
ORIGINAL PAPER

Plio-Pleistocene climatic change had a major
impact on the assembly and disassembly processes of Iberian
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Abstract Comprehension of changes in community composi-
tion through multiple spatio-temporal scales is a prime chal-
lenge in ecology and palaeobiology. However, assembly, struc-
turing and disassembly of biotic metacommunities in deep-time
is insufficiently known. To address this, we used the extensive-
ly sampled Iberian Plio-Pleistocene fossil record of rodent
faunas as our model system to explore how global climatic
events may alter metacommunity structure. Through factor
analysis, we found five sets of genera, called faunal compo-
nents, which co-vary in proportional diversity over time. These
faunal components had different spatio-temporal distributions
throughout the Plio-Pleistocene, resulting in non-random
changes in species assemblages, particularly in response to
the development of the Pleistocene glaciations. Three succes-
sive metacommunities with distinctive taxonomic structures

were identified as a consequence of the differential responses
of their members to global climatic change: (1) Ruscinian sub-
tropical faunas (5.3–3.4Ma) dominated by a faunal component
that can be considered as a Miocene legacy; (2) transition
faunas during the Villafranchian–Biharian (3.4–0.8 Ma) with
a mixture of different faunal components; and (3) final domi-
nance of the temperate Toringian faunas (0.8–0.01 Ma) that
would lead to the modern Iberian assemblage. The influence
of the cooling global temperature drove the reorganisation of
these rodent metacommunities. Selective extinction processes
due to this large-scale environmental disturbance progressively
eliminated the subtropical specialist species from the early Pli-
ocene metacommunity. This disassembly process was accom-
panied by the organisation of a diversified metacommunity
with an increased importance of biome generalist species, and
finally followed by the assembly during the middle–late Pleis-
tocene of a new set of species specialised in the novel environ-
ments developed as a consequence of the glaciations.
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Introduction

Understanding the processes behind the assembly (Diamond
1975) and the structure of modern (Brown et al. 2000;
Millien-Parra and Loreau 2000; Gotelli and McCabe 2002;
Feeley 2003; Morris 2005; Pennington et al. 2006; Emerson
and Gillespie 2008; Ernest et al. 2008; Stegen and Swenson
2009; Abu Baker and Patterson 2010; Pavoine and Bonsall
2011; Belmaker and Jetz 2012; HilleRisLambers et al. 2012;
Beaudrot et al. 2013; Cantalapiedra et al. 2014) and past (Rid-
dle 1998; Costeur et al. 2004; Davis 2005; McGill et al. 2005;
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Van der Meulen et al. 2005; van Dam et al. 2006; Rodríguez
2006; Maridet et al. 2007; Casanovas-Vilar et al. 2010; Furió
et al. 2011; Gómez Cano et al. 2013, 2014; Domingo et al.
2014; Martin and Peláez-Campomanes 2014) biological com-
munities persists as a fundamental goal of ecology after de-
cades of intense scrutiny. However, community ecology re-
mains contentious and incompletely understood (Lawton
1999; Simberloff 2004; Ricklefs 2008; Leaper et al. 2013)
especially regarding assembly processes spanning large tem-
poral scales. Likewise, although community disassembly
(Mikkelson 1993; Lomolino and Perault 2000) has received
increased attention in the past several years (e.g. Thibault and
Brown 2008; Okie and Brown 2009; Zavaleta et al. 2009;
Leavitt and Fitzgerald 2013), its study over evolutionary time
scales is much less advanced (but see Van der Meulen et al.
2005). Community disassembly over deep-time can be de-
fined as a process of successive species losses, which are a
reflection of progressive habitat change usually provoked by
global climatic change. An understanding of ecological disas-
sembly at an evolutionary scale may have important implica-
tions for conservation, because of the potential effects arising
from the current anthropogenic global warming. In fact, based
on the idea that faunal communities and metacommunities are
non-random sets of species (Wilson 1999) and that
palaeosynecological characterisation of past assemblages
(Nieto and Rodríguez 2003; Costeur et al. 2013; García Yelo
et al. 2014) enable the understanding of the processes in-
volved in the development of their changing patterns through
time, the fossil record has provided solid evidence of the link
between abiotic factors, such as climate change, tectonics,
etc., and biotic responses, such as speciation, extinction, dis-
persals, replacement, etc. (Vrba 1985; Barnosky 2001; van
Dam et al. 2006; Benton 2009). Additionally, since processes
operating at a hierarchy of spatial and temporal scales are
thought to determine species sorting and potential source
pools for assemblages (Preston 1960; Delcourt and Delcourt
1988; Brown and Maurer 1989; Wiens 1989; Levin 1992;
Holt 1993; Ricklefs and Schluter 1993; Kelt 1999; Maurer
1999; Patterson 1999; Allen and Holling 2002; Ricklefs
2004; Emerson and Gillespie 2008; Smith et al. 2008; Pavoine
and Bonsall 2011; Rull 2012), a greater understanding of com-
munity assembly and disassembly may be realised by
complementing studies of modern biotic communities with
studies of the deep-time distribution of species, thereby plac-
ing ecological processes within an evolutionary context.

The metacommunity concept has emerged as an important
way to link multiple scales of spatio-temporal organisation in
biological assemblages (Leibold et al. 2004). The recent inter-
est in metacommunities has promoted a substantial advance in
the comprehension of their functional dynamics (e.g. varia-
tions in species composition, turnover) in relation to external
factors such as environmental gradients, landscape structure,
disturbance regimes, habitat fragmentation or island area (e.g.

Leibold and Mikkelson 2002; Horváth et al. 2011; Stevens
and Tello 2012; de la Sancha 2014). Nevertheless, a deep-
time historical approach based on the understanding of the long-
term changes observed in the fossil record (e.g. Van der Meulen
and Daams 1992; Jaeger 1994; Daams et al. 1999; Badgley et al.
2008; Escarguel et al. 2008; Figueirido et al. 2012; Maridet et al.
2013; Gómez Cano et al. 2014) is also required in order to fully
connect community ecology and evolutionary biology.

