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We derive exceedingly simple practical procedures revealing the quantum nature of states and measurements
by the violation of classical upper bounds on the statistics of arbitrary measurements. Data analysis is mini-
mum, and definite conclusions are obtained without evaluation of moments or any other more sophisticated
procedures. These nonclassical tests are independent of other typical quantum signatures such as sub-
Poissonian statistics, quadrature squeezing, or oscillatory statistics. This approach can be equally well applied
to very diverse situations such as single- and two-mode fields, observables with continuous and discrete
spectra, finite- and infinite-dimensional systems, and ideal and noisy measurements.
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I. INTRODUCTION

Nonclassicality is a key concept supporting the necessity
of the quantum theory �1–8�. A customary signature of non-
classical behavior is the failure of the Glauber-Sudarshan P
phase-space representation to exhibit all the properties of a
classical probability density. This occurs when P takes nega-
tive values or when it fails to be a proper function becoming
a generalized function or distribution.

Within standard quantum theory, quantum states play two
dissimilar but complementary roles: �i� they express the state
of the system and �ii� they determine the statistics of mea-
surements by projection on the system state, such as, for
example, photon-number and quadrature measurements in
quantum optics. We may refer to them as measured and mea-
suring states, respectively.

In this work we derive exceedingly simple and robust
practical procedures to reveal the quantum nature of mea-
sured and measuring states. In this regard, while character-
ization of nonclassical �measured� states has been well de-
veloped �1–6�, much less attention has received the
characterization of measurements �8�. One of the purposes of
this work is to contribute to fill this gap addressing the char-
acterization of nonclassical measurements, i.e., when the
measuring state is nonclassical. More specifically, measure-
ments are described by positive operator-valued measures
�POVMs� �m, such that the statistics of the measurement is
pm=tr��m��, where � is the measured state. We will say that
the measurement is nonclassical when the P representative of
some �m takes negative values or is a generalized function.
In most practical situations, �m define legitimate measuring
states �m��m so that the measurement is nonclassical if and
only if some �m is nonclassical. Nonclassicality of measure-
ments has been recently related with the noncontextuality
problem in Ref. �7�.

The main contributions of this work are as follows:
�i� We derive exceedingly simple practical procedures that

can reveal the quantum nature of states and measurements.
These are upper bounds on measurement statistics which are
satisfied by all states and measurements for which the P
representative is a non-negative function compatible with
classical physics. The lack of compliance of these statistical
bounds is thus a nonclassical signature.

�ii� This approach can be applied to arbitrary measure-
ments, which may involve, for example, single- or two-mode
electromagnetic fields, observables with continuous or dis-
crete spectrum, systems on finite- or infinite-dimensional
spaces, ideal or noisy measurements, etc. �Some of these
possibilities are considered in detail below.� This is in sharp
contrast with other nonclassical criteria that refer exclusively
to specific measuring schemes.

�iii� A key point of this approach is that data analysis is
reduced to minimum. At difference with other tests of non-
classical behavior, in our case definite conclusions can be
obtained without evaluation of moments or any other more
sophisticated data elaborations �1–6�. This is reflected on the
robustness under practical imperfections that may even favor
observation of nonclassical behavior.

�iv� These nonclassical tests are independent of other typi-
cal quantum signatures of nonclassical behavior such as sub-
Poissonian statistics, squeezing, or oscillatory statistics �1�.
To this end we propose examples of quantum states violating
classical bounds that present no such typical quantum signa-
tures.

To derive the nonclassical tests we will use the P and Q
phase-space representatives associated to any operator A de-
fined as

A =� d2�P���������, Q��� =
1

�
���A��� , �1.1�

where ��� are coherent states, a���=����, and a is the anni-
hilation or complex-amplitude operator. They are suitably
normalized;
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� d2�P��� =� d2�Q��� = tr A , �1.2�

with d2�=dxdy, where x and y are the real and imaginary
parts of �=x+ iy. The measured statistics pm=tr��m�� can be
then expressed as

pm = �� d2�Pm���Q��� = �� d2�P���Qm��� , �1.3�

where P��� and Q��� are the P and Q representatives of the
measured state �, while Pm��� and Qm��� are the ones asso-
ciated to the POVM �m.

In Secs. II and III we derive simple bounds to pm able to
reveal the nonclassical nature of measuring states �m��m
and measured states �, respectively. The robustness of these
criteria under practical imperfections is examined in Sec. IV.
This formalism is further extended to two-mode situations in
Sec. V and adapted to finite-dimensional systems in Sec. VI.

II. NONCLASSICAL MEASUREMENTS

From Eq. �1.3� we can derive classical bounds disclosing
nonclassical measurements. For every ordinary non-negative
function Pm����0 it holds that for every �

Pm���Q��� � Pm���Qmax, �2.1�

where Qmax is the maximum of Q��� �note that Q��� is al-
ways a positive and well behaved function�. Applying this to
the first equality in Eq. �1.3� we get the following upper
bound for pm provided that tr �m is finite,

pm � �Qmax tr �m. �2.2�

Equation �2.2� can be violated if Pm��� fails to be positive or
when it becomes a generalized function. In both cases Eq.
�2.1� fails to be true. Therefore, the violation of condition
�2.2� is a signature of nonclassical measurement.

The existence of Pm��� as a classical probability density
for all m allows us to understand the measurement as a clas-
sical stochastic process �9� between the phase space and the
sample space, with transition probability kernel given by
K�m ,��=�Pm���. Conversely, the failure of K�m ,�� to be a
classical conditional probability density denotes the quantum
nature of the measurement process.

In order to detect the violation of the classical bound �Eq.
�2.2�� the only prior information required about the measure-
ment being performed is the trace tr��m�. This can be mea-
sured using explicit practical methods �see some proposals in
the Appendix�. In any case this is not a very stringent con-
dition since in most practical situations this can be inferred
from simple rough analyses of the experimental arrangement
by symmetry considerations, etc.

