
where b2 and b3 are 1 or 2, and

e = −6b+ 3 + 2(b2 + b3)

6
6= 0 ⇒ m := 6b+ 3 + 2(b2 + b3) 6= 0.

is denoted by T (m). Observe that the odd integer m determines b and b2, b3 up to
order.

The simplest case is T (1) = (O, o, 0 | − 1; (2, 1), (3, 1), (3, 1)) whose fundamental
group is the binary tetrahedral group T ∗ of order 24, and it is the manifold of
spherical tessellations M(S332) ([7]).

The Seifert manifold T (m) has geometric conemanifolds structures whose sin-
gular set is composed by three or two exceptional fibres according to Theorem 3.1

and Theorem 3.2 respectively. The three geometries (Spherical, Nil and ˜SL(2,R))
are possible.

The conemanifold structures (T (m), β), whose singularity is a (3, 1)-fibre of the
above Seifert structure, have the following limits of sphericity

(4.9) βL = π, βU = 5π.

The geometry is spherical for

(4.10) π < β < 5π;
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Nil geometry for β = π; and ˜SL(2,R) geometry for β < π. Therefore (T (m), π) is
a Nil orbifold whose singular set is a (3, 1)-fibre with label 2.

The conemanifold structures (T (m), β), whose singularity is the (2, 1)-fibre of
the above Seifert structure, have the following limits of sphericity

(4.11) β′
L =

8

3
π, β′

U = 4π.

The geometry is spherical for

(4.12)
8

3
π < β < 4π;

Nil geometry for β = 8
3π; and

˜SL(2,R) geometry for β < 8
3π.

4.5. {a1, a2, a3} = {2, 3, 4}.

The manifold

M = (O, o, 0 | b; (2, 1), (3, b2), (4, b3)) = 〈O, o, 0 | − 1; (2, 1), (3, b2), (4, (b+ 1)4 + b3)〉
where b2 is 1 or 2, and b3 is 1, 2 or 3, and

e = −12b+ 6 + 4b2 + 3b3
12

6= 0 ⇒ m := 12b+ 6 + 4b2 + 3b3 6= 0.

is denoted by O(m). Observe that the integer m, determines b, b2, b3.
The simplest case is O(1) = (O, o, 0 | − 1; (2, 1), (3, 1), (4, 1)) whose fundamental

group is the binary octahedral group O∗ of order 48, and it is the manifold of
spherical tessellations M(S432) ([7]).

The Seifert manifold O(m) has geometric conemanifold structures, whose singu-
lar set is composed by three or two exceptional fibres, according to Theorem 3.1

and Theorem 3.2. The three geometries (Spherical, Nil and ˜SL(2,R)) are possible.
The conemanifold structures (O(m), β) whose singular set is the (4, b3)-fibre of

the above Seifert structure, have the following limits of sphericity

(4.13) βL =
4

3
π, βU =

20

3
π.

The geometry is spherical for

(4.14)
4

3
π < β <

20

3
π;

Nil geometry for β = 4
3π; and

˜SL(2,R) geometry for β < 4
3π.

The conemanifold structures (O(m), β), whose singular set is the (3, b2)-fibre of
the above Seifert structure, have the following limits of sphericity

(4.15) βL =
3

2
π, βU = 3π.

The geometry is spherical for

(4.16)
3

2
π < β < 3π;

Nil geometry for β = 3
2π; and

˜SL(2,R) geometry for β < 3
2π.

The conemanifold structure (O(m), β), whose singular set is the (2, 1)-fibre of
the above Seifert structure, have the following limits of sphericity

(4.17) βL =
5

3
π, βU =

11

3
π.
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The geometry is spherical for

(4.18)
5

3
π < β <

11

3
π;

Nil geometry for β = 5
3π; and

˜SL(2,R) geometry for β < 5
3π.

4.6. {a1, a2, a3} = {2, 3, 5}.

The manifold

M = (O, o, 0 | b; (2, 1), (3, b2), (5, b3)) = 〈O, o, 0 | − 1; (2, 1), (3, b2), (5, (b+ 1)5 + b3)〉
where b2 is 1 or 2, and b3 is 1, 2, 3 or 4, and

−e =
30b+ 15 + 10b2 + 6b3

30
6= 0 ⇒ m := 30b+ 15 + 10b2 + 6b3 6= 0.

is denoted by I(m). Observe that the integer m, determines b, b2, b3.
The simplest case is I(1) = (O, o, 0 | − 1; (2, 1), (3, 1), (5, 1)), whose fundamental

group is the binary icosahedral group I∗ of order 120, and it is the manifold of
spherical tessellations M(S532) ([7]).

The Seifert manifold I(m) has geometric conemanifold structures, whose singular
set is composed by three or two exceptional fibres, according to Theorem 3.1 and

Theorem 3.2. The three geometries (Spherical, Nil and ˜SL(2,R)) are possible.
The conemanifold structures (I(m), β), whose singular set is the (5, b3)-fibre of

the above Seifert structure, have the following limits of sphericity

(4.19) βL =
5

3
π, βU =

25

3
π.

