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ABSTRACT 
 
 

Using estimated principal components as factors, three-factor models are shown to produce forecasts 
comparable to those of autoregressive models for 2- to 10-year zero coupon interest rates IRS markets both, for 
short- and medium-term forecasting horizons. Evidence is provided for the Deutsche mark, Spanish peseta, 
Japanese yen and US dollar. Forecasts from factor models are also shown to preserve the correlation matrix of 
interest rates across a given term structure, an important property regarding risk management. The result is quite 
striking, because factor models are purely static, and forecasts for the factors must be obtained in advance of 
interest rate forecasts. The use of three-factor models greatly simplifies forecasting computations, since three 
univariate models, rather than nine, need to be used for prediction purposes. Besides, our results open the 
possibility that the type of simulations needed for VaR analysis could successfully be performed by just 
simulating the factors, again with a very substantial reduction in computational needs. 
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1. Introduction 

 

One of the more important issues in risk management deals with reducing the dimensionality of 

the set of assets in a given portfolio. This is particularly true of any analysis of a term structure of 

interest rates. When evaluating the level of risk associated to any given portfolio in the public debt 

market, we face a continuous zero coupon curve, and we will have to select a fairly large number of 

interest rates to follow in order not to miss any relevant information on fluctuations along the different 

maturities in the curve. In some other cases, a risk analyst deals with a term structure with specific 

maturities, as it is the case when characterizing money markets by combining interbank market rates for 

the shorter maturities with IRS (interest rates swap) rates for the longer ones. But even then, we still 

have a fairly large number of interest rate variables.  

Dimensionality reduction is very important in practice. For instance, forecasting future bond 

prices requires forecasting interest rates at a large number of maturities. Computing Value at Risk 

(VaR) measures also requires estimating the variance-covariance matrix of the large number of interest 

rates usually involved in pricing the assets in the portfolio, as well as the sensitivity vector of the price 

of each bond to changes in interest rates at the relevant maturities. These two types of evaluations, 

crucial for risk management in fixed-income markets, very quickly become unmanageable for the 

standard sets of interest rates considered. Sometimes, rough simplifications are made by grouping the 

points in time at which cash-flow payments are to be made around a few interest rates, so as to reduce 

the dimensionality of the problem. Even though this is a somewhat standard practice, approximation 

errors can easily become higher than any sound risk manager would like to see. 

It is therefore not surprising that a variety of attempts have been made at proposing methods 

directly designed to reduce the dimensionality of the vector of  interest rates that need to be considered 

when evaluating risk. A particularly interesting approach emerges from Litterman and Sheinckman 

(1988), and was followed by Steeley (1990) and Knez et al. (1994). These authors use factor analysis to 

summarize the large-dimension interest rate vector in a few set of factors. Using data from different 

markets and time periods, they show that three factors are usually able to capture more than 95% of the 

fluctuation in the set of interest rates. Besides, in all these analysis, the three factors can always be 

naturally interpreted as a level, steepness and curvature of the yield curve. 

More recently, Nifikeer et al. (2000) have used this approach on interest rate swap (IRS) 

markets data on different currencies to propose a specific method to compute VaR measures using the 
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obtained factors. In their case, reducing the original set of fifteen interest rates to three factors 

drastically simplifies the computation of the variance-covariance matrix and sensitivity vector that are 

needed in VaR evaluation. These authors show that the reduction of dimensionality does not bias in any 

significant manner VaR results.  

We continue in this paper with applications of factor analysis to the study of IRS markets. 

Besides providing additional information showing that the three-factor characterization seems quite 

robust to the choice of time period, currency and market, we are specifically interested in using factor 

models to forecast future interest rates across the term structure.  

If they provide a good forecasting performance, forecasting interest rates through factor models 

could be of particular relevance for optimal portfolio design and risk management. First, a good 

forecasting performance of the factor model would be a good step towards simplifying the problem of 

forecasting future prices of  fixed income assets, the crucial evaluation when designing a portfolio and 

hence, a central tool for fund management. Second, the forecasting ability of factor models could be 

exploited in Monte Carlo simulation exercises when computing VaR measures at any given future 

horizon. Again, in this type of exercises, in which a huge number of simulations is usually run,  it 

would be computationally much simpler to just simulate a few number of factors and derive from their 

trajectories those for interest rates, than having to simulate each specific interest rate. 

Section 2 contains a discussion of the methods to be used in the analysis, the data, and some 

preliminary statistical analysis. In section 3, the principal components are described and identified, 

discussing their ability to explain interest rate fluctuations. In section 4 we specify and estimate 

autoregressive and factor models for each interest rate and currency, and compare the forecasting ability 

of both models. The paper closes with some conclusions. 

 

2. Factor analysis  

 
2.1 A description 

 
The object of factor analysis is to summarize fluctuations over time in a set of variables 

through those experienced by a small set of factors. The technique is specially interesting when 

reducing the dimensionality in a large set of interest rates from a given market, since correlations 

between all them are likely to be high. In factor analysis, observed variables are supposed to be linear 

combinations of the unobserved factors, 

 i i,1 1 i,2 2 i,k k ir = a z +a z +...+a z + u  (1) 
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where zj denotes the j-th common factor, αij  denote the loadings of the i-th interest rate on the 

j-th factor, and ui denotes the interest rate-specific factor representing the component of ri which is not 

explained by the common factors z1, z2, ...zk. Factors are characterized up to scale and rotation 

transformations, and can be defined as linear combinations of observed variables, 

 j j , 1 1 j,2 2 j,q qz r r ... r= β + β + + β  (2) 

 
where zj represents the j-th factor and βji is the weight of the i-th variable in the j-th factor. 

 We use in this paper the principal components technique, a special case of factor analysis. This 

methodology constructs a specific linear transformation to the original variables, each transformed 

variable being a linear combination of the original, observed variables. These linear combinations are, 

by construction, uncorrelated with each other. The characteristic property of principal components is 

that they are obtained in a specific order: the first principal component is the linear combination that 

best expla ins fluctuations in the set of original variables, the second one is the linear combination of the 

original variables which best explains fluctuations among observed variables, orthogonal to those 

experienced by the first principal component, and so on. Principal components are defined by the 

eigenvectors associated to the larger eigenvalues of the variance-covariance matrix of interest rates, 

which are all non-negative. 

 

2.2 The data 

 

We apply in this paper the principal components technique to reduce the dimensionality of the 

vector interest rates from Interest Rate Swap (IRS) markets in different currencies. Daily data for 

interest rate swap rates at 2, 3, 4, 5, 7 and 10 year maturities, for the Deutsche mark, US dollar, 

Japanese yen and Spanish peseta were obtained from Datastream. Data for 6, 8 and 9 year maturities 

were obtained by linear interpolation. Zero coupon rates were then derived from swap rates by the 

bootstrapping method. To start the bootstrapping method, we used the 1-year rate from either the 

Eurodeposit or the domestic interbank market, depending on the currency. This rate was not used for 

any other purpose in our analysis.  

We work with weekly data, obtained as the average of bid and ask rates at 18:00 hours GTM 

each Wednesday, from June 26, 1991 to December 31, 1998. As an illustration, Figure 1 shows 2-, 5- 

and 10-year rates for the Deutsche mark. 

 

 

2.3 First properties. 
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 Table 1 shows swap interest rates to be integrated variables for all maturities and currencies. A 

second unit root is clearly rejected in all cases. As shown in Table 2, correlations between interest rates 

in a same term structure are very large, although this result is contaminated by the nonstationary nature 

of interest rates. However, shows that correlations among weekly interest rate changes are also very 

high across the term structure in each currency. They decrease when maturities are farther apart, the 

lower correlation corresponding to the (2 year, 10 year) pair, which have correlation coefficients as low 

as .54 for the Spanish peseta. This already shows the existence of at least a significant common factor 

producing co-movements across the terms structure. It also suggests, however, that a single factor will 

not be enough to explain the observed discrepancies between fluctuations in 2- and 10-year rates.  

 

3. Factor analysis results 

 

3.1 The number of factors 

 

We use principal components to summarize the extensive contemporaneous correlations among 

interest rates in a given currency. Using the ratios between partial sums of the eigenvalues in Table 3 to 

the sum of all them show that the first principal component explains at least 95% of the fluctuations in 

the vector of interest rates in all currencies. The first principal component, i.e., the eigenvector 

associated to the largest eigenvalue of the variance-covariance matrix of interest rates, is in each 

currency an approximate average of the set of nine interest rates, since it gives similar weights to all of 

them. It can therefore be interpreted as capturing the general level of interest rates. The second 

eigenvector gives weights of opposite sign to short- and long-term maturities, smoothly decreasing or 

increasing as we move from one end of the term structure to the other. Hence, it can be interpreted as a 

general measure of steepness along the term structure. This linear combination captures general changes 

in the slope of the term structure. The third eigenvector assigns positive weights to maturities at both 

the short- and the long-end of the term structure, and negative weights to intermediate maturities. 

Therefore, changes in this component will generally be associated to changes of opposite sign at short- 

and long- than at intermediate maturities, so that this linear combination can be interpreted as capturing 

changes in the curvature of the zero coupon curve. This interpretation, very similar to that obtained in 

previous work, is robust across the four currencies in our analysis, as shown in Table 3. 

 The right panel in Table 1 shows the three principal components to be integrated variables for 

all currencies, with the exception of the curvature factor in the case of the Spanish peseta and the US 

dollar. The hypothesis of a double unit root is overwhelmingly rejected in all cases. 
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3.2 Identifying the principal components 

 

To further identify the forces behind each principal component, we estimated regressions 

having as dependent variable each one of the interest rates in our data set, and each principal component 

as the alternative single regressor. Estimated R-squared statistic s are shown in Table 3 when each 

principal component is alternatively used as a single regressor, as well as when either the first two or 

three components are jointly used as regressors. As already mentioned, R-squared values from 

regressions of individual interest rates on the first component are all very large, being above .90 in most 

cases, the lower values corresponding to the two extreme maturities in the US dollar term structure. 

 The second component is able to explain a substantial amount of the fluctuations in all 

maturities for the Japanese yen. It also has significant explanatory power for changes in interest rates in 

the Spanish peseta and Deutsche mark term structures. In all currencies, R-squared values in regressions 

on the second principal component decrease with maturity. From its structure, as described in the 

previous section, this slope factor, should not be expected, by itself, to provide a good fit when 

explaining the level of interest rates. However, our results suggest that, at least during our sample 

period, changes in slope are mainly produced by changes in the shorter end of the term structure, 

probably produced as transmission of monetary policy interventions on very short-term rates. 

