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ABSTRACT

Using estimated principal components as factors, three-factor models are shown to produce forecasts
comparable to those of autoregressive models for 2- to 10-year zero coupon interest rates |RS markets both, for
short- and medium-term forecasting horizons. Evidence is provided for the Deutsche mark, Spanish peseta,
Japanese yen and US dollar. Forecasts from factor models are also shown to preserve the correlation matrix of
interest rates across a given term structure, an important property regarding risk management. The result is quite
striking, because factor models are purely static, and forecasts for the factors must be obtained in advance of
interest rate forecasts. The use of three-factor models greatly ssmplifies forecasting computations, since three
univariate models, rather than nine, need to be used for prediction purposes. Besides, our results open the
possibility that the type of simulations needed for VaR analysis could successfully be performed by just
smulating the factors, again with a very substantia reduction in computational needs.
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1. I ntroduction

One of the more important issues in risk management deals with reducing the dimensionality of
the set of assetsin a given portfolio. Thisis particularly true of any analysis of aterm structure of
interest rates. When evaluating the level of risk associated to any given portfolio in the public debt
market, we face a continuous zero coupon curve, and we will have to select afairly large number of
interest rates to follow in order not to miss any relevant information on fluctuations aong the different
maturities in the curve. In some other cases, arisk analyst deals with a term structure with specific
maturities, as it is the case when characterizing money markets by combining interbank market rates for
the shorter maturities with IRS (interest rates swap) rates for the longer ones. But even then, we il
have afairly large number of interest rate variables.

Dimensiondity reduction is very important in practice. For instance, forecasting future bond
prices requires forecasting interest rates at alarge number of maturities. Computing Vaue at Risk
(VaR) measures also requires estimating the variance-covariance matrix of the large number of interest
rates usualy involved in pricing the assets in the portfolio, as well as the sengitivity vector of the price
of each bond to changesin interest rates at the relevant maturities. These two types of evaluations,
crucid for risk management in fixed-income markets, very quickly become unmanageable for the
standard sets of interest rates considered. Sometimes, rough simplifications are made by grouping the
points in time at which cash+flow payments are to be made around a few interest rates, so as to reduce
the dimensionality of the problem. Even though thisis a somewhat standard practice, approximation
errors can easily become higher than any sound risk manager would like to see.

It is therefore not surprising that a variety of attempts have been made at proposing methods
directly designed to reduce the dimensionality of the vector of interest rates that need to be considered
when evaluating risk. A particularly interesting approach emerges from Litterman and Sheinckman
(1988), and was followed by Steeley (1990) and Knez et a. (1994). These authors use factor analysis to
summarize the large-dimension interest rate vector in afew set of factors. Using data from different
markets and time periods, they show that three factors are usually able to capture more than 95% of the
fluctuation in the set of interest rates. Besides, in all these analysis, the three factors can aways be
naturally interpreted as alevel, steepness and curvature of the yield curve.

More recently, Nifikeer et al. (2000) have used this approach on interest rate swap (IRS)

markets data on different currencies to propose a specific method to compute VaR measures using the



obtained factors. In their case, reducing the original set of fifteen interest rates to three factors
drastically smplifies the computation of the variance-covariance matrix and sensitivity vector that are
needed in VaR evaluation. These authors show that the reduction of dimensiondity does not bias in any
significant manner VaR results.

We continue in this paper with applications of factor analysisto the study of IRS markets.
Besides providing additiond information showing that the three-factor characterization seems quite
robust to the choice of time period, currency and market, we are specifically interested in using factor
models to forecast future interest rates across the term structure.

If they provide a good forecasting performance, forecasting interest rates through factor models
could be of particular relevance for optimal portfolio design and risk management. First, agood
forecasting performance of the factor model would be a good step towards simplifying the problem of
forecasting future prices of fixed income assets, the crucia evauation when designing a portfolio and
hence, a central tool for fund management. Second, the forecasting ability of factor models could be
exploited in Monte Carlo simulation exercises when computing VaR measures at any given future
horizon. Again, in thistype of exercises, in which a huge number of smulationsis usudly run, it
would be computationally much simpler to just smulate afew number of factors and derive from their
trgjectories those for interest rates, than having to simulate each specific interest rate.

Section 2 contains a discussion of the methods to be used in the anaysis, the data, and some
preliminary statistica analysis. In section 3, the principal components are described and identified,
discussing their ability to explain interest rate fluctuations. In section 4 we specify and estimate
autoregressive and factor models for each interest rate and currency, and compare the forecasting ability

of both models. The paper closes with some conclusions.

2. Factor analysis

2.1 A description

The object of factor analysis isto summarize fluctuations over time in a set of variables
through those experienced by a small set of factors. The technique is specialy interesting when
reducing the dimensionality in alarge set of interest rates from a given market, since correlations
between dl them are likely to be high. In factor analysis, observed variables are supposed to be linear
combinations of the unobserved factors,
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where z denotes the j-th common factor, a;; denote the loadings of the i-th interest rate on the
j-th factor, and u; denotes the interest rate-specific factor representing the component of r; which is not
explained by the common factors z; z,, ...z Factors are characterized up to scale and rotation

transformations, and can be defined as linear combinations of observed variables,
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where z represents the j-th factor and b;; is the weight of the i-th variable in the j-th factor.

We use in this paper the principal components technique, aspecia case of factor anaysis. This
methodology constructs a specific linear transformation to the original variables, each transformed
variable being alinear combination of the original, observed variables. These linear combinations are,
by construction, uncorrelated with each other. The characteristic property of principal componentsis
that they are obtained in a specific order: the first principal component is the linear combination that
best explains fluctuations in the set of original variables, the second one is the linear combination of the
original variables which best explains fluctuations among observed variables, orthogona to those
experienced by the first principa component, and so on. Principal components are defined by the
eigenvectors associated to the larger eigenvalues of the variance-covariance matrix of interest rates,
which are dl non-negative.

2.2 The data

We apply in this paper the principal components technique to reduce the dimensiondity of the
vector interest rates from Interest Rate Swap (IRS) markets in different currencies. Daily data for
interest rate swap rates at 2, 3, 4, 5, 7 and 10 year maturities, for the Deutsche mark, US dollar,
Japanese yen and Spanish peseta were obtained from Datastream. Datafor 6, 8 and 9 year maturities
were obtained by linear interpolation. Zero coupon rates were then derived from swap rates by the
bootstrapping method. To start the bootstrapping method, we used the 1-year rate from either the
Eurodeposit or the domestic interbank market, depending on the currency. This rate was not used for
any other purpose in our anaysis.

We work with weekly data, obtained as the average of bid and ask rates at 18:00 hours GTM
each Wednesday, from June 26, 1991 to December 31, 1998. As an illustration, Figure 1 shows 2-, 5
and 10-year rates for the Deutsche mark.

2.3 First properties.



Table 1 shows swap interest rates to be integrated variables for all maturities and currencies. A
second unit root is clearly rejected in all cases. As shown in Table 2, correlations between interest rates
in asame term structure are very large, athough this result is contaminated by the nonstationary nature
of interest rates. However, shows that correlations among weekly interest rate changes are also very
high across the term structure in each currency. They decrease when maturities are farther apart, the
lower correlation corresponding to the (2 year, 10 year) pair, which have correlation coefficients as low
as .54 for the Spanish peseta. This aready shows the existence of at least a significant common factor
producing co-movements across the terms structure. It aso suggests, however, that a single factor will

not be enough to explain the observed discrepancies between fluctuations in 2- and 10-year rates.

3. Factor analysisresults

3.1 The number of factors

We use principa components to summarize the extensive contemporaneous correlations among
interest rates in a given currency. Using the ratios between partial sums of the eigenvaluesin Table 3 to
the sum of al them show that the first principal component explains at least 95% of the fluctuationsin
the vector of interest ratesin al currencies. Thefirst principal component, i.e., the eigenvector
associated to the largest eilgenvalue of the variance-covariance matrix of interest rates, isin each
currency an approximate average of the set of nine interest rates, since it gives smilar weightsto al of
them. It can therefore be interpreted as capturing the general level of interest rates. The second
eigenvector gives weights of opposite sign to short- and long-term maturities, smoothly decreasing or
increasing as we move from one end of the term structure to the other. Hence, it can be interpreted as a
general measure of stegpness aong the term structure. This linear combination captures general changes
in the slope of the term structure. The third eigenvector assigns positive weights to maturities at both
the short- and the long-end of the term structure, and negative weights to intermediate maturities.
Therefore, changes in this component will generally be associated to changes of opposite sign at short-
and long- than at intermediate maturities, so that this linear combination can be interpreted as capturing
changes in the curvature of the zero coupon curve. This interpretation, very similar to that obtained in
previous work, is robust across the four currencies in our analysis, as shown in Table 3.

Theright panel in Table 1 shows the three principal components to be integrated variables for
all currencies, with the exception of the curvature factor in the case of the Spanish peseta and the US
dollar. The hypothesis of adouble unit root is overwhelmingly rejected in al cases.



3.2 Identifying the principal components

To further identify the forces behind each principal component, we estimated regressions
having as dependent variable each one of the interest rates in our data set, and each principal component
as the aternative single regressor. Estimated R-squared statistics are shown in Table 3 when each
principal component is aternatively used as a single regressor, as well as when either the first two or
three components are jointly used as regressors. As aready mentioned, R-squared values from
regressions of individua interest rates on the first component are al very large, being above .90 in most
cases, the lower values corresponding to the two extreme maturities in the US dollar term structure.