The geometry is spherical for

(4.20)
5

3
π < β <

25

3
π;

Nil geometry for β = 5
3π; and

˜SL(2,R) geometry for β < 5
3π.

The conemanifold structures (I(m), β), whose singular set is the (3, b2)-fibre of
the above Seifert structure, have the following limits of sphericity

(4.21) βL =
9

5
π, βU =

21

5
π.

The geometry is spherical for

(4.22)
9

5
π < β <

21

5
π;

Nil geometry for β = 9
5π; and

˜SL(2,R) geometry for β < 9
5π.

The conemanifold structures (I(m), β), whose singular set is the (2, 1)-fibre of
the above Seifert structure, have the following limits of sphericity

(4.23) βL =
28

15
π, βU =

52

15
π.

The geometry is spherical for

(4.24)
28

15
π < β <

52

15
π;

Nil geometry for β = 28
15π; and

˜SL(2,R) geometry for β < 28
15π.
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5. F2: Seifert manifolds with Nil or Euclidean geometry

We now study the Seifert manifolds with orbit space S2 and with three excep-
tional fibres possessing a Nil or Euclidean geometry. Because the orbit space is a
Euclidean orbifold, the multiplicities of the exceptional fibres are (3, 3, 3), (2, 4, 4)
and (2, 3, 6).

All of them have geometric conemanifold structures with three or two excep-
tional fibres as singular set according to Theorem 3.1 and Theorem 3.2. The three

geometries, Spherical, Nil and ˜SL(2,R) (S2 ×R, Euclidean and H2×R), when the
Euler class e 6= 0 (e = 0), are possible.

Next we collect the results for the conemanifold structures on these manifolds
whose singular set is just one exceptional fibre. Observe that in all cases βL = 2π,
and therefore the corresponding spherical (S2 × R) conemanifold structures, for
e 6= 0 (e = 0), have angle β > 2π.

5.1. {a1, a2, a3} = {3, 3, 3}.

The manifold

(O, o, 0 | b; (3, b1), (3, b2), (3, b3)) = 〈O, o, 0 | − 1; (3, b1), (3, b2), (3, (b+ 1)3 + b3)〉
where bi is 1 or 2, and

e = −3b+ b1 + b2 + b3
3

⇒ m := 3b+ b1 + b2 + b3.

is denoted by N(3,3,3)(m,n), where n = min(b1, b2, b3). Observe that the integer m
and n ∈ {1, 2}, determine {b, b1 b2, b3}. In fact when m is a multiple of 3, m = 3k,
two solutions for {b, b1, b2, b3} are posible: {k − 1, 1, 1, 1} and {k − 2, 2, 2, 2}. For
m = 3k + 1 the solution is {k − 1, 1, 1, 2}, and for m = 3k + 2 the solution is
{k − 1, 1, 2, 2}.

The Euclidean cases correspond to e = 0 ⇒ m = 0. They are

N(3,3,3)(0, 1) = (O, o, 0 | − 1; (3, 1), (3, 1), (3, 1))

N(3,3,3)(0, 2) = (O, o, 0 | − 2; (3, 2), (3, 2), (3, 2))

The first one, N(3,3,3)(0, 1), is the manifold of Euclidean tessellations M(S333)
([7]).

The conemanifold structures
(
N(3,3,3)(m,n), β

)
, whose singular set is an excep-

tional fibre of the above Seifert structure, have the following limits of sphericity

(5.1) βL = 2π, βU = 4π.

The geometry is spherical (S2 × R) for

(5.2) 2π < β < 4π;

Nil (Euclidean) geometry for β = 2π; and ˜SL(2,R) (H2 ×R) geometry for β < 2π.

5.2. {a1, a2, a3} = {2, 4, 4}.

The manifold

(O, o, 0 | b; (2, 1), (4, b2), (4, b3)) = 〈O, o, 0 | − 1; (2, 1), (4, b2), (4, (b+ 1)4 + b3)〉
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where bi is 1 or 3, and

e = −4b+ 2 + b2 + b3
4

⇒ m := 4b+ 2 + b2 + b3.

is denoted by N(2,4,4)(m,n), where n = min(b2, b3). Observe that the even integer
m and n ∈ {1, 3}, determine b, b2, b3. In fact when m is a multiple of 4, m = 4k,
two solutions for {b, b2, b3} are posible: {k−1, 1, 1} and {k−2, 3, 3}. For m = 4k+2
the solution is {k − 1, 1, 3}.

The Euclidean cases correspond to e = 0 ⇒ m = 0. They are

N(2,4,4)(0, 1) = (O, o, 0 | − 1; (2, 1), (4, 1), (4, 1))

N(2,4,4)(0, 3) = (O, o, 0 | − 2; (2, 1), (4, 3), (4, 3))

The first one, N(2,4,4)(0, 1), is the manifold of Euclidean tessellationsM(S244) ([7]).

