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Abstract: A facile strategy for zwitterionization of bioceramics based on direct incorporation of L-

lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials is proposed. FTIR 

studies of lysine-grafted MCM-41 (MCM-LYS) showed simultaneously bands at 3080 and 1540 cm−1 

and bands at 1625 and 1415 cm−1 corresponding to -NH3+/COO− pairs, demonstrating the 

incorporation of the amino acid on the material surface keeping its zwitterionic character. Both 

elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt % 

based on the bioceramic total weight. Moreover, MCM-LYS material exhibited a reduction of adhesion 

of S. aureus and E. coli bacteria in 33 and 50%, respectively at physiological pH, as compared with 

pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a 

reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%). This research shows a 

simple and effective approach to chemically modify bioceramics using single amino acids that provide 

zwitterionic functionality, useful to develop new biomaterials able to resist bacterial adhesion. 

Keywords: Lysine grafting; zwitterionization; mesoporous MCM-41 biomaterial; antibacterial 

adhesion; biofilm formation.  

 

1. Introduction 

Microbial adhesion onto implanted biomaterials and the subsequent formation of biofilms is one 

of the major causes of failure in biomedical devices. Antimicrobial and non-fouling coatings are two 

strategies to prevent the attachment and spreading of microorganisms on the surface of implantable 

materials [1]. The use of hydrophilic or zwitterionic surfaces is among the most useful chemical 

strategies to avoid bacterial adhesion and biofouling [2–4]. In this sense, zwitterionic polymers such as 

poly(sulfobetaine methacrylate) (pSBMA) and poly(carboxybetaine methacrylate) (pCBMA), with 

mixed positively and negatively charged moieties within the same polymer chain and overall charge 

neutrality, exhibit ultralow fouling ability to resist nonspecific protein adsorption, bacterial adhesion 

and biofilm formation [5,6].  

The design of ordered mesoporous materials with resistance to bacterial adhesion is highly 

desirable since these materials have unique characteristics such as high surface area and pore volume, 

mailto:ib.fernanda.villegas@gmail.com
mailto:gtoriz@dmcyp.cucei.udg.mx
mailto:ibarba@farm.ucm.es
mailto:salinas@farm.ucm.es


Bioengineering 2017, 4, x FOR PEER REVIEW  2 of 13 

tuneable and narrow pore size distributions, as well as ease of functionalization. These materials have 

been widely used for various applications, i.e. catalysis, carriers for drug storage and delivery, 

adsorbents [7–9] and as bioceramics for bone tissue regeneration [11,12]. In addition, ordered 

mesoporous silica materials have excellent properties as drug carriers, such as large loading capacity 

and low toxicity. Currently, a significant research effort has been reported on the design of 

bioceramics functionalized with zwitterions as a promising strategy to develop non-fouling and 

antibacterial adhesion surfaces [13]. These properties are related to a hydration layer onto the surface, 

since a tightly bound water layer forms a physical and energetic barrier that prevents bacterial 

adhesion and non-specific protein adsorption [14–17]. It is possible to set up functionalization 

methods to graft both positively and negatively charged moieties onto the bioceramic surfaces.  

Thus, different zwitterionization approaches have been developed so far to prepare non-fouling 

bioceramics. In general, these strategies include the surface grafting with zwitterionic polymers or 

with low molecular moieties, involving the surface modification with either carboxylic and/or amine 

groups in separate steps [15–19]. Recently, it has been reported that the amino acids represent an 

alternative to provide bioceramics with a zwitterionic character. In this sense, cysteine was grafted to 

the surface of silica nanoparticles via a two-step procedure, showing high resistance to nonspecific 

protein adsorption [20]. In this sense, the amino acid L-lysine (lysine) is even more attractive to create 

low-fouling surface owing to its low cost, high biocompatibility, and widespread availability. Lysine 

is a basic amino acid, which contains two primary amino groups (-NH2) and one carboxylic group (-

COOH) with pKa for the α-amino and the carboxylic groups at 9.06 and 2.16, respectively. 