Note that coherent states ��� are useless as measured
states to reveal nonclassical measurements since �Qmax=1
so that Eq. �2.2� leads to the trivial bound pm� tr �m for all
measurements �10�. This bound is trivial because, using the
Cauchy-Schwarz inequality,

�tr�AB†��2 � tr�AA†�tr�BB†� , �2.3�

we get

pm
2 = �tr���m��2 � tr��2�tr��m

2 � , �2.4�

and using that for positive operators tr�A2�� �tr A�2 we get

pm = tr���m� � tr � tr �m = tr �m. �2.5�

Otherwise, quantum or classical state other than coherent
may be used since the weight of the criteria relies on the
behavior of Pm���.

This approach is next illustrated with the examples of
photon-number and field quadrature measurements per-
formed on a single-mode electromagnetic field.

A. Photon-number measurements

In order to illustrate this formalism the simplest example
is the ideal photon-number measurement, �n=�n= �n��n�,
where �n� are number states, a†a�n�=n�n� so that tr �n=1. In
this case the classical bound in Eq. �2.2� becomes

pn � �Qmax = pb, �2.6�

which is actually independent of the outcome n.
A readily demonstration of the nonclassical nature of the

photon-number measurement is provided when n=1 and the
measured state is the one-photon state �n=1�. In such a case
p1=1,

Q��� =
���2

�
exp�− ���2�, �Qmax =

1

e
, �2.7�

where the maximum occurs for ���=1. Thus we have that

p1 = 1 � �Qmax tr �1 =
1

e
�2.8�

so that the measurement is nonclassical and the classical up-
per bound is surpassed by 172% since �p1− pb� / pb=1.72.

B. Quadrature measurements

Concerning quadrature measurements �implemented in
practice by homodyne detection �1�� we have �x= �x��x�,
where �x� are the eigenstates of the quadrature operator

X =
1

2
�a† + a�, X�x� = x�x� , �2.9�

being the optical analog of mechanical position or linear mo-
mentum. In this case tr �x is not finite since �x� are not nor-
malizable �x �x��=	�x−x��.

In order to avoid this difficulty we can appreciate that the
P representative of �x��x�, Px��=x�+ iy��, does not depend on
y�. This is an observable property, for example, via the inde-
pendence of statistics under displacements of the measured
state along this coordinate. Thus we can rearrange Eq. �1.3�
in the form

px = �� dx�Px�x��Q̃�x��, Q̃�x�� =� dy�Q�x�,y��

�2.10�

so that Eq. �2.2� is replaced by
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px � �Q̃max trx �x, �2.11�

where Q̃max is the maximum of Q̃�x� when x is varied, and

trx �x =� dx�Px�x�� =� dx�Qx�x�� , �2.12�

where Px and Qx are the representatives of �x, with

Qx�x�� =
1

�
��x�� = x� + iy���2 =

1

�
	 2

�
exp�− 2�x − x��2� .

�2.13�

This leads to trx �x=1 /� and to the classical upper bound,

px � Q̃max = pb, �2.14�

that does not depend on the outcome x.

1. Thermal-chaotic state

In order to look for violations of bound �2.14� let us con-
sider that the measured state � is the thermal-chaotic state
whose expression in photon-number basis is

�tc = �1 − 
�

n=0

�


n�n��n� , �2.15�

where 
 is a real parameter with 0�
�1. These states de-
scribe most classical light sources. The mean number of pho-
tons ntc and the quadrature variance are

ntc =



1 − 

, ��X�2 =

1

4
�1 + 2ntc� , �2.16�

while the Q and Q̃ functions are

Q��� =
1

��ntc + 1�
exp�−

���2

ntc + 1
� ,

Q̃�x�� =
1

	��ntc + 1�
exp�−

x�2

ntc + 1
� �2.17�

so that the upper bound in Eq. �2.14� reads as

pb =
1

	��ntc + 1�
. �2.18�

The statistics of the quadrature measurement px= ��x��tc�x��2
is Gaussian

px =
1

	2��X
exp
−

x2

2��X�2� , �2.19�

and the output most likely to break bound �2.2� is x=0 since
it maximizes px. This outcome will infringe the bound pro-
vided that

p0 =
1

	��ntc + 1
2�

� pb =
1

	��ntc + 1�
, �2.20�

which holds for every ntc. In particular for ntc=0 �the
vacuum state� we have p0=0.80 and pb=0.56 so that the

classical upper bound is very clearly surpassed by 100�p0
− pb� / pb=43%.

The outputs x that contravene Eq. �2.14� are all x such that

x2 � ��X�2 ln
1 +
1

4��X�2� . �2.21�

For ntc=0 these are all x in the interval −0.42�x�0.42,
which occur with a 60% probability since �−0.42

0.42 pxdx�0.60.

2. Squeezed vacuum

As a further example, when the measured state is the
squeezed vacuum the quadrature statistics has again the
Gaussian form �Eq. �2.19��, being the Q function

Q�x,y� =
1

�

4�X

1 + 4��X�2exp
−
2x2 + 8��X�2y2

1 + 4��X�2 �
�2.22�

so that

Q̃�x� =	 2

��1 + 4��X�2�
exp
−

2x2

1 + 4��X�2� �2.23�

and

Q̃max =	 2

��1 + 4��X�2�
. �2.24�

The output most likely to break bound �2.14� is x=0, and in
such a case the classical bound is surpassed for all �X since

p0 =
1

	2��X
� pb =	 2

��1 + 4��X�2�
. �2.25�

The most favorable situation is when �X is as small as pos-

sible. For example, for �X=0.1 we have p0=4.0 and Q̃max
=0.8 so that there is a percentage of violation of 100�p0
− pb� / pb=400% approximately. The output x’s that contra-
vene Eq. �2.14� are given by Eq. �2.21�, which for �X=0.1 is
the interval −0.18�x�0.18 that represents the 93% of all
outcomes since �−0.18

0.18 pxdx�0.93.

