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Abstract: Photothermal imaging allows to inspect the structure of composite materials

by means of nondestructive tests. The surface of a medium is heated at a number of loca-

tions. The resulting temperature field is recorded on the same surface. Thermal waves are

strongly damped. Robust schemes are needed to reconstruct the structure of the medium

from the decaying time dependent temperature field. The inverse problem is formulated as a

weighted optimization problem with a time dependent constraint. The inclusions buried in

the medium and their material constants are the design variables. We propose an approxi-

mation scheme in two steps. First, Laplace transforms are used to generate an approximate

optimization problem with a small number of stationary constraints. Then, we implement

a descent strategy alternating topological derivative techniques to reconstruct the geome-

try of inclusions with gradient methods to identify their material parameters. Numerical

simulations assess the effectivity of the technique.
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optimization

1 Introduction

Photothermal imaging has arisen as an effective tool for nondestructive testing of composite
materials. The surface of a semi-infinite medium is heated with a laser beam. The temperature
is then measured at a number of receptors placed on the surface during a time interval, see Fig. 1.
This technique has been employed in recent experiments by [1, 2]. Here, we develop a theoretical
framework to process the measured data and reconstruct the structure of inclusions buried in the
medium.

The imaging set-up is depicted in Fig. 1. Let κe be the thermal conductivity of the exterior
medium and ρe the density multiplied by its specific heat. Inclusions with thermal parameters
κi and ρi are buried in it. The inverse problem consists in finding the inclusions Ω and their
material parameters κi, ρi such that the temperature field measured at the detector locations
x1, . . . ,xM ∈ Π at times t1, . . . , tN agrees with the solution of the corresponding forward problem.
This is a transmission problem for the heat equation governing the temperature field

U(x, t) :=

{

Ue(x, t), in Ωe × (0,∞) := (R2
− \ Ω)× (0,∞),

Ui(x, t), in Ω× (0,∞),
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Figure 1. Imaging set-up. Receptors and thermal sources are located on the boundary Π of the

medium. The inclusions Ω and their material parameters must be reconstructed.

given by
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




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

ρe∂tUe − κe∆Ue = 0, in Ωe × (0,∞),
ρi∂tUi − κi∆Ui = 0, in Ω× (0,∞),
Ui − Ue = Uinc, on ∂Ω× (0,∞),
κi∂nUi − κe∂nUe = κe∂nUinc, on ∂Ω× (0,∞),
∂nUe = 0, on Π× (0,∞),
Ue(x, 0) = Ui(x, 0) = 0, ∀x ∈ R

2
−,

(1)

where R
2
− := {(x, y) ∈ R

2, y < 0} and Π := {(x, 0), x ∈ R}. The surface of the sample Π is
thermically excited at a source point x0 ∈ Π with a delta–pulse source, producing a thermal wave

Uinc(x, t) =
1

t
exp

(

−
ρe|x− x0|2

4κet

)

, x ∈ R
2, t > 0. (2)

Adiabatic boundary conditions are imposed on the upper boundary Π.
The inverse problem is regularized using a constrained variational reformulation: Determine

regions Ω and parameters κi, ρi minimizing the functional

J(R2
− \ Ω, κi, ρi) =

1

2

M
∑

k=1

N
∑

j=1

f(tj) (Utotal(xk, tj)− Umeas(xk, tj))
2 , (3)

where Utotal is the solution of the time dependent forward problem (1) for an inclusion Ω with
thermal parameters κi and ρi. The forward problem acts as a constraint. The weight function
f(t) normalizes the time decay of solutions of the heat equation:

f(t) = max
x∈{x1,...,xM}

|Umeas(x, t)|
−1.

Thermal waves are strongly damped. Time dependent weights prevent losing information as time
grows.

2 Approximation using Laplace transforms

The time dependent heat problem can be efficiently solved combining Laplace transforms and
stationary boundary element formulations. This suggests an alternative approximate variational
formulation for the inverse problem, involving a small number of stationary constraints.

For each value of s, the Laplace transform of U

us(x) =

∫ ∞

0

e−stU(x, t)dt,

is a solution of a Helmholtz transmission problem with complex wave numbers depending on the
parameter s [3]:







κe∆us − sρeus = 0, in Ωe, κi∆us − sρius = 0, in Ω,
u−s − u+s = uinc,s, on ∂Ω, κi∂nu

−
s − κe∂nu

+
s = κe∂nuinc,s, on ∂Ω,

∂nus = 0, on Π,
(4)
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where uinc,s =
∫∞

0 e−stUinc(x, t)dt. The Laplace transform is then inverted choosing hyperbolic
paths [4]: γ(θ) := µ(1− sin(π/4 + ıθ)), θ ∈ R, where µ > 0. The solution of (1) takes the form

U(x, t) =
1

2πı

∫ ∞

−∞

etγ(θ)uγ(θ)(x)γ
′(θ)dθ.