Consequently, at neutral pH these groups are simultaneously protonated and deprotonated. When 

the ε-amino group has reacted, the remaining amino group and carboxyl group form an anion–cation 

pair, i.e. a zwitterion, which exhibits antifouling activity [21–23]. For instance, Shi et al. [24] grafted 

lysine, glycine, and serine onto the surface of hydrolyzed polyacrylonitrile membrane with a high 

concentration of carboxylic acid groups. The modified membranes had similar hydrophobicity, as 

determined from water contact angle measurements, being the lysine-modified membrane the one 

that showed the least protein fouling. Moreover, Zhi et al. [25] grafted lysine onto polydopamine 

coated poly(ethylene terephthalate) that showed improved resistance to nonspecific protein 

adsorption and platelet adhesion.  

In the present work, lysine was grafted to silica by means of cyanuric chloride (CC), which acted 

as a bridging molecule. CC has been shown to be an effective surface coupling agent that can react 

with a variety of substances, including hydroxyl and amino derivatives, producing an ether linkage, 

which is chemically and electrochemically stable in organic solvents and in aqueous solution (pH 3–

7) [26]. CC has labile chlorine groups that can react both with the hydroxyl groups on the surface of 

the bioceramics and with ε-amine of lysine. Consequently, the goal of this work was to chemically 

modify mesoporous silica (MCM-41) using the amino acid lysine, to provide zwitterionic moieties 

useful for the development of new biomaterials able to resist bacterial adhesion and to reduce the 

biofilm formation onto their surface. 

2. Materials and Methods 

2.1. Materials 

L-lysine monohydrochloride (98%), tetraethyl orthosilicate (TEOS, 98%), 2,4,6-Trichloro-1,3,5-

triazine (Cyanuric chloride, CC) (99%), hexadecyl trimethylammonium bromide (CTAB), and 

glutaraldehyde (50 wt. %) were purchased from Sigma–Aldrich. Sodium hydroxide (NaOH, 98.9%), 

ethylenediamine tetra acetic acid (EDTA, 98%), and copper (II) sulfate (CuSO4·5H2O, 98 %) were 

purchased from Analytyka. Tryptic soy agar (TSA, BIOXON), Tryptic soy broth (TSB, BIOXON) and 

Todd Hewitt Broth (THB, Fluka analytical) were used as received. The microorganisms Escherichia 

coli (ATCC 25922), and Staphylococcus aureus (ATCC 29213) were obtained from the American Type 

Culture Collection. All the other reagents were analytical grade and used without further 

purification. 
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2.2. Preparation of MCM-41 with Zwitterionic Moieties 

MCM-41 silica was synthesized by the sol gel method according to Cai et al. [27]. In brief,  

CTAB (1 g) was dissolved in 480 mL of distilled water, and then 3.5 mL of NaOH (2 M) were added, 

the temperature raised to 85 °C and stirred for 30 min. TEOS (5.0 mL) was then introduced drop-wise 

to the surfactant solution. Once the addition of TEOS was completed the mixture was stirred for 2 h at 

85 °C. The white precipitates were filtered, washed with ethanol, dried under vacuum at room 

temperature for 48 h, and calcined in air at 550 °C for 4 h with a heating rate of 1 °C/min. 

The resulting bioceramic was functionalized with the amino acid lysine (MCM-LYS) to confer 

the zwitterionic character. The modification of MCM-41 with the amino acid lysine was carried out 

following the procedure reported by Delgado et al. [28]. In brief, L-lysine hydrochloride was first 

converted into the copper complex as it follows: lysine (2.32 g in 12.72 mL NaOH 1 M) and copper 

sulphate (1.59 g CuSO4·5H2O in 30 mL H2O) were brought together and stirred into a homogeneous 

solution. The pH of the solution was adjusted to 7.0 with NaOH (1 M) and cooled to 0 °C. MCM-41 

was grafted with CC as follows: 1 g MCM-41 was placed in a water–acetone mixture (80 mL, 75/25) 

under constant stirring and cooled at 0 °C. Afterwards, the CC (2.34 g) solution in p-dioxane (40 mL) 