III. NONCLASSICAL STATES

In this section we derive classical bounds disclosing non-
classical measured states. They can be derived from the last
equality in Eq. �1.3� by considering that for classical states,
i.e., for ordinary non-negative functions P����0, we get

P���Qm��� � P���Qm,max, �3.1�

where Qm,max is the maximum of Qm���. Applying this to the
last equality in Eq. �1.3� and taking into account Eq. �1.2�,
we get the following upper bound for pm,

pm � �Qm,max, �3.2�

that holds for every P��� compatible with classical physics.
If this condition is violated for any m the state is not classi-
cal. The bound becomes an equality when the measured state
is the coherent state ��m,max� with Qm,max=Qm��m,max�.
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Moreover, when the measured state is pure �= �
��
� we
have that �
� is nonclassical if and only if there is at least a
measurement for which the classical bound �Eq. �3.2�� is
violated. The violation of bound �3.2� is clearly a sufficient
condition. This is also necessary since for every nonclassical
�
� we can consider a POVM with �0= �
��
�. In such a case
the upper bound �Eq. �3.2�� is surpassed because p0=1 while
�Q0,max= ���max �
��2�1, since otherwise the equality
���max �
��=1 would imply that �
� is a coherent state and
thus classical.

Note that the POVM ��= ������ /� defined by the coher-
ent states ��� �implemented in practice by double homodyne
and heterodyne detection� are useless for the detection of
nonclassical states since �Q�,max=1 and bound �3.2� be-
comes trivial p��1.

For the sake of illustration we particularize this approach
to two meaningful practical situations. These are photon-
number �Sec. III A� and quadrature measurements �Sec.
III B�. Then we apply them to different measured states �Sec.
III C�.

A. Photon-number measurement

For photon-number measurements �n= �n��n� the Q func-
tion is

Qn��� =
1

�
exp�− ���2�

���2n

n!
, �3.3�

and the maximum occurs at ���=	n;

Qn,max =
1

�
exp�− n�

nn

n!
. �3.4�

If the measured state is classical, the photon-number statis-
tics pn is thus bounded by

pn � exp�− n�
nn

n!
= pb,n. �3.5�

This bound was previously derived in Ref. �2�. The upper
bound pb,n is the probability of detecting n photons in the
coherent state ��� with ���=	n, which is the classical state
for which pn is maximum. In Fig. 1 we have represented pb,n
as a function of n showing that for large n it decays as pb,n
�1 /	2�n approximately, in agreement with the Stirling ap-
proximation n ! �	2�nnn exp�−n�.

Independence of sub-Poissonian statistics

We can show that the nonclassical criterion on photon-
number measurements �Eq. �3.5�� is independent of sub-
Poissonian statistics. The deviation from Poissonian statistics
is usually assessed by the Mandel parameter �1�

QM =
��n�2

�n�
− 1. �3.6�

The independence holds because �i� there are sub-
Poissonian states that satisfy the classical bounds �Eq. �3.5��
for all n and �ii� there are super-Poissonian states that in-
fringe them. To show this let us consider the state in the
number basis,

� = �1 − p��0��0� + p�N��N� , �3.7�

with 0� p�1 so that

�n� = pN, ��n�2 = N2p�1 − p� , �3.8�

and

QM = N�1 − p� − 1. �3.9�

�i� For N=1 this state is sub-Poissonian for all p with QM
=−p�0 and satisfies the classical upper bounds �Eq. �3.5��
for all n when p�1 /e. �ii� For p� �N−1� /N the state is
super-Poissonian since QM �0 and infringes bound �3.5�
when p� pb,N. These two requirements are compatible since
it holds that �N−1� /N� pb,N for all N�1.

B. Quadrature measurement

As a further example we may consider the measurement
of the quadrature X in Eq. �2.9� so that �x= �x��x�. In such a
case, from Eq. �2.13� we get �Qx,max=	2 /�, and the classi-
cal upper bound for the statistics px of the quadrature mea-
surement is

px �	 2

�
= pb �3.10�

that does not depend on the output x. The maximum is ob-
tained for a coherent state ��� with ��+��� /2=x. For states
with Gaussian px the infringement of Eq. �3.10� is equivalent
to squeezing of quadrature X since the maximum of px is
1 / ��X	2�� and

1

�X	2�
�	 2

�
→ �X �

1

2
= �Xvacuum. �3.11�

For non-Gaussian px the situation can be different as shown
below.

This example is interesting since quadrature measure-
ments are more experimentally feasible than number mea-
surements. For a further discussion about the quantum-
classical relation in terms of quadrature distributions see Ref.
�11�.

C. Examples

Let us consider some meaningful simple examples of
states violating the classical upper bounds �Eq. �3.5� and
�3.10��.

2 4 6 8 10

0.2

0.4

0.6

0.8

1

p
b,n

n

FIG. 1. Classical upper bound �Eq. �3.5�� for the probability of
detecting n photons on a classical state.
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1. Incoherent superposition of thermal and number

As a feasible state that can infringe Eq. �3.5� let us con-
sider the incoherent superposition of the thermal-chaotic
state in Eq. �2.15� and the photon-number state �n0�

� = p�tc + �1 − p��n0��n0� , �3.12�

where 0� p�1, leading to a photon-number statistics

pn = p�1 − 
�
n + �1 − p�	n,n0
. �3.13�

For example, for p=0.5, n0=1, and ntc=9 the probability of
detecting a single photon is p1=0.545, while the upper bound
in Eq. �3.5� for n=1 is pb,1=1 /e=0.368, so we have a clear
infringement of the classical condition �Eq. �3.5�� by
100�p1− pb,1� / pb,1=48%.