 As it should be expected, the curvature factor does not seem to have much explanatory power, 

by itself, to explain interest rates. Again, the US dollar is the exception, with changes in curvature being 

able to contain significant explanatory power for interest rates, specially at intermediate maturitie s, 

suggesting that these type of fluctuations have been more frequent in that country than in the other 

currencies considered. 

 It is also informative to examine the goodness of fit of interest rate regressions in Table 3. R-

squared values from regressions on the first two components do not fall below .997 in any case. 

Besides, evidence against the presence of a unit root in the residuals in these regressions is 

overwhelming, so that the high R-squared values are not the reflection of spurious correlations. As a 

consequence, we can conclude that the curvature factor does not add much to the explanation of any 

interest rate when the level and slope factors are already taken into account. This is true even at the 

extreme maturities in the US dollar term structure, which as pointed out before, are the ones for which 

the level factor has the lowest explanatory power. 

Estimated coefficients, which we review below, show in the four currencies that changes in the 

level factor tend to come together with changes of the same sign and similar size in all interest rates. 

Changes in the slope factor come together with changes of opposite sign at the shorter and the longer 
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end of the term structure. Changes in the curvature factor tend to be associated with changes of the 

same sign at both ends of the term structure, and changes of opposite sign at intermediate maturities. 

All that agrees with the interpretation we just proposed for the three components. 

 Finally, Figure 2 shows the impact on interest rate at each maturity of a change in each 

principal component, in the case of the Deutsche mark. The continuous line shows the levels of interest 

rates which will be implied from the regressions described above, evaluated at the sample averages of 

the principal components. Dashed lines show the level of interest rates when each principal components 

deviates two standard deviations from above and below its sample average. The suggested 

interpretation is again the same as above. 

 

3.3 Factors and interest rate correlations 

 

 Having risk management in mind as the final aim of factor analysis in a set of interest rates, we 

need to worry about the extent to which factor models are able to preserve cross-correlations over the 

term structure. This is important because, as clearly shown by VaR analysis, the correlation matrix of 

interest rates plays a central role in computing the chosen quartile of the distribution of market value 

portfolio.  

 The lower triangular matrices in Table 2 show the correlation matrix of the fitted part of the 

regressions on the first three factors, taken as proxies for the observed interest rates. We again present 

correlations among levels and first differences of the fitted interest rates. For each currency, the table 

shows that the three principal components, the level, slope and curvature factors, are able to fully 

capture the tight correlation among interest rates at near maturities, at the same time than the lower 

correlations for maturities farther apart from each other. In fact, differences are hard to see, particularly 

in the case of level interest rates. 

 

4. Forecasting ability of term structure factors  

 

 As mentioned in the Introduction, the final goal of this paper is to analyze the extent to which 

term structure factors as characterized above: level-, slope- and curvature-factors, are able to provide 

good predictions of future interest rates. By good quality forecasts we understand forecasts at least as 

good as those that could be obtained with univariate models of each interest rate. This request should be 

regarded as being quite demanding, since we are comparing the forecasting performance of a purely 

contemporaneous projection on term structure factors, with that of a dynamic model. Besides, the fact 
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that the factor model regression is contemporaneous, forces us to elaborate models to forecast the 

factors, previously to forecasting interest rates.  

For each set of forecasts in the paper, we computed Mean Absolute Errors, Root Mean Square 

Errors, and Theil’s U-statistic for each autoregressive models, for static as well as for dynamic 

forecasting, in each currency. Interest rates frequency distributions are asymmetric and platykurtic, so 

that the use of both, mean and median absolute forecast error is advised. In dynamic forecasting, models 

are estimated just once, using a sample that excludes data from the forecasting period. Forecasts are 

then obtained once-and-for all for the whole forecasting period. Static forecasts are a sequence of one-

step ahead forecasts. Starting from the model estimated for dynamic forecasting, forecasts are obtained 

for the first week of the forecast period. Then, data for that first week is added to the sample, models 

are estimated again, and estimates are obtained for the second week, and so on. In static forecasting, 

actual past data are always used to compute forecasts, while in dynamic forecasting, previously 

obtained forecasts are progressively being incorporated, as we run out of actual data. 

  

4.1 Choosing an autoregressive model for forecasting 

 

 As a base for comparison, we will use univariate models to forecast each interest rate as well 

as to forecast each factor. In the case of the factors, their orthogonality makes unnecessary the use of 

multivariate models. In general, among univariate structures, a third order autoregressive [AR(3)] 

model might be appropriate. That structure is able to capture possible cycles in interest rates through the 

presence of two complex roots, plus a possible unit root, thorough the third root in the characteristic 

equation of the third degree autoregressive polynomial. 

 This turns out to be the case when fitting autoregressive models to levels of interest rates for 

the Spanish peseta, for which AR(3) models produce for all maturities stationary residuals without 

much evidence of autocorrelation. For the Deutsche mark, Japanese yen and US dollar, an AR(3) model 

does not fully capture the persistence in interest rates levels, and an AR(4) model seems more 

appropriate, being the shorter dynamic structure that leaves no significant residual autocorrelation. The 

added lag is significant in most cases, and the model fits the data better. However, it is interesting that 

the AR(3) model would have already produced stationary residuals for all maturities in these three 

currencies as well. 

 A second line of analysis deals with the comparison between fitting models to level or 

differenced interest rates. In principle, an AR(3) model for level interest rates should be equivalent to an 

AR(2) model in first differences, while an AR(4) in levels would correspond to an AR(3) in first 
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differences. However, while theoretically equivalent, significant differences arise between these two 

types of models in practice, as discussed below. 

 Something similar can be said about forecasting models for the principal components, with 

AR(3) models in levels producing stationary residuals in all cases and leaving no significant trace of 

residual autocorrelation for the Spanish peseta. For the Deutsche mark, Japanese yen and US dollar, an 

AR(4) structure is needed to account for residual autocorrelation. This should be expected, since as 

explained in Section 2, the first component is essentially the general level of interest rates, and will 

share the general characteristics of persistence across the term structure. For the slope and curvature 

components, the choice of order in the autoregressive model is irrelevant. For consistency, we estimated 

AR(3) models in levels  to forecast the three factors for the Spanish peseta, and AR(4) models to 

forecast factors for the Deutsche mark, Japanese yen and US dollar. 

 This common choice of length in the autoregressive models for interest rates and principal 

components for each currency greatly simplifies the search for an adequate specification. Some 

informal experiments reveal that, from the point of view of forecasting performance, no much gain is 

achieved from an exhaustive search for the best dynamic specification each time models are estimated 

with additional data, as it is the case in static forecasting. 

 

4.2 Forecasting results 

 

Table 4 presents estimates of interest rates models. The left column shows in each case 

estimates of the autoregressive model, while the right column contains estimates of factor models. 

Adjusted R-squared values are very high in both cases, but regressions are not spurious, since residuals 

seem to be clearly stationary according to the Augmented Dickey-Fuller or Phillips-Perron tests. In 

addition to stationary tests for residuals, we provide for each estimated model, first- and fourth-order 

Lagrange Multiplier tests as well as third- and tenth-order Ljung-Box tests for residual autocorrelation. 

The comparison between standard errors of estimate (SEE) in both models and the values of the 

accompanying statistics suggests that, as expected, factor models exploit much better the information in 

the term structure at each point in time, while the autoregressive models are much better designed to 

capture the dynamic structure of interest rates.  

Tests for first- and fourth-order ARCH structures in the residuals show significant evidence of 

this type of heteroskedasticity, specially when the three factors are used to explain the behavior of 

interest rates. Even though it leads to a loss of precision in forecasting, the presence of ARCH 

components should not be expected to introduce significant systematic biases in forecasting, so the 

comparison between forecasting strategies that we develop next should not be expected to be 
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significantly contaminated by the presence of ARCH components in the residuals. Nevertheless, it 

would be interesting to estimate models capturing this feature and analyzing the effect, if any, on 

forecasting performance. It might also be the case that common ARCH factors can be found across the 

term structure, following the proposal by Engle and Kozicki (1993), which could then be explicitly 

incorporated into a forecasting strategy. This is left for further research. 

We are interested in the quality of forecasts obtained with both types of models. For that 

analysis, we obtain static and dynamic forecasts over the last three months in our sample, October, 

November and December 1998. Dynamic forecasts are obtained with models estimated using data until 

the end of September 1998. These are once-and-for all predictions over the 13 weeks in those three 

months. We also computed static forecasts. For them, we estimate the previous models each 

Wednesday over the three months, each time computing a single one-step ahead forecast, for next 

Wednesday. That way, we have a sequence of 13 one-step ahead forecasts for each interest rate and 

currency.  

 Table 5 shows the mean value of each interest rate over the forecasting period, to be compared 

with the values of forecast error statistics. We have four forecasting error criteria for static and another 

four for dynamic forecasting for each maturity, 72 comparisons between autoregressive and factor 

models for each currency in total. 

Among the 72 error criteria comparisons, the principal components model achieves a lower 

value of the error criterion in 27 cases (38% of the comparisons) for the Deutsche mark, 32 cases (44%) 

for the Spanish peseta, and 33 cases each (46%) for the Japanese yen and the US dollar. Among them, 

16 correspond to dynamic forecasting for the Deutsche mark, 20 for the Spanish peseta, and 19 for the 

Japanese yen and US dollar. Hence, in a very significant number of comparisons, the principal 

component model performs better than the autoregressive model. Favorable comparisons are almost 

equally distributed between static and dynamic forecasting situations. 

For each possible comparison, we computed the ratio between the value of each error criterion 

for the autoregressive model over the similar one for the factor model in Table 5. Median ratios over the 

72 comparisons for the Deutsche mark, Spanish peseta, Japanese yen and US dollar are .985, .999, .992 

and 1.000, suggesting that, on average, forecasts from factor models are comparable to those of 

autoregressive models, except for the Deutsche mark. Furthermore, skewness is -.0764, 1.0167, .7039 

and 1.4886, showing that, again except for the Deutsche mark, distributions for these ratios are skewed 

to the right. This suggests that the forecast gain obtained when factor models perform better is superior 

to that obtained when autoregressive models produce better forecasts. Hence, except for the Deutsche 

mark, factor models seem to have a better forecasting performance than autoregressive models.  
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 These results are quite striking because of the static nature of factor models and the need to use 

estimated autoregressive models for the factors to obtain forecasts for them, previously to computing 

interest rate forecasts. This way, we add to the sampling error in estimating factor regression models, 

that from estimating autoregressive models for the factors. Yet, in spite of this double estimation 

process, factor models often predict better than autoregressive models, which use the dynamics in 

interest rate processes for forecasting.  