was added under magnetic stirring. Subsequently, NaCl (1.5 g) was added in two equivalent 

portions, the pH of the mixture adjusted to 12 with NaOH (6 M) and kept at 0 °C for 30 min under 

constant stirring. Coupling of lysine to the grafted MCM-41 was achieved by adding immediately the 

lysine-copper complex under vigorous stirring and left to react for 15 min. Then, the reaction mixture 

was removed from the ice bath and placed in a water bath at room temperature followed by a slow 

increase of temperature until reaching 65 °C and kept for 40 min. The functionalized bioceramic was 

filtered off and washed with water and p-dioxane several times to remove CC residues. The copper was 

completely eliminated from the lysine-copper complex by suspending the functionalized bioceramic in 

40 mL distilled water with 1.18 g EDTA (twice, the second time adding 0.1% triton X-100 detergent), boiled 

at 100 °C for 10 min, filtered, treated with 0.05 M acetic acid (30 mL) and extensively washed with water 

and dried overnight under vacuum at 60 °C. 

2.3. Characterization 

The structural characteristics of the resulting materials were determined by powder X-ray 

diffraction (XRD) in a Siemens D500 diffractometer (Eindhoven, The Netherlands) equipped with Cu 

K  (40 kV, 20 mA) over the range from 2° to 10° with a step of 0.005 and a contact time of 4 s. The 

nitrogen adsorption isotherms were measured at −196 °C with a Micromeritics ASAP 2020 analyzer 

(Micromeritics, Norcross, USA). In all cases, the samples were degassed at 60 °C for 24 h before 

analysis. Electron microscopy was carried out in a JEOL JEM-220FS transmission electron microscope 

(TEM, Japan) operating at 300 kV. The chemical composition and the presence of functional groups on the 

synthesized materials was determined using Fourier-transform infrared (FTIR) spectroscopy in a 

Thermo Nicolet Nexus spectrometer equipped with a Goldengate attenuated total reflectance (ATR) 

device (Thermo scientific, USA) from 4000 to 400 cm−1. Quantitative determination of chemical 

composition of the samples was carried out by elemental chemical analysis in a LECO CHNS-932 

microanalyzer (Saint Joseph, Michigan, USA). Thermogravimetric analyses (TGA) were carried out 

in nitrogen between 30 and 600 °C (flow rate of 50 mL/min, heating rate of 10 °C/min) using a Perkin-

Elmer TGA Diamond analyzer. Zeta-potential () measurements were performed on a Malvern 

Zetasizer Nano Series instrument (Malvern Instruments Ltd., UK) with 55 mg of each sample in 30 

mL of 10 mM KCl (used as the supporting electrolyte), the mixture was vigorously stirred to reach a 

homogenous suspension and the pH adjusted by adding appropriate volumes of 0.1 M HCl or 0.1 M 

KOH solutions. 

2.4. Bacterial Adhesion Assays 

Bacterial adhesion assays on MCM-41 and MCM-LYS were tested using Gram-negative E. coli 

(assay A) and Gram-positive S. aureus (assay B) by using an established methodology [29–33]. In brief, 

disk-shaped pieces of 6 mm diameter and 1 mm height were prepared by compacting fractions of 30 
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mg of dried powders using 2.75 and 3 MPa uniaxial and isostatic pressure respectively. Before the 

adhesion assay, samples were sterilized by UV irradiation for 10 min on each side of the piece and 

then stabilized in sterile phosphate buffer saline (PBS) for 2 h.  

Assay A: S. aureus strain was grown to a mid-logarithmic phase in THB medium at 37 °C under 

orbital stirring at 100 rpm until the optical density measured at 600 nm reached 0.5 in an UV-Vis 

spectrometer (UV-530, Bonsai technologies, Spain). Bacteria from the culture were collected by 

centrifugation (Labofuge 400 centrifuge, Thermo Scientific, USA) at 1500 rpm for 10 min at room 

temperature, washed three times with sterile PBS (pH 7.4) and re-suspended in 12 mL of PBS. In this 

study (Assay A), PBS solutions with pH 3.6 and 7.8 were also used.  