A truncated trapezoidal rule yields an approximation of U :

U(x, t) ≈
L
∑

ℓ=−L

cℓe
tsℓusℓ(x)

with nodes and weights:

sℓ = γ

(

log(L)

L
ℓ

)

, cℓ =
log(L)

2πıL
γ′
(

log(L)

L
ℓ

)

.

As in [5, 6], we replace the original cost functional (3) by the approximate functional

J(R2
− \ Ω, κi, ρi) =

1

2

M
∑

k=1

N
∑

j=1

f(tj)

(

L
∑

ℓ=−L

cℓe
tjsℓusℓ(xk)− Umeas(xk, tj)

)2

, (5)

involving now 2L + 1 stationary constraints: the Helmholtz transmission problems for the coef-
ficient functions usℓ(x), ℓ = −L, ..., L.

3 Descent strategy with respect to inclusions and param-

eters

To approximate solutions of the optimization problem we resort to a descent technique. Sequences
of approximate inclusions and parameters are generated along which the cost functional (5)
decreases. Descent with respect of the domains is implemented using topological derivatives.
Descent directions for the parameters are determined using gradient methods.

Let us fix an initial guess of the parameters κi = κ0i and ρi = ρ0i . A first guess of the inclusions
is obtained calculating the topological derivative of the resulting shape functional.

The topological derivative DT (x,R) of a shape functional J (R) is a scalar function of x ∈ R
that provides asymptotic expansions of the form [7]:

J (R \Bε(x)) = J (R) +DT (x,R)πε2 + o(ε2), as ε→ 0.

Placing small inclusions Bε(x) = B(x, ε) at the points x ∈ R where the topological derivative is
negative the value of the functional decreases. Points where the topological derivative attains the
largest negative values are likely to belong to inclusions of different materials. A first approxima-
tion Ω1 of Ω is defined as the set of all the points where the topological derivative of J(R2

−, κ
0
i , ρ

0
i )

falls below a negative threshold (see [5, 8] for guidelines of the selection of such constant).
The evaluation of the topological derivative is effectively performed exploring explicit expres-

sions in terms of forward and adjoint fields. Similarly to Theorem 3.2 in [5] we can prove
Theorem. Fixing κi, ρi, the topological derivative of the functional J(R2

− \ Ω, κi, ρi) defined

in (5) is

DT (x) = Re

(

L
∑

ℓ=−L

2κe(κe − κi)

κe + κi
∇utotal,sℓ(x)∇psℓ (x) + (ρe − ρi)sℓutotal,sℓ(x)psℓ(x)

)

(6)

when x ∈ R
2
− \ Ω, where utotal,sℓ = uinc,sℓ + usℓ , and usℓ is a solution of (4) for s = sℓ. The

fields psℓ are solutions of adjoint problems:






κe∆psℓ − sℓρepsℓ = gsℓ , in Ωe, κi∆psℓ − sℓρipsℓ = 0, in Ω,
p−sℓ − p+sℓ = 0, on ∂Ω κi∂np

−
sℓ
− κe∂np

+
sℓ

= 0, on ∂Ω,
∂npsℓ = 0, on Π,

(7)
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where gsℓ(x) :=
∑M

i=1

∑N

j=1 f(tj)csℓe
tjsℓ

(

Umeas(xi, tj)−
∑L

k=−L cke
tjskusk(xi)

)

δxi
(x).

To determine Ω1, we set Ω = ∅, κi = κ0i , ρi = ρ0i . Given an approximation Ωd for fixed κi, ρi,
a better one can be determined computing the topological derivative of J(R2

− \ Ωd, κi, ρi) and
adding to Ωd points where it falls below a negative threshold.

Once a first approximation of the inclusion Ω1 is selected, the parameters are updated using
correctors provided by a gradient method. Given approximations κq−1

i , ρq−1
i of the material

parameters, we define κqi = κq−1
i + ηφq and ρqi = ρq−1

i + ηψq, for small η > 0. The numbers
φq , ψq are selected differentiating

J(η) := J(Ω0
i , κ

q−1
i + ηφq, ρq−1

i + ηψq),

with respect to η and imposing J ′(0) < 0. Following [5, 8] we prove that the choice

φq = Re

(

1

meas(Ωd)

∫

Ωd

L
∑

ℓ=−L

∇usℓ∇psℓ

)

, ψq = Re

(

1

meas(Ωd)

∫

Ωd

L
∑

ℓ=−L

sℓ usℓpsℓ

)

, (8)

ensures J ′(0) < 0. The fields usℓ , psℓ are solutions of (4) and (7), respectively, taking Ω = Ωd,
κi = κq−1

i and ρi = ρq−1
i .