The conemanifold structures
(
N(2,4,4)(m), β

)
, whose singular set is the (2, 1)-

fibre of the above Seifert structure, have the following limits of sphericity

(5.3) βL = 2π, βU = 4π.

The geometry is spherical (S2 × R) for

(5.4) 2π < β < 4π;

Nil (Euclidean) geometry for β = 2π; and ˜SL(2,R) (H2 × R)geometry for β < 2π.
The conemanifold structures

(
N(2,4,4)(m,n), β

)
, whose singular set is a (4, bi)-

fibre of the above Seifert structure, have the following limits of sphericity

(5.5) βL = 2π, βU = 3π.

The geometry is spherical (S2 × R) for

(5.6) 2π < β < 3π;

Nil (Euclidean) geometry for β = 2π; and ˜SL(2,R) (H2 × R)geometry for β < 2π.

5.3. {a1, a2, a3} = {2, 3, 6}.

The manifold

(O, o, 0 | b; (2, 1), (3, b2), (6, b3)) = 〈O, o, 0 | − 1; (2, 1), (3, b2), (6, (b+ 1)6 + b3)〉
where b2 is 1 or 2, b3 is 1 or 5, and

e = −6b+ 3 + 2b2 + b3
6

⇒ m := 6b+ 3 + 2b2 + b3.

is denoted by N(2,3,6)(m,n), where n = min(b2, b3). Observe that the integer m
which is a even integer, and n ∈ {1, 2} determine b, b2, b3. In fact when m is a
multiple of 6, m = 6k, two solutions for {b, b2, b3} are posible: {k − 1, 1, 1} and
{k − 2, 2, 5}. For m = 6k + 2 the solution is {k − 1, 2, 1}, and for m = 6k + 4 the
solution is {k − 1, 1, 5}.

N(2,3,6)(0, 1) = (O, o, 0 | − 1; (2, 1), (3, 1), (6, 1))

N(2,3,6)(0, 2) = (O, o, 0 | − 2; (2, 1), (3, 2), (6, 5))

The first one, N(2,4,4)(0, 1), is the manifold of Euclidean tessellationsM(S236) ([7]).
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The conemanifold structures
(
N(2,3,6)(m), β

)
, whose singular set is the (2, 1)-

fibre of the above Seifert structure, have the following limits of sphericity

(5.7) βL = 2π, βU =
8

3
π.

The geometry is spherical (S2 × R) for

(5.8) 2π < β <
8

3
π;

Nil (Euclidean) geometry for β = 2π; and ˜SL(2,R) (H2 ×R) geometry for β < 2π.
The conemanifold structures

(
N(m)(2,3,6), β

)
, whose singular set is the (3, b2)-

fibre of the above Seifert structure, have the following limits of sphericity

(5.9) βL = 2π, βU = 4π.

The geometry is spherical (S2 × R) for

(5.10) 2π < β < 4π;

Nil (Euclidean) geometry for β = 2π; and ˜SL(2,R) (H2 ×R) geometry for β < 2π.
The conemanifold structures

(
N(m)(2,3,6), β

)
, whose singular set is the (6, b3)-

fibre of the above Seifert structure, have the following limits of sphericity

(5.11) βL = 2π, βU = 10π.

The geometry is spherical (S2 × R) for

(5.12) 2π < β < 10π;

Nil (Euclidean) geometry for β = 2π; and ˜SL(2,R) (H2 ×R) geometry for β < 2π.

6. F3: Manifolds obtained by Dehn surgery along the torus knot

K(r,s)

The torus knot K(r,s) is a general fibre of the Seifert manifold structure in S3

S(r,s) = (O, o, 0 | − 1; (s, b1), (r, b2))

where (s, b1), (r, b2) and (r, s) are pairs of coprime integer numbers, 0 < b1 < s,
0 < b2 < r and | − rs + b1r + b2s| = 1. We suppose that r > s > 1. Actually
there are two possible values for the pair (b1, b2) with the above conditions. They
correspond to the two possible different orientations on S3, defining the torus knot
K(r,s) and its mirror image K∗

(r,s). Concretely, for −rs+ b1r + b2s = 1 the general

fibre is the right handle torus knot, and for −rs+ b1r + b2s = −1 the general fibre
is the left handle torus knot.

The classification of the manifolds obtained by (p/q)-Dehn surgery along a torus
knot is given in [8]. Recall the concept of (p/q)-Dehn surgery along a knot K ⊂ S3:

Consider a homology basis (
−→
M,

−→
L ) of the boundary of a regular neighborhood N

of the oriented knot
−→
K , where

−→
M is an oriented meridian and

−→
L is an oriented

canonical longitude homologous to
−→
K in N , such that the linking number of

−→
M and

−→
K is +1 in

−→
S3. The result of (p/q)-Dehn surgery is the manifold S3 \N

⋃
h(D

2×S1)

where the homeomorphism h : ∂(D2×S1) −→ ∂N is defined by h(∂D2) = p
−→
M+q

−→
L .