Assay B: E. coli was grown in TSB at 37 °C under orbital stirring at 100 rpm until the optimal density 

as measured at 600 nm reached 0.5. At this point, bacteria from the culture were collected by centrifugation 

at 1500 rpm for 10 min at room temperature, washed three times with sterile PBS (pH 7.4) and 

subsequently re-suspended in 12 mL of sterile PBS. 

Then, different disk-shaped samples were soaked in 1 mL of each bacterial suspension (A or B) 

and incubated at 37 °C under orbital stirring at 100 rpm for 90 min. 

Quantification of bacteria attached to the biomaterial surfaces after the bacterial adhesion assays 

(A and B) was performed by a method described elsewhere [29,30]. The bioceramic samples were 

aseptically removed and rinsed three times with sterile PBS to eliminate any free bacteria [32]. Each 

disk was placed in 1 mL sterile PBS in Eppendorf vials (Nirco, Spain) followed by 10 min sonication 

in a low-power bath sonicator (Selecta, Spain). This sonication process was carried out three times, 

assuming then that 99.9% of adhered bacteria were removed. Thereafter, 100 µL of each sonication 

product were cultivated on TSA plates, followed by incubation at 37 °C overnight. Determination of 

the number of colony forming units (CFU) resulting from the overall sum of the three sonication 

stages allowed the determination of the number of bacteria initially adhered onto the disks. The 

experiments were performed in duplicate. Surface characterization of the samples after 90 min in E. 

coli bacterial incubation was performed by SEM in a JEOL model JSM-6335F microscope (Japan). 

Before the SEM studies, the attached bacteria were fixed with 2.5 vol. % glutaraldehyde in PBS, pH 

7.4 and dehydrated by slow water replacement using a series of graded ethanol solutions (10%, 30%, 

50%, 70% and 100%) in deionized water, with a final dehydration step in absolute ethanol before 

critical point drying (Balzers CPD 030, Liechtenstein) [33]. The materials were mounted on stubs and 

gold plated in vacuum using a sputter coater (Balzers SCD 004, Liechtenstein) and visualized by SEM. 

2.5. S. Aureus Bacterial Biofilm Formation 

Biofilm growth onto MCM-41 and MCM-LYS surfaces was determined. Briefly, S. aureus 

biofilms were developed by suspending the disks of each material in a bacteria solution of 108 bacteria 

per mL during 48 h at 37 °C and orbital stirring at 100 rpm. In this case, the medium used was 66% 

tryptic soy broth (TSB; BioMerieux, Marcy L’Etoile, France) + 0.2% glucose to promote robust biofilm 

formation. After 90 min of incubation, the disks were washed three times with sterile PBS, stained 

with a 3 μL/mL of Live/Dead® Bacterial Viability Kit (BacklightTM) and 5 μL/mL of calcofluor 

solution to specifically determine the biofilm formation, staining the mucopolysaccharides of the 

biofilm (extracellular matrix in blue). Both reactants were incubated for 15 min at room temperature. 

Biofilm formation was examined in an Olympus FV1200 confocal microscope, by taking eight 

photographs of each sample (60x magnification) [34]. The surface area covered with adhered bacteria 

was calculated using ImageJ software (National Institute of Health, Bethesda, MD). The experiments 

were performed in triplicate and the results were expressed as the mean ± standard deviation. 

3. Results 

MCM-41 was successfully synthesized by the sol-gel methodology as shown in the following 

analyses: in Figure 1, the XRD pattern exhibits a strong (100) reflection peak with three small peaks (110), 

(200) and (210) typical of MCM-41 material [35]; the formation of an ordered 2D hexagonal array and 

straight structural features of MCM-41 are clearly revealed by TEM as observed in Figure 2. It is worth 

noticing that the synthesized MCM-41 did not present intergrowth or inter-twinned aggregations.  
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Figure 1. XRD patterns of pristine MCM-41. Characteristic diffraction patterns of ordered mesoporous 

silica corresponding to 2D hexagonal structure, p6mm plain group is observed.  