A metacommunity can be defined as a set of local commu-
nities that are linked by the dispersal of multiple potentially
interacting species (Wilson 1992). Application of this concept
to deep-time scales enables the analysis of their long-term
dynamics, ranging from thousands to millions of years, which
includes not only dispersal but also speciation and extinction
of taxa within metacommunities. Within the palaeontological
context, metacommunities allow for the integration of species
from local faunas (registered in fossil sites) within a larger
ecological entity, which mitigates the effects of various
sources of local singularities (Escarguel et al. 2011), including
sampling biases, spatio-temporal averaging of fossil sites, and
differences due to environmental change or ecological succes-
sion in time or space. While contemporaneous local faunas
share taxa through dispersal, the temporal dimension provided
by the palaeontological record represents the interaction be-
tween faunal dynamics and progressive environmental chang-
es in time and space. Therefore, this concept links directly
with Olson’s (1952) chronofauna: a geographically restricted
natural assemblage of interacting animal populations through
time, under the influence of changing environmental condi-
tions, that has maintained its basic structure over a geological-
ly significant period of time (Eronen 2007).

Although the distribution of species changes along envi-
ronmental gradients, coherence of metacommunities depends
on the consistent influence of the same environmental gradi-
ents on the ranges of a majority of its taxa (Presley et al. 2010).
If this is not the case, distributions will not form a coherent
structure (Leibold and Mikkelson 2002). Therefore, in order
to search for such coherence across long time intervals, we
focus on the identification of different sets of taxa with similar
patterns in biodiversity change through time. Such differential
behaviour should be related to contrasting responses to envi-
ronmental shifts, which affect the ecological structure of
palaeocommunities (Alroy et al. 2000; Barnosky 2005; Blois
and Hadly 2009). Interestingly, recent analytical methods ap-
plied to high-resolution palaeontological data provide a pow-
erful assessment of the succession across metacommunities of
different biotic components sharing ecological affinities
(Gómez Cano et al. 2014).

The quality and density of the vertebrate fossil record in the
Iberian Peninsula (Sesé 2006) offers the opportunity to eval-
uate mammalian evolution and the long-term changes in their
metacommunities in a fluctuating environment. The last major
global revolution of climate was the transition from the
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Pliocene to the Pleistocene, ca. 2.7 Ma, which was marked by
the development of successive Northern Hemisphere glacia-
tions and which triggered major reorganisation in mammalian
assemblages. Therefore, this paper focuses on the response of
Iberian Plio-Pleistocene rodent metacommunities to climate
change. Specifically, the goals of our study were: (1) to estab-
lish whether Iberian Plio-Pleistocene rodent taxa can be
grouped according to similar diversity patterns through time
as a result of similar ecological affinities; (2) to identify the
influence of global climatic changes on the evolutionary dy-
namics of such groups; (3) to differentiate the structure of
successive rodent metacomunities in relation to the relative
importance of these groups; and (4) to assess the processes
of disassembly and subsequent assembly of such meta-
communities over a 5-Myr time interval spanning a major
climatic event, the development of the Pleistocene northern
glaciations.

Materials and methods

Database

The present research used the faunal lists of Plio-Pleistocene
rodent communities in 43 fossil sites from the Iberian Penin-
sula, which have been subject to intensive sampling during the
last 50 years (see references in Hernández Fernández et al.
2004). The biochronological framework for this work is based
in the time calibration provided by Hernández Fernández et al.
(2004). We are aware that new fossil sites have been reported
and much progress in biochronology has been made since the
construction of our database (e.g. García-Alix et al. 2009;
Cuenca-Bescós et al. 2010a; Minwer-Barakat et al. 2012),
and are currently in the progress of updating. Unfortunately,
our new database was not yet available for the current analy-
ses. Nevertheless, we are confident that the main conclusions
of this work will not change significantly by additional infor-
mation or marginal changes in dating of some fossil sites.

Since previous studies have shown that biogeographic con-
text may have a major role in the interpretation of patterns of
faunal change due to diachrony of biotic events among differ-
ent bioprovinces (Gómez Cano et al. 2014), we have limited
our study to the southern biogeographic province within the
Iberoccitanian Subregion, as defined by Gómez Cano et al.
(2011). This bioprovince includes most of the Neogene sedi-
mentary basins from the Iberian Peninsula, excepting the
Vallès-Penedès Basin, and is a very suitable area for the de-
velopment of macroecological studies from a deep-time per-
spective due to the quantitative and qualitative importance of
its fossil record (Sesé 2006). Additionally, due to its isolated
position in the westernmost part of Europe, besides being
currently recognised as an independent biogeographical unit
within the Mediterranean Region (Heikinheimo et al. 2007),

the study area exhibits unique environmental attributes since
the Eocene, such as substantially higher aridity than in other
bioprovinces from western Europe (Peláez-Campomanes
1993; Jiménez-Moreno and Suc 2007; Badiola et al. 2009;
Furió et al. 2011).

The species lists for each fossil site were based upon a
reviewed compilation from the literature and updated to the
latest taxonomy. The minimum sample size required to in-
clude a fossil site in our study was 100 molars (including first
and second upper and lower molars), which is considered to
be the minimum number necessary to achieve a representative
sample of the original assemblage, according to the relation-
ship between species richness and sampling effort in small
mammal fossil assemblages (van de Weerd and Daams
1978; Van der Meulen and Daams 1992; Daams et al. 1999).
The taxonomic structure of mammalian faunas is generally
considered to be informative on ecology because, due to
shared inheritance of aspects of habitat-specifity, supra-
specific taxa are to some extent restricted to specific adaptive
zones and their species have relatively similar ecological
niches, exhibiting clear patterns of change in community com-
position over evolutionary time (Andrews et al. 1979;
Greenacre and Vrba 1984; Dodd and Stanton 1990; de Bonis
et al. 1992; Van der Meulen and Daams 1992; Reed 1998;
Hernández Fernández and Vrba 2006; Okie and Brown
2009). Therefore, we employed this dataset of rodent species
to compile a matrix with information on the percentage of
species of each genus in each fossil site. We used species
percentages (relative richness) rather than number of species
to avoid the potential influence of species richness on the
results (Hernández Fernández and Vrba 2006), which can be
affected by sampling biases (Casanovas-Vilar et al. 2014).
Finally, our database consists of 408 records of 36 rodent
genera in 43 fossil sites (Table 1).