We suppose p > 0 because (p/q) = ((−p)/(−q)).
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If qrs+ p 6= 0, the result of (p/q)-Dehn surgery in a left handle torus knot K(r,s)

is the Seifert manifold

S(r,s)(p/q) = 〈O, o, 0 | − 1; (s, b1), (r, b2), (|qrs+ p|, εq)〉

where ε = 1 if qrs + p > 0 and ε = −1 if qrs+ p < 0, and −rs+ b1r + b2s = −1.
If −qrs + p 6= 0, the result of (p/q) Dehn surgery in a right handle torus knot

K∗
(r,s) is the Seifert manifold

S′
(r,s)(p/q) = 〈O, o, 0 | − 1; (s, b1), (r, b2), (| − qrs+ p|, εq)〉

where ε = 1 if −qrs+ p > 0 and ε = −1 if −qrs+ p < 0, and −rs+ b1r + b2s = 1.

The reason of that difference is that the canonical longitud
−→
L is related to the

toroidal longitud
−→
lt (the longitude which is a fibre of the Seifert fibration) by the

formula
−→
lt =

−→
L − rs

−→
M for the left handle torus and

−→
lt =

−→
L + rs

−→
M for the right

handle case.
The information about the geometric conemanifold structures on the Seifert

manifolds obtained by Dehn surgery along a left (right) handle torus knot K(r,s)

(K∗
(r,s)) can be collected in a 2-positive coordinate graph. We develop here the

case of the left handle torus knots. The points in the graph bearing the symbol
� correspond to points (m,n) such that m,n ∈ Z, gcd(m,n) = 1. The point
(x, y), such that x/y is a rational number (x/y = m/n, m,n ∈ Z, gcd(m,n) = 1)
represents the conemanifold

(
S(r,s)(p/q), β = 2πm/x

)
, where

m = |p+ qrs|, n = εq, ⇒ p

q
=

m− rsn

n
.

The points in the straight line through the origin lm/n with rational slope m/n pa-
rametrize the geometric conemanifold structures in the Seifert manifold S(r,s)((m−
rsn)/n) when x > rs

rs−r+s , by Theorem 3.3. The right handle case is similar but

the line lm/n represents the oriented manifold S′
(r,s)((m + rsn)/n) resulting from

((m+ rsn)/n)-Dehn surgery on the right handle torus knot K∗
(r,s).

Actually, it follows from (3.1) and from the expressions m = |p + qrs| and
β = 2πm/x, that the x coordinate is equal to π/α, that is, α = π/x. Hence in the
graphs the vertical lines represents angles.

Consider the manifold S(r,s)((m − rsn)/n). Its conemanifold structure corre-
sponds to the line lm/n. The geometric structures supported by this conemanifold
structure correspond to the points in this line. If the Euler class of the manifold
S(r,s)((m− rsn)/n) is different from zero, the possible geometries for the coneman-

ifold structure are spherical, Nil or ˜SL(2,R). The geometry is spherical for

rs

rs− r + s
< x <

rs

rs− r − s
;

Nil for x = rs
rs−r−s ; and

˜SL(2,R) for

x >
rs

rs − r − s
.

And the intersection of the vertical lines U : x = rs
rs−r+s and L : x = rs

rs−r−s

with lm/n are the limits of sphericity βU and βL respectively of these geometric
conemanifold structures.
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If the Euler class of the manifold S(r,s)((m − rsn)/n) is zero, the possible ge-

ometries for the conemanifold structure are S2 × R, Euclidean or H2 × R. The
geometry is S2 × R for

rs

rs− r + s
< x <

rs

rs− r − s
;

Euclidean for x = rs
rs−r−s ; and H2 × R for

x >
rs

rs − r − s
.

The following lema identify these manifolds.

Lemma 6.1. The (0/1)-Dehn surgery in the left (right) handle torus knot K(r,s)

(K∗
(r,s)) yields Seifert manifold with S2 × R, Euclidean or H2 × R geometry.

Proof. The Seifert manifold

S(r,s)((m− rsn)/n) = 〈O, o, 0 | − 1; (s, b1), (r, b2), (m,n)〉
is the result of ((m − rsn)/n)-Dehn surgery in the left handle torus knot K(r,s),
where −rs+ b1r + b2s = −1. Then

e = 1− b1
s

− b2
r

− n

m
=

rs − b2s− b1r

rs
− n

m
=

1

rs
− n

m
=

m− nrs

rsm

Therefore e = 0 when m − rsn = 0. This is (0/1)-Dehn surgery in the left handle
torus knot K(r,s).

Analogously, the Seifert manifold

S′
(r,s)((m+ rsn)/n) = 〈O, o, 0 | − 1; (s, b1), (r, b2), (m,n)〉

is the result of ((m + rsn)/n)-Dehn surgery on the right handle torus knot K∗
(r,s),

where −rs+ b1r + b2s = 1. Here

e = 1− b1
s

− b2
r

− n

m
=

rs − b2s− b1r

rs
− n

m
=

−1

rs
− n

m
=

−m− nrs

rsm

Therefore e = 0 when −m− rsn = 0. This is (0/1)-Dehn surgery in the left handle
torus knot K∗

(r,s). �

Corollary 6.1. There exists only one line, lm/n, in the graph associated a torus

knot, whose points correspond to conemanifold structures with S2 × R, Euclidean
or H2 ×R geometry. For the left handle torus knot K(r,s) the line is lrs/1, and for
the right handle torus knot K∗

(r,s) the line is lrs/(−)1.