As mentioned in the Introduction, the practical relevance of our forecasting results stems from 

the fact that to forecast the set of nine interest rates we need to forecast only three principal 

components. For the set of our four currencies, this reduces the number of forecasting models needed 

from thirty-six to twelve.  

Even bigger simplicity would be achieved by working with just two factors, level and slope. 

We explored that possibility by computing forecasts from projections of each interest rate on these two 

factors. Median ratios of criterion values for the three-components model over the two-components 

model are 0.674 for the Deutsche mark, 0.787 for the Spanish peseta, 0.941 for the Japanese yen, and 

0.987 for the US dollar. Besides, the distributions of the ratios are skewed to the left in each currency, 

suggesting that the gain in forecasting performance from using a third factor is very significant. 

We mentioned above the theoretical equivalence between an AR(4) model in levels and an 

AR(3) model in differenced interest rates. Ratios of the 72 forecasting error statistics for both models 

have median values below 1 and distributions which are skewed to the left, suggesting that the AR(4) 

model in levels produces better forecasts than the AR(3) model in differenced interest rates. For the 

Spanish peseta the comparison was made between an AR(3) model in levels and an AR(2) model in 

differenced interest rates. 

Finally, stationary residuals in the right columns of Table 4 show interest rates to be 

cointegrated with the set of three factors for all maturities and currencies. Hence, it should be expected 

that an error correction model among the set of variables formed by each interest rate and the three 

factors would more adequately capture the long-run relationships between them, as well as their short 

term co-movements. However, searching for the right dynamic specification of the single-equation error 

equation model for each interest rate would imply an extensive amount of data mining. This would be 

contrary to our goal of setting relatively simple setups that allow for exploiting the contemporaneous 

correlations across the term structure, for interest rate forecasting. Testing the forecasting gain of an 

error correction model over our models in differences would constitute, however, an interesting issue 

for further research.  
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4.3 The correlation structure of interest rate forecasts. 

 

As in Section 3.3, it is important to analyze the extent to which forecasting models can 

reproduce the observed pattern of correlations across the term structure, since the correlation matrix 

plays such an important role in most risk management exercises. A significant deviation from the 

correlation matrix of interest rates would lead to possibly important biases when using the set of 

forecasts to evaluate portfolio risk at a given future horizon. 

Table 6 reproduces correlation matrices for autoregressive and factor model forecasts, both, for 

dynamic and static forecasts. In each case, the correlation coefficient between forecasts for any two 

maturities is compared to the sample correlation coefficient corresponding to those two maturities and 

currency over the forecasting period. The general result is that static forecasts in levels obtained from 

autoregressive models and from factor models retain the same cross-correlation structure that it is 

observed in the sample, although the fit for correlation coefficients between maturities farther apart 

deteriorates. Dynamic forecasts also reproduce sample cross-correlations, although deviations for 

correlation coefficients between faraway maturities are now rather large in the case of the Deutsche 

mark and US dollar. For the Spanish peseta and Japanese yen, the whole matrix of correlation 

coefficients is fairly well reproduced. 

Not only forecasting but also simulating interest rates are useful tools for sound portfolio 

management. The good fit of interest rate models in Table 4 suggests that Monte Carlo simulations 

aimed at computing VaR values for fixed income portfolios at a given future horizon or at fixed income 

derivative pricing could successfully be conducted by just simulating future trajectories for three 

factors. Using the simulated paths in the estimated interest rate regressions would provide us with 

simulated trajectories for interest rates themselves. Again, the reduction in computational requirements 

would be extensive. Even though we have not explored this possibility, the relatively accurate 

preservation of correlations across the term structure in the forecasting exercises we have reported in 

this paper suggests that simulation exercises over the term structure could be conducted to a good 

approximation using univariate simulations for the factors together with estimated regressions on Table 

4. That would avoid the need to draw realizations from the multivariate distribution of innovations for 

the vector of interest rates, which would be rather hard to estimate.  
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5. Conclusions  

 

We have analyzed the extent to which factor models of the term structure of Interest Rate Swap 

(IRS) markets can be used to forecast future interest rates. We have used as factors principal 

components computed for a vector of zero coupon rates at maturities between 2- and 10-years. Data for 

6-, 8- and 9-year maturities were obtained interpolating on market quotes at other maturities, and a zero 

coupon curve was then estimated by the bootstrapping method. We use weekly data from interest rate 

swaps denominated in Deutsche mark, Spanish peseta, Japanese yen and US dollar. Zero coupon rates at 

the mentioned maturities are all I(1) variables and display high correlations, not only in levels but also 

in first differences.  

Most issues in risk management in fixed income markets require reducing the dimensionality of 

the vector of relevant interest rates. This is particularly true of forecasting changes in bond prices, the 

essential tool for fund management. It is also needed for VaR analysis, so that computation of variance-

covariance matrices remains manageable.  

Factor analysis, in the form of principal components has often been used to summarize a large 

vector of interest rate vector in a few set of factors. Usually, just three factors, naturally interpreted as 

the level, steepness and curvature of the yield curve, have been shown to account for a large amount of 

variation in a vector of interest rates representing a term structure. Factors of this kind have also been 

shown to drastically simplify the computation of the variance-covariance matrix and sensitivity vector 

that are needed in VaR evaluation, without introducing any noticeable bias. We complement that 

research by showing that the three-factor characterization of a term structure seems quite robust to the 

choice of time period, currency and market. The level factor captures, by itself, at least 95% of the 

fluctuation in each interest rate, while adding the slope factor allows for capturing at least 99,7% of the 

fluctuation at all maturities and currencies. Furthermore, we have shown the factors to be able to 

capture quite well sample correlations among interest rates.  

We have specifically examined the ability of factors to forecast future interest rates. For this 

analysis, we have compared the forecasting performance of factor models to that of autoregressive 

models. A short autoregression in interest rate levels produces stationary residuals for all maturities and 

currencies, while leaving no significante trace of residual autocorrelation. A third autoregression in 

differenced interest rates should be an equivalent model, but it displays a slightly worse forecasting 

performance. As an alternative, we have used least-squares projections of each interest rate on the 

chosen factors to produce interest rate forecasts. 

We use four criteria for forecasting performance: Mean and Median Absolute Errors, Root 

Mean Square Error, and Theil’s U-statistic, and compare the  forecasting ability of alternative models 
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by examining the ratio between the error criteria obtained under each specification. Forecasts were 

obtained for the thirteen weeks in the last three months of our sample. Having nine interest rates for 

each currency, four forecasting criteria and static, as well as dynamic forecasts, we have 72 

comparisons for each currency. Factor models perform better than autoregressive models in at least 

44% of the comparisons for the Spanish peseta, Japanese yen and US dollar, and 38% of the cases for 

the Deutsche mark. Besides, an examination of the frequency distribution of forecast error criteria 

suggests that predictions from factor models may be preferable to those of autoregressive models. 

This result is quite striking because of the static nature of factor models, and the need to obtain 

forecasts for the factors, previously to computing interest rate forecasts. That way, we add to the 

sampling error in estimating factor regression models, that from estimating autoregressive models for 

the factors. Yet, in spite of this double estimation process, factor models can sometimes predict better 

than autoregressive models, which fully incorporate the dynamics in interest rate processes for 

forecasting.  

The good forecasting performance of factor models, as well as their ability to reproduce the 

sample correlation structure is very important for optimal portfolio design and risk management. First, 

forecasting future prices of  fixed income assets can be greatly simplified, since we can proceed by 

using just forecasts for the factors to obtain forecasts for all interest rates involved. Also, in the type of 

Monte Carlo exercises needed to compute VaR measures at a given future horizon, a huge number of 

simulations is usually run. The described properties of term structure factors suggests a much simpler 

approach by just simulating the factors and deriving from their trajectories those for interest rates, as 

opposed to having to simulate each specific interest rate.  

Finally, it is interesting that both forecasting models can approximately reproduce the observed 

pattern of correlations across the term structure, since the correlation matrix plays such an important 

role in most risk management exercises. This is specially relevant for VaR analysis, since it shows that 

drawing from univariate probability distributions for the innovations in either model is enough to 

roughly preserve during the forecast horizon the sample correlation matrix among interest rates. In this 

respect, static forecasts do specially well at retaining the sample cross-correlation structure, except 

between distant maturities, dynamic forecasts doing a little worse. 

 



 14 

 

References 

 
 
Engle, R.F. and S. Kozicki (1993), Testing for Common Features, Journal of Business and Economic  

Statistics 11, 369-380. 
 

Knez, P.J., Litterman, R. and Scheinkman, J. (1994): “Explorations into factors explaining money market returns”, 

Journal of Finance, 49, 1861-1882. 

 

Litterman, R. and Scheinkman, J. (1991): “Common factor affecting bond returns”, Journal of Fixed Income , 1, 54-61. 

 

Niffikeer, C.I., Hewins, R.D. and Flavell, R.B. (2000): "A synthetic factor approach to the estimation of value-at-risk of 

a portfolio of interest rate swaps", Journal of Banking and Finance, 24, 1903-1932. 

 

Steeley, J.M. (1990): “Modelling the dynamics of the term structure of interest rates”, The Economic and Social Review, 

21, 337-661. 