 

Figure 2. TEM images of MCM-41: (a) The image shows aggregates of circular particles between  

200–500 nm; (b) The image shows the surface of a particle demonstrating a honeycomb array with a 

regular pore size of about 2 nm. 

Lysine was grafted onto MCM-41 silica, using CC as linking agent, as shown in Scheme 1. The surface 

hydroxyl groups of MCM-41 react with chlorine atoms of CC in a first stage. The remaining chlorine atoms 

in CC can react with the -amino group of lysine (Compound 1) in a second stage. Protection of α-amino 

and carboxyl groups is achieved by complexing them with Cu2+ (Compound 2); the free -amino groups 

of the copper complex reacted with Compound 1 to obtain the  

MCM-LYS material.  
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Scheme 1. Lysine grafting via coupling with CC onto MCM-41. Silanol groups on MCM-41 first react 

with CC, which in turn react with the -amino group of a Cu2+ lysine complex. After treatment of the 

product of [1] and [2] with EDTA to remove copper, the proper zwitterionic function on the 

bioceramic is achieved. 

Figure 3 shows the FTIR spectra of pristine MCM-41 and MCM-LYS. MCM-41 shows the 

characteristic band of siloxane group (-Si-O-Si-) at 1060 cm−1, whereas the bands at 955 and 795 cm−1 

correspond to –Si-OH and –Si-O, respectively [14]. The new bands, shown in the inset, at 3204 and 1399 

cm−1 originate from N-H stretching and deformation frequencies respectively. Furthermore, the 

presence of zwitterionic pairs can be demonstrated by observing the peaks at 3080 and 1540 cm−1, which 

correspond to -NH3+ stretching and deformation frequencies respectively, and the bands at 1625 and 

1415 cm−1 typical of the anti-symmetric and symmetric frequencies of ionic carboxyl (COO−). The 

carbonyl group of lysine is observed in 1715 cm−1, while the bands observed in 2971 and 2874 cm−1 

correspond to -CH2- of the amino acid chain. It was therefore established that MCM-41 was 

successfully modified with lysine and that the samples exhibit a zwitterion moieties due to presence 

of NH3+ and COO- groups (see insets in Figure 3).  
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Figure 3. FTIR spectra of MCM-41 and MCM-LYS. The insets show regions from 4000-2500 cm−1 (left) and 

2000-1300 cm−1 (right) to better appreciate the changes arising from the grafting of pristine MCM-41. 

The textural properties and the organic elemental analysis of MCM-41 and MCM-LYS are 

summarized in Table 1. It can be seen that the surface area and pore volume of MCM-LYS 

considerably decreased to 62% and 55% respectively in comparison to pristine MCM-41. This 

reduction of surface area and pore volume is due to the blocking of pores as mesoporous silica is 

being functionalized. Furthermore, the organic elemental analysis showed that MCM-LYS had 2.47, 

2.53, and 5.95 wt. % N, H, and C content, respectively, whereas pristine MCM-41 showed no organic 

elements (except for hydrogen) in its composition. These facts indicate that lysine was successfully 

attached onto the bioceramic. The amount of lysine attached to the bioceramic was calculated taking 

into account the amount of CC that was previously attached for coupling. Parallel, TGA of MCM-

LYS and MCM-41 was carried out up to 600 °C. It was found that the TGA curve of MCM-LYS, shown 

in Figure 4, had two step changes, one at 100–140 °C, corresponding to the loss of water molecules 

entrapped in the bioceramic, and the other at 200–300 °C from lysine decomposition; then the curve 

drifted showing the decomposition of the remaining organic matter that must correspond to CC 

attached to the bioceramic. From these transitions, it was found that lysine was attached in about 8 

wt. %, and that CC was attached in about 7 wt. %, having a decrease in organic material for about 15 

wt. %. These numbers are in agreement with the result of the elemental analysis presented in Table 

1, which showed an organic content of about 11%. 