Identification of faunal components

We applied Principal Component Analyses (PCA) to a sites/
genera (species percentage) matrix, and classified rodent gen-
era into groups with similar patterns in the variation of species
co-occurrence in time and space, which Gómez Cano et al.
(2014) called faunal components. The PCA enabled us to
portray the changes in the taxonomic structure of these rodent
faunas (de Bonis et al. 1992; Van der Meulen and Daams
1992; Hernández Fernández and Vrba 2006) by reducing the
number of original variables (36 genera) to a series of linear
combinations among them (PCA factors). To maximize the
sum of the within-factor variances, we used a VARIMAX
rotated PCA model. The aim of this additional rotation was
to obtain a simple structure in which the coefficients within a
factor are as close to 1 or 0 as possible (Jackson 2003).

In order to establish the faunal components, we followed
the methodology developed by Gómez Cano et al. (2014). We
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selected for each faunal component the genera that provide
their highest contribution to a given factor. Thus, each genus
belongs to only one faunal component based on the factor that
includes the highest loading for this genus in the escalated
components matrix, which shows the relationship among var-
iables (genera) and the different factors independently of the
dimensions of the latter. Subsequently, we evaluated the spe-
cies richness (number of species in each genus) for the genera
comprising each faunal component. Raw diversity patterns
can provide complementary insights for the interpretation of
the changes in community structure. We assumed that the
common pattern over time and space shown by genera includ-
ed in each faunal component, as reflected by co-variation
among fossil sites, results from common ecological affinities
and similar responses to ecological shifts.

We also studied the ecological characteristics of the species
included in each faunal component by means of the Biomic
Specialisation Index (BSI), developed by Hernández
Fernández and Vrba (2005). This index indicates the degree
of ecological specialisation of each species in terms of the
number of biomes it inhabits. Therefore, BSI equals 1 for most
specialised species whereas generalist species can exhibit a
BSI as high as 10. The data on the biome residence for all
rodent species were obtained fromHernández Fernández et al.
(2007), who inferred biome residences from identifying their
living ecological analogues as estimated by ecomorphological
studies of the dentition (Daams and Van der Meulen 1984;
Hernández Fernández and Peláez-Campomanes 2003). For
each faunal component, we calculated the relative frequency
of specialist and generalist species in each fossil site in terms
of the average value of the BSI of the species included in the
corresponding faunal component. Following Gómez Cano
et al. (2013), we only analysed taxa that were determined at
the species level in each fossil site to avoid potential noise in
the data due to unidentified taxa.

Analyses

We plotted the PCA factor scores, faunal-component richness
and average BSI of each fossil site against time and applied a
local regression-fitting procedure (LOESS) over the data to
visualise their trend through time. This kind of representation
reduces the influence of extreme data, which makes it appro-
priate for trend interpretation. We chose the smoothness of the
fitted LOESS (λ) using generalised cross-validation (GCV) to
avoid overfitting the observed data (Kohn et al. 2000).

We evaluated the potential relationship between global cli-
mate changes and the temporal trends in rodent community
structure by testing the correlation between the PCA factor
scores, the richness of each faunal component or their average
BSI at the fossil sites, and the global oxygen isotopic value
(δ18O) associated with each locality as a proxy for palaeo-
temperature. In order to perform this analysis, we fitted aT
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smoothed curve to the isotopic information (Zachos et al.
2008) and interpolated an isotopic value for the age of each fossil
site. Although the δ18O values of Zachos et al. (2008) derive
from global data on marine foraminifera and may not depict
the temperature history for any particular place on land, they
provide a general proxy for large climatic trends. For example,
they are correlated with palaeotemperatures derived from the
Iberian rodent fossil record (Hernández Fernández et al. 2007).

Since it is a commonly invoked model of community dis-
assembly (Okie and Brown 2009), we assessed the presence
of a nested structure in the assembly and disassembly patterns
observed in the Iberian rodent metacommunities during the
Plio-Pleistocene. This model proposes that communities with-
in disturbed systems exhibit nested structure such that the taxa
included in smaller communities represent a confined subset
of those in richer assemblages, rather than a random selection
of those found in the entire species pool (Patterson and Atmar
1986; Feeley 2003; Ulrich et al. 2009). This pattern would
imply that each taxon requires some minimal conditions to
support population levels adequate to resist extinction, and
that it can occur in all sites that attain these conditions. We
calculated the nestedness of the Plio-Pleistocene rodent as-
semblages of the Iberian Peninsula with the algorithm of
Rodríguez-Gironés and Santamaría (2006) on genus pres-
ence–absence matrices ordered by genus richness and number
of occurrences. This algorithm calculates the nested subset
temperature (a nestedness score) of each matrix in such a
way that the lower the score, the more nested the structure of
the community (Atmar and Patterson 1993). We calculated
p values bymeans of a comparison to the distribution of scores
generated by randomly shuffling the original matrices through
10,000 Monte Carlo simulations (row and sum totals were
maintained constant). Nestedness analyses were run using
the nestedness function as implemented in the R library BI-
PARTITE (R Development Core team 2014) and the null
model 3 as suggested by Rodríguez-Gironés and Santamaría
(2006), which is a constrained null model that accounts for the
incidences of genera (column totals) and richnesses of fossil
sites (row totals) while sampling the null space uniformly,
which minimises type I and II errors. However, model 3 is a
conservative test of nestedness, because type II errors may
occur under particular circumstances around the generating
constraints of the system under investigation (Patterson and
Atmar 1986; Rodríguez-Gironés and Santamaría 2006; Frick
et al. 2009). Finally, we compared the order in which assem-
blages were nested to their rank order based on richness, age
and isotopic value using Spearman’s rank correlation
(Lomolino 1996; Patterson and Atmar 2000). These analyses
were performed using the matrix of all Iberian Plio-
Pleistocene rodent genera as well as using five independent
matrices corresponding to the genera included in each faunal
component. Therefore, we obtained six independent nested
subset temperatures, derived from each one of these matrices,

which indicate the level of nestedness in the whole rodent fauna
as well as within each of the different faunal components.