 



Table 1. Unit root tests 
 Zero coupon rates Principal Components 

 2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year First Second Third 
a) DEM 

ADF-Level -1.081 -1.038 -0.822 -0.729 -0.575 -0.369 -0.231 -0.072 0.105 -0.594 -1.427 -2.203 
ADF-Differences -7.480 -7.599 -7.717 -7.805 -8.083 -8.479 -8.783 -9.139 -9.545 -8.171 -7.784 -8.061 
PP-Level -1.323 -1.195 -0.981 -0.874 -0.717 -0.519 -0.429 -0.327 -0.217 -0.792 -1.434 -2.080 
PP-Differences -19.035 -18.358 -19.090 -19.639 -20.313 -21.259 -21.752 -22.348 -23.036 -20.288 -19.793 -21.017 

b) ESP 
ADF-Level -0.563 -0.550 -0.516 -0.454 -0.319 -0.180 -0.137 -0.093 -0.050 -0.315 -1.969 -3.133 
ADF-Differences -9.949 -9.233 -8.691 -8.205 -8.267 -8.454 -8.511 -8.633 -8.823 -8.581 -11.024 -12.840 
PP-Level -0.625 -0.534 -0.444 -0.437 -0.303 -0.185 -0.121 -0.062 -0.011 -0.268 -2.345 -4.512 
PP-Differences -23.687 -22.541 -20.974 -20.318 -20.064 -20.006 -19.853 -19.874 -20.094 -20.107 -28.911 -27.242 

c) JPY 
ADF-Level -2.187 -1.967 -1.712 -1.610 -1.498 -1.373 -1.377 -1.380 -1.384 -1.573 -2.952 -2.481 
ADF-Differences -8.042 -7.965 -7.775 -7.553 -7.323 -7.177 -7.109 -7.048 -6.993 -7.352 -9.140 -8.601 
PP-Level -2.321 -1.984 -1.748 -1.633 -1.480 -1.311 -1.300 -1.287 -1.277 -1.575 -2.789 -2.466 
PP-Differences -18.690 -18.919 -18.904 -18.973 -18.903 -18.924 -18.767 -18.679 -18.691 -18.745 -18.594 -24.207 

d) USD 
ADF-Level -2.248 -2.350 -2.300 -2.196 -2.088 -1.950 -1.860 -1.758 -1.654 -2.118 -1.267 -3.106 
ADF-Differences -7.377 -7.319 -7.368 -7.433 -7.627 -7.891 -8.106 -8.371 -8.681 -7.710 -7.826 -9.456 
PP-Level -2.130 -2.190 -2.169 -2.085 -2.031 -1.955 -1.886 -1.807 -1.726 -2.073 -1.153 -3.339 
PP-Differences -20.047 -20.287 -20.653 -21.098 -21.272 -21.583 -21.735 -21.962 -22.260 -21.223 -18.510 -22.755 
Note: Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root statistics. Critical values for both statistics: -3.448 (1%),  
-2.869 (5%), -2.571 (10%) . 

 



Table 2. Contemporaneous correlation coefficients between observed and fitted zero coupon rates 
 2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year 2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year 

Level a) DEM b) ESP 
2-year 1.000 0.994 0.979 0.960 0.939 0.905 0.889 0.868 0.839 1.000 0.997 0.993 0.988 0.984 0.979 0.976 0.972 0.967 
3-year 0.994 1.000 0.995 0.984 0.969 0.942 0.929 0.911 0.886 0.997 1.000 0.999 0.996 0.994 0.990 0.987 0.984 0.980 
4-year 0.980 0.995 1.000 0.996 0.988 0.970 0.960 0.945 0.925 0.993 0.999 1.000 0.999 0.998 0.995 0.993 0.991 0.988 
5-year 0.960 0.984 0.996 1.000 0.997 0.986 0.979 0.969 0.952 0.988 0.996 0.999 1.000 1.000 0.998 0.997 0.995 0.992 
6-year 0.939 0.969 0.988 0.997 1.000 0.996 0.991 0.984 0.971 0.984 0.994 0.998 1.000 1.000 0.999 0.999 0.997 0.996 
7-year 0.905 0.943 0.970 0.987 0.996 1.000 0.999 0.996 0.989 0.979 0.990 0.995 0.998 0.999 1.000 1.000 0.999 0.998 
8-year 0.889 0.929 0.960 0.980 0.991 0.999 1.000 0.999 0.994 0.976 0.987 0.993 0.997 0.999 1.000 1.000 1.000 0.999 
9-year 0.868 0.911 0.945 0.969 0.984 0.996 0.999 1.000 0.998 0.972 0.984 0.991 0.995 0.998 0.999 1.000 1.000 1.000 

10-year 0.839 0.886 0.925 0.952 0.972 0.989 0.994 0.998 1.000 0.967 0.981 0.988 0.992 0.996 0.998 0.999 1.000 1.000 

First difference                   
2-year 1.000 0.968 0.907 0.875 0.836 0.766 0.738 0.700 0.650 1.000 0.957 0.860 0.703 0.645 0.567 0.568 0.558 0.537 
3-year 0.970 1.000 0.961 0.934 0.903 0.840 0.814 0.777 0.728 0.937 1.000 0.955 0.846 0.800 0.729 0.729 0.718 0.692 
4-year 0.922 0.986 1.000 0.986 0.970 0.922 0.902 0.871 0.828 0.821 0.968 1.000 0.948 0.919 0.863 0.868 0.859 0.836 
5-year 0.874 0.958 0.991 1.000 0.987 0.943 0.928 0.902 0.865 0.709 0.908 0.984 1.000 0.988 0.950 0.945 0.927 0.894 
6-year 0.831 0.922 0.970 0.993 1.000 0.984 0.974 0.953 0.921 0.659 0.870 0.963 0.993 1.000 0.987 0.982 0.963 0.929 
7-year 0.767 0.865 0.929 0.968 0.991 1.000 0.996 0.982 0.957 0.590 0.813 0.923 0.971 0.992 1.000 0.994 0.976 0.942 
8-year 0.737 0.832 0.900 0.946 0.978 0.997 1.000 0.995 0.979 0.560 0.785 0.900 0.954 0.982 0.998 1.000 0.993 0.972 
9-year 0.698 0.789 0.863 0.916 0.957 0.987 0.996 1.000 0.994 0.523 0.748 0.869 0.930 0.966 0.991 0.998 1.000 0.993 

10-year 0.649 0.736 0.814 0.875 0.926 0.967 0.984 0.996 1.000 0.478 0.704 0.831 0.900 0.944 0.978 0.989 0.997 1.000 

Level c) JPY d) USD 
2-year 1.000 0.997 0.991 0.984 0.977 0.967 0.965 0.963 0.961 1.000 0.977 0.923 0.857 0.809 0.748 0.714 0.675 0.630 
3-year 0.998 1.000 0.998 0.994 0.989 0.981 0.980 0.978 0.976 0.977 1.000 0.984 0.947 0.915 0.872 0.846 0.816 0.780 
4-year 0.991 0.998 1.000 0.999 0.996 0.991 0.990 0.989 0.987 0.924 0.984 1.000 0.989 0.972 0.945 0.927 0.905 0.878 
5-year 0.984 0.994 0.999 1.000 0.999 0.996 0.995 0.994 0.992 0.857 0.947 0.989 1.000 0.996 0.982 0.972 0.957 0.937 
6-year 0.977 0.989 0.997 0.999 1.000 0.999 0.998 0.997 0.996 0.809 0.916 0.972 0.996 1.000 0.995 0.989 0.979 0.964 
7-year 0.967 0.982 0.992 0.996 0.999 1.000 1.000 0.999 0.999 0.748 0.872 0.945 0.983 0.995 1.000 0.999 0.994 0.985 
8-year 0.965 0.980 0.990 0.995 0.998 1.000 1.000 1.000 0.999 0.714 0.847 0.927 0.972 0.989 0.999 1.000 0.998 0.993 
9-year 0.963 0.978 0.989 0.994 0.997 1.000 1.000 1.000 1.000 0.675 0.816 0.905 0.957 0.979 0.994 0.998 1.000 0.998 

10-year 0.961 0.976 0.987 0.992 0.996 0.999 0.999 1.000 1.000 0.630 0.780 0.878 0.937 0.964 0.985 0.993 0.998 1.000 

First difference                   
2-year 1.000 0.965 0.920 0.883 0.852 0.781 0.769 0.747 0.713 1.000 0.988 0.969 0.943 0.925 0.894 0.883 0.864 0.836 
3-year 0.975 1.000 0.965 0.937 0.909 0.839 0.826 0.803 0.767 0.990 1.000 0.991 0.973 0.961 0.935 0.926 0.908 0.882 
4-year 0.927 0.986 1.000 0.978 0.960 0.901 0.889 0.866 0.830 0.968 0.994 1.000 0.987 0.980 0.959 0.952 0.937 0.913 
5-year 0.889 0.963 0.993 1.000 0.988 0.937 0.930 0.912 0.880 0.942 0.980 0.996 1.000 0.994 0.975 0.971 0.959 0.938 
6-year 0.850 0.932 0.974 0.993 1.000 0.980 0.974 0.957 0.927 0.925 0.968 0.989 0.998 1.000 0.993 0.989 0.978 0.956 
7-year 0.788 0.876 0.931 0.966 0.989 1.000 0.996 0.982 0.955 0.900 0.949 0.976 0.990 0.997 1.000 0.996 0.985 0.964 
8-year 0.767 0.850 0.906 0.946 0.977 0.997 1.000 0.995 0.978 0.883 0.933 0.963 0.979 0.990 0.998 1.000 0.996 0.983 
9-year 0.739 0.815 0.872 0.917 0.956 0.987 0.996 1.000 0.994 0.860 0.911 0.943 0.961 0.977 0.990 0.997 1.000 0.996 

10-year 0.701 0.768 0.825 0.877 0.924 0.967 0.983 0.995 1.000 0.831 0.882 0.916 0.937 0.958 0.975 0.988 0.997 1.000 
Note: The upper triangular matrix contains correlation coefficients between sample interest rates. The lower triangular matrix contains correlation coefficients between the fitted components in regressions of 
interest rates on principal components.  