Table 1. Textural data and elemental analysis of MCM-41 and MCM-LYS. 
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Figure 4. TGA curves of MCM-41 and MCM-LYS. The thermogram of MCM-LYS shows weight loss 

in three different regions, 25–140 °C, 140–300 °C and 300–600 °C. 

It is noteworthy that MCM-LYS retained up to 10% weight of water, as opposed to bare MCM-

41, which indicates that the grafted zwitterions were capable to form a layer of water on the surface 

of the material that in turn might inhibit the adhesion of bacteria [4]. 

-potential was measured to determine the isoelectric point (IEP) and the electrostatic behavior of 

MCM-41 and modified MCM-41 at physiological pH in PBS (pH = 7.4). Figure 5 shows that MCM-41 has 

a near zero charge at pH 3, whereas MCM-LYS has IEP at pH 3.6. At physiological pH (7.4) MCM-41 and 

MCM-LYS show a potential of −35 and −28 mV respectively, which in the case of MCM-41 is due to 

ionized silanol groups (-Si-O-), whereas in the case of MCM-LYS is owed to the presence of -Si-O- groups 

unreacted in the grafting process, since lysine is in its zwitterionic form. Similar behaviour was observed 

by Shi et al. [24], when lysine was grafted onto polyacrylonitrile membrane. 

 

Figure 5. -Potential vs. pH of MCM 41 and MCM-LYS. 
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To evaluate the S. aureus adhesion on the bioceramics, in vitro assays were carried out at 37 °C 

for 90 min at different pH (assay A). Figure 6 shows the CFU adhered to the different bioceramics as 

a function of pH. It can be seen that MCM-LYS had the lowest bacterial adhesion regardless of pH, 

showing a decrease of about of 77, 33 and 15% as compared with pristine MCM-41, at pH of 3.6, 7.4 

and 7.8 respectively. It is noteworthy that at pH 3.6 MCM-LYS showed the lowest bacterial adhesion, 

which corresponds to its isoelectric point, i.e. the pH at which the electric charges are neutralized. 

 

Figure 6. S. aureus CFU/cm3 after 90 minutes cultivation in the presence of MCM-41 and MCM-LYS 

at the studied pHs. 

Studies of E. coli adhesion onto the samples were carried out only at physiological pH of 7.4. 

Figure 7a shows that MCM-LYS has the lowest bacterial adhesion, which decreased 50% as compared 

to pristine MCM-41. Moreover, Figure 7b depicts SEM images of the adhesion of E. coli on the surface 

of both materials, which confirm the results obtained by counting the CFU. SEM micrographs of 

MCM-LYS sample show a lower amount of E. coli bacteria as compared with MCM-41. In addition, 

the SEM images show that bacteria are interconnected in MCM-41. In contrast, in MCM-LYS 

bioceramic the amount of bacteria observed is smaller and they appear isolated without apparent 

communication between them. These results show that zwitterionic moieties on the surface of MCM-

LYS, provided by lysine, decreased the initial attachment of both bacteria [43]. In absolute terms, the 

adhesion of E. coli was higher on MCM materials, as compared to S. aureus; however, the relative 

effectiveness of the zwitterionic pair was more pronounced on E. coli, shown as a reduction of 50% 

adhesion on MCM-LYS. 
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Figure 7. (a) E. coli CFU/cm3 after 90 min cultivation in the presence of MCM-41 and MCM-LYS at 

physiological pH (7.4); (b) SEM micrographs at 5000× and 20000× of MCM-41 and MCM-LYS after 90 min 

cultivation of E. coli. 
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reveal the limited ability of S. aureus to form biofilm onto lysine-functionalized surface as compared 

to bare MCM-41.  

 

Figure 8. S. aureus biofilm grown on MCM-41 and MCM-LYS samples, respectively; the images were 

collected by confocal microscopy after 48 h of incubation (the larger scale bars correspond to the area 

of the figure, whereas the smaller scale bar refers to the thickness). 