Results and discussion

Faunal components

The factor analysis produced five significant factors (Table 2)
which accounted for more than 80 % of the variance. Thus, the
Iberian Plio-Pleistocene rodent fossil record can be summarised
in five sets of genera with similar patterns of variation within
communities (Table 2), in the present paper called faunal com-
ponents (FC I–V; Table 3). In order to clarify the differentiation
between factors and faunal components, the former were num-
bered with Arabic notation and the latter with Roman numerals.

Faunal components are not composed of members of a
single rodent family (which are usually interpreted as func-
tional groups; see van Dam and Weltje 1999). Rather, each
faunal component has members of a number of different fam-
ilies, performing different functions in the system. For exam-
ple, FC I includes, among others, Pliopetaurista, a gliding
squirrel associated with the upper canopy of dense woodlands
and forests (Mein 1970; Hernández Fernández et al. 2007;
García-Alix et al. 2008), the dormouseMuscardinus associat-
ed with lower canopy levels and the understorey of forest
areas (Van der Meulen and De Bruijn 1982; Daams and Van
der Meulen 1984; Mitchell-Jones et al. 1999; García-Alix
et al. 2008; Daxner-Höck and Höck 2009; Prieto et al.
2014), the hamster Blancomys, probably an inhabitant of
open environments (Hernández Fernández and Peláez-
Campomanes 2003; García-Alix et al. 2008), and the aquatic
beaverDipoides. In association with these divergences in hab-
itat and spatial distribution, dietary or behavioural (diurnal vs.
nocturnal) differences would suppose additional divisions of
the eco-space occupied by the faunal components. In this way,
each faunal component comprises groups of complementary,
rather than similar, taxa. Although from these data we do not
have the evidence to support it, we suggest that each faunal
component may be a functioning system by itself, which in-
tegrates a set of functional groups, or guilds, that face envi-
ronmental changes in a similar way. Interestingly, there are
statistically significant differences among the mean BSI of
the rodent species included in the genera assigned to different
faunal components (Fig. 1). FC IV showed a significantly
larger incidence of generalist species than FC I, FC II and
FC V, which presented lower values of mean BSI (more
biome-restricted taxa). FC III showed non-significant interme-
diate values between these two groups of faunal components,
which is probably related to the few species in this component.

The temporal series of the five factors and the species di-
versity and average BSI of their related faunal components in
each fossil site are represented in Fig. 2.
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Table 2 Results of the factor
analysis on the structure of Plio-
Pleistocene rodent faunas from
the Iberian Peninsula

Factor

1 2 3 4 5

Eigenvalue 577.5 151.1 70.0 59.2 36.8

% of total variance explained 53.6 14.0 6.6 5.5 3.4

Cumulative % 53.6 67.7 74.2 79.7 83.1

Family Subfamily Genus Rotated and rescaled component matrix

Sciuridae Sciurinae Pliopetaurista 0.367 0.024 0.024 0.028 –0.047

Sciurus 0.119 0.145 –0.037 –0.009 0.017

Xerinae Atlantoxerus 0.646 0.132 0.162 0.026 0.058

Marmota –0.060 –0.365 –0.188 –0.243 –0.234

Spermophilinus 0.248 0.074 0.035 –0.018 –0.026

Gliridae Glirinae Glis –0.019 –0.003 0.076 0.062 –0.122

Leithiinae Eliomys –0.387 0.737 0.007 –0.055 0.431

Muscardinus 0.275 0.021 0.059 0.079 0.046

Castoridae Castorinae Castor –0.177 0.100 –0.319 0.167 –0.814

Castoroidinae Dipoides 0.344 –0.108 0.001 0.048 0.010

Cricetidae Arvicolinae Arvicola –0.248 0.019 –0.799 –0.307 0.065

Chionomys –0.176 0.005 0.252 –0.473 –0.003

Dolomys 0.218 0.066 –0.002 0.004 0.022

Microtus –0.511 –0.506 –0.046 –0.692 –0.030

Mimomys –0.455 0.058 0.369 0.754 –0.257

Clethrionomys –0.039 –0.075 –0.304 –0.020 0.062

Pliomys –0.213 –0.840 –0.203 0.124 0.073

Promimomys 0.250 0.012 0.000 0.021 0.050

Ungaromys –0.045 –0.027 0.044 –0.021 –0.178

Cricetinae Allocricetus –0.297 –0.363 –0.750 –0.015 0.149

Apocricetus 0.700 0.038 0.057 0.024 –0.031

BMicrotoid^ Blancomys 0.336 0.335 0.265 0.226 0.115

Celadensia 0.344 –0.108 0.001 0.048 0.010

Ruscinomys 0.826 0.095 0.112 0.059 0.019

Trilophomys 0.438 0.330 0.220 0.176 0.172

Muridae Gerbillinae Debruijnimys 0.250 0.012 0.000 0.021 0.050

Protatera 0.371 0.095 0.062 –0.028 –0.035

Murinae Apodemus –0.047 0.139 –0.157 0.062 0.654

Castillomys –0.058 0.627 0.436 0.439 –0.190

Huerzelerimys 0.250 0.012 0.000 0.021 0.050

“Micromys^a 0.042 –0.004 0.046 0.126 –0.039

Occitanomys 0.839 0.175 0.168 0.101 0.052

Paraethomys 0.790 0.213 0.210 0.058 0.002

Rhagapodemus 0.465 –0.010 0.030 0.105 0.067

Stephanomys 0.344 0.499 0.407 0.453 0.291

Hystricidae Hystrix –0.033 0.015 –0.190 –0.285 –0.137

The rotated and rescaled component matrix obtained after factor analysis is shown, displaying each variable's
loading on each factor. The values obtained are informative about the covariations among the variables (genera in
this case) and establish the basis to group them, making reduction of the number of variables possible. Bold font
indicates the highest values for each genus, which was the basis for including each in a faunal component.
Systematic classification follows Wilson and Reeder (2005) excepting Clethrionomys, which has been recently
considered the valid name for red-backed voles (Tesakov et al. 2010)
a Horáček et al. (2013) have proposed that the European Neogene-Quaternary Micromys species should be
transferred to the genus Parapodemus
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FC I, with 19 genera and 31 species, is the most diverse
faunal component detected for the Iberian rodent faunas of the
Plio-Pleistocene and it was predominant during the Ruscinian
(early Pliocene, 5.3–3.4 Ma; Fig. 2). More than half of the

genera included in this faunal component have also been re-
corded in the Miocene. Among these, murine genera are par-
ticularly diverse (Huerzelerimys, Paraethomys, Occitanomys
and Rhagapodemus), as well as sciurids (Atlantoxerus,
Spermophilinus, Pliopetaurista) and Bmicrotoid^ cricetines
(Blancomys, Ruscinomys, Trilophomys). Genuine Pliocene taxa
include some basal arvicolines (Promimomys and Dolomys),
hypsodont cricetines (Celadensia) and gerbillines (Protatera).