Table 3. Principal Components in the term structure 
 2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year 

a) DEM 
Variance-covariance matrix of interest rates  
     Eigenvalues  155089.7 707.02 8.31 0.34 0.25 0.10 7.66E-04 8.91E-05 7.18E-08 
     First eigenvector -0.3078 -0.3153 -0.3230 -0.3298 -0.3352 -0.3410 -0.3445 -0.3483 -0.3523 
     Second eigenvector 0.6451 0.4166 0.2184 0.0637 -0.0598 -0.1928 -0.2535 -0.3191 -0.3895 
     Third eigenvector 0.5790 -0.1229 -0.3703 -0.4057 -0.2736 -0.1410 0.0448 0.2381 0.4411 
R-squared coefficients on individual principal components  
     First component 0.9152 0.9617 0.9889 0.9984 0.9966 0.9790 0.9672 0.9487 0.9205 
     Second c omponent 0.8612 0.7888 0.7059 0.6268 0.5581 0.4673 0.4301 0.3854 0.3324 
     Third component 0.0320 0.0723 0.1109 0.1422 0.1615 0.1857 0.1876 0.1895 0.1909 
R-squared coefficients on subset principal components  
     On first two components  0.9987 0.9998 0.9991 0.9987 0.9994 0.9997 0.9999 0.9994 0.9977 
     On first three components  1.0000 0.9999 0.9999 0.9998 1.0000 0.9998 1.0000 1.0000 0.9999 

b) ESP 
Variance-covariance matrix of interest rates  
     Eigenvalues  321531.4 367.02 13.75 1.14 0.50 0.30 2.45E-04 1.78E-04 5.45E-07 
     First eigenvector -0.3287 -0.3296 -0.3312 -0.3323 -0.3336 -0.3350 -0.3357 -0.3365 -0.3373 
     Second eigenvector 0.6050 0.4035 0.2278 0.0735 -0.0539 -0.1889 -0.2643 -0.3452 -0.4315 
     Third eigenvector 0.6222 -0.0972 -0.3760 -0.4433 -0.2657 -0.0887 0.0616 0.2141 0.3707 
R-squared coefficients on individual principal components  
     First component 0.9766 0.9919 0.9976 0.9992 0.9993 0.9970 0.9952 0.9923 0.9880 
     Second component 0.6583 0.5998 0.5541 0.5172 0.4895 0.4577 0.4425 0.4250 0.4050 
     Third component 0.0873 0.1255 0.1504 0.1669 0.1696 0.1728 0.1727 0.1728 0.1730 
R-squared coefficients on subset principal components  
     On first two components  0.9990 0.9999 0.9995 0.9992 0.9997 0.9998 1.0000 0.9998 0.9994 
     On first three components  1.0000 0.9999 0.9999 0.9999 1.0000 0.9999 1.0000 1.0000 0.9999 

c) JPY 
Variance-covariance matrix of interest rates  
     Eigenvalues  60006.8 535.22 7.70 0.67 0.26 0.14 1.42E-03 7.31E-04 3.74E-05 
     First eigenvector -0.2744 -0.2967 -0.3163 -0.3307 -0.3403 -0.3510 -0.3552 -0.3597 -0.3644 
     Second eigenvector 0.6303 0.4414 0.2512 0.0931 -0.0371 -0.1829 -0.2443 -0.3102 -0.3813 
     Third eigenvector 0.5372 -0.0004 -0.3536 -0.3753 -0.3119 -0.2112 0.0050 0.2403 0.4959 
R-squared coefficients on individual principal components  
     First component 0.9664 0.9857 0.9963 0.9992 0.9989 0.9945 0.9934 0.9917 0.9891 
     Second component 0.8987 0.8589 0.8118 0.7755 0.7429 0.7021 0.6946 0.6863 0.6768 
     Third component 0.0188 0.0404 0.0651 0.0804 0.0913 0.1038 0.1014 0.0987 0.0954 
R-squared coefficients on subset principal components  
     On first two components  0.9990 0.9999 0.9994 0.9993 0.9997 0.9998 1.0000 0.9998 0.9990 
     On first three components  0.9999 0.9999 0.9999 0.9999 1.0000 0.9998 1.0000 1.0000 0.9999 

d) USD 
Variance-covariance matrix of interest rates  
     Eigenvalues  162570.9 252.63 3.07 0.28 0.09 0.02 4.95E-04 2.16E-04 1.18E-04 
     First eigenvector -0.2939 -0.3095 -0.3213 -0.3310 -0.3373 -0.3441 -0.3481 -0.3524 -0.357 
     Second eigenvector 0.6767 0.4167 0.2065 0.0383 -0.0653 -0.1797 -0.2389 -0.3031 -0.3727 
     Third eigenvector 0.4759 -0.0573 -0.2774 -0.4216 -0.3253 -0.2247 0.0210 0.2715 0.5339 
R-squared coefficients on individual principal components  
     First component 0.7124 0.8811 0.9697 0.9984 0.9958 0.9743 0.9567 0.9316 0.8976 
     Second component 0.4742 0.2699 0.1295 0.0481 0.0176 1.23E-03 2.22E-04 4.86E-03 0.0167 
     Third component 0.3138 0.4606 0.5627 0.6253 0.6398 0.6444 0.6317 0.6142 0.5913 
R-squared coefficients on subset principal components  
     On first two components  0.9993 0.9999 0.9996 0.9992 0.9996 0.9995 0.9999 0.9997 0.9988 
     On first three components  0.9999 0.9999 0.9998 0.9998 1.0000 0.9997 0.9999 1.0000 0.9999 
Note: Each panel contains eigenvalues and eigenvectors for the variance-covariance matrix of zero coupon rates.  R-squared statistics are 
presented for regressions of each interest rate on each individual principal component as well as on the first two and three principal 
components. 

 



 
Table 4. Estimated Models: a) DEM 

 2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year 
Own lag  

i=1 1.0665  1.1117  1.0713  1.0416  1.0066  0.9580  0.9319  0.9018  0.8688  
 (0.0491)  (0.0489)  (0.0486)  (0.0486)  (0.0485)  (0.0486)  (0.0487)  (0.0488)  (0.0489)  

i=2 -0.0598  -0.1450  -0.0959  -0.0641  -0.0273  0.0180  0.0423  0.0678  0.0926  
 (0.0719)  (0.0730)  (0.0712)  (0.0701)  (0.0688)  (0.0671)  (0.0664)  (0.0656)  (0.0647)  

i=3 0.1048  0.1818  0.2029  0.1992  0.1984  0.1900  0.1751  0.1600  0.1457  
 (0.0715)  (0.0728)  (0.0710)  (0.0700)  (0.0686)  (0.0670)  (0.0663)  (0.0655)  (0.0646)  

i=4 -0.1150  -0.1521  -0.1817  -0.1799  -0.1803  -0.1677  -0.1506  -0.1303  -0.1072  
 (0.0488)  (0.0486)  (0.0484)  (0.0485)  (0.0485)  (0.0485)  (0.0487)  (0.0489)  (0.0491)  
First component -0.3101  -0.3121  -0.3211  -0.3303  -0.3366  -0.3444  -0.3457  -0.3474  -0.3496 
  (0.0003)  (0.0005)  (0.0004)  (0.0005)  (0.0002)  (0.0004)  (0.0002)  (0.0001)  (0.0003) 
Second component 0.6397  0.4245  0.2229  0.0626  -0.0633  -0.2009  -0.2563  -0.3169  -0.3832 
  (0.0007)  (0.0014)  (0.0011)  (0.0014)  (0.0006)  (0.0012)  (0.0005)  (0.0002)  (0.0009) 
Third component 0.6020  -0.1570  -0.3880  -0.4013  -0.2588  -0.1071  0.0563  0.2292  0.4142 
  (0.0043)  (0.0079)  (0.0066)  (0.0080)  (0.0033)  (0.0069)  (0.0032)  (0.0013)  (0.0052) 
R-squared 0.9964 1.0000 0.9958 0.9999 0.9951 0.9999 0.9945 0.9998 0.9941 1.0000 0.9932 0.9998 0.9928 1.0000 0.9922 1.0000 0.9914 0.9998 
SEE 0.1128 0.0099 0.1087 0.0184 0.1045 0.0152 0.1009 0.0186 0.0966 0.0077 0.0951 0.0159 0.0934 0.0073 0.0926 0.0029 0.0926 0.0121 
ARCH(1) 0.16 185.17 2.06 114.28 4.07 178.60 2.13 176.44 3.69 196.91 6.76 166.25 6.47 174.51 6.06 173.69 5.63 149.89 
 [0.69] [0.00] [0.15] [0.00] [0.04] [0.00] [0.14] [0.00] [0.06] [0.00] [0.01] [0.00] [0.01] [0.00] [0.01] [0.00] [0.02] [0.00] 
ARCH(4) 1.27 183.67 3.96 114.60 5.41 169.33 3.43 177.32 6.57 196.19 12.51 173.70 13.36 179.99 13.29 175.67 13.07 161.44 
 [0.87] [0.00] [0.41] [0.00] [0.25] [0.00] [0.49] [0.00] [0.16] [0.00] [0.01] [0.00] [0.01] [0.00] [0.01] [0.00] [0.01] [0.00] 
Q(3) 0.10 601.03 0.07 460.16 0.10 575.60 0.15 709.81 0.21 663.18 0.23 619.42 0.21 625.74 0.18 672.28 0.16 644.79 
 [0.99] [0.00] [1.00] [0.00] [0.99] [0.00] [0.99] [0.00] [0.98] [0.00] [0.97] [0.00] [0.98] [0.00] [0.98] [0.00] [0.98] [0.00] 
Q(10) 4.23 1370.90 3.31 1028.00 3.47 1084.40 6.07 1769.50 7.94 1502.40 10.12 1035.30 10.31 1088.60 10.10 1399.10 9.53 1106.50 
 [0.94] [0.00] [0.97] [0.00] [0.97] [0.00] [0.81] [0.00] [0.64] [0.00] [0.43] [0.00] [0.41] [0.00] [0.43] [0.00] [0.48] [0.00] 
LM(1) 1.57 266.03 1.74 223.50 2.55 248.80 3.92 292.90 4.97 282.33 5.52 262.99 5.28 265.03 4.92 281.01 4.48 271.71 
 [0.21] [0.00] [0.19] [0.00] [0.11] [0.00] [0.05] [0.00] [0.03] [0.00] [0.02] [0.00] [0.02] [0.00] [0.03] [0.00] [0.03] [0.00] 
LM(4) 4.00 272.32 3.20 230.50 3.70 254.74 4.41 296.55 5.72 287.05 7.11 268.15 7.86 270.22 8.83 286.52 10.04 276.35 
 [0.41] [0.00] [0.53] [0.00] [0.45] [0.00] [0.35] [0.00] [0.22] [0.00] [0.13] [0.00] [0.10] [0.00] [0.07] [0.00] [0.04] [0.00] 
ADF -8.14 -3.89 -8.40 -4.72 -8.55 -5.23 -8.53 -3.39 -8.76 -3.70 -9.01 -4.47 -9.16 -4.36 -9.33 -3.79 -9.53 -4.33 
PP -20.45 -6.31 -20.51 -7.66 -20.67 -6.96 -20.74 -5.48 -20.79 -5.82 -20.78 -6.53 -20.76 -6.46 -20.72 -5.87 -20.68 -6.26 

Note: Estimates of autoregressive and factor interest rate models. Both models were estimated using levels of interest rates and principal components. Fourth order autoregressions 
were used in all cases except Spain, where a third order autoregression was used. A constant (generally non-significant) was included in all models. Standard deviations are shown in 
parentheses. Statistics for each regression include: adjusted R-squared, standard error of estimate (SEE), Lagrange multiplier statistics to test for ARCH(1) and ARCH(4) structure in 
residuals, Ljung-Box autocorrelation statistics of orders 3 and 10 (Q(3), Q(10)), Breusch-Godfrey autocorrelation statistics of orders 1 and 4 (LM(1), LM(4)), and Augmented 
Dickey-Fuller and Phillips-Perron statistics to test for a unit root in the residuals. p-values are included in square brackets. 