The second component is able to explain a substantial amount of the fluctuationsin all
maturities for the Japanese yen. It also has significant explanatory power for changes in interest ratesin
the Spanish peseta and Deutsche mark term structures. In all currencies, R-squared valuesin regressions
on the second principal component decrease with maturity. From its structure, as described in the
previous section, this slope factor, should not be expected, by itsdlf, to provide a good fit when
explaining the level of interest rates. However, our results suggest that, at least during our sample
period, changes in dope are mainly produced by changes in the shorter end of the term structure,
probably produced as transmission of monetary policy interventions on very short-term rates.

Asit should be expected, the curvature factor does not seem to have much explanatory power,
by itself, to explain interest rates. Again, the US dollar is the exception, with changesin curvature being
able to contain significant explanatory power for interest rates, specialy at intermediate maturities,
suggesting that these type of fluctuations have been more frequent in that country than in the other
currencies considered.

It is aso informative to examine the goodness of fit of interest rate regressionsin Table 3. R-
squared values from regressions on the first two components do not fall below .997 in any case.
Besides, evidence against the presence of a unit root in the resduals in these regressionsis
overwhelming, so that the high R-squared values are not the reflection of spurious correlations. As a
consequence, we can conclude that the curvature factor does not add much to the explanation of any
interest rate when the level and slope factors are aready taken into account. Thisis true even at the
extreme maturities in the US dollar term structure, which as pointed out before, are the ones for which
the level factor has the lowest explanatory power.

Egtimated coefficients, which we review below, show in the four currencies that changesin the
level factor tend to come together with changes of the same sign and similar sizein al interest rates.

Changes in the slope factor come together with changes of opposite sign at the shorter and the longer



end of the term structure. Changes in the curvature factor tend to be associated with changes of the
same sign at both ends of the term structure, and changes of opposite sign at intermediate maturities.
All that agrees with the interpretation we just proposed for the three components.

Finally, Figure 2 shows the impact on interest rate at each maturity of a change in each
principal component, in the case of the Deutsche mark. The continuous line shows the levels of interest
rates which will be implied from the regressions described above, evaluated at the sample averages of
the principal components. Dashed lines show the level of interest rates when each principal components
deviates two standard deviations from above and below its sample average. The suggested

interpretation is again the same as above.

3.3 Factors and interest rate correlations

Having risk management in mind as the final aim of factor analysisin a set of interest rates, we
need to worry about the extent to which factor models are able to preserve cross-correlations over the
term structure. This is important because, as clearly shown by VaR anayss, the correlation matrix of
interest rates plays a central role in computing the chosen quartile of the distribution of market value
portfalio.

The lower triangular matrices in Table 2 show the correlation matrix of the fitted part of the
regressions on the first three factors, taken as proxies for the observed interest rates. We again present
correlations among levels and first differences of the fitted interest rates. For each currency, the table
shows that the three principal components, the level, dlope and curvature factors, are able to fully
capture the tight correlation among interest rates at near maturities, at the same time than the lower
correlations for maturities farther apart from each other. In fact, differences are hard to see, particularly
in the case of level interest rates.

4. Forecasting ability of term structure factors

As mentioned in the Introduction, the final goa of this paper isto analyze the extent to which
term structure factors as characterized above: level-, dope- and curvature-factors, are able to provide
good predictions of future interest rates. By good quality forecasts we understand forecasts at least as
good as those that could be obtained with univariate models of each interest rate. This request should be
regarded as being quite demanding, since we are comparing the forecasting performance of a purely

contemporaneous projection on term structure factors, with that of a dynamic model. Besides, the fact



that the factor model regression is contemporaneous, forces us to elaborate models to forecast the
factors, previously to forecasting interest rates.

For each set of forecasts in the paper, we computed Mean Absolute Errors, Root Mean Square
Errors, and Thell’s U-gtatistic for each autoregressive models, for static as well as for dynamic
forecasting, in each currency. Interest rates frequency distributions are asymmetric and platykurtic, so
that the use of both, mean and median absolute forecast error is advised. In dynamic forecasting, models
are estimated just once, using a sample that excludes data from the forecasting period. Forecasts are
then obtained once-and-for all for the whole forecasting period. Satic forecasts are a sequence of one-
step ahead forecasts. Starting from the model estimated for dynamic forecasting, forecasts are obtained
for the first week of the forecast period. Then, data for that first week is added to the sample, models
are estimated again, and estimates are obtained for the second week, and so on. In static forecasting,
actual past data are always used to compute forecasts, while in dynamic forecasting, previousy

obtained forecasts are progressively being incorporated, as we run out of actua data.

4.1 Choosing an autoregressive model for forecasting

As abase for comparison, we will use univariate models to forecast each interest rate as well
asto forecast each factor. In the case of the factors, their orthogonality makes unnecessary the use of
multivariate models. In general, among univariate structures, a third order autoregressive [AR(3)]
model might be appropriate. That structure is able to capture possible cyclesin interest rates through the
presence of two complex roots, plus a possible unit root, thorough the third root in the characteristic
equation of the third degree autoregressive polynomid.

This turns out to be the case when fitting autoregressive models to levels of interest rates for
the Spanish peseta, for which AR(3) models produce for al maturities stationary residuas without
much evidence of autocorreation. For the Deutsche mark, Japanese yen and US dollar, an AR(3) model
does not fully capture the persistence in interest rates levels, and an AR(4) model seems more
appropriate, being the shorter dynamic structure that leaves no significant residua autocorrelation. The
added lag is significant in most cases, and the mode fits the data better. However, it is interesting that
the AR(3) model would have aready produced stationary residuas for all maturities in these three
currencies as well.

A second line of analysis ded s with the comparison between fitting modelsto level or
differenced interest rates. In principle, an AR(3) model for leve interest rates should be equivaent to an
AR(2) modd in first differences, while an AR(4) in levels would correspond to an AR(3) in first



differences. However, while theoretically equivaent, significant differences arise between these two
types of modelsin practice, as discussed below.

Something similar can be said about forecasting models for the principal components, with
AR(3) moddsin levels producing stationary residuasin al cases and leaving no significant trace of
residua autocorrelation for the Spanish peseta. For the Deutsche mark, Japanese yen and US dollar, an
AR(4) structure is needed to account for residual autocorrelation. This should be expected, since as
explained in Section 2, the first component is essentialy the generd level of interest rates, and will
share the general characteristics of persistence across the term structure. For the slope and curvature
components, the choice of order in the autoregressive mode isirrelevant. For consistency, we estimated
AR(3) modelsin levels to forecast the three factors for the Spanish peseta, and AR(4) models to
forecast factors for the Deutsche mark, Japanese yen and US dollar.

This common choice of length in the autoregressive models for interest rates and principal
components for each currency greatly simplifies the search for an adequate specification. Some
informal experiments reved that, from the point of view of forecasting performance, no much gainis
achieved from an exhaustive search for the best dynamic specification each time models are estimated
with additiond data, asit isthe case in static forecasting.

4.2 Forecasting results

Table 4 presents estimates of interest rates models. The left column shows in each case
estimates of the autoregressive model, while the right column contains estimates of factor models.
Adjusted R-squared values are very high in both cases, but regressions are not spurious, since residuas
seem to be clearly stationary according to the Augmented Dickey-Fuller or Phillips-Perron tests. In
addition to stationary tests for residuals, we provide for each estimated model, first- and fourth-order
Lagrange Multiplier tests as well as third- and tenth-order Ljung-Box tests for residua autocorrelation.
The comparison between standard errors of estimate (SEE) in both models and the values of the
accompanying statistics suggests that, as expected, factor models exploit much better the information in
the term structure at each point in time, while the autoregressive models are much better designed to
capture the dynamic structure of interest rates.

Tests for first- and fourth-order ARCH structures in the residuals show significant evidence of
this type of heteroskedasticity, specially when the three factors are used to explain the behavior of
interest rates. Even though it leads to a loss of precision in forecasting, the presence of ARCH
components should not be expected to introduce significant systematic biases in forecasting, so the
comparison between forecasting strategies that we develop next should not be expected to be



significantly contaminated by the presence of ARCH componentsin the residuas. Nevertheless, it
would be interesting to estimate models capturing this feature and analyzing the effect, if any, on
forecasting performance. It might also be the case that common ARCH factors can be found across the
term structure, following the proposa by Engle and Kozicki (1993), which could then be explicitly
incorporated into a forecasting strategy. Thisis left for further research.

We are interested in the quality of forecasts obtained with both types of models. For that
analysis, we obtain static and dynamic forecasts over the last three months in our sample, October,
November and December 1998. Dynamic forecasts are obtained with models estimated using data until
the end of September 1998. These are once-and-for all predictions over the 13 weeks in those three
months. We aso computed static forecasts. For them, we estimate the previous models each
Wednesday over the three months, each time computing a single one-step ahead forecast, for next
Wednesday. That way, we have a sequence of 13 one-step ahead forecasts for each interest rate and
currency.

Table 5 shows the mean value of each interest rate over the forecasting period, to be compared
with the values of forecast error statistics. We have four forecasting error criteriafor static and another
four for dynamic forecasting for each maturity, 72 comparisons between autoregressive and factor
models for each currency in total.

Among the 72 error criteria comparisons, the principal components model achieves alower
value of the error criterion in 27 cases (38% of the comparisons) for the Deutsche mark, 32 cases (44%)
for the Spanish peseta, and 33 cases each (46%) for the Japanese yen and the US dollar. Among them,
16 correspond to dynamic forecasting for the Deutsche mark, 20 for the Spanish peseta, and 19 for the
Japanese yen and US dollar. Hence, in avery significant number of comparisons, the principa
component model performs better than the autoregressive model. Favorable comparisons are almost
equally distributed between static and dynamic forecasting situations.