Only two of the genera belonging to this faunal component
remain in the modern faunas of Europe, Marmota and
Muscardinus, associated with environments of the Euro-
siberian Region (Mitchell-Jones et al. 1999), which are
very different from the ecosystems of the Mediterranean Re-
gion (Peinado Lorca and Rivas-Martínez 1987). These genera,
therefore, could currently be considered as relicts of the an-
cient Neogene faunas. Although Marmota is not recorded in
Eurasia until the Pleistocene, its origin in North America dur-
ing the middle Miocene (Savage and Russell 1983; Steppan
et al. 1999; Goodwin 2008) associates this genus with the
warm-adapted faunas that were widespread across the conti-
nent at that time (Potts and Behrensmeyer 1992; Figueirido
et al. 2012). Such an origin might be related to the retention of
similar ecological characteristics to those of Miocene and ear-
ly Pliocene Old World native genera, which would subse-
quently have led to its inclusion within this faunal component.
Moreover, modern Marmota monax, which is considered basal
to the Eurasian marmots (Kruckenhauser et al. 1999; Steppan

Table 3 Genera included in each
faunal component based upon
their highest contribution to the
factors derived from the factor
analysis on the structure of Plio-
Pleistocene rodent faunas from
the Iberian Peninsula, according
to the components matrix in
Table 2

Family Faunal component

I II III IV V

Sciuridae Pliopetaurista Sciurus

Atlantoxerus

Marmota

Spermophillinus

Gliridae Muscardinus Eliomys Glis

Castoridae Dipoides Castor

Cricetidae Dolomys Chionomys Mimomys Arvicola

Promimomys Ungaromys Pliomys Microtus

Apocricetus Clethrionomys

Blancomys Allocricetus

Celadensia

Ruscinomys

Trilophomys

Muridae Debruijnimys Castillomys “Micromys^ Apodemus

Protatera Stephanomys

Huerzelerimys

Occitanomys

Paraethomys

Rhagapodemus

Hystricidae Hystrix

FC I FC II FC III FC IV FC V
31 18 5 15 30

5

3

2

0

1

4

a a

ab

a

bF = 6.050
p < 0.001

B
S

I

Fig. 1 Comparison of the mean biomic specialisation index (BSI) for
each faunal component (FC). F and p values from a one-way ANOVA for
the 99 species studied are shown. Lower case letters indicate homoge-
neous subsets calculated by post hoc Tukey’s test; mean BSI is signifi-
cantly different among FCs when they do not share the same letter. Spe-
cies numbers for each FC are shown below them
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et al. 1999; Brandler and Lyapunova 2009), in addition to the
northern taiga and temperate forests also inhabits relativelywarm
environments in southeastern North America. Nevertheless,
since its contribution to factor 1 is very low (Table 2),Marmota
should be regarded as an odd representative taxon of FC I.

Scores of factor 1 and species richness of FC I were nega-
tively affected by global cooling (highly significant negative
correlation between factor scores or species richness and δ18O
values; Table 4). Additionally, although the average BSI of the
species recorded in the Iberian fossil sites for this faunal com-
ponent was fairly constant across the Plio-Pleistocene (Fig. 2),
it experienced a significant increase in association with such
global cooling (Table 4). FC I underwent a progressive demise
concomitant with the Plio-Pleistocene global cooling trend
and was succeeded by faunas adapted to cooler and more
seasonal environments. Such decline has been related to the
progressive extinction of species specialised for subtropical
environments (Gómez Cano et al. 2013), which were not able
to adapt to the new climatic conditions in the Iberian Peninsula
(Hernández Fernández et al. 2007; Domingo et al. 2013).

FC II increased steadily during the Ruscinian and reached
its highest richness during the middle Pliocene (Fig. 2), at the
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Fig. 2 Changes throughout time in the first five factors, variations in
species richness for the genera included in each faunal component
(FC), and fluctuations in average biomic specialisation index (BSI) for
the species belonging to these genera, for all the Iberian rodent fossil sites
analysed. To visualise trends throughout the Plio-Pleistocene, we applied

a local regression fitting (LOESS). The smoothing parameter (λ) controls
the balance between the goodness-of-fit of the model (see BMaterials and
methods^). Shaded areas represent the 95 % confidence interval of the
LOESS fit

Table 4 Results of the
correlation analyses
between the values of
δ18O isotope (Zachos
et al. 2008) and the factor
scores, the species rich-
ness (Si, i being the fau-
nal components from I to
V) or the average Biomic
Specialisation Index
(BSIi, i being the faunal
components from I to V)
of each faunal compo-
nent for the rodent fossil
sites from the Iberian
Plio-Pleistocene

r p n

Factor 1 –0.759 <0.001 43

Factor 2 –0.371 0.014 43

Factor 3 –0.328 0.032 43

Factor 4 –0.330 0.031 43

Factor 5 –0.024 0.877 43

SI –0.865 <0.001 43

SII –0.662 <0.001 43

SIII 0.076 0.630 43

SIV 0.256 0.097 43

SV 0.743 <0.001 43

BSII 0.554 0.017 18

BSIII 0.245 0.128 40

BSIIII 0.625 0.072 9

BSIIV –0.388 0.037 29

BSIIV –0.466 0.002 41

r Pearson correlation coefficient; p p val-
ue; n number of fossil sites analysed
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beginning of the Villafranchian (around 3.4 Ma). It has also a
noteworthy composition of genera with representatives from
the latest Miocene (Castillomys, Stephanomys, Eliomys and
Hystrix), which could be considered related to cooler and
more seasonal environments than the ones included in FC I
(Hernández Fernández and Peláez-Campomanes 2003;
García-Alix et al. 2008). This might be related to the temporal
duration of the genera included in this faunal component,
when compared with the ones in FC I; more than half of FC
II genera remain inmodern faunas, including Sciurus, Eliomys
and Hystrix, two of them in the Iberian Peninsula.