 



 
Table 4. Estimated Models: b) ESP 

 2-year 3-year  4-year  5-year  6-year  7-year  8-year  9-year  10-year 

Own lag 

i=1 0.8590  0.9040  0.9705  1.0003  1.0128  1.0161  1.0236  1.0223  1.0115  

 (0.0490)  (0.0490)  (0.0492)  (0.0494)  (0.0494)  (0.0494)  (0.0494)  (0.0494)  (0.0494)  

i=2 0.2659  0.2150  0.1101  0.0075  -0.0257  -0.0526  -0.0450  -0.0305  -0.0089  

 (0.0635)  (0.0654)  (0.0685)  (0.0698)  (0.0703)  (0.0703)  (0.0706)  (0.0706)  (0.0702)  

i=3 -0.1278  -0.1213  -0.0826  -0.0094  0.0118  0.0358  0.0208  0.0076  -0.0030  

 (0.0490)  (0.0491)  (0.0493)  (0.0494)  (0.0495)  (0.0495)  (0.0495)  (0.0495)  (0.0495)  

First component -0.3287  -0.3299  -0.3311  -0.3310  -0.3338  -0.3367  -0.3364  -0.3362  -0.3362 

  (0.0002)  (0.0004)  (0.0003)  (0.0003)  (0.0002)  (0.0003)  (0.0001)  (0.0001)  (0.0003) 

Second component 0.6051  0.4020  0.2288  0.0817  -0.0550  -0.1996  -0.2686  -0.3437  -0.4247 

  (0.0015)  (0.0028)  (0.0025)  (0.0021)  (0.0015)  (0.0026)  (0.0010)  (0.0006)  (0.0021) 

Third component 0.6225  -0.0936  -0.3790  -0.4666  -0.2623  -0.0578  0.0741  0.2097  0.3507 

  (0.0057)  (0.0107)  (0.0095)  (0.0082)  (0.0056)  (0.0099)  (0.0040)  (0.0023)  (0.0082) 

R-squared 0.9926 1.0000 0.9936 0.9999 0.9943 0.9999 0.9940 0.9999 0.9939 1.0000 0.9935 0.9998 0.9937 1.0000 0.9938 1.0000 0.9936 0.9999 

SEE 0.2499 0.0170 0.2244 0.0320 0.2053 0.0283 0.2026 0.0244 0.1983 0.0168 0.1990 0.0295 0.1913 0.0120 0.1860 0.0067 0.1835 0.0245 

ARCH(1) 10.30 0.39 10.92 1.62 7.21 0.59 31.86 79.44 60.95 0.04 82.93 3.13 55.91 6.95 29.26 0.08 12.11 1.33 

 [0.00] [0.53] [0.00] [0.20] [0.01] [0.44] [0.00] [0.00] [0.00] [0.85] [0.00] [0.08] [0.00] [0.01] [0.00] [0.77] [0.00] [0.25] 

ARCH(4) 19.26 2.22 33.50 2.86 30.33 121.36 32.99 48.66 60.81 41.29 83.60 58.57 60.53 37.30 44.11 112.50 36.26 118.89 

 [0.00] [0.70] [0.00] [0.58] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 

Q(3) 0.15 213.98 0.30 265.41 0.14 181.50 0.00 309.01 0.17 147.60 0.61 147.62 0.70 165.75 0.67 129.94 0.49 142.54 

 [0.99] [0.00] [0.96] [0.00] [0.99] [0.00] [1.00] [0.00] [0.98] [0.00] [0.90] [0.00] [0.87] [0.00] [0.88] [0.00] [0.92] [0.00] 

Q(10) 8.63 289.98 6.48 338.72 7.66 259.06 6.52 570.32 7.99 210.79 9.33 203.66 9.10 232.72 8.75 173.77 8.39 190.50 

 [0.57] [0.00] [0.77] [0.00] [0.66] [0.00] [0.77] [0.00] [0.63] [0.00] [0.50] [0.00] [0.52] [0.00] [0.56] [0.00] [0.59] [0.00] 

LM(1) 0.12 120.56 0.21 150.62 0.08 90.98 0.01 169.38 0.01 80.33 0.55 90.42 0.74 102.77 0.62 73.58 0.01 84.72 

 [0.73] [0.00] [0.65] [0.00] [0.78] [0.00] [0.92] [0.00] [0.93] [0.00] [0.46] [0.00] [0.39] [0.00] [0.43] [0.00] [0.94] [0.00] 

LM(4) 4.43 135.55 1.49 156.81 0.56 128.38 1.47 178.44 1.21 114.51 0.99 108.28 2.61 115.60 1.01 105.83 0.61 107.85 

 [0.35] [0.00] [0.83] [0.00] [0.97] [0.00] [0.83] [0.00] [0.88] [0.00] [0.91] [0.00] [0.63] [0.00] [0.91] [0.00] [0.96] [0.00] 

ADF -10.09 -6.25 -9.47 -6.39 -8.94 -5.52 -8.25 -6.00 -8.25 -5.99 -8.33 -6.41 -8.45 -6.45 -8.61 -6.16 -8.81 -6.27 

PP -20.32 -11.49 -20.33 -10.32 -20.30 -12.78 -20.27 -9.75 -20.28 -13.20 -20.31 -12.44 -20.30 -11.88 -20.28 -13.41 -20.27 -12.77 

 



  
Table 4. Estimated Models: c) JPY 

 2-year 3-year  4-year  5-year  6-year  7-year  8-year  9-year  10-year 

Own lag  

i=1 1.0844  1.0724  1.0619  1.0465  1.0379  1.0248  1.0300  1.0322  1.0300  

 (0.0494)  (0.0492)  (0.0494)  (0.0493)  (0.0495)  (0.0497)  (0.0496)  (0.0495)  (0.0495)  

i=2 -0.1354  -0.1382  -0.0918  -0.0485  -0.0049  0.0407  0.0208  0.0012  -0.0157  

 (0.0727)  (0.0717)  (0.0719)  (0.0714)  (0.0715)  (0.0714)  (0.0714)  (0.0714)  (0.0711)  

i=3 0.1950  0.2463  0.1923  0.1719  0.1178  0.0510  0.0786  0.1078  0.1361  

 (0.0725)  (0.0717)  (0.0718)  (0.0714)  (0.0715)  (0.0714)  (0.0715)  (0.0714)  (0.0711)  

i=4 -0.1500  -0.1858  -0.1668  -0.1736  -0.1537  -0.1186  -0.1312  -0.1429  -0.1517  

 (0.0491)  (0.0490)  (0.0492)  (0.0493)  (0.0495)  (0.0498)  (0.0498)  (0.0497)  (0.0497)  

First component -0.2785  -0.2933  -0.3128  -0.3279  -0.3419  -0.3575  -0.3584  -0.3591  -0.3594 

  (0.0004)  (0.0006)  (0.0006)  (0.0005)  (0.0002)  (0.0006)  (0.0003)  (0.0001)  (0.0004) 

Second component 0.6123  0.4564  0.2667  0.1053  -0.0440  -0.2112  -0.2587  -0.3079  -0.3589 

  (0.0019)  (0.0026)  (0.0025)  (0.0024)  (0.0010)  (0.0027)  (0.0012)  (0.0003)  (0.0019) 

Third component 0.5884  -0.0430  -0.3988  -0.4081  -0.2920  -0.1317  0.0457  0.2340  0.4324 

  (0.0071)  (0.0098)  (0.0095)  (0.0091)  (0.0037)  (0.0101)  (0.0046)  (0.0013)  (0.0072) 

R-squared 0.9971 0.9999 0.9964 0.9999 0.9961 0.9999 0.9960 0.9999 0.9962 1.0000 0.9962 0.9998 0.9963 1.0000 0.9963 1.0000 0.9962 0.9999 

SEE 0.1039 0.0146 0.1116 0.0201 0.1126 0.0197 0.1091 0.0187 0.1019 0.0077 0.0970 0.0208 0.0935 0.0094 0.0906 0.0027 0.0887 0.0148 

ARCH(1) 31.20 173.35 39.48 117.58 22.64 120.63 16.61 208.03 20.29 166.45 19.16 103.72 16.20 99.25 13.06 168.35 10.57 119.96 

 [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 

ARCH(4) 32.42 180.26 41.75 127.85 23.35 128.67 16.94 206.40 21.11 171.10 21.87 118.99 19.39 112.97 17.05 173.06 15.55 135.22 

 [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 

Q(3) 0.01 909.58 0.031 648.93 0.02 892.08 0.03 767.76 0.02 866.17 0.02 966.20 0.01 908.96 0.02 921.06 0.03 1028.70 

 [1.00] [0.00] [1.00] [0.00] [1.00] [0.00] [1.00] [0.00] [1.00] [0.00] [1.00] [0.00] [1.00] [0.00] [1.00] [0.00] [1.00] [0.00] 

Q(10) 8.20 1404.60 11.29 820.34 7.90 1354.40 7.01 1015.60 6.06 1268.90 4.47 1617.20 3.57 1476.10 3.00 1484.60 2.95 1755.50 

 [0.61] [0.00] [0.34] [0.00] [0.64] [0.00] [0.72] [0.00] [0.81] [0.00] [0.92] [0.00] [0.97] [0.00] [0.98] [0.00] [0.98] [0.00] 

LM(1) 0.04 272.92 0.00 231.61 0.07 255.71 0.38 258.89 0.44 262.40 0.45 276.86 0.52 268.84 0.62 272.34 0.79 284.17 

 [0.84] [0.00] [0.96] [0.00] [0.79] [0.00] [0.54] [0.00] [0.51] [0.00] [0.50] [0.00] [0.47] [0.00] [0.43] [0.00] [0.38] [0.00] 