In this case the photon-number distribution �Eq. �3.13�� is
highly super-Poissonian with QM =11.2. Furthermore, we can
easily show that there is no quadrature squeezing since for
quadrature operators,

X� =
1

2
�a† exp�− i�� + a exp�i��� , �3.14�

we have in state �3.12� that �X��=0 and

��X��2 =
1

2
�n� +

1

4
=

1

2
�pntc + �1 − p�n0� +

1

4
. �3.15�

For the above parameters, n0=1, p=0.5, and ntc=9, we get
��X��2=11 /4 for all �, which is far above the upper limit for
squeezing ��X��vacuum

2 =1 /4. Finally, it can be appreciated
that there are no oscillations in the photon-number distribu-
tion.

For state �3.12� the origin of nonclassical behavior is that
P��� is always more singular than a delta function for all
p�1. This is because

P��� = pPtc��� + �1 − p�Pn0
��� , �3.16�

where

Ptc��� =
1

�ntc
exp�−

���2

ntc
� �3.17�

and

Pn0=1��� = �1 +
�

��

�

����	�2���� . �3.18�

Thus P��� is more singular than a delta function since oth-
erwise we would be able to express Pn0=1��� as a linear
combination of two ordinary functions.

2. Photon-added thermal state

The previous states are associated with P representatives
more singular than a delta function. Next we consider states
with nonsingular P��� function taking negative values. This
is the case of the single-photon-added thermal states that, in
the photon-number basis, read as �5�

�1 = �1 − 
�a†�tca = �1 − 
�2

n=1

�


n−1n�n��n� , �3.19�

where �tc, 
, and ntc are in Eqs. �2.15� and �2.16�, respec-
tively.

The P representative is well behaved but nonpositive,

P��� =
1

�ntc
3 ��ntc + 1����2 − ntc�exp�− ���2/ntc� , �3.20�

and the photon-number statistics is

pn = �1 − 
�2
n−1n . �3.21�

For example, for n=1,2 the classical upper bounds �Eq.
�3.5�� are surpassed provided that

p1 � pb,1 = 1/e ↔ ntc � 	e − 1 = 0.65,

p2 � pb,2 = 2/e2 ↔ 0.30 � ntc � 0.82. �3.22�

Let us show that this nonclassical behavior is independent of
other nonclassical features. There is no quadrature squeezing
since for the rotated quadrature operators X� in Eq. �3.14� we
have ��X��2= �3+4ntc� /4�1 /4 for all �. Also, it can be ap-
preciated in Eq. �3.21� that there is no photon-number oscil-
lations. Finally, the Mandel parameter is

QM =
2ntc

2 − 1

2ntc + 1
, �3.23�

so we get super-Poissonian statistics for all ntc�1 /	2
=0.71.

Therefore, the states with 0.71�ntc�0.82 are nonclassi-
cal since p2� pb,2, although they have super-Poissonian sta-
tistics, present no squeezing, and have no oscillatory statis-
tics.

3. Coherent superposition of coherent states

Another interesting example is provided by the coherent
superposition of two coherent states with opposed complex
amplitude �12� �referred to as even and odd superpositions
�13��

���� = N����� � �− ��� , �3.24�

with

N+ =
exp����2/2�

2	cosh����2�
, N− =

exp����2/2�

2	sinh����2�
. �3.25�

In this case the P��� is a distribution involving an infinite
number of derivatives of the delta function since the nor-
mally ordered characteristic function is a real exponential.
For definiteness let us focus just on the even states ��+�.

For the even case ��+� we have the following photon-
number statistics:
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pn = � ���2n

n ! cosh����2�
for n even

0 for n odd.
� �3.26�

Numerically it can be easily seen that this is inconsistent
with the upper bound in Eq. �3.5� for ����0.64. Moreover,
for ����1 we have cosh����2��exp����2� /2 and �always for
even n�

pn � 2
���2n

n!
exp�− ���2� �3.27�

so that for ���2=n we get that pn is twice the upper bound
pb,n in Eq. �3.5�.

Concerning quadrature measurements, let us consider
states with purely imaginary complex amplitude �= � i���
that have the following quadrature statistics:

px = 4N+
2	 2

�
cos2�2���x�exp�− 2x2� . �3.28�

For every ��� the maximum of px holds for x=0 being p0
=4N+

2	2 /�. In Fig. 2 �dashed line� we have represented the
relative amount of violation of Eq. �3.10�, 100�p0− pb� / pb, as
a function of ���, showing a 100% violation for large ���.
This is because for ����1 we have N+

2 �1 /2 so that p0
�2	2 /�, which is twice the classical upper bound pb

=	2 /�. In Fig. 2 this is also compared with the percentage
of squeezing in the same state �solid line�.

Next we show that the even states infringe classical
bounds with super-Poissonian photon-number statistics and
with negligible quadrature squeezing. Concerning photon-
number statistics we have

�n� = ���2 tanh����2� ,

�n2� = ���4 + ���2 tanh����2� �3.29�

so that

QM =
2���2

sinh�2���2�
, �3.30�

and these states are always super-Poissonian �unless �=0�.

Concerning quadrature squeezing, the minimum uncer-
tainty for rotated quadratures �Eq. �3.14�� in the state ��+�
when � is varied is

��X��min
2 =

1

4
�2���2 tanh����2� − 2���2 + 1� . �3.31�

The percentage of squeezing defined as

100
�Xvacuum − �X�,min

�Xvacuum
= 100�1 – 2�X�,min� �3.32�

is represented in Fig. 2 as a function of ���. These states
present squeezing only for small ��� being negligible for
����2. For instance, for ���=3 we have ��X�,min�2

=0.249 999 86, which means a fully negligible 2.75
�10−5% squeezing, while Eqs. �3.5� and �3.10� are infringed
by a 100% for the same state.