For each possible comparison, we computed the ratio between the value of each error criterion
for the autoregressive model over the similar one for the factor model in Table 5. Median ratios over the
72 comparisons for the Deutsche mark, Spanish peseta, Japanese yen and US dollar are .985, .999, .992
and 1.000, suggesting that, on average, forecasts from factor models are comparable to those of
autoregressive models, except for the Deutsche mark. Furthermore, skewnessis -.0764, 1.0167, .7039
and 1.4886, showing that, again except for the Deutsche mark, distributions for these ratios are skewed
to the right. This suggests that the forecast gain obtained when factor models perform better is superior
to that obtained when autoregressive model s produce better forecasts. Hence, except for the Deutsche

mark, factor models seem to have a better forecasting performance than autoregressive models.



These results are quite striking because of the static nature of factor models and the need to use
estimated autoregressive models for the factors to obtain forecasts for them, previously to computing
interest rate forecasts. This way, we add to the sampling error in estimating factor regression models,
that from estimating autoregressive models for the factors. Y et, in spite of this double estimation
process, factor models often predict better than autoregressive models, which use the dynamicsin
interest rate processes for forecasting.

As mentioned in the Introduction, the practica relevance of our forecasting results stems from
the fact that to forecast the set of nine interest rates we need to forecast only three principal
components. For the set of our four currencies, this reduces the number of forecasting models needed
from thirty-six to twelve.

Even bigger smplicity would be achieved by working with just two factors, level and sope.
We explored that possibility by computing forecasts from projections of each interest rate on these two
factors. Median ratios of criterion vaues for the three-components model over the two-components
model are 0.674 for the Deutsche mark, 0.787 for the Spanish peseta, 0.941 for the Japanese yen, and
0.987 for the US dollar. Besides, the distributions of the ratios are skewed to the left in each currency,
suggesting that the gain in forecasting performance from using a third factor is very significant.

We mentioned above the theoretical equivalence between an AR(4) model in levelsand an
AR(3) model in differenced interest rates. Ratios of the 72 forecasting error statistics for both models
have median vaues below 1 and distributions which are skewed to the left, suggesting that the AR(4)
model in levels produces better forecasts than the AR(3) model in differenced interest rates. For the
Spanish peseta the comparison was made between an AR(3) model in levels and an AR(2) modd in
differenced interest rates.

Finally, stationary residuas in the right columns of Table 4 show interest rates to be
cointegrated with the set of three factors for all maturities and currencies. Hence, it should be expected
that an error correction model among the set of variables formed by each interest rate and the three
factors would more adequately capture the long-run relationships between them, as well as their short
term co-movements. However, searching for the right dynamic specification of the single-equation error
equation model for each interest rate would imply an extensive amount of data mining. This would be
contrary to our god of setting relatively smple setups that allow for exploiting the contemporaneous
correlations across the term structure, for interest rate forecasting. Testing the forecasting gain of an
error correction model over our models in differences would constitute, however, an interesting issue
for further research.
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4.3 The correlation structure of interest rate forecasts.

Asin Section 3.3, it isimportant to analyze the extent to which forecasting models can
reproduce the observed pattern of correlations across the term structure, since the correlation matrix
plays such an important role in most risk management exercises. A significant deviation from the
correlation matrix of interest rates would lead to possibly important biases when using the set of
forecasts to evaluate portfolio risk at a given future horizon.

Table 6 reproduces correlation matrices for autoregressive and factor model forecasts, both, for
dynamic and static forecasts. In each case, the correlation coefficient between forecasts for any two
meaturities is compared to the sample correlation coefficient corresponding to those two maturities and
currency over the forecasting period. The general result is that static forecasts in levels obtained from
autoregressive models and from factor models retain the same cross-correlation structure that it is
observed in the sample, athough the fit for correlation coefficients between maturities farther apart
deteriorates. Dynamic forecasts also reproduce sample cross-correlations, athough deviations for
correlation coefficients between faraway maturities are now rather large in the case of the Deutsche
mark and US dollar. For the Spanish peseta and Japanese yen, the whole matrix of correlation
coefficientsis fairly well reproduced.

Not only forecasting but al'so smulating interest rates are useful tools for sound portfolio
management. The good fit of interest rate models in Table 4 suggests that Monte Carlo smulations
aimed a computing VaR values for fixed income portfolios at a given future horizon or at fixed income
derivative pricing could successfully be conducted by just smulating future trajectories for three
factors. Using the smulated paths in the estimated interest rate regressions would provide us with
simulated trgectories for interest rates themselves. Again, the reduction in computationa requirements
would be extensive. Even though we have not explored this possibility, the relatively accurate
preservation of correlations across the term structure in the forecasting exercises we have reported in
this paper suggests that ssimulation exercises over the term structure could be conducted to a good
approximation using univariate smulations for the factors together with estimated regressons on Table
4. That would avoid the need to draw realizations from the multivariate distribution of innovations for
the vector of interest rates, which would be rather hard to estimate.
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5. Conclusions

We have analyzed the extent to which factor models of the term structure of Interest Rate Swap
(IRS) markets can be used to forecast future interest rates. We have used as factors principal
components computed for a vector of zero coupon rates at maturities between 2- and 10-years. Data for
6-, 8 and 9-year maturities were obtained interpolating on market quotes at other maturities, and a zero
coupon curve was then estimated by the bootstrapping method. We use weekly data from interest rate
swaps denominated in Deutsche mark, Spanish peseta, Japanese yen and US dollar. Zero coupon rates at
the mentioned maturities are al 1(1) variables and display high corrdations, not only in levels but dso
infirst differences.

Most issues in risk management in fixed income markets require reducing the dimensionality of
the vector of relevant interest rates. Thisis particularly true of forecasting changes in bond prices, the
essential tool for fund management. It is also needed for VaR analysis, so that computation of variance-
covariance matrices remains managesble.

Factor analysis, in the form of principal components has often been used to summarize alarge
vector of interest rate vector in afew set of factors. Usualy, just three factors, naturally interpreted as
the level, steepness and curvature of the yield curve, have been shown to account for alarge amount of
variation in avector of interest rates representing a term structure. Factors of this kind have also been
shown to drastically smplify the computation of the variance-covariance matrix and sensitivity vector
that are needed in VaR evaluation, without introducing any noticeable bias. We complement that
research by showing that the three-factor characterization of a term structure seems quite robust to the
choice of time period, currency and market. The level factor captures, by itself, at least 95% of the
fluctuation in each interest rate, while adding the dope factor allows for capturing at least 99,7% of the
fluctuation at al maturities and currencies. Furthermore, we have shown the factors to be able to
capture quite well sample correlations among interest rates.

We have specifically examined the ability of factors to forecast future interest rates. For this
analysis, we have compared the forecasting performance of factor models to that of autoregressive
models. A short autoregression in interest rate levels produces stationary residuals for al maturities and
currencies, while leaving no significante trace of residua autocorrelation. A third autoregression in
differenced interest rates should be an equivalent model, but it displays a dightly worse forecasting
performance. As an aternative, we have used |east-squares projections of each interest rate on the
chosen factors to produce interest rate forecasts.

We use four criteria for forecasting performance: Mean and Median Absolute Errors, Root
Mean Square Error, and Thell’s U-statistic, and compare the forecasting ability of aternative models



by examining the ratio between the error criteria obtained under each specification. Forecasts were
obtained for the thirteen weeks in the last three months of our sample. Having nine interest rates for
each currency, four forecasting criteria and static, as well as dynamic forecasts, we have 72
comparisons for each currency. Factor models perform better than autoregressive modelsin at |east
44% of the comparisons for the Spanish peseta, Japanese yen and US dollar, and 38% of the cases for
the Deutsche mark. Besides, an examination of the frequency distribution of forecast error criteria
suggests that predictions from factor models may be preferable to those of autoregressive models.

Thisresult is quite striking because of the static nature of factor models, and the need to obtain
forecasts for the factors, previously to computing interest rate forecasts. That way, we add to the
sampling error in estimating factor regresson models, that from estimating autoregressive models for
the factors. Yet, in spite of this double estimation process, factor models can sometimes predict better
than autoregressive models, which fully incorporate the dynamics in interest rate processes for
forecasting.

The good forecasting performance of factor models, as well as their ability to reproduce the
sample correlation structure is very important for optimal portfolio design and risk management. First,
forecasting future prices of fixed income assets can be greatly simplified, since we can proceed by
using just forecasts for the factors to obtain forecasts for al interest rates involved. Also, in the type of
Monte Carlo exercises needed to compute VaR measures at a given future horizon, a huge number of
simulations is usually run. The described properties of term structure factors suggests a much smpler
approach by just smulating the factors and deriving from their trgjectories those for interest rates, as
opposed to having to simulate each specific interest rate.