Factor 2 and species richness of FC II were also negatively
affected by the continued global cooling (significant negative
correlation between them and δ18O values; Table 4). Although
the average BSI of the species included in this faunal compo-
nent changed little for the Pliocene fossil sites, it increased
during the early Pleistocene, reaching its highest value around
1 Ma, before another decrease in the middle Pleistocene
(Fig. 2). It seems that, after succeeding FC I during the middle
and late Pliocene, continuous environmental cooling produced
a preferential extinction of specialist species within this faunal
component during the early Pleistocene and, finally, its collapse.

FC III appears to be a depauperate faunal component, with
only four genera and five species registered in the Iberian Plio-
Pleistocene (Table 3; Fig. 1), and mostly absent or with very
low local species richness during the whole interval (Fig. 2).
This component includes two genera of Miocene origin, such
as the mouse ^Micromys^ and the dormouse Glis, as well as
the Pleistocene volesUngaromys and Chionomys. Taking into
account the low local richness of this faunal component across
Europe during the Plio-Pleistocene (Hernández Fernández
2001), and the geographical distribution of its representatives,
which are for the most part limited to the Eurosiberian Region
and mountain ranges of the Mediterranean Region (Mitchell-
Jones et al. 1999; Maul and Markova 2007; Horáček et al.
2013), a residual relevance of this faunal component in Euro-
pean rodent faunas might be advocated, particularly in central
and southern Iberia. Only the biome generalist Chionomys
nivalis still survives in the Mediterranean Region, taking ad-
vantage of the different woodless environments provided by
mountain ranges, such as mountaintops above the tree-line, or
sparsely covered prairies and rocky biotopes at lower altitudes
(Mitchell-Jones et al. 1999; Purroy and Varela 2003).

As in the previous faunal components, the scores of factor 3
were negatively affected by global temperature cooling (sig-
nificant negative correlation between these variables and δ18O
values; Table 4). On the other hand, there was no significant
relationship between the species richness or average BSI of
FC III and δ18O values (Table 4), which is probably related to
the low species numbers in this faunal component during the
whole time interval studied here.

FC IV includes the Pliocene and early Pleistocene
Mimomys, the recently extinct Pliomys (Chaline and Marquet

1976; Pokines 1998; Cuenca-Bescós et al. 2010b) and the
modern genusCastor. The species richness of this faunal com-
ponent was low during most of the time interval studied here
(Fig. 2). It could be suggested that this faunal component in the
Iberian Peninsula was peripheral in relation to European
faunas, where it should be dominant during the middle–late
Pliocene and early Pleistocene, according to the generally
higher number of Mimomys species in fossil sites from north-
ern, central and eastern Europe contemporaneous with the Ibe-
rian ones, such as Tegelen in The Netherlands (van
Kolfschoten and Van der Meulen 1986; Tesakov 1998),
Gundersheim 4 in Germany (Fejfar and Storch 1990),
Osztramos 3 and Villány 5 in Hungary (Van der Meulen
1974; Janossy 1986), Rebielice Królewskie 1A, Kamyk,
Kadzielnia 1 and Kielniki 3B in Poland (Nadachowski 1990,
1998) Uryv 1 and Tizdar 2 in Russia (Agadjanian 1976;
Pevzner et al. 1998), or Tiligul, Zhevakhova Gora 5, Nogaisk
and Luzanovka in Ucrania (Rekovets andNadachowski 1995).

While scores of factor 4 were negatively affected by global
cooling, the increase in proportion of specialist species of FC
IV coincided with temperature decrease (significant negative
correlation between δ18O values and PCA factor 4 scores or
average BSI; Table 4). It seems that the Plio-Pleistocene glob-
al cooling is related to a progressive transition within this
faunal component from biome generalist species to specialists
in Iberia (Fig. 2), which could be interpreted as a progressive
adaptation to new cooler environments. Nevertheless, the ratio
between generalist and specialist species for the FC IV in
central Iberian rodent faunas was strongly regulated by the
glacial–interglacial cycles (Fig. 2), with a higher proportion
of generalists during the interglacial phases and more special-
ists during the glacial ones, although the low species richness
associated to this faunal component precludes a deeper anal-
ysis of this pattern. In any case, the final effect of the continu-
ing Pleistocene glaciations was the complete substitution of
the Mimomys associations of this faunal component by the
modern Microtus-dominated faunas.

FC V includes Allocricetus and several modern taxa
(Arvicola,Microtus, Clethrionomys, Apodemus), and is clear-
ly dominant in the Iberian rodent faunas since the beginning of
the middle Pleistocene (Fig. 2). Due to the high species rich-
ness of these five genera, which include 30 species, this faunal
component marks a striking contrast with the diversity shown
by FC I (31 species in 19 genera). It seems that the new
ecosystems shaped by the development of the Pleistocene
glaciations favoured a substantial increase in dominance of
rodent faunas by only a few genera.

Although there was no significant relationship between the
scores of factor 5 and δ18O values, species richness and the
increase in proportion of specialist species of FC V were
clearly favoured by the global cooling (highly significant pos-
itive correlation between FC V richness and δ18O values, and
significant negative correlation between its average BSI and
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δ18O values; Table 4). The increase in species richness of this
faunal component during the Pleistocene seems to reflect the
diversification of a new set of species specialised for the novel
environments associated with the development of the glacia-
tions (Hernández Fernández et al. 2007; Gómez Cano et al.
2013). Particularly important in this context was the evolu-
tionary radiation of Microtus voles (Chaline 1987; Chaline
et al. 1999), which might be related to the surprisingly low
statistical contribution of this genus to factor 5 (Table 2). Its
explosive diversification into a plethora of new species in very
different environments across the Holarctic realm could un-
couple the development of Microtus (62 modern species,
according to Wilson and Reeder 2005) from the other genera
included in this faunal component, which maintained low to
moderate diversification rates (Arvicola, 3 current species;
Clethrionomys, 12 species; Apodemus, 20 species; Wilson
and Reeder 2005). Finally, our analysis shows a significant
oscillation of the richness in FC V since around 2 Ma. It
appears that the richness increase within this faunal compo-
nent during the Pleistocene was heavily influenced by the
environmental changes associated with the glacial-
interglacial cyclicity. This is probably related to geographical
dispersion of northern species into the Mediterranean penin-
sulas, which acted as biotic refugia as a consequence of ice
sheet advances in northern and central Europe (Blondel 2009),
a phenomenon that has been identified by the occurrence of
the so-called disharmonic faunas (Lundelius et al. 1987).