LM(4) 0.24 278.44 1.47 236.02 0.98 265.59 0.67 262.13 0.70 269.38 0.56 283.97 0.57 275.66 0.78 278.32 1.23 291.83 

 [0.99] [0.00] [0.83] [0.00] [0.91] [0.00] [0.96] [0.00] [0.95] [0.00] [0.97] [0.00] [0.97] [0.00] [0.94] [0.00] [0.87] [0.00] 

ADF -9.23 -4.15 -9.34 -4.96 -9.05 -3.92 -8.90 -4.98 -8.71 -4.30 -8.50 -3.94 -8.49 -4.10 -8.47 -4.07 -8.40 -3.69 

PP -20.26 -6.14 -20.26 -7.55 -20.28 -6.57 -20.33 -6.89 -20.30 -6.49 -20.25 -5.98 -20.25 -6.26 -20.26 -6.14 -20.27 -5.68 



 
Table 4. Estimated Models: d) USD 

 2-year 3-year  4-year  5-year  6-year  7-year  8-year  9-year  10-year 

Own lag 

I=1 1.0087  0.9933  0.9789  0.9567  0.9454  0.9302  0.9253  0.9193  0.9124  

 (0.0497)  (0.0496)  (0.0496)  (0.0497)  (0.0497)  (0.0498)  (0.0498)  (0.0499)  (0.0499)  

I=2 0.0830  0.0755  0.0719  0.1063  0.0982  0.0924  0.0933  0.0929  0.0918  

 (0.0709)  (0.0702)  (0.0697)  (0.0690)  (0.0686)  (0.0681)  (0.0680)  (0.0677)  (0.0675)  

I=3 0.0061  0.0456  0.0646  0.0460  0.0614  0.0723  0.0651  0.0592  0.0546  

 (0.0704)  (0.0701)  (0.0696)  (0.0690)  (0.0690)  (0.0687)  (0.0684)  (0.0681)  (0.0675)  

I=4 -0.1124  -0.1305  -0.1317  -0.1241  -0.1197  -0.1091  -0.0975  -0.0850  -0.0722  

 (0.0493)  (0.0494)  (0.0494)  (0.0496)  (0.0499)  (0.0501)  (0.0502)  (0.0501)  (0.0501)  

First component -0.2927  -0.3115  -0.3220  -0.3301  -0.3368  -0.3439  -0.3478  -0.3525  -0.3575 

  (0.0003)  (0.0003)  (0.0004)  (0.0004)  (0.0002)  (0.0005)  (0.0002)  (0.0000)  (0.0003) 

Second component 0.6775  0.4153  0.2061  0.0390  -0.0649  -0.1796  -0.2387  -0.3031  -0.3730 

  (0.0007)  (0.0007)  (0.0009)  (0.0008)  (0.0003)  (0.0011)  (0.0005)  (0.0001)  (0.0007) 

Third component 0.4467  -0.0121  -0.2615  -0.4423  -0.3382  -0.2302  0.0145  0.2733  0.5458 

  (0.0094)  (0.0100)  (0.0124)  (0.0108)  (0.0049)  (0.0151)  (0.0071)  (0.0013)  (0.0097) 

R-squared 0.9798 0.9999 0.9769 0.9999 0.9756 0.9998 0.9761 0.9998 0.9762 1.0000 0.9762 0.9997 0.9761 0.9999 0.9760 1.0000 0.9756 0.9999 

SEE 0.1379 0.0099 0.1375 0.0105 0.1354 0.0131 0.1325 0.0114 0.1313 0.0052 0.1313 0.0159 0.1303 0.0075 0.1300 0.0013 0.1308 0.0102 

ARCH(1) 0.02 204.35 0.02 174.67 0.14 97.37 0.43 49.87 0.14 152.90 0.01 171.38 0.08 156.81 0.20 188.12 0.31 189.10 

 [0.89] [0.00] [0.89] [0.00] [0.71] [0.00] [0.51] [0.00] [0.71] [0.00] [0.92] [0.00] [0.78] [0.00] [0.65] [0.00] [0.58] [0.00] 

ARCH(4) 3.07 218.54 4.03 189.03 5.83 135.54 8.10 64.63 8.612 178.20 9.06 200.53 9.65 190.55 10.26 215.96 10.89 212.53 

 [0.55] [0.00] [0.40] [0.00] [0.21] [0.00] [0.09] [0.00] [0.07] [0.00] [0.06] [0.00] [0.05] [0.00] [0.04] [0.00] [0.03] [0.00] 

Q(3) 0.26 620.13 0.22 515.30 0.21 354.98 0.20 227.77 0.11 477.79 0.05 497.87 0.03 467.47 0.02 587.75 0.01 533.91 

 [0.97] [0.00] [0.97] [0.00] [0.98] [0.00] [0.98] [0.00] [0.99] [0.00] [1.00] [0.00] [1.00] [0.00] [1.00] [0.00] [1.00] [0.00] 

Q(10) 8.54 1042.00 9.25 840.56 11.47 637.96 12.02 283.11 10.35 829.17 8.12 753.63 6.98 696.56 5.74 949.55 4.53 831.63 

 [0.58] [0.00] [0.51] [0.00] [0.32] [0.00] [0.28] [0.00] [0.41] [0.00] [0.62] [0.00] [0.73] [0.00] [0.84] [0.00] [0.92] [0.00] 

LM(1) 6.27 264.53 6.34 225.96 6.30 160.08 6.43 111.25 4.81 219.80 3.03 205.97 1.92 196.07 0.87 250.96 0.16 220.70 

 [0.01] [0.00] [0.01] [0.00] [0.01] [0.00] [0.01] [0.00] [0.03] [0.00] [0.08] [0.00] [0.17] [0.00] [0.35] [0.00] [0.69] [0.00] 

LM(4) 8.85 270.03 7.50 235.11 8.07 179.15 7.51 126.74 5.90 225.78 4.75 225.19 3.77 215.62 3.25 257.74 3.20 237.70 

 [0.07] [0.00] [0.11] [0.00] [0.09] [0.00] [0.11] [0.00] [0.21] [0.00] [0.31] [0.00] [0.44] [0.00] [0.52] [0.00] [0.53] [0.00] 

ADF -8.19 -4.70 -8.16 -5.02 -8.12 -4.93 -8.16 -6.12 -8.24 -4.94 -8.34 -4.91 -8.42 -4.99 -8.52 -4.91 -8.66 -4.81 

PP -20.62 -6.89 -20.65 -7.87 -20.65 -9.98 -20.61 -11.82 -20.55 -8.08 -20.47 -8.63 -20.42 -8.94 -20.37 -7.40 -20.32 -8.17 

 
 