Figure 11 shows the graph for the trefoil knot K(3,2). The left handle trefoil was
studied in [6], where the following affirmations were deduced.

(1) For all S(3,2) (p/q) the upper sphericity limit βU is equal to five times the
lower sphericity limit βL

(2) If
(
S(3,2) (p/q) , z

)
has a spherical orbifold structure then 2 ≤ z ≤ 5.

(3) There exist infinitely many Nil orbifold structures:
(a)

(
S(3,2) ((2− 6y)/y) , 3

)
, where gcd(2, y) = 1.

(b)
(
S(3,2) ((3− 6y)/y) , 2

)
, where gcd(3, y) = 1.

(c) S(3,2) ((6− 6y)/y), where gcd(6, y) = 1. These are manifolds. Hence
there are infinitely many non-singular Nil manifold structures.

(4) If
(
S(3,2) (p/q) , z

)
has a ˜SL(2, R) orbifold structure, then z > 6.
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Figure 11. The graph for the trefoil knots K(3,2) and K∗
(3,2)

The same graph is associated to the right handle trefoil K∗
(3,2). The above con-

clusions (1) (2) and (4) still hold true for the manifold S′
(3,2) (p/q). But conclusion

3 must be replaced by 3’

(3)’ : There exist infinitely many Nil orbifold structures:

(a)
(
S′
(3,2) ((2 + 6y)/y) , 3

)
, where gcd(2, y) = 1.

(b)
(
S′
(3,2) ((3 + 6y)/y) , 2

)
, where gcd(3, y) = 1.

(c) S′
(3,2) ((6 + 6y)/y), where gcd(6, y) = 1. These are manifolds. Hence

there exist infinitely many non-singular Nil manifold structures.

We now add the following results:

Remark 6.1. The Seifert manifolds represented by the two lines l6/1 and l6/(−1),

S(3,2) (0/1) = (O, o, 0 | − 1; (2, 1), (3, 1), (6, 1))

S′
(3,2) (0/1) = 〈O, o, 0 | − 1; (2, 1), (3, 2), (6,−1)〉 ,

do not have S2 × R orbifold structure with the core of the surgery as singular set.
They have Euclidean manifold structure and all the orbifols structures have H2×R

geometry.

Next, we analize the case of a general torus knot.
To study the existence of spherical orbifolds among the conemanifold structures

in S(r,s) (p/q) we have to study the points with integer coordinates lying between
the two straight lines U : x = rs

rs−r+s and L : x = rs
rs−r−s . The Nil geometric

orbifolds correspond to integer coordinates in the straight line L : x = rs
rs−r−s .

Given two integer numbers r > s > 1 let’s define

xU =
rs

rs− r + s
xL =

rs

rs− r − s

Lemma 6.2. Let r > s > 1. The rational number xL is less than 2, exactly for all
pairs (r, s), with r ≥ 6 and s ≥ 3, and for the pair (5, 4).
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Proof. Observe that

xL =
rs

rs− r − s
< 2 ⇔ rs < 2(rs− r − s) ⇔

⇔ 0 < rs− 2r − 2s = (2 + r − 2)(s− 2)− 2s = (r − 2)(s− 2) + 2s− 2s− 4 ⇔
⇔ 4 < (r − 2)(s− 2)(6.1)

This is true if r ≥ 6 and s ≥ 3. It is false for s = 2 and any r. For the remaining
cases (4, 3), (5, 3) and (5, 4), it is only true for (5, 4). �

Lemma 6.3. Let r > 2. The rational number xL for the pairs (r, 2) is bigger than
3, exactly for r = 3, 4, 5.

Proof. Observe that

2r

2r − r − 2
=

2r

r − 2
> 3 ⇔ 2r > 3r − 6 ⇔ r < 6

�

Lemma 6.4. The Seifert manifold

〈O, o, 0 | − 1; (s, b1), (r, b2), (m,n)〉
where (s, b1), (r, b2) and (r, s) are pairs of coprime integer numbers, 0 < b1 < s,
0 < b2 < r, s < r, and | − rs + b1r + b2s| = 1, is the result of Dehn surgery on the
torus knot K(r,s) or K∗

(r,s).

Proof. If −rs + b1r + b2s = −1, then the manifold is the result of ((m− rsn)/n)
Dehn surgery on the left handle torus knot K(r,s): S(r,s) ((m− rsn)/n).