Metacommunity dynamics

Our analysis of the principal dynamic parameters of the rodent
communities of the Iberian Peninsula revealed a process of
faunal change across the Plio-Pleistocene with three main
phases: (1) Ruscinian (early Pliocene, approximately 5.3–
3.4 Ma) subtropical faunas dominated by FC I, which can be
considered as a legacy from the Miocene; (2) transition faunas
during the Villafranchian–Biharian (middle Pliocene–early
Pleistocene, 3.4–0.8 Ma) with a mixture of different faunal
components (FC II, FC IVand FCV); and (3) final dominance
of the temperate Toringian (middle–late Pleistocene, 0.8–
0.01 Ma) faunas by FC V. Therefore, three distinctive
metacommunity structures were identified as a consequence
of the differential responses of their members to global climat-
ic change. The statistically significant correlation between
δ18O values and most of the faunal variables analysed
(Table 4) indicates that the triggering of the faunal transition
between successive metacommunities was directly or, most
probably, indirectly linked to the global cooling that led to
the Pleistocene glaciations.

Changes in total richness in the fossil sites analysed shows
that the transitional phase is associated with the lowest rich-
ness values in the whole sequence (Fig. 3), which suggests that
the beginning of the Pleistocene glaciations was a reset point
for the Iberian rodent faunas. Although the total richness levels
increased during the Pleistocene, there was a substantial change
from the diversified Neogene assemblages to the Quaternary
associations dominated by only a few genera, which appear to
have strong responses to the glacial-interglacial cyclicity, par-
ticularly for FC V.

The proportion of specialist species in each faunal compo-
nent suggests the operation of a species sorting mechanism
related to ecological specialisation, with the triggering of the
Pleistocene glaciations representing the main impetus for the
development of a newmetacommunity. Species sorting through
habitat availability is likely to play a fundamental role in struc-
turing metacommunities (Presley et al. 2012; Razafindratsima
et al. 2013) because the evolutionary success of species is con-
tingent on the presence of appropriate environmental conditions
(Vrba 1987; Vrba 1992; Gómez Cano et al. 2013). This is
corroborated by the results obtained in the nestedness analyses,
which indicate that most of the matrices analysed show a sig-
nificant nested pattern (Table 5) correlated to the variations in
temperature (Table 6). Such a pattern suggests selective species
loss associated to the existence of threshold requirements; cer-
tain species require particular environmental conditions to per-
sist and thus are lost before other species that have less
specialised requirements. This results in a nested structure.

Our results show that the disassembly of the Ruscinian
rodent metacommunity from the Iberian Peninsula was a pro-
cess of community change driven by non-random species
losses, offering general insights into the impact of global
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Fig. 3 Variation in rodent total richness for the Iberian fossil sites
analysed. To visualise the general trend throughout the Plio-Pleistocene,
we applied a local regression fitting (LOESS). The smoothing parameter
(λ) controls the balance between the goodness-of-fit of the model (see
BMaterials and methods^). The shaded area represents the 95 % confi-
dence interval of the LOESS fit
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climate change on the distributions of species and on the ef-
fects of environmental deterioration on species extinction. The
Ruscinian rodent metacommunity showed an important con-
tribution of the Miocene taxa included in FC I, which can be
traced to the late Miocene rodent faunas of the Iberian Penin-
sula; indeed, it could be considered an extension of the late
Miocene metacommunity described by Gómez Cano et al.
(2014), which consisted mainly of two different faunal com-
ponents. Notwithstanding, as a consequence of the continuous
global cooling during the Pliocene, there was a preferential
loss of species within FC I, while other faunal components
were not affected or even temporarily expanded. The genus
presence-absence matrix for FC I had a temperature
nestedness score of 6.85 (Table 5), while for 10,000 randomly
shuffled matrices the mean temperature was 34.63. Based on
the distribution of nestedness scores for the null matrices, the
probability that the observed matrix is more nested than ran-
domwas highly significant (p<0.01). The order in which FC I
assemblages are nested is highly correlated to the rank order of
isotopic value and age (ρ=0.824, p<0.001; and ρ=0.978,
p<0.001, respectively; Table 6). Therefore, the environmental
disturbance of the early Pliocene ecosystems derived from
global cooling resulted in the non-random relaxation and
breakdown of the original assemblages and formation of a
different metacommunity.

Villafranchian–Biharian assemblages constituted new non-
random subsets of species, which differed significantly in their
metacommunity structure from the Ruscinian ones. Domi-
nance by FC I was replaced by an increase in the diversity
of faunal components implied in the shaping of these middle–
late Pliocene and early Pleistocene associations. This is prob-
ably related to the reorganisation of rodent assemblages and
adaptation of their species to the growing influence of global
cooling, which is supported by the increased importance of
biome generalist species in these assemblages (Gómez Cano
et al. 2013). Temperature nestedness scores for FC II, FC III
and FC IV matrices were higher than for FC I (Table 5). In
the case of the FC IV matrix, the observed nestedness pat-
tern could not be differentiated from a random pattern.
Finally, while FC II genus richness ranking is correlated
with age and isotopic ranking, such is not the case for FC
III and FC IV. It seems that this Villafranchian–Biharian
metacommunity represented a transitional phase in the
reorganisation of Iberian rodent faunas, in which its main
faunal components showed a variable relationship with
temperature change. Incorporation of multiple faunal com-
ponents with lower levels of nestedness and limited or no
relationship with temperature variations indicates a
much lower structuration of the assemblages of this
Villafranchian–Biharian metacommunity, which is proba-
bly related to the disturbance produced by strong environ-
mental change in the transition from subtropical to temper-
ate climates (Hernández Fernández et al. 2007).