Finally, it is interesting that both forecasting models can approximately reproduce the observed
pattern of correlations across the term structure, since the correlation matrix plays such an important
role in most risk management exercises. Thisis specially relevant for VaR analysis, since it shows that
drawing from univariate probability distributions for the innovations in either model is enough to
roughly preserve during the forecast horizon the sample correlation matrix among interest rates. In this
respect, static forecasts do specially well at retaining the sample cross-correlation structure, except
between distant maturities, dynamic forecasts doing alittle worse.
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Table 1. Unit root tests

Zero coupon rates

Principal Components

2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year| First Second Third
a) DEM
ADF-Leve -1081 -1038 -082 -0729 -057/5 -0369 -0231 -0072 0105 | -0594 -1427 -2203
ADF-Differences -7480 -7599 -7717 -7805 -8083 -8479 -8783 -9139 -9545| -8171 -7.784 -8061
PP-Level -1.323  -1195 -0981 -0874 -0717 -0519 -0429 -0327 -0217 | -0.792 -1434 -2.080
PP-Differences -10035 -18358 -19.090 -19639 -20.313 -21.259 -21.752 -22.348 -23.036| -20.288 -19.793 -21.017
b) ESP
ADF-Leve -0563 -0550 -0516 -0454 -0319 -0180 -0137 -0093 -0050| -0315 -1969 -3133
ADF-Differences -9949 9233 -8691 -8205 -8267 -8454 -8511 -8633 -8823 | -8581 -11.024 -12.840
PP-Leve -0625 -0534 -0444 0437 -0303 -018 -0121 -0062 -0011| -0268 -2345 -4512
PP-Differences -23687 -22541 -20974 -20318 -20.064 -20.006 -19.853 -19.874 -20.094| -20.107 -28911 -27.242
c) JPY
ADFLeve -2187 -19%7 -1712 -1610 -1498 -1373 -1377 -1380 -1384 | -1573 -2952 -2481
ADF-Differences -8042 -795 -77/5 -7553 -7323 -7177 -7109 -7.048 -6993 | -7.352 -9140 -8601
PP-Leve -2321  -1984 -1748 -1633 -1480 -1311 -1300 -1287 -1277 | -1575 -2789 -2.466
PP-Differences -18690 -18919 -18904 -18973 -18903 -18924 -18.767 -18.679 -18.691| -18.745 -18594 -24.207
d) USD
ADF-Level -2248 2350 -2300 -2196 -2088 -1950 -1860 -1758 -1654 | -2118 -1267 -3.106
ADF-Differences -7377 -7319 -7368 -7433 -7627 -7891 -8106 -8371 -868l| -7.710 -7.826 -9.456
PP-Leve -2130 -2190 -2169 -208 -2031 -1955 -188 -1807 -1726| -2073 -1153 -3339
PP-Differ ences -20047 -20287 -20653 -21.098 -21.272 -21583 -21.735 -21962 -22.260| -21.223 -18510 -22.755

Note: Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root statistics. Critical values for both statistics: -3.448 (1%),
-2.869 (5%), -2.571 (10%) .



Table 2. Contemporaneous correlation coefficients between observed and fitted zero coupon rates

2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year 2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year

Level a) DEM b) ESP

2-year 1.000 0994 0979 0960 0.939 0.905 0.889 0.868 0.839 1.000 0997 0993 0988 0984 0979 0976 0972 0.967
3-year 0.994 1000 0995 0984 0969 0942 0929 0911 0.886 | 0.997 1.000 0.999 0.996 0.994 0990 0.987 0.984 0.980
4-year 0.980 0.995 1.000 0.996 0.988 0.970 0.960 0.945 0.925 | 0.993 0.999 1.000 0.999 0.998 0.995 0.993 0.991 0.988
5-year 0.960 0.984  0.996 1.000 0997 0986 0979 0969 0.952 | 0.988 0.996 0.999 1.000 1.000 0.998 0.997 0.995 0.992
6-year 0.939 0969 0988 0.997 1000 0996 0.991 0.984 0.971 | 0.984 0.994  0.998 1.000 1.000 0.999 0.999 0.997 0.996
7-year 0.905 0943 0970 0.987 0.996 1.000 0.999 0.996 0989 | 0979 0990 0.995 0.998 0.999 1.000 1.000 0.999 0.998
8-year 0.889 0929 0960 0.980 0.991  0.999 1.000 0.999 0994 | 0976 0.987 0.993 0.997 0.999 1.000 1.000 1.000 0.999
9-year 0.868 0911 0945 0969 0984 0996 0999 1.000 0.998 | 0.972 0.984 0.991 0.995 0.998 0.999 1.000 1.000 1.000

10-year 0.839 0.886 0.925 0.952 0.972 0.989 0.994 0.998 1.000 0.967 0.981 0.988 0.992 0.996 0.998 0.999 1.000 1.000
First difference

2-year 1.000 0.968  0.907 0.875 0.836 0.766 0.738 0.700  0.650 1.000 0.957 0.860 0.703 0.645 0.567 0.568  0.558 0.537
3-year 0.970 1.000 0.961 0.934  0.903 0.840 0.814 0.777 0.728 [ 0.937  1.000 0.955 0.846 0.800 0.729 0.729 0.718 0.692
4-year 0922 0986 1.000 0.98 0970 0922 0902 0.871 0828 | 0821 0968 1.000 0.948 0919 0863 0.868 0.859 0.836
5-year 0.874 0.958 0.991 1.000 0.987 0.943 0.928  0.902 0.865 [ 0.709  0.908 0.984 1.000 0.988 0.950 0.945 0.927 0.894
6-year 0.831  0.922 0.970 0.993  1.000 0.984 0.974 0953 0.921 0.659  0.870 0.963 0.993 1.000 0.987 0.982  0.963 0.929
7-year 0.767 0.865 0.929 0.968 0991 1.000 0996 0.982 0957 | 0590 0.813 0923 0.971 0992 1.000 0994 0.976 0.942
8-year 0.737  0.832 0.900 0.946 0.978 0.997 1.000 0.995 0.979 0.560 0.785 0.900 0.954 0.982 0.998 1.000 0.993 0.972
9-year 0.698 0.789 0.863 0.916  0.957 0.987 0.996 1.000 0.994 | 0.523 0.748 0.869 0.930 0966  0.991 0.998  1.000 0.993
10-year 0649 0736 0814 0875 0926 0967 0984 0.996 1.000 | 0478 0.704 0.831 0.900 0.944 0978 0.989 0.997  1.000
Level c) JPY d) USD
2-year 1.000 0.997 0.991 0.984 0.977 0.967 0.965 0.963 0.961 1.000 0.977 0.923 0.857 0.809 0.748 0.714 0.675 0.630
3-year 0.998 1.000 0.998 0.994  0.989 0.981 0.980 0.978 0.976 | 0.977 1.000 0.984 0947 0915 0.872 0.846  0.816 0.780
4-year 0991 0998 1.000 0.999 0996 0991 0990 0.989 0987 | 0924 0984 1000 0.989 0972 0945 0927 0.905 0.878
5-year 0.984 0.994  0.999 1.000 0.999 0.996 0.995 0.994  0.992 0.857  0.947 0.989 1.000 0.996  0.982 0.972  0.957 0.937
6-year 0.977 0989  0.997 0.999  1.000 0.999 0.998  0.997 0.996 [ 0.809 0.916 0.972 0.996 1.000 0.995 0.989 0.979 0.964
7-year 0967 0982 0.992 0.996 0999 1.000 1.000 0.999 0.999 | 0.748 0872 0945 0.983 0995 1.000 0.999 0.994 0.985
8-year 0.965 0.980 0.990 0.995 0.998 1.000 1.000 1.000 0.999 0.714  0.847 0.927 0.972 0989  0.999 1.000 0.998 0.993
9-year 0.963 0.978  0.989 0.994  0.997 1.000 1.000 1.000 1.000 | 0.675 0.816 0.905 0.957 0.979 0.994 0.998 1.000 0.998

10-year 0.961 0976 0.987 0.992 0.996 0.999 0.999 1.000 1.000 | 0.630 0.780 0.878 0.937 0.964 0985 0.993 0.998 1.000
First difference

2-year 1.000 0965 0920 0.883 0.852 0.781 0.769 0.747 0.713 1.000 0988 0969 0943 0925 0894 0883 0.864 0.836
3-year 0.975 1.000 0965 0.937 0909 0839 0826 0.803 0.767 [ 0.990 1.000 0.991 0973 0961 0935 0926 0.908 0.882
4-year 0.927  0.986 1.000 0978 0960 0901 0889 0866 0.830 | 0968 0.994 1000 0987 0980 0959 0952 0.937 0.913
5-year 0.889 0.963  0.993 1.000 0988 0937 0930 0912 0.880 | 0942 0.980 0.996 1.000 0994 0975 0971 0.959 0.938
6-year 0.850 0.932 0974 0993 1.000 0980 0.974 0957 0927 [ 0925 0968 0989 0998 1.000 0993 0.989 0.978 0.956
7-year 0.788 0.876 0.931 0.966 0.989 1.000 0.996 0.982 0.955 | 0.900 0.949 0.976 0.990 0.997 1.000 0996 0.985 0.964
8-year 0.767 0.850 0.906 0.946 0.977  0.997 1.000 0995 0978 | 0.883 0.933 0963 0979 0.990 0.998 1.000 0.996  0.983
9-year 0.739 0.815 0.872 0917 0956 0.987 0.996 1.000 0994 [ 0.860 0.911 0943 0961 0977 0990 0.997 1.000 0.996

10-year 0.701 0.768 0.825 0.877 0.924 0.967 0.983 0.995 1.000 | 0.831 0.882 0916 0937 0.958 0.975 0.988 0.997 1.000

Note: The upper triangular matrix contains correlation coefficients between sample interest rates. The lower triangular matrix contains correlation coefficients between the fitted componentsin regressonsof
interest rates on principal components.