At difference with the preceding examples in this case the
100% violation of classical bounds for large ��� has a simple
explanation in terms of the oscillatory character of the statis-
tics �Eqs. �3.26� and �3.28��. For large ��� the number and
quadrature statistics are the same of coherent states �that
would saturate the classical bounds� but maximally modu-
lated. Because of normalization, the vanishing terms must be
compensated by nonvanishing terms reaching twice the
coherent-state values. This factor of 2 leads to the 100%
violation of the classical bounds.

Let us note that the criteria presented in this work reveal
the nonclassical nature of these states for all � but specially
clearly for large ���. This is sharp contrast with sub-
Poissonian number statistics and quadrature squeezing that
hold only for small ���, as illustrated in Fig. 2 for example.

IV. EFFECT OF IMPERFECTIONS

One of the key features of this approach is that the data
analysis is reduced to minimum. This favors obtaining reli-
able results from nonideal measurements affected by imper-
fections, such as damping, finite efficiencies, or finite sam-
pling. We stress that this approach applies to any
measurement, both ideal and imperfect, so that experimental
imperfections can be always embodied into the measuring
POVM. Nevertheless, since imperfections usually deteriorate
nonclassical properties it is reasonable to investigate their
effect on the above nonclassical criteria.

A. Inefficient detection

For definiteness we consider real detectors affected by
field damping �with bath at zero temperature� and finite
quantum efficiency, which can be modeled by placing a
beam splitter of amplitude-transmission coefficient t=	� in
front of a perfect detector, where ��1 represents both losses
and efficiencies �14,15�.

1. Nonclassical states

The effect of the beam splitter for the detection of non-
classical states can be easily accounted for by computing the
measured state after the beam splitter �t as

| |�

%

0.5 1 1.5 2 2.5 3

20

40

60

80

100

squeezing

violation classical bound

FIG. 2. Percentage 100�p0− pb� / pb of maximum violation of the
classical bound �Eq. �3.10�� �dashed line� and percentage of squeez-
ing 100�1−2�X�,min� in Eq. �3.32� �solid line� for the even state
�3.24� as functions of ���.
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�t =� d2�P����t���t�� , �4.1�

where P��� is the P function of the measured state. The
measured statistics becomes

pt,m = tr��m�t� = �� d2�P���Qm�t�� . �4.2�

Since the maximum of Qm�t�� when � is varied is the same
as the maximum of Qm���, there is no change in the classical
upper bound in the right-hand side of Eq. �3.2�.

Nevertheless, imperfections affect the statistics replacing
pm by pt,m in the left-hand side of Eq. �3.2�. This can be
easily seen, for example, for photon-added thermal states
�Eq. �3.19��. For inefficient detection the photon-number sta-
tistics of ideal case �3.21� for n=1 is replaced by

pt,1 = �
1 + 2ntc − �ntc

�1 + �ntc�3 . �4.3�

In Fig. 3 we have represented pt,1 as a function of � for ntc
=0.7. Decreasing � from �=1 increases pt,1, leading to break
the classical bound �Eq. �3.5�� in the interval 0.30��
�0.89.

It is worth pointing out that, at difference with other non-
classical tests, where imperfections degrade nonclassical be-
havior �15�, in this case larger losses and decreasing efficien-
cies may favor the observation of nonclassical behavior of
measured states. This noticeable effect arises because imper-
fections rearrange the probability distribution pn so that with
increasing imperfection some probabilities may increase be-
yond the classical bounds, as is the case of pt,1 in this ex-
ample.

2. Nonclassical measurements

For nonclassical measurements we can follow two differ-
ent strategies: �i� we can address the nonclassical behavior of
the ideal POVM �m associated to �=1. This is the analog of
the preceding subsection where we investigated the nonclas-
sical properties of the input state before being affected by
imperfections. �ii� Alternatively, as mentioned above we can
examine the nonclassical behavior of the effective POVM

�̃m embodying all imperfections as part of the measuring
scheme.

�i� Concerning the nonclassical behavior of the ideal
POVM �m we can compute the effect of inefficiencies as

pt,m =
1

�
� d2�d2� s���a���T� � �0T†���a���sPm��� ,

�4.4�

where ���s are coherent states in the signal mode �the mode
of the measured state �� and ���a are coherent states in the
auxiliary mode �the other input port of the beam splitter as-
sumed in the vacuum state �0�, Pm��� is the P representative
of the ideal measurement �m, and T is the unitary transfor-
mation describing the effect of the beam splitter, with

T†���a���s = �t� + r��a�t� − r��s, �4.5�

being r=	1− t2. This leads to the following form for the
statistics

pt,m = �� d2�Q̃���Pm��� , �4.6�

where Q̃��� is defined here as

Q̃��� =� d2�Q0�t� + r��Q�t� − r�� , �4.7�

with Q0 and Q being the Q representatives of �0 and �,
respectively. Note that in the ideal case �=1 �t=1,r=0�
Q̃��� is the Q function of the measured state Q̃���=Q���.
From Eq. �4.6� we can derive the classical upper bound

pt,m � �Q̃max tr �m, �4.8�

which holds for classical measurements with Pm����0. We
can appreciate that finite quantum efficiencies modify the
classical upper bounds in comparison with the ideal detec-

tion in Eq. �2.2� by replacing Qmax by Q̃max.
Let us illustrate this analysis with the example where the

ideal POVM is one-photon detection, �1= �1��1� in the num-
ber basis, and the measured state is the one-photon state �1�.
The case �=1 was considered in Sec. II A above. When �
�1 we have

pt,1 = �, tr �1 = 1, �4.9�

and

Q̃��� =
1

�
������2 − 1� + 1�exp�− ���2� �4.10�

so that

Q̃max =
�

�
exp�−

2� − 1

�
� , �4.11�

and the violation of the classical upper bound �Eq. �4.8��
occurs provided that

�

p
t,1

p
b,1

=1/e

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

FIG. 3. pt,1 in Eq. �4.3� as a function of � for ntc=0.7.
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exp�−
2� − 1

�
��1 ↔ ��

1

2
. �4.12�

Therefore, in this example the nonclassical behavior of the
ideal measurement is disclosed provided that the quantum
efficiencies are above 50%.