If −rs + b1r + b2s = 1, then the manifold is the result of ((m+ rsn)/n) Dehn
surgery on the right handle torus knot K∗

(r,s): S
′
(r,s) ((m+ rsn)/n). �

Theorem 6.1. The only Seifert manifolds

〈O, o, 0 | − 1; (s, b1), (r, b2), (m,n)〉
where (s, b1), (r, b2) and (r, s) are pairs of coprime integer numbers, 0 < b1 < s,
0 < b2 < r, s < r, e 6= 0 and | − rs + b1r + b2s| = 1, supporting spherical orbifold
structures with singular set the exceptional (m,n)-fibre, are those obtained by Dehn
surgery in the torus knots (r, 2), for all r > 2, (4, 3), and (5, 3).

The angle around the singular geodesic is π, for (4, 3), (5, 3) and (r, 2) r > 6; π
or 2π/3, for (5, 2); and π, 2π/3, π/2 or 2π/5, for (3, 2).

Proof. The points in the graph corresponding to spherical orbifold structures are
points with integer coordinates lying between the lines U and L. Observe that
always xU > 1. Lemma 6.2 gives the pairs where xL < 2. Therefore, for all those
cases, there are no points with integer coordinates in the spherical region. For
the other cases there are always points with coordinates (2, n) corresponding to
spherical orbifold structures with angle π along the core of the surgery if n is even,
and non singular spherical structure if n is odd.

On the other hand, the only cases with xL > 3 are (r, s) with 6 > r > s > 1,
whose graphs are depicted in Figures 11, 12 and 13. �

Corollary 6.2. The only Seifert manifolds

S(r,s) (p/q) = 〈O, o, 0 | − 1; (s, b1), (r, b2), (qrs + p, q)〉
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where (s, b1), (r, b2) and (r, s) are pairs of coprime integer numbers, 0 < b1 < s,
0 < b2 < r, s < r, e 6= 0 and | − rs + b1r + b2s| = 1, supporting Nil orbifold
or manifold structures with singular set the exceptional (qrs+ p, q)-fibre, are those
obtained by Dehn surgery in the trefoil knots K(3,2) or K∗

(3,2)

Proof. The only value of (r, s), r > s > 1 for which xL is an integer is (3, 2). �
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Figure 12. The graph for the knots K(4,3) and K∗
(4,3)

6.1. Conclusions for the knots K(4,3) and K∗
(4,3).

(1) Points in the line l12/1 (l12/(−1)) represent the geometric conemanifold
structures in the manifold S(4,3) (0/1) (S′

(4,3) (0/1)). The possible geome-

tries in both cases are (S2 × R), Euclidean and (H2 × R). These cone-
manifolds structures are included in the next conclusions where we write in
brackets the corresponding geometry.

(2) For all S(4,3) (p/q) and S′
(4,3) (p/q) the upper sphericity limit βU is equal to

11/5 times the lower sphericity limit βL.
(3) There are no Nil (Euclidean) manifold structures on S(4,3) (p/q) and

S′
(4,3) (p/q).

(4) There are no Nil (Euclidean) orbifold structures on S(4,3) (p/q) and S′
(4,3) (p/q).

(5) The orbifold
(
S(4,3) ((12v − 1)/(−v)) , 2

)
, v ∈ N has a spherical orbifold

structure with the core of the surgery as singular set labeled 2. It is the
Seifert manifold

〈O, o, 0 | − 1; (3, 1), (4, 3), (1, v)〉 = (O, o, 0 | v − 1; (3, 1), (4, 3))

which is the lens space L(12v + 1, 16v) studied in Subsection 4.2.

(6) The orbifold
(
S′
(4,3) ((1 + 12v)/v) , 2

)
, v ∈ N has a spherical orbifold struc-

ture with the core of the surgery as singular set labeled 2. It is the Seifert
manifold

〈O, o, 0 | − 1; (3, 2), (4, 1), (1, v)〉 = (O, o, 0 | v − 1; (3, 2), (4, 1)).
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This is the lens space L(12v − 1,−2 + 15v) studied in Subsection 4.2.
(7) The manifold S(4,3) ((12v − 2)/(−v)), v odd integer, which is the Seifert

manifold

〈O, o, 0 | − 1; (3, 1), (4, 3), (2, v)〉 = (O, o, 0 | v − 2; (3, 1), (4, 3), (2, 1))

has a spherical manifold structure with the core of the surgery as geodesic.
This is the spherical manifold O(12v − 5) studied in Subsection 4.5.

(8) The manifold S′
(4,3) ((2 + 12v)/v), v odd integer, which is the Seifert man-

ifold

〈O, o, 0 | − 1; (3, 2), (4, 1), (2, v)〉 = (O, o, 0 | v − 2; (3, 2), (4, 1), (2, 1))

has a spherical manifold structure with the core of the surgery as geodesic.
This is the spherical manifold O(12v − 7) studied in Subsection 4.5.

(9) All the other manifold or orbifold structures in S(4,3) (p/q) and S′
(4,3) (p/q)

with the core of the surgery as geodesic or singular set, have ˜SL(2,R)
(H2 × R) geometry.

6.2. Conclusions for the knots K(5,s) and K∗
(5,s), s = 2, 3, 4.

Figure 13 shows the graph for the cases r = 5.