Table 3. Principal Componentsin theterm structure

2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year

a) DEM
Variance-covariance matrix of interest rates
Eigenvalues 155089.7 707.02 831 0.34 0.25 0.10 7.66E-04 8.91E-05 7.18E-08
First eigenvector -0.3078 -0.3153 -0.3230 -0.3298 -0.3352 -0.3410 -0.3445 -0.3483 -0.3523
Second eigenvector 0.6451 0.4166 0.2184 0.0637 -0.0598 -0.1928 -0.2535 -0.3191 -0.3895
Third eigenvector 05790 -0.1229 -0.3703 -0.4057 -0.2736 -0.1410 0.0448 0.2381 0.4411
R-squar ed coefficients on individual principal components
First component 09152 0.9617 0.9889 0.9984 0.9966 09790 0.9672 0.9487 0.9205
Second component 0.8612 0.7888 0.7059 0.6268 0.5581 0.4673 0.4301 0.3854 0.3324
Third component 0.0320 0.0723 0.1109 0.1422 0.1615 0.1857 0.1876 0.1895  0.1909
R-squared coefficients on subset principal components
On first two components 0.9987 0.9998 0.9991 0.9987 0.9994 0.9997 0.9999 0.9994 0.9977
On first three components 1.0000 0.9999 0.9999 0.9998 1.0000 0.9998 1.0000 1.0000  0.9999
b) ESP
Variance-covariance matrix of interest rates
Eigenvalues 3215314 367.02 1375 1.14 0.50 0.30 245E-04 1.78E-04 5.45E-07
First eigenvector -0.3287 -0.3296 -0.3312 -0.3323 -0.3336 -0.3350 -0.3357 -0.3365 -0.3373
Second eigenvector 0.6050 0.4035 0.2278 0.0735 -0.0539 -0.1889 -0.2643 -0.3452 -0.4315
Third eigenvector 0.6222 -0.0972 -0.3760 -0.4433 -0.2657 -0.0887 0.0616 0.2141  0.3707
R-squar ed coefficients on individual principal components
First component 09766 0.9919 0.9976 0.9992 0.9993 0.9970 0.9952 0.9923 0.9880
Second component 0.6583 0.5998 0.5541 0.5172 0.4895 0.4577 04425 04250 0.4050
Third component 0.0873 0.1255 0.1504 0.1669 0.1696 0.1728 0.1727 0.1728 0.1730
R-squared coefficients on subset principal components
On first two components 0.9990 0.9999 0.9995 0.9992 0.9997 0.9998 1.0000 0.9998 0.9994
On first three components 1.0000 0.9999 0.9999 0.9999 1.0000 0.9999 1.0000 1.0000  0.9999
c) JPY
Variance-covariance matrix of interest rates
Eigenvalues 60006.8 53522 7.70 0.67 0.26 0.14 1.42E-03 7.31E-04 3.74E-05
First eigenvector -0.2744 -0.2967 -0.3163 -0.3307 -0.3403 -0.3510 -0.3552 -0.3597 -0.3644
Second eigenvector 0.6303 0.4414 0.2512 0.0931 -0.0371 -0.1829 -0.2443 -0.3102 -0.3813
Third eigenvector 0.5372 -0.0004 -0.3536 -0.3753 -0.3119 -0.2112 0.0050 0.2403  0.4959
R-squar ed coefficients on individual principal components
First component 0.9664 0.9857 0.9963 0.9992 0.9989 09945 0.9934 0.9917 0.9891
Second component 0.8987 0.8589 0.8118 0.7755 0.7429 0.7021 0.6946 0.6863 0.6768
Third component 0.0188 0.0404 0.0651 0.0804 0.0913 0.1038 0.1014 0.0987 0.0954
R-squared coefficients on subset principal components
On first two components 0.9990 0.9999 0.9994 0.9993 0.9997 0.9998 1.0000 0.9998 0.9990
On first three components 0.9999 0.9999 0.9999 0.9999 1.0000 0.9998 1.0000 1.0000 0.9999
d) Usb
Variance-covariance matrix of interest rates
Eigenvalues 1625709 252.63 3.07 0.28 0.09 0.02 4.95E-04 2.16E-04 1.18E-04
First eigenvector -0.2939 -0.3095 -0.3213 -0.3310 -0.3373 -0.3441 -0.3481 -0.3524 -0.357
Second eigenvector 0.6767 0.4167 0.2065 0.0383 -0.0653 -0.1797 -0.2389 -0.3031 -0.3727
Third eigenvector 0.4759 -0.0573 -0.2774 -0.4216 -0.3253 -0.2247 0.0210 02715 0.5339
R-squar ed coefficients on individual principal components
First component 0.7124 0.8811 0.9697 0.9984 0.9958 09743 0.9567 0.9316 0.8976
Second component 04742 02699 0.1295 0.0481 0.0176 1.23E-03 2.22E-04 4.86E-03 0.0167
Third component 0.3138 0.4606 0.5627 0.6253 0.6398 0.6444 0.6317 0.6142 0.5913
R-squared coefficients on subset principal components
On first two components 0.9993 0.9999 0.9996 0.9992 0.9996 0.9995 0.9999 0.9997 0.9988
On first three components 0.9999 0.9999 0.9998 0.9998 1.0000 0.9997 0.9999 1.0000 0.9999

Note: Each panel contains eigenval ues and eigenvectors for the variance-covariance matrix of zero couponrates. R-squared statistics are
presented for regressions of each interest rate on each individual principal component as well as on the first two and threeprincipa
components.



Table 4. Estimated Models: a) DEM
2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year
Own lag
i=1 1.0665 11117 1.0713 1.0416 1.0066 0.9580 0.9319 0.9018 0.8688
(0.0491) (0.0489) (0.0486) (0.0486) (0.0485) (0.0486) (0.0487) (0.0488) (0.0489)
i=2 -0.0598 -0.1450 -0.0959 -0.0641 -0.0273 0.0180 0.0423 0.0678 0.0926
(0.0719) (0.0730) (0.0712) (0.0701) (0.0688) (0.0671) (0.0664) (0.0656) (0.0647)
i=3 0.1048 0.1818 0.2029 0.1992 0.1984 0.1900 0.1751 0.1600 0.1457
(0.0715) (0.0728) (0.0710) (0.0700) (0.0686) (0.0670) (0.0663) (0.0655) (0.0646)
i=4 -0.1150 -0.1521 -0.1817 -0.1799 -0.1803 -0.1677 -0.1506 -0.1303 -0.1072
(0.0488) (0.0486) (0.0484) (0.0485) (0.0485) (0.0485) (0.0487) (0.0489) (0.0491)
First component -0.3101 -0.3121 -0.3211 -0.3303 -0.3366 -0.3444 -0.3457 -0.3474 -0.3496
(0.0003) (0.0005) (0.0004) (0.0005) (0.0002) (0.0004) (0.0002) (0.0001) (0.0003)
Second component 0.6397 0.4245 0.2229 0.0626 -0.0633 -0.2009 -0.2563 -0.3169 -0.3832
(0.0007) (0.0014) (0.0011) (0.0014) (0.0006) (0.0012) (0.0005) (0.0002) (0.0009)
Third component 0.6020 -0.1570 -0.3880 -0.4013 -0.2588 -0.1071 0.0563 0.2292 0.4142
(0.0043) (0.0079) (0.0066) (0.0080) (0.0033) (0.0069) (0.0032) (0.0013) (0.0052)
R-squared 0.9964 1.0000 0.9958 0.9999 09951 0.9999 09945 0.9998 0.9941 10000 0.9932 09998 0.9928 1.0000 0.9922 1.0000 0.9914 0.9998
SEE 0.1128 0.0099 0.1087 0.0184 0.1045 0.0152 0.1009 0.0186 0.0966 0.0077 0.0951 0.0159 0.0934 0.0073 0.0926 0.0029 0.0926 0.0121
ARCH(1) 0.16 185.17 2.06 114.28 4.07 178.60 2.13 176.44 3.69 196.91 6.76 166.25 6.47 17451 6.06 173.69 5.63 149.89
[0.69] [0.00] [0.15] [0.00] [0.04] [0.00] [0.14] [0.00] [0.06] [0.00] [0.01] [0.00] [0.01] [0.00] [0.01] [0.00] [0.02] [0.00]
ARCH(4) 127 183.67 3.96 114.60 541 169.33 343 177.32 6.57 196.19 1251 17370 1336 17999 1329 17567 1307 16144
[0.87] [0.00] [0.41] [0.00] [0.25] [0.00] [0.49] [0.00] [0.16] [0.00] [0.01] [0.00] [0.01] [0.00] [0.01] [0.00] [0.01] [0.00]
Q(3) 0.10 601.03 0.07 460.16 0.10 575.60 0.15 709.81 0.21 663.18 0.23 619.42 0.21 625.74 0.18 672.28 0.16 644.79
[0.99] [0.00] [1.00] [0.00] [0.99] [0.00] [0.99] [0.00] [0.98] [0.00] [0.97] [0.00] [0.98] [0.00] [0.98] [0.00] [0.98] [0.00]
Q(10) 423 137090 331 1028.00 347 108440 6.0/ 176950 7.94 150240 10.12 103530 1031 1088.60 10.10 1399.10 953  1106.50
[0.94] [0.00] [0.97] [0.00] [0.97] [0.00] [0.81] [0.00] [0.64] [0.00] [0.43] [0.00] [0.41] [0.00] [0.43] [0.00] [0.48] [0.00]
LM (D) 157 266.03 1.74 223.50 255 248.80 3.92 292.90 4.97 282.33 552 262.99 5.28 265.03 4.92 281.01 4.48 271.71
[0.21] [0.00] [0.19] [0.00] [0.11] [0.00] [0.05] [0.00] [0.03] [0.00] [0.02] [0.00] [0.02] [0.00] [0.03] [0.00] [0.03] [0.00]
LM (4) 4.00 272.32 3.20 230.50 3.70 254.74 441 296.55 572 287.05 7.11 268.15 7.86 270.22 8.83 28652 10.04 276.35
[0.41] [0.00] [0.53] [0.00] [0.45] [0.00] [0.35] [0.00] [0.22] [0.00] [0.13] [0.00] [0.10] [0.00] [0.07] [0.00] [0.04] [0.00]
ADF -8.14 -3.89 -8.40 -4.72 -8.55 -5.23 -8.53 -3.39 -8.76 -3.70 -9.01 -4.47 -9.16 -4.36 -9.33 -3.79 -9.53 -4.33
PP -2045  -6.31 -20.51 -7.66  -20.67 -6.96 -20.74 -5.48 -20.79  -5.82 -20.78  -6.53 -20.76 -6.46  -20.72 -5.87 -20.68 -6.26

Note: Estimates of autoregressive and factor interest rate models. Both models were estimated using levels of interest rates and principal components. Fourth order autoregressions
were used in all cases except Spain, where athird order autoregression was used. A constant (generally non-significant) was included in al models. Standard deviations are shown in
parentheses. Statistics for each regression include: adjusted R-squared, standard error of estimate (SEE), Lagrange multiplier statistics to test for ARCH(1) and ARCH(4) structure in

residuals, Ljung-Box autocorrelation statistics of orders 3 and 10 (Q(3), Q(10)), Breusch-Godfrey autocorrelation statistics of orders 1 and 4 (LM(1), LM(4)), and Augmented
Dickey-Fuller and Phillips-Perron statistics to test for aunit root in the residuals. p-values are included in square brackets.