�ii� Alternatively, if we embody decaying mechanisms and

inefficiencies in the effective POVM �̃m we get from Eq.
�2.2�

pt,m � �Qmax tr �̃m, �4.13�

where Qmax is the maximum of the Q function of the mea-

sured state �. We can compute tr �̃m taking into account the
effect of the beam splitter as in Eq. �4.1�;

tr �̃m =
1

�
� d2�����̃m��� =

1

�
� d2��t���m�t�� =

1

t2 tr �m,

�4.14�

leading to

pt,m � �Qmax
1

�
tr �m. �4.15�

We can appreciate that the effect of imperfections is simply
expressed by increasing the classical upper bound by a factor
of 1 /�.

Let us illustrate this approach with the same example of
inefficient one-photon detection, �ideal POVM �1= �1��1�
and a one-photon state �1�� so that after Eq. �2.7� the classical
bound �Eq. �4.15�� is

pt,1 = � �
1

�e
. �4.16�

Thus the effective POVM �̃m shows nonclassical behavior
when ��1 /	e=0.6065.

We can appreciate that the two approaches �i� and �ii� lead
to two different bounds, Eqs. �4.8� and �4.15�, as clearly
illustrated by the example of one-photon detection. We stress
that this difference is natural since the classical bound �Eq.
�4.8�� is sensitive to the nonclassicality of the P representa-
tive of the ideal POVM �m, while bound �4.15� is sensitive
to the nonclassical character of the P representative of the

effective POVM �̃m.

B. Finite sampling

When the number of measurements N is finite, the prob-
ability pm becomes an statistical variable that can be ex-
pressed as pm�N�=k /N, where the integer k is the number of
outcomes m after N trials. �This analysis applies both to de-
tection of nonclassical states and measurements.� The di-
chotomic character of the measurement �outcome m with
probability pm and outcome not m with probability 1− pm�
implies that k follows the binomial distribution

Pk�N� = �N

k
�pm

k �1 − pm�N−k, �4.17�

so we have

�pm�N�� =
�k�
N

= pm, �pm�N� =
�k

N
=	pm�1 − pm�

N
.

�4.18�

For all the above examples we have roughly pm�0.5 so that
for N�100 we have �pm / pm�0.1. Thus, even for moderate
number of trials, the uncertainty caused by finite sampling is
clearly below the amount of violation of classical upper
bounds pb,m since �pm− pb,m� / pb,m is at least five times larger
than �pm / pm in the above examples.

V. TWO-MODE OBSERVABLES

The above single-mode approach in Eq. �1.3� can be eas-
ily generalized to two-mode observables by expressing the
statistics pm=tr���m� as

pm = �2� d2�d2�P��,��Qm��,�� �5.1�

and

pm = �2� d2�d2�Pm��,��Q��,�� , �5.2�

where P and Q are the two-mode phase-space representa-
tives for the measured state �;

� =� d2�d2�P��,����,����,�� , �5.3�

Q��,�� =
1

�2 ��,�����,�� , �5.4�

where Pm and Qm refer to the corresponding representatives
of the POVM �m and �� ,�� are two-mode coherent states.
The parameter m represents all the indices necessary to label
the outcomes. The maxima of Q�� ,�� and Qm�� ,�� provide
suitable upper bounds for the statistics of classical measure-
ments and states, respectively.

In this regard we note that for bipartite systems nonclas-
sical P�� ,�� is a necessary condition for entanglement �16�.
For definiteness we focus on the nonclassical behavior of
states. The analysis of nonclassical measurements would be
analogous.

A. Nonclassical states by photon-number detection

For the case of joint two-mode photon-number detection
we get that for classical states the joint probability of detect-
ing n1 and n2 photons is simply bounded by the product of
the one-mode upper bounds

pn1,n2
� pb,n1

pb,n2
= exp�− �n1 + n2��

n1
n1n2

n2

n1 ! n2!
. �5.5�

The maximum for fixed n1+n2 occurs when n1=0 or n2=0,
while the minimum occurs for coincident outputs n1=n2.

For the total number n=n1+n2 the statistics is given by
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pn = �2� d2�d2�P��,��

m=0

n

Qm,n−m��,�� , �5.6�

where

Qn1,n2
��,�� =

1

�2 ����n1��2����n2��2, �5.7�

�n1,2� being number states in the corresponding modes. It can
be easily seen that



m=0

n

Qm,n−m��,�� =
1

�2

���2n

n!
exp�− ���2� , �5.8�

with ���2= ���2+ ���2. For fixed n the maximum occurs for
���2=n so that



m=0

n

Qm,n−m��,�� �
1

�2

nn

n!
exp�− n� �5.9�

and

pn �
nn

n!
exp�− n� , �5.10�

which is equal to the single-mode counterpart �Eq. �3.5��.

B. Nonclassical states by quadrature-difference
measurement

Let us consider the measurement of the quadrature differ-
ence X=X1−X2, where X1,2 represent the same quadrature
operator in each mode, which is described by the POVM

�x =� dx��x + x��1�x + x�� � �x��2�x�� , �5.11�

where �x� j are the eigenstates of Xj, with j=1,2. In this case
we have

Qx��1,�2� =
1

�2	�
exp�− �x − x1 + x2�2� , �5.12�

where xj is the real part of � j so that

�2Qx,max =
1

	�
, �5.13�

and the classical bound is

px �
1

	�
= pb. �5.14�

Note that the two-mode bound does not depend on the out-
come x, being lower than the single-mode counterpart �Eq.
�3.10��. For states with Gaussian px the violation of this
bound is equivalent to �X�1 /	2. This is equivalent to two-
mode squeezing since for pairs of coherent states it holds
�X=1 /	2.