Our algorithm alternates a few gradient iterations to correct the parameters with a topological
derivative evaluation to update the domains. Once the parameters are corrected, we compute
again the topological derivative to update the domains, and update the current approximation by
adding to the previous domain the points where the topological derivative attains now the largest
negative values. Once the approximation of the domains is improved we perform further gradient
iterations to update the parameters and so on. The algorithm stops when either meas(Ωd\Ωd−1),
|κqi − κq−1

i |+ |ρqi − ρq−1
i | and ‖Umeas − Utotal‖ are small, or J(R2

− \ Ωd, κ
q
i , ρ

q
i ) is small.

When Ω = ∪D
j=1Ωj and the parameters κi, ρi are piecewise constant with values κi,j , ρi,j inside

Ωj , the method can be generalized as follows. Given an approximation Ωd := ∪D′

j=1Ωd,j (D
′ is not

necessarily equal to the true number of defects D), the values of the parameters are updated by

κqi,j = κq−1
i,j + ηφqj and ρqi,j = ρq−1

i,j + ηψq
j with φqj = Re

(

1
meas(Ωd,j)

∫

Ωd,j

∑L

ℓ=−L ∇usℓ∇psℓ

)

and

ψq
j = Re

(

1
meas(Ωd,j)

∫

Ωd,j

∑L
ℓ=−L sℓ usℓpsℓ

)

. Now usℓ and psℓ solve (4) and (7) with Ω = ∪D′

j=1Ωd,j,

and thermal parameters κi = κq−1
i,j and ρi = ρq−1

i,j in Ωd,j. The topological derivative is computed
using (6) with usℓ and psℓ defined as above (considering the current piecewise constant values of
the parameters). The values of κi, ρi in R

2
− \ Ωd are taken as the initial guesses κ0i , ρ

0
i .

4 Numerical example

We consider the reconstruction of two inclusions of different sizes located at different depths. To
simplify computations, we assume that the conductivities of the inclusions are known and equal
to the exterior one: κe = κi,1 = κi,2 = 1. In the exterior media ρe = 0.2. The unknowns of the
inverse problem (represented in Fig. 2(a)) are the two defects Ω1 and Ω2 and the values of their
densities ρi,1 = 1 and ρi,2 = 2. We generate 7 incident excitations at the sources represented by
‘•’ marks in all the plots in Fig. 2. The temperature is then measured at the 8 observation points
represented by ‘×’ marks at 10 uniformly distributed times in the time interval [0.05, 0.5]. Data
were generated solving the corresponding direct problem using the numerical method detailed in
[3, 8] and adding a 1% gaussian relative error at each observation point.

We start the algorithm setting ρ0i = 0.5 everywhere. The topological derivative (TD) of the
functional J(R2

−, ρ
0
i ) at the sampling region [−3.5, 3.5]× [−2.5, 0] is represented in Fig. 2(b). The

regions where the TD attains large negative values (dark blue colors on the plot) characterize the
expected location of the defects. We observe that all these points are concentrated in the same
region, suggesting that only one defect is buried in the medium. Notice that these points belong
to the true defect Ω2, which is the biggest and is closest to the boundary Π. Furthermore, the
true value ρi,2 provides a higher contrast with ρe than ρi,1. The initial guess for Ω is represented
in Fig. 2(c). Now we update the initial value ρ0i,2 = 0.5 by the gradient technique. After ten

4



(a) (b)

(c) (d)

(e) (f)

Figure 2. (a) True configuration. (b) Topological derivative of J(R2
− \ Ω, ρi) with initial values

Ω0 = ∅ and ρ0i = 0.5. (c) Approximate domain Ω1
i,2 (Ω1

i,1 = ∅). (d) Approximate domain Ω2
i,2

(Ω2
i,1 = ∅) and current value of the parameter ρi,2. (e) Approximate domains Ω4

i,1 and Ω4
i,2 and

current values of the parameters. (f) Final reconstruction after 9 iterations of the algorithm.

iterations we obtained the value ρ10i,2 = 0.9644. In the next step a new TD computation is
performed, yielding the domain represented in Fig. 2(d). The algorithm continues by alternating
10 gradient iterations with a TD computation. After three TD computations the smaller defect
is detected. We take then as initial guess ρ30i,1 = 0.5 (the superscript 30 means that globally we
have already performed 30 gradient iterations, although they only affect the approximation of
ρi,2, which is ρ30i,2 = 1.3313 at this stage). The current domains are represented in Fig. 2(e). After
9 iterations the algorithm stopped. The final reconstructed objects are given in Fig. 2(f). The
estimated values of the parameters are ρ90i,1 = 0.7292 and ρ90i,2 = 1.8227. The overall reconstruction
is quite satisfactory taking into account that few data were available, distorted by noise. It is
also remarkable that we were able to characterize not only the big object, but also the smaller
one, which has less contrast with the exterior and is located further from the observation/source
points.
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