(1) Points in the line l5s/1 (l5s/(−1)) represent the geometric conemanifold struc-
tures in the manifold S(5,s) (0/1) (S

′
(5,s) (0/1)). The possible geometries in

both cases are (S2 × R), Euclidean and (H2 × R). These conemanifolds
structures are included in the next conclusions where we write in brackets
the corresponding geometry.

(2) For all S(5,s) (p/q) and S′
(5,s) (p/q) the upper sphericity limit βU is equal to

7/3 (s = 2), 13/7 (s = 3), 19/11 (s = 4), times the lower sphericity limit
βL.

(3) There are no non-singular Nil (Euclidean) manifold structures on S(5,s) (p/q)
and
S′
(5,s) (p/q).

(4) There are no Nil (Euclidean) orbifold structures on S(5,s) (p/q) and S′
(5,s) (p/q).

(5) There are no orbifold spherical (S2 × R) structures on S(5,4) (p/q) and
S′
(5,4) (p/q).

(6) For s = 2, 3 and v ∈ N, the orbifolds
(
S(5,s) ((|1 − 5sv|)/(−v)) , 2

)
and(

S′
(5,s) ((1 + 5sv)/v) , 2

)
have a spherical orbifold structure with the core

of the surgery as singular set labeled 2. Here

S(5,2)

( |1− 10v|
−v

)
= 〈O, o, 0 | − 1; (2, 1), (5, 3), (1, v)〉 =

= (O, o, 0 | v − 1; (2, 1), (5, 3)) = L(10v + 1, 15v − 1)

S(5,3)

( |1− 15v|
−v

)
= (O, o, 0 | v − 1; (3, 2), (5, 2)) = L(15v + 1, 9v)
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Figure 13. The graph for knots K(5,s), (s = 2, 3, 4)

S′
(5,2)

(
1 + 10v

v

)
= (O, o, 0 | v − 1; (2, 1), (5, 2)) = L(10v − 1, 15v − 4)

S′
(5,3)

(
1 + 15v

v

)
= (O, o, 0 | v − 1; (3, 1), (5, 3)) = L(15v − 1, 20v − 3).

(7) The orbifolds
(
S(5,2) ((|1− 10v|)/(−v)) , 3

)
and

(
S′
(5,2) ((1 + 10v)/v) , 3

)
,

v ∈ N, have a spherical orbifold structure with the core of the surgery
as singular set labeled 3.

(8) The manifolds S(5,s) ((|2 − 5sv|)/(−v)) and S′
(5,s) ((2 + 5sv)/v), v odd in-

teger, have a spherical manifold structure with the core of the surgery as
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geodesic. Here

S(5,2)

(
10v − 2

−v

)
= 〈O, o, 0 | − 1; (2, 1), (5, 3), (2, v)〉 =

= (O, o, 0 | v − 2; (2, 1), (5, 3), (2, 1))

S(5,3)

(
15v − 2

−v

)
= 〈O, o, 0 | − 1; (3, 2), (5, 2), (2, v)〉 =

= (O, o, 0 | v − 2; (3, 2), (5, 2), (2, 1))

S(5,4)

(
20v − 2

−v

)
= 〈O, o, 0 | − 1; (4, 1), (5, 4), (2, v)〉 =

= (O, o, 0 | v − 2; (4, 1), (5, 4), (2, 1))

S′
(5,2)

(
2 + 10v

v

)
= 〈O, o, 0 | − 1; (2, 1), (5, 2), (2, v)〉 =

= (O, o, 0 | v − 2; (2, 1), (5, 2), (2, 1))

S′
(5,3)

(
2 + 15v

v

)
= 〈O, o, 0 | − 1; (3, 1), (5, 3), (2, v)〉 =

= (O, o, 0 | v − 2; (3, 1), (5, 3), (2, 1))

S′
(5,4)

(
2 + 20v

v

)
= 〈O, o, 0 | − 1; (4, 3), (5, 1), (2, v)〉 =

= (O, o, 0 | v − 2; (4, 3), (5, 1), (2, 1)).

(9) The manifolds S(5,3) ((|3− 15v|)/(−v)) and S′
(5,3) ((3 + 15v)/v), where gcd(3, v) =

1, have a spherical manifold structure with the core of the surgery as geo-
desic. Here

S(5,3) ((15v − 3)/(−v)) = 〈O, o, 0 | − 1; (3, 2), (5, 2), (3, v)〉
S′
(5,3) ((3 + 15v)/v) = 〈O, o, 0 | − 1; (3, 1), (5, 3), (3, v)〉

(10) All the other manifold or orbifold structures in S(5,s) (p/q) and S′
(5,s) (p/q)

with the core of the surgery as geodesic and possible singular set, have
˜SL(2,R) (H2 × R) geometry.

6.3. Conclusions for the knots K(r,s) and K∗
(r,s), r > s > 1, r > 5.

Figure 14 show the graph for the cases r > 5.