Eventually, adaptation and specialisation into the new en-
vironments developed under the influence of the Pleistocene
glaciations allowed the transformation into a new meta-
community with a distinct structure. The Toringian assem-
blages were strongly dominated by FC V in which only a
few genera provided most of the species, with a higher degree
of biome specialisation than observed in the previous
metacommunity. The assemblages associated with this faunal
component are highly nested (Table 5), and this non-random
pattern is significantly correlated with isotopic and age rank-
ing (Table 6), although in the opposite direction than for FC I.
In this case, the incorporation of new genera to the Iberian

Table 6 Results of the ranking
correlation of Iberian Plio-
Pleistocene rodent assemblages
between their richness ranking
and their age or isotopic ranking,
for all the genera (Total) and for
those included in each faunal
component (FC)

Genus richness ranking

Total FC I FC II FC III FC IV FC V

Age ranking ρ 0.574 0.978 0.629 0.414 -0.126 -0.838

p <0.001 <0.001 <0.001 0.268 0.515 <0.001

N 43 22 40 9 29 41

Isotopic ranking ρ 0.611 0.824 0.657 0.104 -0.248 -0.795

p <0.001 <0.001 <0.001 0.791 0.194 <0.001

N 43 22 40 9 29 41

ρ Spearman correlation coefficient

Table 5 Results of
analyses of nestedness
for the Plio-Pleistocene
rodent faunas from the
Iberian Peninsula (Total)
and for each faunal com-
ponent (FC)

T Random T p

Total 15.215 34.630 <0.01

FC I 6.850 25.481 <0.01

FC II 10.845 33.205 <0.01

FC III 10.068 23.220 0.04

FC IV 29.782 39.020 0.15

FC V 0.342 28.980 <0.01

T matrix temperature; random T mean
matrix temperature for 10,000 randomly
shuffled matrices; p p values based on the
comparison between T and its distribution
for 10,000 randomly shuffled matrices
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communities, primarily through dispersion from central Eu-
rope but also due to in situ evolution, appears to be favoured
by cooling during glacial stages. Nevertheless, FC V became
dominant in the Iberian rodent faunas around 2Ma and, there-
fore, appears to be out of phase with the triggering of the
glaciations around 2.7 Ma. This mismatch could be related
to the time needed for the reorganisation of a new
metacommunity with taxa that have evolved very recently.

The modern rodent metacommunities of the mediterranean
environments from the Iberian Peninsula have been shaped
through macroevolutionary processes that go back to the Mio-
cene. A few long-ranging genera, which could be considered
Miocene relicts (Sciurus, Eliomys), share the Iberian ecosys-
tems with a new set of genera that have been favoured by the
development of Pleistocene glaciations (Arvicola, Microtus,
Apodemus), or at least have been able to survive them due to
generalist habitat adaptation (Chionomys). Finally, commen-
salism of different species ofMus and Rattuswith humans has
led to the integration of new immigrant species within this
assemblage during the Holocene (Morales Muñiz et al.
1995; Dobson 1998; Kowalski 2001; Ervynck 2002;
Bonhomme et al. 2010; Valenzuela-Lamas et al. 2011).

Additionally, it is notable that there are some Plio-
Pleistocene genera that are now absent from the Mediterra-
nean Region of the Iberian Province but are still living in the
Eurosiberian Region. These include Marmota, Glis,
Muscardinus, Castor and Clethrionomys. The case for the
inclusion of BMicromys^ within this group of genera depends
on the assignation of the Plio-Pleistocene species toMicromys
as traditionally has been done, or to Parapodemus as sug-
gested by Horáček et al. (2013). Interestingly, all these genera
are allocated to almost any of the five faunal components
described for the Iberian Plio-Pleistocene faunas. Therefore,
it seems that environmental changes responsible for the loss of
these taxa in Iberia might be multiple, in such a way that they
could have an influence on varied faunal components.

Final remarks

Our results suggest that the Plio-Pleistocene fossil record of
Iberian rodent assemblages includes groups of genera with
ecological affinities, here called faunal components, with par-
allel waxing and waning patterns through time. These faunal
components apparently were not dominated by members of a
single functional group. Rather, each faunal component com-
prised members from a number of different functional groups
(performing different functions in the system) such that the
faunal component consisted of groups of complementary,
rather than similar, taxa. We also found that, although they
showed some overlap, these faunal components had differen-
tial distributions throughout the Plio-Pleistocene that resulted
in non-random changes in the species assemblages,

particularly in relation to the development of the Pleistocene
glaciations. This large-scale environmental disturbance had
striking consequences for the Iberian rodent assemblages,
resulting in the disassembly of the Ruscinian rodent
metacommunity and the subsequent assembly of two succes-
sive new metacommunities with distinctive structures. We
conclude that the assembly processes involved in the develop-
ment of these Iberian rodent metacommunities, driven by co-
incident changes in the surrounding palaeoenvironmental char-
acteristics, resulted in the formation of highly structured as-
semblages of rodents in the modern Mediterranean woodlands
and shrublands, as it is shown by its highly significant nested
pattern.

A greater understanding of the patterns and processes of
metacommunity assembly and disassembly will require as-
sessment of larger temporal and spatial scales, spanning the
Neogene–Quaternary and the multiple environmental changes
through this time interval. It will also require taking into ac-
count the evolutionary shifts in species traits associated with
membership in different functional groups. Finally, an addi-
tional and promising new line of research would include the
phylogenetic relationships among the different taxa that char-
acterise metacommunities through time. Explicit consider-
ation of the interaction of all these processes should yield a
greater insight into the assembly and dynamics of ecological
communities at evolutionary scales.

This work demonstrates that incorporating deep-time per-
spectives offers considerable untapped potential for increasing
our general understanding of community assembly and disas-
sembly patterns caused by natural processes. Since similar
disassembly processes may apply even though the changes
in climate that occurred during the Neogene–Quaternary were
much greater than the ones occurred so far in the current
episode of global warming, studies based in the fossil record
may hold important lessons for ecological consequences of
anthropogenic changes and shed insights into conservation
of mammalian communities in the increasingly disturbed eco-
systems of the modern world.
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