Table 5. Forecasting performance indicators (Forecasting period: 10/7/98-12/30/98) 
 2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year 
Forecasting Model AR Factor AR Factor AR Factor AR Factor AR Factor AR Factor AR Factor AR Factor AR Factor 
 a) DEM 
Mean 0.0538 0.0605 0.0467 0.0713 0.0579 0.0629 0.0611 0.0595 0.0653 0.0640 0.0691 0.0822 0.0691 0.0720 0.0709 0.0737 0.0729 0.0842 
Median         Static 0.0510 0.0526 0.0444 0.0648 0.0438 0.0681 0.0473 0.0436 0.0477 0.0566 0.0504 0.0998 0.0569 0.0593 0.0558 0.0693 0.0527 0.0797 
RMSE          Forecasts 0.0604 0.0749 0.0576 0.0846 0.0667 0.0737 0.0715 0.0735 0.0774 0.0817 0.0841 0.1026 0.0853 0.0866 0.0873 0.0904 0.0904 0.1078 
U-Theil 0.9975 0.9959 0.9977 0.9950 0.9970 0.9962 0.9966 0.9963 0.9960 0.9956 0.9953 0.9937 0.9953 0.9955 0.9952 0.9950 0.9950 0.9929 
Mean 0.0917 0.0927 0.0933 0.0996 0.1123 0.1144 0.1230 0.1191 0.1304 0.1189 0.1377 0.1163 0.1436 0.1284 0.1552 0.1591 0.1686 0.2035 
Median         Dynamic 0.0684 0.0778 0.0916 0.0992 0.1258 0.1258 0.1333 0.1359 0.1396 0.1157 0.1704 0.1156 0.1721 0.1500 0.1739 0.1965 0.1763 0.2395 
RMSE          Forecasts 0.1169 0.1131 0.1088 0.1104 0.1215 0.1245 0.1332 0.1288 0.1460 0.1310 0.1682 0.1291 0.1723 0.1520 0.1792 0.1878 0.1897 0.2285 
U-Theil 0.9898 0.9907 0.9921 0.9920 0.9913 0.9907 0.9899 0.9906 0.9876 0.9905 0.9837 0.9911 0.9834 0.9871 0.9828 0.9810 0.9817 0.9737 
Sample  mean 3.3821 3.4923 3.6329 3.7864 3.9335 4.0892 4.2028 4.3224 4.4485 
 b) ESP 
Mean 0.0581 0.0521 0.0517 0.0518 0.0514 0.0524 0.0512 0.0569 0.0549 0.0537 0.0586 0.0712 0.0621 0.0640 0.0659 0.0689 0.0699 0.0824 
Median         Static 0.0498 0.0458 0.0463 0.0501 0.0367 0.0415 0.0376 0.0509 0.0338 0.0342 0.0441 0.0747 0.0537 0.0438 0.0533 0.0589 0.0528 0.0743 
RMSE          Forecasts 0.0684 0.0628 0.0629 0.0606 0.0639 0.0640 0.0675 0.0710 0.0713 0.0718 0.0765 0.0907 0.0800 0.0822 0.0845 0.0896 0.0899 0.1086 
U-Theil 0.9966 0.9972 0.9973 0.9976 0.9971 0.9971 0.9967 0.9961 0.9964 0.9963 0.9960 0.9950 0.9957 0.9955 0.9954 0.9945 0.9949 0.9922 
Mean 0.1614 0.1039 0.0973 0.0823 0.0918 0.0895 0.0971 0.1076 0.1050 0.1018 0.1288 0.0991 0.1442 0.1277 0.1611 0.1793 0.1794 0.2363 
Median         Dynamic 0.1329 0.0968 0.0445 0.0634 0.0751 0.0827 0.1175 0.1097 0.1119 0.1045 0.1418 0.0913 0.1516 0.1375 0.1608 0.1828 0.1695 0.2276 
RMSE          Forecasts 0.1931 0.1267 0.1309 0.1058 0.1054 0.1013 0.1080 0.1195 0.1245 0.1168 0.1543 0.1161 0.1669 0.1519 0.1812 0.1984 0.1969 0.2502 
U-Theil 0.9741 0.9885 0.9876 0.9918 0.9928 0.9935 0.9932 0.9915 0.9907 0.9920 0.9863 0.9922 0.9847 0.9871 0.9829 0.9797 0.9809 0.9701 
Sample  mean 3.4128 3.5152 3.6506 3.8007 3.9462 4.1001 4.2121 4.3299 4.4540 
 c) JPY 
Mean 0.0480 0.0565 0.0673 0.0871 0.0788 0.1043 0.0884 0.1024 0.0958 0.0902 0.1081 0.0909 0.1105 0.0933 0.1128 0.1149 0.1151 0.1653 
Median         Static 0.0360 0.0437 0.0528 0.0961 0.0728 0.1177 0.0786 0.0923 0.1015 0.0875 0.1298 0.0766 0.1274 0.0947 0.1243 0.1256 0.1208 0.1218 
RMSE          Forecasts 0.0625 0.0657 0.0834 0.1114 0.0986 0.1322 0.1083 0.1296 0.1200 0.1083 0.1353 0.1061 0.1386 0.1138 0.1425 0.1436 0.1475 0.1957 
U-Theil 0.9770 0.9809 0.9688 0.9482 0.9635 0.9417 0.9656 0.9515 0.9632 0.9703 0.9593 0.9779 0.9609 0.9745 0.9621 0.9620 0.9629 0.9395 
Mean 0.0843 0.0982 0.1154 0.1532 0.1464 0.1780 0.1784 0.1947 0.2129 0.2018 0.2600 0.2309 0.2938 0.2421 0.3336 0.2897 0.3773 0.3665 
Median         Dynamic 0.0690 0.0568 0.0821 0.0664 0.0661 0.0697 0.0786 0.0498 0.0602 0.0790 0.1182 0.1112 0.1274 0.0913 0.1243 0.1256 0.1392 0.1415 
RMSE          Forecasts 0.1100 0.1458 0.1691 0.2374 0.2389 0.2863 0.2990 0.3195 0.3527 0.3339 0.4156 0.3535 0.4493 0.3923 0.4873 0.4433 0.5295 0.5090 
U-Theil 0.9355 0.8795 0.8713 0.7681 0.7891 0.7238 0.7340 0.7079 0.6899 0.7127 0.6430 0.7150 0.6307 0.6904 0.6174 0.6605 0.6036 0.6240 
Sample  mean 0.5399 0.6874 0.8248 0.9583 1.0743 1.2051 1.3149 1.4362 1.5710 
 d) USD 
Mean 0.0992 0.1020 0.0929 0.1006 0.0906 0.0938 0.0900 0.0867 0.0883 0.0873 0.0870 0.0880 0.0893 0.0895 0.0917 0.0932 0.0942 0.0975 
Median         Static 0.0696 0.0886 0.0699 0.0736 0.0538 0.0590 0.0444 0.0458 0.0441 0.0394 0.0443 0.0437 0.0536 0.0481 0.0639 0.0582 0.0713 0.0818 
RMSE          Forecasts 0.1338 0.1339 0.1259 0.1243 0.1211 0.1186 0.1208 0.1228 0.1211 0.1233 0.1226 0.1250 0.1250 0.1277 0.1284 0.1309 0.1328 0.1354 
U-Theil 0.9895 0.9894 0.9914 0.9919 0.9926 0.9930 0.9925 0.9920 0.9922 0.9917 0.9917 0.9912 0.9910 0.9905 0.9902 0.9900 0.9892 0.9893 
Mean 0.1946 0.1864 0.1736 0.1350 0.1422 0.1235 0.1246 0.1268 0.1281 0.1319 0.1318 0.1362 0.1461 0.1488 0.1605 0.1560 0.1749 0.1631 
Median         Dynamic 0.1757 0.1687 0.1364 0.1453 0.1579 0.1182 0.1454 0.1493 0.1266 0.1240 0.1091 0.0961 0.1048 0.1259 0.1364 0.1503 0.1691 0.1586 
RMSE          Forecasts 0.2163 0.2088 0.1962 0.1519 0.1666 0.1398 0.1490 0.1516 0.1501 0.1548 0.1525 0.1594 0.1661 0.1722 0.1806 0.1807 0.1960 0.1900 
U-Theil 0.9781 0.9795 0.9817 0.9892 0.9870 0.9908 0.9898 0.9894 0.9897 0.9890 0.9895 0.9884 0.9879 0.9868 0.9860 0.9857 0.9838 0.9844 
Sample  mean 4.8815 4.9680 5.0499 5.1276 5.1981 5.2689 5.3323 5.3983 5.4686 
Note: Forecasts obtained from estimated models in Table 4. Mean and Median denote the mean and median absolute values of the forecasting errors. RMSE denotes the Root Mean
Square Error, while U-Theil denotes Theil´s statistic. Boldface figures denote cases when factors models forecast better than autoregresive models. 



Table 6. Contemporaneous correlation coefficients between level zero coupon rate forecasts 
 2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year 2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year 

Static forecasts a) DEM b) ESP 
2-year 1.000 0.973 0.947 0.937 0.922 0.901 0.885 0.862 0.830 1.000 0.982 0.948 0.912 0.881 0.840 0.808 0.766 0.710 
3-year 0.983 1.000 0.993 0.986 0.976 0.958 0.947 0.931 0.906 0.987 1.000 0.989 0.966 0.944 0.911 0.888 0.855 0.808 
4-year 0.957 0.993 1.000 0.997 0.990 0.976 0.968 0.954 0.932 0.965 0.994 1.000 0.993 0.980 0.958 0.941 0.915 0.876 
5-year 0.931 0.979 0.996 1.000 0.997 0.989 0.982 0.970 0.951 0.938 0.980 0.996 1.000 0.996 0.984 0.971 0.950 0.917 
6-year 0.906 0.961 0.986 0.997 1.000 0.997 0.993 0.984 0.968 0.908 0.961 0.985 0.996 1.000 0.995 0.988 0.971 0.943 
7-year 0.870 0.933 0.967 0.985 0.996 1.000 0.998 0.993 0.980 0.866 0.929 0.962 0.982 0.995 1.000 0.997 0.986 0.965 
8-year 0.850 0.915 0.953 0.976 0.990 0.999 1.000 0.998 0.990 0.840 0.908 0.947 0.971 0.988 0.999 1.000 0.996 0.982 
9-year 0.825 0.892 0.934 0.961 0.980 0.994 0.998 1.000 0.997 0.808 0.882 0.926 0.955 0.977 0.994 0.998 1.000 0.995 

10-year 0.792 0.862 0.909 0.941 0.965 0.984 0.992 0.998 1.000 0.770 0.850 0.899 0.933 0.961 0.984 0.992 0.998 1.000 

Dynamic forecasts                   
2-year 1.000 0.998 0.998 0.996 0.996 0.996 0.996 0.997 0.997 1.000 0.999 0.995 0.987 0.985 0.983 0.984 0.985 0.986 
3-year 1.000 1.000 1.000 0.999 0.999 0.999 0.999 1.000 1.000 1.000 1.000 0.999 0.994 0.992 0.991 0.992 0.993 0.993 
4-year 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.998 0.997 0.996 0.997 0.997 0.997 
5-year 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
6-year 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
7-year 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
8-year 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
9-year 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

10-year 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Static forecasts c) JPY d) USD 
2-year 1.000 0.997 0.990 0.976 0.962 0.941 0.927 0.909 0.886 1.000 0.984 0.943 0.881 0.828 0.753 0.691 0.620 0.544 
3-year 0.997 1.000 0.996 0.985 0.971 0.951 0.939 0.923 0.902 0.988 1.000 0.985 0.945 0.909 0.853 0.804 0.745 0.679 
4-year 0.994 0.997 1.000 0.995 0.986 0.971 0.961 0.947 0.929 0.947 0.985 1.000 0.985 0.964 0.924 0.885 0.836 0.779 
5-year 0.987 0.987 0.996 1.000 0.997 0.988 0.981 0.971 0.957 0.874 0.938 0.983 1.000 0.993 0.968 0.938 0.897 0.847 
6-year 0.974 0.971 0.985 0.996 1.000 0.997 0.993 0.986 0.975 0.800 0.882 0.949 0.990 1.000 0.991 0.972 0.942 0.902 
7-year 0.955 0.949 0.968 0.987 0.997 1.000 0.999 0.995 0.988 0.693 0.794 0.886 0.954 0.986 1.000 0.994 0.977 0.949 
8-year 0.945 0.937 0.958 0.980 0.993 0.999 1.000 0.999 0.994 0.630 0.738 0.841 0.923 0.967 0.996 1.000 0.994 0.977 
9-year 0.933 0.923 0.946 0.971 0.988 0.997 0.999 1.000 0.998 0.557 0.672 0.786 0.881 0.938 0.981 0.995 1.000 0.994 

10-year 0.920 0.909 0.933 0.962 0.982 0.994 0.997 0.999 1.000 0.476 0.598 0.721 0.829 0.898 0.957 0.980 0.995 1.000 

Dynamic forecasts                   
2-year 1.000 0.998 1.000 0.998 0.996 0.995 0.997 0.998 0.999 1.000 0.989 0.982 0.985 0.980 0.974 0.975 0.974 0.973 
3-year 1.000 1.000 0.997 0.992 0.988 0.987 0.989 0.991 0.994 0.999 1.000 0.999 1.000 0.998 0.997 0.997 0.997 0.996 
4-year 1.000 1.000 1.000 0.999 0.997 0.996 0.997 0.999 0.999 0.998 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.999 
5-year 1.000 1.000 1.000 1.000 0.999 0.999 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.998 
6-year 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000 0.999 
7-year 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
8-year 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
9-year 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

10-year 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Note:  The upper triangular matrix contains correlation coefficients between forecast interest rates from autoregressive model. The lower triangular matrix contains correlation coefficients between forecast interest rates 
from factor models. Forecasting period: 10/7/98-12/30/98.  

 



 
Figure 1.  Zero coupon rates: DEM 
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Figure 2. The impact on term structure of a change in each principal component

 