C. Example: Two-mode squeezed vacuum

To illustrate these two-mode classical bounds let us con-
sider that the measured state is a two-mode squeezed vacuum
that in the photon-number basis reads as

��� = 	1 − �2

n=0

�

�n�n�1�n�2, �5.15�

where we have assumed real parameter � without loss of
generality. The statistic of the joint number pn,n and the total
number p2n are

pn,n = p2n = �1 − �2��2n, �5.16�

while the statistics of the quadrature-difference X=X1−X2 is
Gaussian with

��X�2 =
1 − �

2�1 + ��
. �5.17�

Numerically we have found that the classical bound on
joint-number measurements is always violated pn,n� pb,n

2 for
some n when ��0.41. The classical bound for total number
is never violated since p2n= pn,n� pb,2n for all �.

More specifically, for n=1 we have p1,1= �1−�2��2� pb,1
2

=exp�−2�=0.135 for all � in the interval 0.41���0.91. The
maximum violation occurs for �2=1 /2 so that p1,1=0.25, and
there is an 85% violation of the classical bound. For the total
number we have that the classical bound is not surpassed
since pb,2=2 exp�−2�=0.27.

On the other hand the classical bound on quadrature dif-
ference is always surpassed since the statistics is Gaussian
and �X�1 /	2 for all �. For example, for �2=1 /2 �this is
mean total number of photons �n�=2� we have p0=1.36,
while the classical upper bound in Eq. �5.14� is pb=0.56 so
that there is a percentage of violation 100�p0− pb� / pb
=141% approximately. The outputs x that contravene Eq.
�5.14� are all x in the interval −0.39�x�0.39, which repre-
sent an 82% probability since �−0.39

0.39 pxdx=0.82.

VI. SPIN SYSTEMS

The above methods can be adapted to situations described
by finite-dimensional Hilbert spaces, exemplified by spin-j
systems. This can be readily done in terms of SU�2� Q and P
functions, which are defined after the SU�2� coherent states
�j ,�� as �17�

� =� d2�P����j,���j,��, Q��� =
2j + 1

4�
�j,����j,�� ,

�6.1�

with d2�=sin �d�d�, and

�j,�� = 

m=−j

j � 2j

m + j
�1/2

sinj−m��

2
�cosj+m��

2
�

�exp�− i�j + m����j,m� , �6.2�

where �j ,m� are the eigenstates of the spin component j3 with
eigenvalue m, while ����0 and ����−�. The analog
of Eq. �1.3� is
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pm =
4�

2j + 1
� d2�Pm���Q��� =

4�

2j + 1
� d2�P���Qm��� ,

�6.3�

leading to the following bounds for classical measurements

pm �
4�

2j + 1
Qmax tr �m �6.4�

�for finite-dimensional systems tr �m is always finite�, while
the upper bound for classical states is

pm �
4�

2j + 1
Qm,max = pb,m. �6.5�

By construction the SU�2� coherent states are classical
both as measured and measuring states. For the POVM,

�� =
2j + 1

4�
�j,���j,��, tr �� =

2j + 1

4�
, �6.6�

the upper bound �Eq. �6.4�� is satisfied for all measured
states since

p� = Q��� �
4�

2j + 1
Qmax tr �� = Qmax, �6.7�

where Q��� is the SU�2� Q function of the measured state.
Likewise, when the measured state is coherent �
= �j ,���j ,�� we have

pm =
4�

2j + 1
Qm��� , �6.8�

where Qm��� is the SU�2� Q function of �m, so that Eq. �6.5�
is satisfied by all measurements.

For the sake of illustration next we consider some ex-
amples for the simplest cases j=1 /2 and j=1.

A. j=1 Õ2

For j=1 /2 the SU�2� coherent states read, in the �j ,m�
basis, as

�1/2,�� = sin��

2
��1/2,− 1/2� + cos��

2
�exp�− i���1/2,1/2� .

�6.9�

Every state and POVM are of the form

� =
1

2
��0 + r · ��, Q��� =

1

4�
�1 + r · Ω� , �6.10�

�m = �m��0 + rm · ��, Qm��� =
�m

2�
�1 + rm · Ω� ,

�6.11�

where � are the Pauli matrices in the �j ,m� basis, �0 is the
identity, r and rm are three-dimensional real vectors with
�r� , �rm��1, Ω= �sin � cos � , sin � sin � , cos ��, and �m�0.

Let us show that for j=1 /2 no state exhibits nonclassical
properties. This is because for every �m and using that
tr�� j�k�=2	 j,k,

pm = tr���m� = �m�1 + rm · r�, Qm,max =
�m

2�
�1 + �rm��

�6.12�

so that pm� pb,m would imply rm ·r� �rm�, which is not pos-
sible since �r��1.

Similarly, there are no measurements exceeding the clas-
sical bounds since pm=�m�1+rm ·r�, Qmax= �1+ �r�� / �4��,
and tr �m=2�m so that the violation of the classical bound
�Eq. �6.4�� would be equivalent to rm ·r� �r�, which is not
possible since �rm��1.

This lack of nonclassical states agrees with the approach
in Ref. �18� and with the fact that for j=1 /2 all pure states
are SU�2� coherent states. On the other hand, this is in sharp
contrast with the fact that all pure state have negative values
of the SU�2� Wigner function �19�. Nevertheless, it is worth
pointing out that for finite-dimensional systems the SU�2�
distributions such as P��� and the Wigner function are not
uniquely defined in contrast with their infinite-dimensional
counterparts �18,19�.