4. Discussion 

Different zwitterionization approaches have been developed to prepare non-fouling 

bioceramics, which include surface grafting with zwitterionic polymers, grafting separately low 

molecular moieties containing carboxylic and / or amine groups, or with cysteine [15–20]. In this 

contribution a facile strategy for creating a non-fouling, antibacterial bioceramic surface is reported. 

MCM-41 bioceramic was synthesized and thereafter functionalized it with lysine in order to create 

surface zwitterionic pairs. The use of cyanuric chloride as coupling agent between MCM-41 and the 

amino acid warrants mild reaction conditions and also acts as a bridge to effectively connect the 

copper complexed L-lysine through its -amino group. A battery of analytical techniques was used 

to confirm that L-lysine was covalently attached to the surface of the bioceramic while maintaining 

its zwitterionic character. For example, ATR-FTIR analysis established that the zwitterionic pair was 

present as demonstrated by the simultaneous appearance of bands at 3080, 1540 cm−1 (NH3+) and at 

1625 and 1415 cm−1  (COO−). The pristine bioceramic had a large surface area and pore volume, 

which after functionalization were significantly reduced due to pore blockage. Organic elemental 

analysis corroborated the presence of organic elements such as C, H, N, whereas neat MCM-41 

contained only hydrogen; the approximate amount of grafted lysine was 8 wt. % confirmed both with 

TGA and elemental analysis. TGA revealed a very important fact: the amount of water retained by 

the modified bioceramic was 10 wt. %, whereas bare MCM-41 only retained about 2 wt. %. This fact 

indicates that the grafted zwitterions allow the surface to retain 5-fold more water as compared to 

bare MCM-41. This layer of water elicits a resistance to bacterial adhesion [40, 41], critical for biofilm 

formation. It has been shown that a single compact layer of mixed charged groups, such as 

zwitterions, play a dominant role in surface resistance to nonspecific protein adsorption due to strong 

binding of water molecules which form a physical and energetic barrier that prevents bacterial 

adhesion [14–17, 42]. -potential revealed that both surfaces were negatively charged at physiological 

pH, due to ionized silanol groups and that the IEP was slightly increased for the modified bioceramic. 
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MCM-LYS showed the lowest adhesion of S. aureus especially at the IEP. At physiological pH, MCM-

LYS showed even lower adhesion for E. coli (50%) as compared to unmodified MCM-41. These results 

showed that zwitterionic moieties on the modified bioceramic, provided by lysine, decreased the 

initial attachment of both bacteria [43]. Confocal microscopy images confirmed the limited ability of 

S. aureus to form a biofilm (88% less) in the lysine-modified bioceramic. The facile method here 

described for incorporation of zwitterionic functions onto bioceramics opens up a great opportunity to 

develop new biomaterials resistant to bacterial adhesion.
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(2010) 6459- 6466. 

15. I. Izquierdo-Barba, S. Sánchez-Salcedo, M. Colilla, M.J. Feito, C. Ramírez-Santillán, M.T. Portolés, M. Vallet-

Regí. Acta Biomater. 7 (2011) 2977- 2985. 

16. S. Sanchez-Salcedo, M. Colilla, I. Izquierdo-Barba, M. Vallet-Regí. J. Mater. Chem. B, 1 (2013) 1595-1606. 

17. M. Vallet-Regí, I. Izquierdo-Barba, M. Colilla. Phil. Trans. Royal Soc. Chem. A: Mathem. Phys. Eng. Sci. 370 

(2012) 1400–1421.  

18. A.M. Alswieleh, N. Cheng, I. Canton, B. Ustbas, X. Xue, V. Ladmiral, S. Xia, R.E. Ducker, O. El Zubir, M.L. 

Cartron, C.N. Hunter, G.J. Leggett, and S.P. Armes. J. Am. Chem. Soc. 136 (2014) 9404- 9413. 

19. M. Colilla, M. Martínez-Carmona, S. Sánchez-Salcedo, M. L. Ruiz-González, J.M. González-Calbet and M. 

Vallet-Regí J. Mater. Chem. B, 2 (2014) 5639-5651. 