(1) Points in the line lrs/1 (lrs/(−1)) represent the geometric conemanifold struc-
tures in the manifold S(r,s) (0/1) (S

′
(r,s) (0/1)). The possible geometries in

both cases are (S2 × R), Euclidean and (H2 × R). These conemanifolds
structures are included in the next conclusions where we write in brackets
the corresponding geometry.

(2) There are no non-singular Nil (Euclidean) manifold structures on S(r,s) (p/q)
and
S′
(r,s) (p/q).

(3) There are no Nil (Euclidean) orbifold structures on S(r,s) (p/q) and S′
(r,s) (p/q).
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0

1

2

3

4

-1

-2

-3

-4

n

m
1/0

6/1

5/2
2/3

?
Spherical

geometry

Nil
SL(2,R)

U L

6/-1

5/-2

4/3

K(r,2) (r>5)

0

1

2

3

4

-1

-2

-3

-4

n

m
1/0

6/1

5/2

2/3

?
Spherical

geometry

Nil
SL(2,R)

U L

6/-1

5/-2

4/3

K(r,s) (r>5,s>2)

Figure 14. The graph for knots K(r,2) and K(r,s), r > 5, s > 2

(4) For s > 2 there are not manifold or orbifold spherical (S2 × R) structures
on S(r,s) (p/q) and S′

(r,s) (p/q) with the core of the surgery as geodesic or

singular set.

(5) The orbifolds
(
S(r,2) ((|1 − 2rv|)/(−v)) , 2

)
and

(
S′
(r,2) ((1 + 2rv)/v) , 2

)
, where

v ∈ N, have a spherical orbifold structure with the core of the surgery as
singular set labeled 2.

(6) The manifolds S(r,2) ((|2− 2rv|)/(−v)) and S′
(r,2) ((2 + 2rv)/v), v odd in-

teger, have a spherical manifold structure with the core of the surgery as
geodesic.

(7) All the other manifold or orbifold structures in S(r,s) (p/q) and S′
(r,s) (p/q)

with the core of the surgery as geodesic or singular set, have ˜SL(2,R)
(H2 × R) geometry.

6.4. Some examples.

Surgery ∞. For all cases, the horizontal line y = 0 corresponds to surgery
∞ = 1/0 in a torus knot in the 3-sphere. Then the manifold is S3 with the Seifert
structure

S3 = (O, o, 0 | − 1; (s, b1), (r, b2))

where | − rs+ b1r+ b2s| = 1. This manifold has a spherical conemanifold structure
with the knot K(r,s) as singular set with angle β

2
rs− r + s

rs
π > β > 2

rs− r − s

rs
π;

Nil conemanifold structure, for

β = 2
rs− r − s

rs
π;

and ˜SL(2,R) conemanifold structure for

β < 2
rs− r − s

rs
π.
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(Actually S3 has a manifold spherical structure where the knot K(r,s) is not a
geodesic of that structure. However, in this paper, we are only studying geometric
conemanifold (or manifold) structures such that the fibres of the Seifert fibration
are geodesic or singular.)

Surgery 0.

The values p = 0, q = 1, correspond to m = p ∓ rsq = ∓rs, n = 1. The
corresponding conemanifold is represented by the line with slope ∓rs/1. These
Seifert manifolds have Euler class zero. The possible geometries are (S2 × R),
Euclidean and (H2 × R).

For a torus knot K(r,s), r > s > 1, r > 3, the Seifert manifolds

S(r,s) (0/1) = (O, o, 0 | − 1; (s, b1), (r, b2), (rs, 1))

S′
(r,s) (0/1) = (O, o, 0 | − 1; (s, b1), (r, b2), (rs,−1))

do not have (S2×R) or Euclidean orbifold structure with the core of the surgery as
singular set and all the orbifols structures have (H2 × R) geometry. The reason is
that, in the graph, the line with slope rs/±1 do not contain any point with integer
coordinates in the spherical zone.
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28080 Spain

E-mail address, J.M. Montesinos: jose montesinos@mat.ucm.es


	Introduction
	1. Some Seifert manifolds
	2. The 2-conemanifold structure on the orbit space
	3. The geometric structure on MF 
	4. F1: Manifolds with finite fundamental group
	4.1. S3 with no exceptional fibres: the Hopf fibration
	4.2. Seifert manifold structures in lens spaces
	4.3. {a1,a2,a3}={2,2,n}: prism manifold
	4.4. {a1,a2,a3}={2,3,3}
	4.5. {a1,a2,a3}={2,3,4}
	4.6. {a1,a2,a3}={2,3,5}

	5. F2: Seifert manifolds with Nil or Euclidean geometry
	5.1. {a1,a2,a3}={3,3,3}
	5.2. {a1,a2,a3}={2,4,4}
	5.3. {a1,a2,a3}={2,3,6}

	6. F3: Manifolds obtained by Dehn surgery along the torus knot K(r,s)
	6.1. Conclusions for the knots K(4,3) and K*(4,3)
	6.2. Conclusions for the knots K(5,s) and K*(5,s), s=2,3,4
	6.3. Conclusions for the knots K(r,s) and K*(r,s), r>s>1, r>5
	6.4. Some examples

	References