Table 4. Estimated M odels: b) ESP

2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year
Own lag
i=1 0.8590 0.9040 0.9705 1.0003 1.0128 1.0161 1.0236 1.0223 1.0115
(0.0490) (0.0490) (0.0492) (0.0494) (0.0494) (0.0494) (0.0494) (0.0494) (0.0494)
i=2 0.2659 0.2150 0.1101 0.0075 -0.0257 -0.0526 -0.0450 -0.0305 -0.0089
(0.0635) (0.0654) (0.0685) (0.0698) (0.0703) (0.0703) (0.0706) (0.0706) (0.0702)
i=3 -0.1278 -0.1213 -0.0826 -0.0094 0.0118 0.0358 0.0208 0.0076 -0.0030
(0.0490) (0.0491) (0.0493) (0.0494) (0.0495) (0.0495) (0.0495) (0.0495) (0.0495)
First component -0.3287 -0.3299 -0.3311 -0.3310 -0.3338 -0.3367 -0.3364 -0.3362 -0.3362
(0.0002) (0.0004) (0.0003) (0.0003) (0.0002) (0.0003) (0.0001) (0.0001) (0.0003)
Second component 0.6051 0.4020 0.2288 0.0817 -0.0550 -0.1996 -0.2686 -0.3437 -0.4247
(0.0015) (0.0028) (0.0025) (0.0021) (0.0015) (0.0026) (0.0010) (0.0006) (0.0021)
Third component 0.6225 -0.0936 -0.3790 -0.4666 -0.2623 -0.0578 0.0741 0.2097 0.3507
(0.0057) (0.0107) (0.0095) (0.0082) (0.0056) (0.0099) (0.0040) (0.0023) (0.0082)
R-squared 0.9926 1.0000 0.9936 0.9999 09943 0.9999 0.9940 0.9999 09939 1.0000 0.9935 0.9998 0.9937 1.0000 0.9938 1.0000 0.9936 0.9999
SEE 0.2499 0.0170 0.2244 0.0320 0.2053 0.0283 0.2026 0.0244 0.1983 0.0168 0.1990 0.0295 0.1913 0.0120 0.1860 0.0067 0.1835 0.0245
ARCH(1) 1030 0.39 10.92 1.62 7.21 059 318 7944 6095 004 8293 313 5591 695 2926 008 1211 133
[0.00] [0.53] [0.00] [0.20] [0.01] [0.44] [0.00] [0.00] ([0.0O] [0.85] [0.00] [0.08] [0.00] [0.01] [0.00] [O.77] [0.00] [0.25]
ARCH(4) 1926 222 3350 28 3033 121.36 3299 4866 6081 4129 8360 5857 6053 3730 4411 11250 36.26 118.89
[0.00] [0.70] [0.00] [0.58] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]
Q(3) 015 21398 030 26541 014 18150 0.00 309.01 017 14760 061 14762 070 16575 0.67 12994 049 14254
[099] [0.00] [0.96] [0.00] [0.99] [0.00] [1.00] [0.00] [0.98] [0.00] [0.90] [0.00] ([0.87] [0.00] [0.88] [0.00] [0.92] [0.00]
Q(10) 863 28998 648 33872 766 25906 652 57032 799 21079 933 20366 910 23272 875 17377 839 190.50
[0.57] [0.00] [O0.77] [0.00] [0.66] [0.00] [O.77] [0.00] [0.63] [0.00] [0.50] [0.00] [052] [0.00] [O0.56] [0.00] [0.59] [0.00]
LM(1) 012 12056 021 15062 008 9098 0.01 169.38 0.01 80.33 055 9042 074 10277 0.62 7358 001 8472
[0.73] [0.00] [0.65] [0.00] [0.78] [0.00] [0.92] [0.00] [0.93] [0.00] [O0.46] [0.00] [0.39] [0.00] [0.43] [0.00] [0.94] [0.00]
LM (4) 443 13555 149 15681 056 12838 147 17844 121 11451 099 10828 261 11560 101 10583 061 107.85
[0.35] [0.00] [0.83] [0.00] [0.97] [0.00] [0.83] [0.00] [0.88] [0.00] [0.91] [0.00] [0.63] [0.00] [0.91] [0.00] [0.96] [0.00]
ADF -1009 -625 -947 639 -894 552 -825 600 -825 599 -833 -641 -845 645 -861 -616 -881 -6.27
PP -20.32 -1149 -20.33 -10.32 -20.30 -12.78 -20.27 -9.75 -2028 -13.20 -20.31 -1244 -2030 -11.88 -20.28 -1341 -20.27 -12.77




Table 4. Estimated Models: c) JPY

2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year
Own lag
i=1 1.0844 1.0724 1.0619 1.0465 1.0379 1.0248 1.0300 1.0322 1.0300
(0.0494) (0.0492) (0.0494) (0.0493) (0.0495) (0.0497) (0.0496) (0.0495) (0.0495)
i=2 -0.1354 -0.1382 -0.0918 -0.0485 -0.0049 0.0407 0.0208 0.0012 -0.0157
(0.0727) (0.0717) (0.0719) (0.0714) (0.0715) (0.0714) (0.0714) (0.0714) (0.0711)
i=3 0.1950 0.2463 0.1923 0.1719 0.1178 0.0510 0.0786 0.1078 0.1361
(0.0725) (0.0717) (0.0718) (0.0714) (0.0715) (0.0714) (0.0715) (0.0714) (0.0711)
i=4 -0.1500 -0.1858 -0.1668 -0.1736 -0.1537 -0.1186 -0.1312 -0.1429 -0.1517
(0.0491) (0.0490) (0.0492) (0.0493) (0.0495) (0.0498) (0.0498) (0.0497) (0.0497)
First component -0.2785 -0.2933 -0.3128 -0.3279 -0.3419 -0.3575 -0.3584 -0.3591 -0.35%4
(0.0004) (0.0006) (0.0006) (0.0005) (0.0002) (0.0006) (0.0003) (0.0001) (0.0004)
Second component 0.6123 0.4564 0.2667 0.1053 -0.0440 -0.2112 -0.2587 -0.3079 -0.3589
(0.0019) (0.0026) (0.0025) (0.0024) (0.0010) (0.0027) (0.0012) (0.0003) (0.0019)
Third component 0.5884 -0.0430 -0.3988 -0.4081 -0.2920 -0.1317 0.0457 0.2340 0.4324
(0.0071) (0.0098) (0.0095) (0.0091) (0.0037) (0.0101) (0.0046) (0.0013) (0.0072)
R-squared 09971 0.9999 0.9964 0.9999 0.9961 0.9999 09960 0.9999 0.9962 1.0000 0.9962 0.9998 0.9963 1.0000 0.9963 1.0000 0.9962 0.9999
SEE 0.1039 00146 0.1116 0.0201 0.1126 0.0197 0.1091 0.0187 0.1019 0.0077 0.0970 0.0208 0.0935 0.0094 0.0906 0.0027 0.0887 0.0148
ARCH(1) 3120 17335 3948 11758 2264 12063 16.61 208.03 2029 16645 19.16 10372 1620 9925 1306 16835 1057 119.96
[0.00] [0.00] [0.00] [0.00] [0.00] ([0.00] [0.00] [0.00] [0.00] [0.00] [0.00] ([O0.00] ([0.00] ([0.00] [0.00] [0.00] [0.00] [0O.00]
ARCH(4) 3242 180.26 4175 12785 2335 12867 1694 20640 2111 17110 2187 11899 1939 11297 17.05 173.06 1555 13522
[0.00] [0.00] [0.00] [0.00] [0.00] ([0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] ([0.00] [0.00] [0.00] [0.00] [0O.00]
Q(3) 0.01 90958 0.031 64893 0.02 89208 003 76776 002 866.17 0.02 966.20 001 90896 002 921.06 0.03 1028.70
[1.00] [0.00] [1.00] [0.00] ([1.00] ([0.00] [1.00] [0.00] [1.00] [0.00] [1.00] [0.00] ([1.00] ([0.00] [1.00] [0.00] [1.00] [0O.00]
Q(10) 820 140460 1129 82034 7.90 135440 7.01 101560 6.06 126890 4.47 161720 357 147610 3.00 148460 295 175550
[0.61] [0.00] [0.34] [0.00] [0.64] [0.00] [0.72] [0.00] [0.81] [0.00] [0.92] [0.00] [0.97] [0.00] [0.98] [0.00] [0.98] [0.00]
LM (1) 004 27292 000 23161 007 25571 038 25889 044 26240 045 27686 052 26884 062 27234 079 284.17
[0.84] [0.00] [0.96] [0.00] [0.79] [0.00] [0.54] [0.00] [051] [0.00] [O0.50] [0.00] [0.47] [0.00] [0.43] [0.00] [0.38] [0.00]
LM (4) 024 27844 147 236.02 098 26559 067 26213 070 269.38 056 28397 057 27566 078 27832 123 291.83
[0.99] [0.00] [0.83] [0.00] [0.91] [0.00] [0.96] [0.00] [0.95] [0.00] [0.97] [0.00] [0.97] [0.00] [0.94] [0.00] [0.87] [0.00]
ADF -923 -415 934 -49% 905 -392 -890 -49 871 -430 -850 -394 -849 -410 -847 -407 -840 -3.69
PP -20.26  -6.14 -20.26 -755 -2028 -657 -2033 -689 -20.30 -649 -2025 -598 -2025 -6.26 -20.26 -6.14 -20.27 -5.68