20. J.E. Rosen, F.X. Gu, Langmuir 27 (2011) 10507-10513. 

21. D. Khatayevich, M. Gungormus, C. So, S. Getinel, H. Ma, A. K.-Y. Jen, C. Tamerler, and M. Sarikaya, Acta 

Biomater. 6 (2010) 4634-4641. 

22. S.R. Meyers, X. Khoo, X. Huang, E.B. Walsh, M.W. Grinstaff, D.J. Kenan, Biomaterials  30 (2009) 277-286. 

23. S. Chen, Z. Cao, and S. Jiang, Biomaterials, 30 (2009) 5892- 5896.  

24. Q. Shi, Y.L. Su, W.J. Chen, J.M. Peng, L.Y. Nie, J. Membrane Sci. 366 (2011) 398-404. 

25. X. Zhi, J. Biomater. Sci. Polymer Edition 25 (2014) 1619-1628. 

26. A.M. Yacynych, and T. Kuwana, Analytical Chem. 50 (1978) 640-645. 



Bioengineering 2017, 4, x FOR PEER REVIEW  13 of 13 

27. Q. Cai, Z-S Luo, W-Q Pang, Y-W Fan, X-H Chen, F-Z Cui. Chem. Mater. 13 (2001) 258-263.  

28. E. Delgado, F.A. Lopez-Dellamry, G.G. Allan, A. Andrade, H. Contreras, H. Regla. J. Pulp Paper Sci. 30 

(2004) 141-144. 

29. Y.H. An, and R.J. Friedman, Handbook of bacterial adhesion: principles, methods, and applications. 

Springer Science & Business Media Vol. 204 (2000). 

30. S.M. Bauer, E.M. Santschi, J. Fialkowski, M.K. Clayton, R. Proctor, Veterinary Surgery 33 (2004) 376-381. 

31. G. Cheng, Z. Zhang, S.F. Chen, J.D. Bryers, S.Y. Jiang, Biomaterials   28 (2007) 4192-4199. 

32. T.J. Kinnari, J. Esteban, N.Z. Martin, O. Sanchez-Muñoz, Sandra S. Sanchez-Salcedo, M. Colilla, M. Vallet-

Regi, E. Gomez-Barrena. J. Med. Microb. 58 (2009) 132-137. 

33. I. Izquierdo-Barba, M. Vallet-Regi, N. Kupferschmidt, O. Terasaki, A. Schmidtchen, M. Malmsten, 

Biomaterials 30 (2009) 5729-5736. 

34. I. Izquierdo-Barba, J.M. García-Martín, R. Álvarez, A. Palmero, J. Esteban, C. Pérez-Jorge, D. Arcos, M. 

Vallet-Regí. Acta Biomaterialia 15 (2015) 20–28. 

35. V.E. Wagner, J.T. Koberstein, and J.D. Bryers, Biomaterials 25 (2004) 247-259. 

36. D.J. Näther-Schindler, R. Rachel, G. Wanner, R. Wirth, Frontiers in Microbiology 5 (2014) 695-698. 

37. X.S. Zhao, G.Q. Lu, and G.J. Millar, Ind. Eng. Chem.Res. 35 (1996) 2075-2090. 

38. A. Asadinezhad, I. Novak, M. Lehocky, Colloids and Surfaces B: Biointerfaces 77 (2010) 246-256. 

39. K. Hori, and S. Matsumoto, Biochem. Engineer. J. 48 (2010) 424-434.  

40. B. Gottenbos, H.C. Van der Mei, H.J. Busscher, J. Antimicrob. Chemother. 48 (2001) 7-13.  

41. Y. He, Y. Chang, J.C. Hower, Phys. Chem. Chem. Phys. 10 (2008) 5539-5544. 

42. J. Zheng, L. Li, H.-K. Tsao, Y.-J. Sheng, S. Chen, S. Jiang, Biophys. J. 89 (2005) 158-166. 

43. Cheng, G., Z. Zhang, S. Chen, J. D. Bryers and S. Jiang (2007). Biomaterials 28(29) 4192-4199. 

© 2017 by the authors. Submitted for possible open access publication under the  

terms and conditions of the Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 