B. j=1

For j=1 the coherent states �Eq. �6.2�� are

�1,�� = sin2��

2
��1,− 1� + 	2 sin��

2
�cos��

2
�exp�− i���1,0�

+ cos2��

2
�exp�− i2���1,1� . �6.13�

1. Nonclassical states

As a measurement revealing nonclassical states we can
consider the projection on the state �1,0� �in the �j ,m� basis�,

�0 = �0 = �1,0��1,0� , �6.14�

with Q function,

Q0��� =
3

8�
sin2 �, Q0,max =

3

8�
, �6.15�

so that the classical upper bound in Eq. �6.5� is pb,0=1 /2.
This is clearly violated when the measured state is the same
state �=�0 since in such a case p0=1� pb,0=1 /2, and there
is a 100% violation of the classical bound.

This agrees with the fact that the state �1,0� in Eq. �6.14�
can be regarded as the limit of SU�2� squeezed states �20,21�.
This also agrees with the result in Ref. �18� stating that for
j=1 classical behavior �i.e., nonsingular positive P���� is
equivalent to non-negative covariancelike matrix

Zk,� = ��jkj� + j�jk�� − 	k,� − �jk��j�� . �6.16�

For the state �1,0� in Eq. �6.14� we have �21�

Z = �1 0 0

0 1 0

0 0 − 1
� �6.17�

so that the state is nonclassical.
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2. Nonclassical measurements

We can provide an example of nonclassical measurement.
To this end we consider the measurement �in the �j ,m� basis�
�0=�0= �1,0��1,0�. As measured state we consider the phase
averaged equatorial SU�2� coherent state

� =
1

2�
�

2�

d��1,� = �/2,���1,� = �/2,�� , �6.18�

where �j ,� ,�� are the SU�2� coherent states. In the
�j ,m��j ,m� basis this is

� =
1

4
�1,1��1,1� +

1

2
�1,0��1,0� +

1

4
�1,− 1��1,− 1� ,

�6.19�

with Q function

Q��� =
3

16�
�1 +

1

2
sin2 ��, Qmax =

9

32�
. �6.20�

The probability is p0=1 /2, which is 167% above the classi-
cal bound in Eq. �6.4�,

pb =
4�

2j + 1
Qmax tr �0 =

3

8
. �6.21�

VII. CONCLUSIONS

We have provided feasible practical procedures to reveal
the quantum nature of states and measurements. We have
illustrated them with the most practical measuring schemes
available, such as photon-number and quadrature measure-
ments.

The nonclassical tests proposed in this approach are ex-
ceedingly simple since definite conclusions are obtained
without evaluation of moments or any other more sophisti-
cated data analysis. This is reflected on the robustness of
these nonclassical criteria under practical imperfections, such
as finite detection efficiencies and finite sampling.

We have demonstrated that these nonclassical tests are
independent of other typical quantum signatures such as sub-
Poissonian statistics, quadrature squeezing, or oscillatory sta-
tistics.
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APPENDIX: TRACE MEASUREMENTS

As we have shown above, the classical bounds for mea-
surements depend on the trace of the corresponding POVM
elements �m. Incidentally, the trace tr �m is proportional to

the probability of the outcome m when the input state is the
one of maximum ignorance, �� I, where I is the identity;

pm�� � I� � tr �m. �A1�

When tr �m depends on m this can be regarded as a kind of
prior bias, since some outcomes are more probable than oth-
ers even when the measured state presents in principle no
preference for any outcome.

In this appendix we present two simple procedures that
allow us to determine tr �m in practice. For simplicity and
without loss of generality we focus on the single-mode case.

To this end we note that the identity can be expressed as

I = 2�
0

�

drr��r� , �A2�

where ��r� are phase-averaged coherent states �which corre-
spond to a laser output well above threshold �1��

��r� =
1

2�
�

2�

d��r exp�i����r exp�i��� , �A3�

and �r exp�i��� are coherent states ��� with �=r exp�i��.
When illuminating the detector with phase-averaged coher-
ent states ��r� the measured statistics is essentially the phase
average of the Q function of �m,

pm�r� =
1

2
�

2�

d�Qm�r exp�i��� . �A4�

After Eq. �A2� the desired tr �m can be determined by re-
peating the measurement for different input states ��r� by
suitably varying the coherent amplitude r

tr�m = tr��mI� = 2�
0

�

rdrpm�r� . �A5�

Although this recall a tomographic reconstruction of �m �8�,
this is not the case since the illuminating state already carries
the angular integration.

The same goal can be achieved following an slightly dif-
ferent strategy. This is by illuminating the detection system
with thermal-chaotic states �Eq. �2.15��. The corresponding
Q function �Eq. �2.17�� is a Gaussian centered at the origin of
the complex plane and its width increases when the average
mean number of photons ntc increases. Thus for ntc large
enough the Q function of the thermal-chaotic state will be
approximately constant Q����Q0 on the area where Pm���
�0 so that the statistics will be proportional to tr �m:

pm = �� d2�Pm���Q��� � �Q0� d2�Pm��� = �Q0 tr �m,

�A6�

and

tr �m = lim
ntc→�

pm

�Q0
. �A7�
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To illustrate this idea let us consider a one-photon detector
whose output is contaminated by the vacuum and two-
photon contributions

�1 = q�0��0� + p�1��1� + q�2��2� , �A8�

with tr �1= p+2q. When illuminated with the thermal-
chaotic state we get

p1 =
1

ntc + 1

q + p

ntc

ntc + 1
+ q

ntc
2

�ntc + 1�2� . �A9�

For example, for p=1 and q=0.1 and taking �Q0=1 /
�ntc+1�, we get for ntc=100

tr �1 = 1.2,
p1

�Q0
= 1.19, �A10�

i.e., only 1% error.
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