Table 4. Estimated Models: d) USD

2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year
Own lag
=1 1.0087 0.9933 0.9789 0.9567 0.9454 0.9302 0.9253 0.9193 0.9124
(0.0497) (0.0496) (0.0496) (0.0497) (0.0497) (0.0498) (0.0498) (0.0499) (0.0499)
1=2 0.0830 0.0755 0.0719 0.1063 0.0982 0.0924 0.0933 0.0929 0.0918
(0.0709) (0.0702) (0.0697) (0.0690) (0.0686) (0.0681) (0.0680) (0.0677) (0.0675)
1=3 0.0061 0.0456 0.0646 0.0460 0.0614 0.0723 0.0651 0.0592 0.0546
(0.0704) (0.0701) (0.0696) (0.0690) (0.0690) (0.0687) (0.0684) (0.0681) (0.0675)
1=4 -0.1124 -0.1305 -0.1317 -0.1241 -0.1197 -0.1091 -0.0975 -0.0850 -0.0722
(0.0493) (0.0494) (0.0494) (0.0496) (0.0499) (0.0501) (0.0502) (0.0501) (0.0501)
First component -0.2927 -0.3115 -0.3220 -0.3301 -0.3368 -0.3439 -0.3478 -0.3525 -0.3575
(0.0003) (0.0003) (0.0004) (0.0004) (0.0002) (0.0005) (0.0002) (0.0000) (0.0003)
Second component 0.6775 0.4153 0.2061 0.0390 -0.0649 -0.1796 -0.2387 -0.3031 -0.3730
(0.0007) (0.0007) (0.0009) (0.0008) (0.0003) (0.0011) (0.0005) (0.0001) (0.0007)
Third component 0.4467 -0.0121 -0.2615 -0.4423 -0.3382 -0.2302 0.0145 0.2733 0.5458
(0.0094) (0.0100) (0.0124) (0.0108) (0.0049) (0.0151) (0.0071) (0.0013) (0.0097)
R-squared 09798 0.9999 0.9769 0.9999 0.9756 09998 0.9761 0.9998 0.9762 1.0000 09762 0.9997 0.9761 0.9999 09760 1.0000 0.9756 0.9999
SEE 0.1379 0.0099 0.1375 0.0105 0.1354 0.0131 0.1325 0.0114 0.1313 0.0052 0.1313 0.0159 0.1303 0.0075 0.1300 0.0013 0.1308 0.0102
ARCH(1) 002 20435 002 17467 014 9737 043 4987 014 15290 001 171.38 008 15681 020 18812 031 189.10
[0.89] [0.00] [0.89] [0.00] [O.71] [0.00] [0.51] [0.00] [O.71] [0.00] [0.92] [0.00] [O.78] [0.00] [0.65] [0.00] [0.58] [0.00]
ARCH(4) 307 21854 403 189.03 583 13554 810 6463 8612 17820 9.06 20053 965 19055 1026 21596 10.89 21253
[055] [0.00] [0.40] [0.00] [0.21] ([0.00] [0.090 [0.00] [0.07] [0.00] [0.06] [0.00] [0.05] [0.00] [0.04] [0.00] [0.03] [0.00]
Q(3) 026 62013 022 51530 021 35498 020 22777 011 47779 005 49787 003 46747 002 587.75 001 53391
[0.97] [0.00] [0.97] [0.00] [098] [0.00] [0.98 [0.00] [0.99] [0.00] [1.00] [0.00] [1.00] [0.00] ([1.00] [0.00] [1.00] [0.00]
Q(10) 854 1042.00 9.25 84056 1147 63796 12.02 28311 1035 82917 812 75363 698 69656 574 94955 453 83163
[0.58] [0.00] [0.51] [0.00] [0.32] [0.00] [0.28] [0.00] [0.41] [0.00] [0.62] [0.00] [O.73] [0.00] [0.84] [0.00] [0.92] [0.00]
LM(1) 6.27 26453 634 2259 630 160.08 643 11125 481 21980 3.03 20597 192 19607 087 25096 016 220.70
[0.01] [0.00] [0.01] [0.00] [0.01] ([0.00] [0.01] [0.00] [0.03] [0.00] [0.08 [0.00] [0.17] [0.00] [0.35] [0.00] [0.69] [0.00]
LM (4) 885 27003 750 23511 807 17915 751 12674 590 22578 475 22519 377 21562 325 257.74 320 237.70
[0.07] [0.00] [0.11] [0.00] [0.09] [0.00] [0.11] [0.00] [0.21] [0.00] [0.31] [0.00] [0.44] [0.00] [052] [0.00] [0.53] [0.00]
ADF -819 -470 -816 -502 -812 -493 -816 -612 -824 -494 834 -491 -842 -499 -852 -491 -866 -481
PP -20.62 -689 -2065 -7.87 -2065 -998 -2061 -11.82 -2055 -8.08 -2047 -863 -2042 -894 -2037 -740 -20.32 -8.17




Table 5. Forecasting performance indicator s (For ecasting period: 10/7/98-12/30/98)

2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year
Forecasting M odel AR Factor AR Factor AR Factor AR Factor AR Factor AR Factor AR Factor AR Factor AR Factor
a) DEM
Mean 0.0538 0.0605 0.0467 0.0713 0.0579 0.0629 0.0611 0.0595 0.0653 0.0640 0.0691 0.0822 0.0691 0.0720 0.0709 0.0737 0.0729 0.0842
Median Static  0.0510 0.0526 0.0444 0.0648 0.0438 0.0681 0.0473 0.0436 0.0477 0.0566 0.0504 0.0998 0.0569 0.0593 0.0558 0.0693 0.0527 0.0797
RM SE Forecasts 0.0604 0.0749 0.0576 0.0846 0.0667 0.0737 0.0715 0.0735 0.0774 0.0817 0.0841 0.1026 0.0853 0.0866 0.0873 0.0904 0.0904 0.1078
U-Theil 0.9975 0.9959 0.9977 0.9950 0.9970 0.9962 0.9966 0.9963 0.9960 0.9956 0.9953 0.9937 0.9953 0.9955 0.9952 0.9950 0.9950 0.9929
Mean 0.0917 0.0927 0.0933 0.0996 0.1123 0.1144 0.1230 0.1191 0.1304 0.1189 0.1377 0.1163 0.1436 0.1284 0.1552 0.1591 0.1686 0.2035
Median Dynamic 0.0684 0.0778 0.0916 0.0992 0.1258 0.1258 0.1333 0.1359 0.1396 0.1157 0.1704 0.1156 0.1721 0.1500 0.1739 0.1965 0.1763 0.2395
RM SE Forecasts 0.1169 0.1131 0.1088 0.1104 0.1215 0.1245 0.1332 0.1288 0.1460 0.1310 0.1682 0.1291 0.1723 0.1520 0.1792 0.1878 0.1897 0.2285
U-Theil 0.9898 0.9907 0.9921 0.9920 0.9913 0.9907 0.9899 0.9906 0.9876 0.9905 0.9837 0.9911 0.9834 0.9871 0.9828 0.9810 0.9817 0.9737
Sample mean 3.3821 3.4923 3.6329 3.7864 3.9335 4.0892 4.2028 4.3224 4.4485
b) ESP
Mean 0.0581 0.0521 0.0517 0.0518 0.0514 0.0524 0.0512 0.0569 0.0549 0.0537 0.0586 0.0712 0.0621 0.0640 0.0659 0.0689 0.0699 0.0824
Median Static  0.0498 0.0458 0.0463 0.0501 0.0367 0.0415 0.0376 0.0509 0.0338 0.0342 0.0441 0.0747 0.0537 0.0438 0.0533 0.0589 0.0528 0.0743
RM SE Forecasts 0.0684 0.0628 0.0629 0.0606 0.0639 0.0640 0.0675 0.0710 0.0713 0.0718 0.0765 0.0907 0.0800 0.0822 0.0845 0.0896 0.0899 0.1086
U-Theil 0.9966 0.9972 0.9973 0.9976 0.9971 0.9971 0.9967 0.9961 0.9964 0.9963 0.9960 0.9950 0.9957 0.9955 0.9954 0.9945 0.9949 0.9922
Mean 0.1614 0.1039 0.0973 0.0823 0.0918 0.0895 0.0971 0.1076 0.1050 0.1018 0.1288 0.0991 0.1442 0.1277 0.1611 0.1793 0.1794 0.2363
Median Dynamic 0.1329 0.0968 0.0445 0.0634 0.0751 0.0827 0.1175 0.1097 0.1119 0.1045 0.1418 0.0913 0.1516 0.1375 0.1608 0.1828 0.1695 0.2276
RM SE Forecasts 0.1931 0.1267 0.1309 0.1058 0.1054 0.1013 0.1080 0.1195 0.1245 0.1168 0.1543 0.1161 0.1669 0.1519 0.1812 0.1984 0.1969 0.2502
U-Theil 0.9741 0.9885 0.9876 0.9918 0.9928 0.9935 0.9932 (0.9915 0.9907 0.9920 0.9863 0.9922 0.9847 0.9871 0.9829 0.9797 0.9809 0.9701
Sample mean 3.4128 3.5152 3.6506 3.8007 3.9462 4.1001 42121 4.3299 4.4540
c) JPY
Mean 0.0480 0.0565 0.0673 0.0871 0.0788 0.1043 0.0884 0.1024 0.0958 0.0902 0.1081 0.0909 0.1105 0.0933 0.1128 0.1149 0.1151 0.1653
Median Static  0.0360 0.0437 0.0528 0.0961 0.0728 0.1177 0.0786 0.0923 0.1015 0.0875 0.1298 0.0766 0.1274 0.0947 0.1243 0.1256 0.1208 0.1218
RM SE Forecasts 0.0625 0.0657 0.0834 0.1114 0.0986 0.1322 0.1083 0.1296 0.1200 0.1083 0.1353 0.1061 0.1386 0.1138 0.1425 0.1436 0.1475 0.1957
U-Theil 0.9770 0.9809 0.9688 0.9482 0.9635 0.9417 0.9656 0.9515 0.9632 0.9703 0.9593 0.9779 0.9609 0.9745 0.9621 0.9620 0.9629 0.9395
Mean 0.0843 0.0982 0.1154 0.1532 0.1464 0.1780 0.1784 0.1947 0.2129 0.2018 0.2600 0.2309 0.2938 0.2421 0.3336 0.2897 0.3773 0.3665
Median Dynamic 0.0690 0.0568 0.0821 0.0664 0.0661 0.0697 0.0786 0.0498 0.0602 0.0790 0.1182 0.1112 0.1274 0.0913 0.1243 0.1256 0.1392 0.1415
RM SE Forecasts 0.1100 0.1458 0.1691 0.2374 0.2389 0.2863 0.2990 0.3195 0.3527 0.3339 0.4156 0.3535 0.4493 0.3923 0.4873 0.4433 0.5295 0.5090
U-Theil 0.9355 0.8795 0.8713 0.7681 0.7891 0.7238 0.7340 0.7079 0.6899 0.7127 0.6430 0.7150 0.6307 0.6904 0.6174 0.6605 0.6036 0.6240
Sample mean 0.5399 0.6874 0.8248 0.9583 1.0743 1.2051 1.3149 1.4362 1.5710
d) USb
Mean 0.0992 0.1020 0.0929 0.1006 0.0906 0.0938 0.0900 0.0867 0.0883 0.0873 0.0870 0.0880 0.0893 0.0895 0.0917 0.0932 0.0942 0.0975
Median Static 0.0696 0.0886 0.0699 0.0736 0.0538 0.0590 0.0444 0.0458 0.0441 0.0394 0.0443 0.0437 0.0536 0.0481 0.0639 0.0582 0.0713 0.0818
RM SE Forecasts 0.1338 0.1339 0.1259 0.1243 0.1211 0.1186 0.1208 0.1228 0.1211 0.1233 0.1226 0.1250 0.1250 0.1277 0.1284 0.1309 0.1328 0.1354
U-Theil 0.9895 0.9894 0.9914 0.9919 0.9926 0.9930 0.9925 0.9920 0.9922 0.9917 0.9917 0.9912 0.9910 0.9905 0.9902 0.9900 0.9892 0.9893
Mean 0.1946 0.1864 0.1736 0.1350 0.1422 0.1235 0.1246 0.1268 0.1281 0.1319 0.1318 0.1362 0.1461 0.1488 0.1605 0.1560 0.1749 0.1631
Median Dynamic 0.1757 0.1687 0.1364 0.1453 0.1579 0.1182 0.1454 0.1493 0.1266 0.1240 0.1091 0.0961 0.1048 0.1259 0.1364 0.1503 0.1691 0.1586
RM SE Forecasts 0.2163 0.2088 0.1962 0.1519 0.1666 0.1398 0.1490 0.1516 0.1501 0.1548 0.1525 0.1594 0.1661 0.1722 0.1806 0.1807 0.1960 0.1900
U-Theil 0.9781 0.9795 0.9817 0.9892 0.9870 0.9908 0.9898 0.9894 0.9897 0.9890 0.9895 0.9884 0.9879 0.9868 0.9860 0.9857 0.9838 0.9844
Sample mean 4.8815 4.9680 5.0499 5.1276 5.1981 5.2689 5.3323 5.3983 5.4686

Note: Forecasts obtained from estimated modelsin Table 4. Mean and M edian denote the mean and median absolute values of the forecasting errors. RM SE denotes the Root Mean
Square Error, while U-Theil denotes Theil s statistic. Boldface figures denote cases when factors models forecast better than autoregresive models.



Table 6. Contemporaneous correlation coefficients between level zero coupon rate forecasts
2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year 2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year

Static forecasts a) DEM b) ESP
2-year 1.000 0973 0947 0937 0922 0901 088 0862 0.830 | 1.000 0982 0948 0912 0.881 0.840 0.808 0.766 0.710
3-year 0.983 1.000 0.993 0.986 0976 0.958 0.947 0931 0.906 [ 0.987 1.000 0.989 0.966 0.944 0911 0.888 0.855 0.808
4-year 0.957 0.993 1.000 0.997 0.990 0976 0.968 0954 0932 [ 0965 0.994 1.000 0993 0980 0958 0941 0915 0.876
5-year 0931 0979 099 1.000 0.997 0989 0982 0970 0951 [ 0938 0980 0996 1.000 0996 0984 0971 0.950 0.917
6-year 0.906 0.961 0.986 0.997 1.000 0.997 0.993 0.984 0968 [ 0.908 0.961 0.985 0.996 1.000 0.995 0.988 0.971 0.943
7-year 0.870 0933 0967 0985 0.996 1.000 0.998 0.993 0980 [ 0.866 0.929 0962 0982 0995 1.000 0.997 0.98 0.965
8-year 0.850 0915 0953 0976 0.990 0.999 1.000 0998 0.990 [ 0.840 0.908 0947 0971 0988 0999 1.000 0.996 0.982
9-year 0.825 0.892 0934 0961 0.980 0.994 0.998 1.000 0.997 [ 0.808 0.882 0.926 0.955 0.977 0.994 0.998 1.000 0.995
10-year 0.792 0.862 0.909 0941 0965 0.984 0992 0998 1.000 [ 0.770 0.850 0.899 0933 0961 0984 0.992 0.998 1.000
Dynamic for ecastg
2-year 1.000 0.998 0.998 0996 0.996 0.996 0.996 0.997 0.997 | 1.000 0.999 0995 0987 0985 0.983 0984 0.985 0.986
3-year 1.000 1.000 1.000 0.999 0999 0999 0999 1000 1.000 | 1.000 1.000 0.999 0.994 0992 0991 0.992 0.993 0.993
4-year 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 [ 0.999 1.000 1.000 0.998 0.997 0996 0.997 0.997 0.997
5-year 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 [ 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
6-year 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 [ 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
7-year 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 [ 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
8-year 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 [ 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
9-year 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 [ 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10-year 0999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 [ 0.999 1.000 1.000 1.000 1.000 1000 1.000 1.000 1.000
Static forecasts c) JPY d) USD
2-year 1.000 0997 0990 0976 0962 0941 0927 0909 0.886 | 1.000 0.984 0943 0.881 0.828 0.753 0.691 0.620 0.544
3-year 0.997 1.000 0.996 0985 0971 0951 0939 0923 0902 [ 0988 1.000 098 0945 0909 0.853 0.804 0.745 0.679
4-year 0.994 0997 1.000 0995 0986 0.971 0961 0947 0929 [ 0947 0985 1.000 098 0964 0924 0885 0.836 0.779
5-year 0.987 0987 0996 1.000 0.997 0.988 0981 0971 0957 [ 0.874 0.938 0.983 1.000 0.993 0.968 0.938 0.897 0.847
6-year 0.974 0971 0985 0996 1.000 0.997 0993 098 0975 [ 0.800 0.882 0949 0990 1.000 0.991 0.972 0.942 0.902
7-year 0.955 0949 0968 0987 0.997 1.000 0999 0995 0988 [ 0693 0.794 0.886 0954 098 1.000 0.994 0.977 0.949
8-year 0.945 0937 0958 0980 0993 0999 1.000 0.999 0994 [ 0.630 0.738 0.841 0.923 0.967 0.996 1.000 0.994 0.977
9-year 0.933 0923 0946 0971 0988 0.997 0999 1.000 0.998 [ 0557 0.672 0.786 0.881 0938 0981 0995 1.000 0.994
10-year 0920 0.909 0933 0962 0982 0994 0997 0999 1000 [ 0476 0598 0.721 0.829 0.898 0.957 0980 0.995 1.000
Dynamic forecasts
2-year 1.000 0998 1.000 0.998 0.996 0.995 0.997 0998 0999 | 1.000 0.989 0982 098 0980 0974 0975 0.974 0.973
3-year 1.000 1.000 0.997 0992 0988 0987 0989 0991 0.994 | 0999 1.000 0.999 1.000 0.998 0.997 0.997 0.997 0.996
4-year 1.000 1.000 1.000 0.999 0.997 0996 0997 0.999 0999 | 0.998 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.999
5-year 1.000 1.000 1.000 1.000 0.999 0999 1000 1.000 1.000 | 0.997 1.000 1.000 1.000 1.000 0.999 0.999 0.999 0.998
6-year 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 | 0.997 0999 1.000 1.000 1.000 1.000 1.000 1.000 0.999
7-year 1.000 1000 1.000 1.000 1.000 1.000 1000 0999 0999 | 0997 0999 1000 1.000 1.000 1.000 1.000 1.000 1.000
8-year 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 | 0.997 0999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
9-year 1.000 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 | 0.997 0999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10-year 0999 0999 0999 1.000 1.000 1.000 1.000 1.000 1.000 [ 0.997 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note: The upper triangular matrix contains correlation coefficients between forecast interest rates from autoregressive model. The lower triangular matrix contains correlation coefficients between forecast interest rates
from factor models. Forecasting period: 10/7/98-12/30/98.
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Figurel. Zerocoupon rates. DEM
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Figure 2. The impact on term structure of a change in each principal component
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